Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

ASP: An Adaptive Energy-Efficient Polling Algorithm for Bluetooth Piconets

Mark Perillo, Wendi B. Heinzelman
Department of Electrical and Computer Engineering
University of Rochester
Rochester, NY 14627
{perillo, wheinzel} @ece.rochester.edu

Abstract

Among the various wireless technologies available to-
day, Bluetooth stands out as the most promising for use
in low-power sensor networks. This is especially true for
large networks of sensors with low data rates, where Blue-
tooth’s low power Hold, Sniff, and Park modes could be
utilized during periods of low activity to reduce power con-
sumption. One way that these modes can be exploited
to reduce energy consumption is by using an intelligent
polling scheme to control intra-piconet traffic. We in-
troduce a novel polling algorithm called Adaptive Share
Polling (ASP) that is designed to perform well when the
network consists of sources sending short data packets at
constant rate that may fluctuate over time. In ASP, the
scheduler at the master implicitly learns the share of the
bandwidth that needs to be allocated to each of the slaves
in order to meet the latency and/or power requirements of
the application. Our simulation results show that signifi-
cant power savings can be achieved in slaves whose data
rates do not approach capacity of a Bluetooth piconet, and
in masters when the composite data rate of the piconet does
not approach capacity.

1 Introduction

Sensor networks have recently attracted a great deal of
attention as a means for monitoring an environment for a
variety of applications. Since many sensors typically derive
their power from either batteries or their surrounding envi-
ronment, these networks are often characterized by very
tight energy constraints. When designing a communica-
tions protocol for a sensor network, such energy constraints
should be considered so that the lifetime of the network can
be maximized. Bluetooth is an emerging wireless commu-
nications standard that was originally designed for cable
replacements, but whose low power consumption makes it

ideally suited for sensor networks as well. The Bluetooth
specification leaves a number of areas open, including the
manner in which a master polls the slaves in its piconet.
However, the choice of the polling method is critical in
minimizing power consumption by the sensors.

We introduce a new polling algorithm called Adaptive
Share Polling (ASP) that is designed to reduce power con-
sumption when traffic patterns consist of short packets from
a constant bit rate application. The ideal polling scheme for
such traffic patterns would require the master to poll a slave
only if there is data queued at the slave and immediately af-
ter that data has arrived at the slave’s queue, while allowing
the nodes to sleep for the remainder of the time. However,
packets seldom arrive with exactly constant or predictable
inter-arrival times, so even if the exact packet rate and the
most recent packet’s arrival time were known, it would be
difficult to predict precisely when the next packet will ar-
rive at the slave’s queue. Another problem can be observed
when considering an increase in packet arrival rate. If the
master polls only at the exact necessary rate, it will ob-
serve successful polls (defined as data sent in response to a
poll) all of the time both before and after the rate increase,
making it impossible to detect fluctuations in offered traf-
fic load. Instead, the master needs to poll at a rate slightly
above the necessary rate in order to detect these fluctua-
tions. In this case, the polling success rate remains below,
but close to, 100%. If the success rate becomes too high,
large latency will be observed on the network, since there
will be longer delays between polls. If the success rate be-
comes too low, the slave will be polled more often than it
needs to be and energy will be wasted. This energy versus
latency tradeoff is very common in polling networks.

ASP balances this tradeoff by ensuring that poll suc-
cess rate remains within a pre-specified range. In ASP, the
scheduler at the master implicitly learns the share of the
bandwidth that needs to be allocated to each of the slaves
in order to meet the latency and/or power requirements of
the application. ASP is capable of adaptively changing the
allocated shares based on observations of polling successes

0-7695-1874-5/03 $17.00 (C) 2003 IEEE

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

and failures. This algorithm is especially beneficial in net-
works consisting of multi-rate sensors, where power can
be saved in both the master and the slaves by decreasing
the number of times the master polls the nodes, without re-
quiring explicit cross-layer communication. ASP requires
a slight modification to the Bluetooth standard - an LMP
(Link Manager Protocol) message called Conditional Hold.

The system model that we have designed for is one in
which a number of multi-rate sensors send information at a
constant bit rate with small packet sizes to a single data col-
lector acting as piconet master. On a larger scale, many of
these networks could be connected in a hierarchical way
to create a large network with a tree topology. A local
data collector may be able to aggregate data before relay-
ing to another level. With varying correlation of the col-
lected data, this data collector would act as a multi-rate data
source itself.

The rest of this paper is organized as follows. Section 2
addresses related work. Section 3 offers a brief summary of
the Bluetooth standard necessary for understanding this pa-
per. Section 4 explains the ASP scheduling algorithm. Sec-
tion 5 offers predictions of the power consumption and av-
erage packet delay in simple networks. Section 6 presents
our simulation results with some analysis. Section 7 con-
cludes and details plans for future work.

2 Related Work

A number of polling algorithms for controlling intra-
piconet traffic in Bluetooth networks have already been
proposed. Many of these have focused on efficient use of
the available bandwidth of a piconet, while not consider-
ing energy efficiency as a metric [3] [4] [7] [10] [11]. Re-
cently, more algorithms have been designed with power
constraints considered. Garg et al. took advantage of
the Sniff mode to propose several power-saving polling
schemes [9]. These schemes consist of varying the sniff in-
terval and serving time based on the master-slave pair slot
utilization. Chakraborty et al. proposed several schedul-
ing algorithms, among them Adaptive Probability based
Polling Interval (APPI) with Fixed Resolution and Adap-
tive Resolution [6]. APPI uses the Sniff mode by peri-
odically sleeping after a burst of traffic has ended. While
this algorithm performs well for bursty traffic, we suspect
that it is not as well-suited for more constant rate traffic
patterns such as those that we are considering. Predictive
Fair Polling, proposed by Yaiz et al., is similar to ASP in
that it contains a mechanism that estimates traffic demand
for each slave [15]. PFP uses this estimation to determine
the probability that a slave has data queued. PFP also esti-
mates a fair share of the bandwidth that each slave should
be given. At each polling opportunity, the master calculates
an urgency metric for each slave based on the probability

that it has queued data and the fraction of its fair share that
it has been given. The slave with the highest urgency metric
is then polled.

Zhu et al. recently proposed a polling algorithm called
APCB (Adaptive Power Conserving service discipline for
Bluetooth) that we were unaware of at the time ASP was
designed [16]. Like ASP, APCB estimates traffic rates
based on observations and adapts polling intervals accord-
ingly, while putting slaves to sleep in Hold mode during pe-
riods when flows involving the slaves are not anticipated to
be active. In APCB, power tuning is performed by varying
a parameter whose value determines how rapidly a flow’s
rate changes. In ASP, the power tuning is performed by
the choice of a target success range which determines how
much more frequently the slave is polled than what is nec-
essary.

Another common polling method that is used to sched-
ule intra-piconet traffic is Deficit Round Robin (DRR), pro-
posed by Shreedhar et al. [14]. DRR works similar to a
simple round robin scheduler except that each node is lim-
ited to a given time quantum during a given round. If a
queued packet is larger than this quantum, the queue is
passed over until the next round, when its quantum is added
to the quantum that it was forced to sacrifice during the pre-
vious round. DRR was implemented as the intra-piconet
traffic scheduler in the BlueHoc software releases that were
used in our simulations [1] and is used in this paper for
comparison with ASP.

3 Background

Bluetooth is a fast frequency hopping time-division du-
plex standard that was originally designed to act as a cable
replacement in Personal Area Networks (PANs) [2]. The
simplest Bluetooth network, a piconet, consists of one mas-
ter device and up to seven slave devices. Bluetooth time
slots have a length of 625 usec, which is also the period
of the frequency hop pattern. All traffic in a piconet is di-
rected by the master, which may begin transmission only on
even slots. Slaves may begin transmission only on the odd
slots immediately following slots during which they have
been addressed by the master. Transmissions by the mas-
ter (or slave) may last for 1, 3, or 5 slots. When multi-slot
packets are used, the slave (or master) must wait until the
end of this packet before responding to the poll (or polling
the next slave). The Bluetooth standard does not specify
or even suggest the manner in which a master should poll
slaves.

One of the benefits of the Bluetooth standard is that it
allows devices that do not anticipate having data to go inac-
tive and turn off their radios to save energy in a low-power
state. The Bluetooth standard specifies three modes that
can be used to reduce power consumption - Sniff, Park,

0-7695-1874-5/03 $17.00 (C) 2003 IEEE

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

and Hold. In Hold mode, which is used in ASP, the master
and slave agree that the slave will not be addressed for a
given number of slots. The slave enters Hold mode after
exchanging LMP messages with its master. A slave can en-
ter Hold mode by being forced by the master, forcing itself,
or negotiating with the master. In ASP, we propose another
way to enter Hold mode - a “Conditional Hold” message
from the master forcing the slave into Hold mode for one
of three possible intervals.

4 Adaptive Share Polling (ASP)

The motivation behind Adaptive Share Polling is that we
would like to eliminate two situations that are unavoidable
in any persistent polling method. The first situation occurs
when there are a large amount of exchanges where the mas-
ter polls a slave and the slave replies with a Null packet. For
the remainder of this paper, we will refer to this situation as
an unsuccessful poll. ASP solves this problem by requiring
the master to track the share of the bandwidth needed by
each slave in order to keep unsuccessful polls at a prede-
termined level. The second situation that we would like to
avoid is when slaves receive many access codes and head-
ers for packets not destined for them. ASP solves this prob-
lem by requiring the master to send a “Conditional Hold”
message, which tells a slave to sleep for an amount of time
which is dependent on the length of the slave’s reply.

4.1 Adaptive Share Allocation

We define success ratio as the ratio of slots used for suc-
cessful polls (exchanges that result in successful slave-to-
master data transmission) to total slots used for polls for a
certain slave. For a slave using single slot packets, it is sim-
ply the ratio of successful polls to total polls. In the case of
a slave using multi-slot packets, this is different since a suc-
cessful poll might not occupy the same number of slots as
an unsuccessful poll. Target success range is defined as the
range of success ratios that a slave should remain within
for the duration of its connection to the master. A mas-
ter implementing ASP scheduling maintains a target suc-
cess range for each slave. The master will schedule traffic
so that all slaves’ success ratios always remain within this
range. The choice of target success range is critical. If the
range is chosen to be very high, it may be hard to recog-
nize fluctuations in offered load. If the range is chosen to
be very low, the master will poll the slave more often than
what is necessary, resulting in a waste of power and band-
width resources at both the master and the slave.

The piconet master constantly tracks the current share -
the fraction of available slots that are used for communica-
tion - of each active slave. A slave’s share is chosen so that
its success ratio remains within its target success range. We

choose to assign share to each slave rather than polling in-
terval because it is easy to set the combined share of the
piconet to a value less than one, ensuring that we do not
over allocate resources. Also, this is helpful in maintaining
fairness since different slaves can use different packet sizes
to send data.

During an observation window of N,,,ymqi polls (or slot
pairs if multi-slot packets are used), the master tracks the
success ratio for a slave. This ratio will be referred to as the
recent success ratio (RSR). This short-term success ratio is
smoothed over time and stored as the long-term success
ratio (LTSR). The LTSR is updated after each observation
window through a smoothing function

LTSR; = arrsgrLTSR; 1+ (1 - CKLTSR)RSRZ'
= (1—arrsr) Xpeo ¥irspRSRi_ 0

Here, ar7sr acts as a smoothing parameter and its
value should depend on the expected burstiness of the traf-
fic. The choice of this smoothing method is arbitrary and
the use of other methods may in fact result in enhanced
performance. When the RSR and LTSR deviate from the
designated success range, the share for a node may be ad-
justed in order to bring the RSR and LTSR back inside the
target range. To provide stability in our system, we include
a factor alphaspqre (< 1), which is the maximum factor by
which the master can increase or decrease a slave’s share
during a single observation window. This parameter is in-
cluded in order to avoid adjusting share by too much when
an abnormally high or low RSR is the result of jitter in the
inter-packet arrival times. All possible ranges for RSR and
LTSR and the actions taken for each situation are given in
Table 1. Ranges are given with respect to the target success
range (TSR = {T'SRyin, TSRz }). T'SRavg is defined
as the algebraic mean of TSR,;, and TSR0

A plot of share versus time for a typical multi-rate sensor
is given in Figure 2. In this simulation, a constant bit rate
sensor suddenly increases its data rate from 100 kbps to
200 kbps and later decreases its rate to 10 kbps.

4.2 Fast Recovery Mechanism

It was observed that for sudden extreme increases in a
slave’s data rate, it may require a long time for the master
to increase the slave’s share to the appropriate value. The
solid line in the bottom plot of Figure 3 shows a plot of
share versus time for a slave sending constant bit rate traf-
fic at 10 kbps and suddenly increasing its rate to 400 kbps.
For a single observation window, the most that the master
can increase the share, even if the RSR for that window is
100%, is ﬁw. Also, if the slave is given a low share,
the delay between the ends of consecutive observation win-
dows will be large, so it may take a long time before the

0-7695-1874-5/03 $17.00 (C) 2003 IEEE

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

RSR <
RSR > TSBmaz| RSR <
TSRmaz RSR > TSRmzn
TSRmzn
Share is too low. LTSR
share = | may be | Abnormal
LTSR >| sharex settling. | gituation.
TSRmaa mi"((alphashar;a Take no Take no action.
min(LTSR,RSR :
W) action.
LTSR < Ideal.
TSRmaz|l Possible jitter. Take no Possible jitter.
LTSR >|| Take no action. action. Take no action.
TSRmin
LTSR Share is too high.
Abnormal may be | share =
LTSR <|| situation. settling. | sharex
TSRmin || Take no action. Take no mam(m,
action.

maz(LTSR,RSR))
TSRavg

Figure 1: Scenarios for RSR and LTSR.

master becomes aware of a queue backlog. To take care of
this problem, ASP includes a “Fast Recovery” mechanism.

If a slave’s RSR for an observation window reaches
100%, this may be an indication that there has been a sud-
den increase in the slave’s offered load and severe action
should be taken to avoid large queue buildups. However, it
would not be appropriate to take severe action whenever a
100% RSR is observed since this could also be a sign that
there is some jitter in the inter-packet arrival times or that
the traffic has becomes burstier. Considering this, the fast
recovery mechanism was designed so that if the number of
consecutive 100% RSRs reaches a treshhold, the share is
multiplied by a factor Kz, (> ﬁw) rather than going
through the typical adjustment. The threshhold for begin-
ning fast recovery depends on the value of LTSR. Also, to
minimize the delay between the ends of observation win-
dows for queues with low share, the observation window
size is decreased to Ny, (< Npormar) Whenever a 100%
RSR is observed. The effect of the Fast Recovery mecha-
nism can be seen in Figure 3.

4.3 Conditional Hold

In ASP, the master maintains a timer for each slave in
its piconet which represents the next time (a value of the
master’s native clock) at which the slave should be polled
in order to maintain its share. When the master is given the
opportunity to poll a slave, it consults its timer table and
determines if one of the slaves’s timer value has expired.
If so, it chooses the slave with the most outdated timer and
polls it either by sending a baseband Poll packet or by send-

T 100 4
S
©
O sof i
o | | | | . | T T
20 40 60 80 100 120 140 160 180 200
Time (s)
s 4
<4
&
5081 B
®
306 g
Q
S
Loa4r] 4
8
Loa2t g
0
20 40 60 80 100 120 140 160 180 200
Time (s)

Figure 2: Typical plot of share vs. time for a multi-rate
Sensor.

ing an LMP “Conditional Hold” message. The Conditional
Hold message is similar to the LMP message in which a
master forces a slave into Hold mode, except that it con-
tains three possible intervals for which the slave can enter
Hold mode. The interval chosen by the slave depends on
the number of slots used in the slave’s reply. The master
initially assumes that the slave will reply with a single-slot
packet and updates the slave’s timer accordingly. When the
slave replies, the master will update the value of the slave’s
timer if a multi-slot packet is used. In some instances, the
slave’s timer will have a value small enough so that the
slave will never actually be able to sleep, in which case the
master simply sends a baseband Poll packet.

4.4 Fairness

If a master decides that one of its slaves requires an in-
crease in share greater than what is available, it first at-
tempts to satisfy the node that requires the least share. The
master allocates this share to the slave if it is the case that
every slave receiving this share would result in the com-
bined share remaining under capacity. If this is not the
case, the master gives the remaining slaves an equal divi-
sion of the remaining share. This process is repeated until
all slaves have share allocated to them. This method for
allocation of resources has previously been has been doc-
umented [13] and was used in Predictive Share Polling as
well [15].

4.5 Extension to Bidirectional Traffic Patterns

In the design of ASP, only slave-to-master traffic was
considered in the master’s allocation of bandwidth to the

0-7695-1874-5/03 $17.00 (C) 2003 IEEE

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

a

=)

S
T

@

<3

S
T
L

Data Rate (kbps)
g
T
.

=)

S
T
L

I I I I I I
0 100 150 200 250 300 350 400 450 500 550 600
Time (s)

O

e o
> ®
T T

1)
Y
T

o
S}
T

Instantaneous Share

— without FR
— - with FR

L L
400 450 500 550 600

. .
300 350
Time (s)

o
=]
=)
=3
a
=3
n
=3
=3
n
a
=3

Figure 3: Plot of share vs. time for a sensor with a sharp
rate increase.

slaves. However, it would not be difficult to modify the al-
gorithm so that observed traffic patterns in both directions
affect the master’s polling decisions. Success ratios would
simply need to be calculated based on the packets transmit-
ted by the master as well as those transmitted by the slaves.
The only difficulty with the modification is that it neces-
sitates the sending of either a separate Conditional Hold
packet after the master’s data packet or a hybrid packet con-
taining data and the hold interval information.

5 Predictions

In the following predictions of power consumption and
average packet delay, we assume that the success ratio is
maintained at a precise value rather than within a range
throughout the course of the connection. In this section, tar-
get success range is given as a single value that represents
both T'SRyin and TSRpaz, i€, TSR = TSRpyim =
TSRa:- In these predictions, as well as in the sim-
ulations, we used the product specification of Ericsson’s
ERC41 Bluetooth Radio Core module to derive typical val-
ues for transmit, receive, idle, and low power oscillator
mode power [8]. These values are:

P, =100 mW, P, =78 mW, P; =486 uW, P, =54 pW

In the single slave case, we can predict the average
power dissipation in the radio core of the master (P,,) and
slave (P;) based on these powers and the fraction of time
spent by the devices performing each of the possible tasks.

P, = (shareqqiq + sharenyu)Pr + share; mPige+
(sharecu + sharepoy) P, + shareipo,m Pipo

)

P, = (shareqqtq + sharenyn)P: + share; s Pige+
(sharecm + sharepoi) Py + sharepo.s Pipo

3)
where sharegqiq, sharenyu, sharecy, and sharepgy
represent the share of time being spent on data packet
transmission, Null packet transmission, Conditional Hold
packet transmission, and Poll packet transmission, respec-
tively. share; , /s and sharey, /5 represent the share of
time spent by the master/slave in idle mode and low power
oscillator, respectively. For a given bit rate R and appli-
cation packet size of PacketSize Bytes, data packets will
arrive at the slave’s queue at a rate of

R
AR = 4
date = 9" PacketSize)
where ARy, has units packets/second. Given this data
arrival rate, we can calculate the share that the master must
allocate to this slave in order to satisfy a given target suc-

cess range TSR as

ARgata (1 + NumSlots) x 625us
TSR

share = 5)
where NumSlots represents the length of the slave’s
replies (1, 3, or 5) normalized to a 625 us slot. The share
of the bandwidth that is used for successful packet trans-
mission can be calculated as

sharesyccess = ARgata (1 + NumSlots) x 625us (6)

The total share of the bandwidth allocated to a slave con-
sists of the share of bandwidth used for successful polls,
which arrive at a rate of ARg4:q, and the share of band-
width used for unsuccessful polls, which arrive at a rate of
ARy . From the fact that unsuccessful polls have a tem-
poral length of 1.25 ms, we can calculate ARn . as

1.25ms
__ share ARgata (1+NumSlots)

~ 1.25ms 2 (7)

ARNuu

Since each data and Null packet must be preceded by a
master’s poll, we know that

ARcy + ARpon = ARqata + ARNwu (8)

where AR¢ g represents the Conditional Hold arrival rate
and ARp,y represents the baseband Poll arrival rate. In
ASP, the master sends a baseband Poll packet when there
is no chance that the slave will actually be able to sleep. We

0-7695-1874-5/03 $17.00 (C) 2003 IEEE

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

can calculate the fraction of polls that consist of a baseband
Poll packet as

— 4 - sh?we

10

We can now calculate ARp,; from Equations 8 and 9
as

share > %
else

ARpon
ARpou+ARcH

©)

)(AR4ate + ARNun) share >

4 — 3
ARpon = { (() e else
(10)
ARcpg can be found easily from Equations 4, 7, 8,
and 10. Knowing the arrival rates and lengths of each of
the four types of packets used in ASP, we can now calcu-
late the share of time spent on transmission for each. Since
the master must keep a stable clock, no share of its time can
be spent in LPO mode. The remainder of its time must be
spent in idle mode.

sharegate = ARgqto(PSize+ HSize + LHSize) x 8us

(11)

sharenu = ARNwu(HSize) x 8us (12)
sharecy = ARcy(CHSize) x 8us (13)
sharepo; = ARpou(HSize) x 8us (14)
share; ,, = 1 — shareqqrq — sharenwi— (15)

sharecyg — sharepy

We assume that packet size PSize ranges from O -
335 Bytes, while Hold message size HSize, L2CAP
header size LH Size, and Conditional Hold message size
CH Size are fixed at 20 Bytes, 4 Bytes, and 23 Bytes, re-
spectively. 8us represents the transmission time for a sin-
gle Byte. The slave will be idle during a poll slot for the
remainder of the slot period not occupied by the poll packet
(baseband Poll or Conditional Hold). The remainder of its
time may be spent in LPO mode.

share; s = ARcm X (625us — CHSize x 8us)+
ARpoy X (625us — PollSize x 8us)
(16)
shareyp, s = 1 — shareqqtq — shareny—

sharecm — sharepoy — share; s
(I7)

W

=]
=)
3

®
3
®
]

@
3

IS
S

90%
70%
--- DRR
— AsP
100 200 300 400 500 600 700
Application Data Rate (kbps)

(b)

Average Power (mW)
Average Power (mW)

90%
20-+, 70%

—~s0% [--- DAR 0%
100 %% — Asp 10%

T 100 200 300 400 500 600 700 %
Application Data Rate (kbps)

(a)

»
&

Figure 4: Predicted average power dissipation by the
master (a) and the slave (b) in a single-slave piconet.

Using this analysis and assuming 335 Byte five-slot
packets, we have plotted the expected power dissipation by
the master and the slave as a function of application data
rate R for ASP with multiple target success ranges as well
as for DRR in Figure 4.

The average packet delay for ASP can also be predicted
quite easily. The transmission time of a packet is

T = (NumSlots) x 625us (18)

Packets are generated with arrival times that are uni-
formly distributed on a constant sized interval whose limits
vary from 0 to -2 ms before the successful poll in which
the packet is transmitted. The means of these distributions
average out to gzi’;z and the average packet delay can be

easily calculated as

e = ghae 41 (19)
= (575 + NumSlots) x 625us
Using this analysis and assuming 335 Byte five-slot

packets, we have plotted the expected average delay as a
function of application data rate in Figure 5.

6 Simulations and Analysis

We used Network Simulator [12] and IBM’s BlueHoc
extension [1] to simulate ASP and analyze power dissipa-
tion and packet delay in various Bluetooth piconet mod-
els. In all simulations, we assume high quality links (no
lost packets), slave-to-master traffic only, and negligible
overhead in initial link establishment and settlement to the
proper share. In all simulations, constant bit rate traffic pat-
terns with maximum size five-slot packets and inter-packet
arrival time jitter are used.

The first network considered is a single-slave piconet. In
these simulations, we calculated power dissipation by the
master and the slave and average packet delay for various

0-7695-1874-5/03 $17.00 (C) 2003 IEEE

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

n W » (o))
o o o o

Average Delay (ms)

—
o

0 20 40 60 80 100
Application Data Rate (kbps)

Figure 5: Predicted average packet delay in a single-
slave piconet.

application data rates. We ran these simulations for ASP
with various target success ranges and for DRR. In addi-
tion, we ran simulations for two-slave piconets with both
symmetric and asymmetric rates among the slaves. In the
symmetric simulations, we varied each slave’s application
data rate, always keeping them equal. We calculated the
power dissipation by the master and the average among the
slaves and average packet delay. In the asymmetric simu-
lations, we kept one slave’s rate constant at 10kbps while
varying the other slave’s rate. For these simulations, we
calculated the power dissipation at the master, the low data
rate slave, and the variable data rate slave. We also cal-
culated the average packet delay for the flow involving the
low data rate slave and that involving the variable data rate
slave. We ran all two-slave piconet simulations for ASP
with target success range of {0.85, 0.85} and for DRR. Fi-
nally, we ran simulations for seven-slave piconets, again
using slaves with both symmetric and asymmetric rates. In
the asymmetric simulations, we kept one slave’s rate con-
stant at 10kbps while varying the other slaves’ rates. We
ran all seven-slave piconet simulations for ASP with target
success range of {0.85, 0.85} and for DRR.

6.1 Power Dissipation

Figure 6 shows the average power dissipation of the
master and slave in a single slave piconet for various target
success ranges (10%, 30%, 50%, 70%, 90%) and for DRR.
The curves for ASP with all target success ranges eventu-
ally converge to DRR when the target success ranges and
offered load require that a share of 1.0 should be allocated
to the slave. Our simulation results match our predictions
in Figure 4 very closely. Figure 7 shows the percent savings
in average power at the master and the slave that ASP can
achieve over DRR. As expected, savings are very high at

560 560
£ £
<50 <50
5 5
£40 Sa0

&30) 230 90%
20% . 70%
50%

10 —g0% --- DRR 10 1o 3% - DRR
10% — ASP — ASP

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Application Data Rate (kbps) Application Data Rate (kbps)

(a) (b)

20p-77 70% 50%

Figure 6: Average power dissipation by the master (a)
and the slave (b) in a single-slave piconet.

80

60

@
3

Percent Savings
Percent Savings

40

IS
S

N
S
N
S

300 400 500 600 700
Application Data Rate (kbps)

(a) (b)

"0 100 200 300 400 500 600 700 % 00 200
Application Data Rate (kbps)

Figure 7: Percent savings of ASP in power at the master
(a) and the slave (b) in a single-slave piconet.

very low data rates (96.8% for 1 kbps) when using a high
(90%) target success range. Even when using a low tar-
get success range (10%), the power savings at low rates are
very high (95.6% for 1 kbps). Savings become insignificant
at high data rates.

Figure 8 shows the average power dissipated by the mas-
ter and each slave for a symmetric two-slave piconet for
ASP and for DRR. As shown in Figure 8a, at the master,
DRR scheduling is actually an improvement over ASP in
terms of power dissipation for high slave data rates. In this
case, the master using ASP has allocated 100% of the share
to the slaves. Since the master is polling at every oppor-
tunity, its average receive power should be the same as if
it were using DRR. The difference is that with ASP, the
master may sometimes send Conditional Hold messages in
place of Poll messages. Consequently, its average transmit
power is greater than it would be if using DRR. The power
inefficiency at the master is justified by the savings at the
slaves, which can be seen in Figure 8b.

Figure 9 shows the average power dissipated by the mas-
ter, the low (constant) data rate slave, and the variable data
rate slave for an asymmetric two-slave piconet for ASP and
for DRR. Using ASP, significant power savings over DRR
can be seen for all devices at low data rates. As expected,
the power savings at the master and the variable data rate
slave become much less when the variable data rate slave

0-7695-1874-5/03 $17.00 (C) 2003 IEEE

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

@
3

@

3

Average Power (mW)
Noow s g
s & & 3
Average Power (mW)
@ a o
s & 3

N
S

=)
=)

— ASP 85%
--- DRR

600

— ASP 85%
--- DRR

300

=

% 50 100 150 200 250
Application Data Rate (kbps)

(a) (b)

100 200 300 400 500
Total Application Data Rate (kbps)

Figure 8: Average power dissipation by the master (a)
and each slave (b) in a symmetric two-slave piconet.

~
S

—— ASP 85%
--- DRR

x o o
S 5 &8
=)

@
=)

Average Power (mW)
@

N
=]
Average Power (mW)

5

— ASP 85%
--- DRR

600 00

o

=

100 200 300 400 500 600
HDR Slave Application Data Rate (kbps)

(a) (b)

100 200 300 400 500
Total Application Data Rate (kbps)

~
=]

Average Power (mW)
N oW Ao o
s & & 3 3

IS

—— ASP 85%

--- DRR
100 200 300 400 500 600
HDR Slave Application Data Rate (kbps)

(©)

0,
0

Figure 9: Average power dissipation by the master (a),
the low data rate slave (b), and the variable data rate
slave (c¢) in an asymmetric two-slave piconet.

increases its rate. The average power at the low data rate
slave remains approximately constant for ASP as a function
of the variable data rate slave’s rate. For the DRR case, as
the variable rate slave’s data rate increases, the master polls
the variable rate slave more and the low data rate slave less.
Thus the power dissipated by the low data rate slave will
decrease as the variable rate slave’s rate increases for DRR.

Figure 10 shows the average power dissipated by the
master and each of the slaves for a symmetric seven-slave
piconet for ASP and for DRR. Similar to the two-slave
piconet case, the master dissipates more power with ASP
than with DRR for high data rates, and again this is justi-
fied by the savings at the slaves.

Figure 11 shows the average power dissipated by the
master, the low data rate slave, and each of the variable
data rate slaves for an asymmetric seven-slave piconet for
ASP and for DRR. Similar to the asymmetric two-slave pi-

@
3

Average Power (mW)
Noow R
s & & 3
Average Power (mW)
S

o)

IS

— ASP 85%
--- DRR

600 00

— ASP 85%
--- DRR
20 40 60 80
Application Data Rate (kbps)

() (b)

% 100 200 300 400 500
Total Application Data Rate (kbps)

Figure 10: Average power dissipation by the master (a)
and each slave (b) in a symmetric seven-slave piconet.

— ASP 85%
--- DRR

s o
s 3
@

)
S

Average Power (mW)
8

Average Power (mW)
>

=)
e

—— ASP 85%
--- DRR

600

0 100

20 40 60 80
HDR Slave Application Data Rate (kbps)

(a) (b)

100 200 300 400 500
Total Application Data Rate (kbps)

Average Power (mW)
s &

e

—— ASP 85%
--- DRR

100

20 40 60 80
HDR Slave Application Data Rate (kbps)

(©

Figure 11: Average power dissipation by the master (a),
the low data rate slave (b), and each of the variable data
rate slaves (c) in an asymmetric seven-slave piconet.

conet case, significant power savings can be seen for the
master and all slaves at low data rates and the savings be-
come much less when the variable data rate slaves increase
their rates. When data rates among the variable rate slaves
become very high, although the low data rate slave’s rate
remains constant, its power consumption increases. This is
because when the low data rate slave returns from sleeping,
the timer of another slave will often expire simultaneously.
When this happens, the master may poll one of the other
slaves first and the low data rate slave will receive access
codes and headers despite the fact that it is not being ad-
dressed by the master.

6.2 Average Packet Delay

In the previous section, we showed that ASP can achieve
significant power savings over a persistent polling method

0-7695-1874-5/03 $17.00 (C) 2003 IEEE

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

—— ASP 85%
--- DRR

Average Delay (ms)
Average Delay (ms)

0 20

40 60 80 20 40 60 80
‘Application Data Rate (kbps) ‘Application Data Rate (kbps)

(a) (b)
- S?{; 85%

Average Delay (ms)

20 20 60 80
‘Application Data Rate (kbps)

(©)

Figure 12: Average packet delay for the slave in a single-
slave piconet (a), each slave in a symmetric two-slave
piconet (b), and each slave in a symmetric seven-slave
piconet (c¢).

when slave data rates are low. The cost for these power
savings comes in the form of increased packet delay. In
this section, we present simulation results that quantify this
increase.

Figure 12a shows the average packet delay for a single-
slave piconet for ASP with various target success ranges
and for DRR. As the target success range approaches 0%,
ASP becomes a persistent poller and the curve approaches
that of DRR. The curves for ASP match our predictions in
Figure 5 very closely and converge to the constant average
packet delay seen in DRR for high data rates. Figures 12b
and 12c show the average packet delay for a symmetric
two-slave piconet and a symmetric seven-slave piconet, re-
spectively, for ASP and for DRR. It is interesting that ASP
actually outperforms DRR in terms of average packet delay
for high data rates. The reason is that a master implement-
ing DRR polls its slaves in a burstier manner than in ASP.
In fact, the average packet delay in a piconet using ASP
will converge to that for a piconet using a simple round
robin approach, where slaves are polled in a strictly cyclic
manner, for very high data rates.

Figure 13 shows the average packet delay at the low data
rate slave and the variable rate slave for an asymmetric two-
slave piconet for ASP and for DRR. Figure 14 shows simi-
lar results for the average packet delay at the low data rate
slave and each of the variable rate slaves for an asymmetric
seven-slave piconet. In both the two-slave and seven-slave
case, with ASP the low data rate slave’s average packet de-
lay remains fairly constant, as we would expect. Since this

—— ASP 85%
--- DRR

—— ASP 85%
--- DRR

=
3

Average Delay (ms)
@
3

Average Delay (ms)

600 600

100 200 300 _ 400 500
HDR Slave Application Data Rate (kbps)

() (b)

100 200 300 400 500
HDR Slave Application Data Rate (kbps)

Figure 13: Average packet delay for the low data rate
slave (a) and the variable data rate slave (b) in an asym-
metric two-slave piconet.

120, 400
— ASP 85% — ASP85%
--- DRR 350 -~ DRA
100
> 5300
Egl/—v TN €
z 5250
8 60 8200
° °
g 150
g 49 2
< <100|
20
50
20 40 60 80 100 % 20 40 60 80 100
HDR Slave Application Data Rate (kbps) HDR Slave Application Data Rate (kbps)
(@) (b)

Figure 14: Average packet delay for the low data rate
slave (a) and the variable data rate slave (b) in an asym-
metric seven-slave piconet.

slave’s rate does not change, its share also remains con-
stant and so it is being polled at a rate independent of the
other traffic on the piconet. As the rates of the variable
data rate slaves become low, DRR acts like simple round
robin, polling the slaves cyclically and usually utilizing one
time slot pair for each slave since most slave replies consist
of Null packets rather than data. As these rates increase,
slaves will have data to send more frequently. Since five-
slot packets are being used, this means that three time slot
pairs will be occupied by a poll and there will be longer de-
lay between polls. Therefore, even the low data rate slave,
whose rate remains constant, will be subjected to higher
average packet delay as piconet throughput increases.

6.3 Power-Latency Tradeoff

It is evident from our results that the choice of a target
success range should be made to balance a tradeoff between
average packet delay and power-efficiency, a tradeoff typ-
ical of polling networks. Figure 15 shows a plot of total
power (master and slaved combined) versus average packet
delay for a single-slave piconet. In the plot, a solid line
connects points of the same application data rate. Move-
ment along a single curve from high power consumption

0-7695-1874-5/03 $17.00 (C) 2003 IEEE

Proceedings of the 36th Hawaii International Conference on System Sciences - 2003

20 ‘
o 10%
° o,
50 kbps . ggf:
15 s 70% ||
v 90%

Total Power (mW)
o

10 kbps
5 kbps

OO 10 20 30 40 50 60
Average Delay (ms)

Figure 15: Power versus delay tradeoff in a single-slave
piconet.

and low average packet delay toward low power consump-
tion and high average packet delay can be interpreted as
an increase in target success range. A system designer (or
network middleware) forced to operate on a single curve
determined by the slave’s data rate is given the flexibility
to choose where along that curve to operate so that power
constraints and/or network performance goals are met.

7 Conclusions and Future Work

We have proposed a novel scheduling algorithm for
Bluetooth to control intra-piconet traffic. This algorithm
allows the system designer to balance the tradeoff between
power-efficiency and packet latency based on the require-
ments of the application. Furthermore, this tradeoff can be
made on a node by node basis, providing a great deal of
flexibility. We are currently working to develop an exten-
sion of ASP in which the master empties the slave’s queue
once a successful poll is observed, a strategy similar to that
of many of the polling schemes that have been proposed
to date. We expect that this algorithm will sacrifice some
short-term fairness but will dramatically improve average
packet delay when sensors use large L2CAP packets that
must be segmented into multiple baseband packets.

In the near future, our research will be directed toward
the design of a middleware for use in sensor network appli-
cations such as those being developed for a Smart Medical
Home at the University of Rochester’s Center for Future
Health [5]. The goal of this middleware is to allow the net-
work to adapt itself to the requirements of an application
so that a minimum level of reliability is maintained in a
network whose topology is potentially very dynamic. We
believe that this middleware will be able to use ASP by dy-

namically adjusting such design parameters as target suc-
cess range to meet time-varying application requirements.

References

[1] BlueHoc: Bluetooth performance evaluation tool.
http://oss.software.ibm.com/developerworks/ open-
source/bluehoc/, 2002.

[2] Bluetooth. http://www.bluetooth.com/, 2002.

[3] R. Bruno, M. Conti, and E. Gregori. Wireless Access to
Internet via Bluetooth: Performance of the EDC Schedul-
ing Algorithm. In Proceedings of the First Workshop on
Wireless Mobile Internet, 2001.

[4] A. Capone, M. Gerla, and R. Kapoor. Efficient Polling
Schemes for Bluetooth Picocells. In IEEE International
Conference on Communications, 2001.

[5] University of Rochester Center For Future Health.
http://www.futurehealth.rochester.edu/, 2002.

[6] I. Chakraborty, A. Kashyasp, A. Kumar, A. Rastogi,
H. Saran, and R. Shorey. MAC Scheduling Policies with
Reduced Power Consumption and Bounded Packet Delays
for Centrally Controlled TDD Wireless Networks. In IEEE
International Conference on Communications, 2001.

[7]1 A.Das, A. Ghose, A. Razdan, H. Saran, and R. Shorey. En-
hancing Performance of Asynchronous Data Traffic Over
the Bluetooth Wireless Ad-Hoc- Network. In IEEE Info-
com, 2001.

[8] Ericsson. http://www.ericsson.com/bluetooth, 2002.

[9] S. Garg, M. Kalia, and R. Shorey. MAC Scheduling Poli-
cies for Power Optimization in Bluetooth: A Master Driven
TDD Wireless System. In /[EEE Vehicular Technology Con-
ference, 2001.

[10] N. Johansson, U. Kolmer, and P. Johansson. Performance
Evaluation of Scheduling Algorithms for Bluetooth, pages
139-150. Kluwer Academic Publishers, 2000.

[11] D.Kalia, M.and Bansal and R. Shorey. Data Scheduling and
SAR for Bluetooth MAC. In IEEE Vehicular Technology
Conference, 2001.

[12] Network Simulator - ns. http://www.isi.edu/vint/nsnam/,
2000.

[13] K. Ramakrishnan, R. Jain, and D. Chiu. Congestion Avoid-
ance in Computer Networks with a Connectionless Net-
work Layer, Part IV: A Selective Feedback Scheme for Gen-
eral Topologies. In Technical Report DEC-TR-510, Digital
Equipment Corporation, Aug. 1984.

[14] M. Shreedhar and G. Varghese. Efficient Fair Queueing
using Deficit Round Robin. In Proceedings of ACM SIG-
COMM, 1995.

[15] R. Yaiz and G. Heijenk. Polling Best Effort Traffic in Blue-
tooth. In The Fourth International Symposium on Wireless
Personal Multimedia Communications, 2001.

[16] H. Zhu, G. Cao, G. Kesidis, and C. Das. An Adaptive
Power-Conserving Service Discipline for Bluetooth. In In-
ternational Conference on Communications, 2002.

0-7695-1874-5/03 $17.00 (C) 2003 IEEE

10

