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Abstract

Low-power-listening MAC protocols were designed to

reduce idle listening, a major source of energy consumption

in energy starved wireless sensor networks. Low-power-

listening is a MAC strategy that allows nodes to sleep for

ti s (the “inter-listening” time) when there is no activity

concerning them. It follows that a node has to occupy the

medium for at least ti s to guarantee that its destination will

probe the channel at some point during the transmission.

Low-power-listening protocols have evolved with the intro-

duction of new radios, and the most recent contributions

propose to interrupt communication between the sender and

the receiver after the data packet has been successfully re-

ceived and acknowledged. This results in significant energy

savings because a sending node does not need to send for

full ti periods. We propose a new and simple approach to

synchronize nodes on a slowly changing routing tree so that

energy consumption is further reduced at the sending node,

and the delay is considerably less. Our method allows the

nodes to use a lower duty cycle, at no cost of overhead in

most cases. Simulation and implementation results show

that energy consumption can be reduced by a significant

factor (dependant on ti) and delay by at least 18%.

1 Introduction

Because it sits so low in the protocol stack, the MAC

layer offers great potential to reduce energy consumption

and delay. In very energy and bandwidth constrained wire-

less sensor networks (WSNs), every communication taking

place between nodes has to happen according to the MAC

protocol schedule. This transmission / reception schedule

can be an important drain of energy. In simple CSMA

MAC protocols like IEEE 802.11, a node spends most of

the time in idle listening mode, a state in which the radio

is turned on but not receiving any packet. This consumes

as much energy as if the radio was receiving data. Several

strategies have been employed to schedule packet transmis-

sions differently, quickly dismissing IEEE 802.11 as unfit

for WSNs. Low-power-listening (LPL) protocols take a dif-

ferent approach and aim to minimize idle listening, the main

source of energy consumption in lightly loaded networks.

In a LPL protocol, nodes probe the channel every ti s:

they either stay on if they detect activity, or return to sleep

for ti s otherwise. Aloha with preamble sampling (PS) [3],

WiseMAC [4], and B-MAC [10] were among the first LPL

protocols to be proposed. Aloha-PS and B-MAC schedule

packets to be sent with very long preambles of at least ti s so

that their destination wakes up sometime during the trans-

mission. WiseMAC allows nodes to exchange active / sleep

schedules in order to use shorter preambles. However, these

protocols suffer from two main issues: in practice, they

are not adapted to recent radios like the IEEE 802.15.4 [5]

compliant Chipcon CC2420 [2] radio because the IEEE

802.15.4 standard has a fixed preamble length of only a few

bytes. More importantly, their MAC schedules force receiv-

ing nodes to remain on for the duration of the preamble (a

particularly costly situation since on the CC2420 radio, Rx

mode drains more energy than Tx mode for any power set-

ting). As a consequence, researchers introduced new LPL

protocols whose schedules are compatible with the IEEE

802.15.4 compliant radios. X-MAC [1], SpeckMac-D [11],

and MX-MAC [7] are among the most popular contribu-

tions. These protocols are based on repeating either the

data packet itself (SpeckMAC-D and MX-MAC), or an ad-

vertisement packet (X-MAC), in place of a long preamble.

The details of the transmission schedules (hereafter “MAC

schedule”) are given in Figure 1.

While the LPL family of MAC protocols generally low-

ers energy consumption without resorting to explicit ex-

change of active / inactive schedules between nodes, low

duty cycles (or equivalently, high ti values) drastically fa-

vor receiving nodes over mostly-sending nodes [7] and in-

duce higher delays and contention. As Figure 1 shows, only

one data packet can be transmitted per ti cycle, which can



Figure 1. MAC schedule for B-MAC, X-MAC,

MX-MAC, and SpeckMAC-D.

cause a packet to experience high delay over several hops,

and the network to deliver small data rates. Concern for de-

lay may force network designers to select a high duty cycle

that would limit energy savings.

In this paper, we assume that all nodes share the same

fixed ti value, an assumption made by most LPL MAC pro-

tocols. Further, we propose to synchronize nodes along

a slowly-changing routing path so as to minimize energy

consumption and packet delay, without explicit schedul-

ing between nodes or overhead of any sort. Only three

LPL protocols can be selected to synchronize on unicast

packets: X-MAC, C-MAC and MX-MAC. These proto-

cols form a subfamily of LPL protocols that can be in-

terrupted by the receiver. For unicast packets, the sender

stops its stream of advertisement (X-MAC / C-MAC) or

data (MX-MAC) packets after receiving an acknowledge-

ment frame. Sender and receiver can then be synchronized

to wake-up sequentially within a short interval. Conversely,

SpeckMAC-D, which cannot be interrupted, needs explicit

notification within nodes to synchronize.

We prove the benefits of node synchronization on packet

rate, energy consumption and packet delay through simula-

tion of an accurate model and implementation on a Tmote

Sky [9] platform.

The remainder of this paper is organized as follows. Sec-

tion 2 presents related work. Section 3 explains the princi-

ple behind node synchronization for reduced delay and en-

ergy consumption. Sections 4 and 5 give simulation and

implementation results that prove the concept and feasibil-

ity. Section 6 concludes our work and provides objectives

for future work.

2 Related Work

WiseMAC [4] is a MAC protocol related to, but not di-

rectly part of the LPL family, as it relies on time synchro-

nization to minimize the length of its preamble. Nodes run-

ning WiseMAC must exchange scheduling information so

that a node with packets to send can start transmitting a

short time before its intended receiver wakes up. In this

study, we exclude protocols that cannot be implemented

on newer radios and that require hard-to-achieve fine time

synchronization. We show that explicit scheduling between

nodes is unnecessary because it can be achieved implicitly

with X-MAC, C-MAC, or MX-MAC.

Aloha with Preamble Sampling (PS) was one of the first

channel probing schemes proposed for wireless sensor net-

works [3]. The MAC schedule of Aloha-PS resembles that

of B-MAC in Figure 1.

B-MAC [10] with Low-Power-Listening (LPL) was the

first MAC protocol to introduce channel probing schedules

for recent radios. Polastre et al. provide a model for LPL

with strong consideration for the target radio. To curb limi-

tations imposed on the receiving node to stay awake for the

time of the preamble, Polastre et al. propose sending pack-

ets with half-sized preambles.

Post-B-MAC protocols include SpeckMAC-D [11], X-

MAC [1], and MX-MAC [7]. In [11], Wong and Arvind

propose SpeckMAC-D, whose schedule replaces the long

preamble with a stream of repeated data packets. Wong and

Arvind develop a model for SpeckMAC protocols and study

their impact on the ProSpeckz platform (a larger speck of

size one square inch), while comparing them to B-MAC.

X-MAC replaces the long preamble of B-MAC by a

stream of short advertisement packets. Upon hearing an ad-

vertisement packet containing information about the desti-

nation of the data packet, a node either returns to sleep or

stays on to receive the data packet. There are several obvi-

ous limitations to the X-MAC schedule, including the risk

for false acknowledgement since ACK frames are sent prior

to receiving the data packet. Another significant drawback

is that X-MAC is ill-adapted to broadcast packets: receiv-

ing nodes need to remain active until the end of the ti period

in order to receive the data packet. We showed in previous

work [7] that there is another significant design issue with

X-MAC: advertisement packets, which were meant to be

very short, are difficult to hear. Because they are so small,

clear channel assessments may be performed by the radio at

intervals that miss the advertisement packets. This leads to

error-prone wireless links.

We introduced MX-MAC in [7] as a response to the few

design flaws of X-MAC. MX-MAC simply repeats the data

packet instead of sending a stream of advertisement pack-



ets, and listens for ACK frames between packet transmis-

sions. MX-MAC has thus a lower chance of false acknowl-

edgments. Most importantly, MX-MAC is well suited for

broadcast packets as nodes can receive data packets as soon

as they hear an ongoing transmission. As our work showed,

MX-MAC does not always outperform X-MAC, although

it broadly allows for significant energy savings in broad-

cast and unicast mode. In this paper, we select MX-MAC

over X-MAC, even though our results can be applied to X-

MAC / C-MAC.

Finally, Lu et al. proposed DMAC [6], a MAC protocol

whose goal, much like ours, is to stagger wake-up sched-

ules over paths of a data-gathering tree. DMAC defines

receive and transmit slots for unicast packet exchange at

every node. In order to achieve synchronization, the slots

are staggered along paths through the explicit exchange of

schedules among neighbors. Because a node must know

the Rx / Tx slots of its neighbors, DMAC requires local

time synchronization. Additionally, broadcast packets from

the data sink to the leaf nodes are only supported in spe-

cific slots, which may cause increased latency and energy

waste when these slots are not used. Our approach con-

serves synchronization for these centrifugal flows. The im-

provements obtained by DMAC are significant and convinc-

ing, and we faced many of the same hurdles as Lu et al.

However, our scheme achieves similar results without the

overhead and limitations supposed by DMAC and comes at

specifically no additional cost when the already popular X-

MAC or MX-MAC LPL protocols are used within the scope

of applications chosen for D-MAC.

3 Node Synchronization

In the following, the term “interruptible LPL” or int-

LPL refers to the subfamily of LPL MAC protocols whose

stream of packets can be interrupted by an acknowledge-

ment frame; to the best of our knowledge, these are lim-

ited to the three MAC protocols X-MAC, C-MAC, and MX-

MAC.

We chose to study only the MX-MAC protocol, although

the results in this paper can be easily extended to the whole

family of int-LPL protocols. Unlike X-MAC / C-MAC,

MX-MAC is equally adapted to unicast and broadcast pack-

ets, and risks of false acknowledgement are smaller with

MX-MAC. Most importantly, our previous work showed

that the advertisement packets in X-MAC can be hard to

hear [7], leading to rather poor link quality. Since our study

applies to routing trees with at least two hops, the chance

of packet delivery failure over one of the many hops on the

routing path would be prohibitively high with X-MAC. We

thus selected MX-MAC with 50B packets. For this data

packet size, the packet delivery ratio over one hop is close

to 98%, which translates into a packet failure rate of about

(a)

(b)

Figure 2. Synchronization principle for (a)

two (b) three nodes running an int-LPL pro-

tocol.

92% over a four-hop path. For simplicity purposes, pack-

ets are delivered in a best-effort manner, and unsuccessful

transmissions result in dropping the packet.

3.1 Synchronization Over a Unidirec-
tional MX-MAC Link

3.1.1 Principle

Under the MX-MAC schedule, a node may learn of the ac-

tive schedule of its destination when it receives an ACK

frame after successfully transmitting a data packet. It is this

particularity that allows nodes running MX-MAC to syn-

chronize.

Consider two nodes 0 and 1, with a unidirectional link

from 0 to 1. After receiving a packet, node 1 sets its timer

to wake up ti s later. The sending node 0 will do the same,

although it will reduce its sleeping time by a small synchro-

nization back-off tS > 0. For the synchronization to take

place, tS must be greater than tRx, the time to receive a

packet. This allows node 0 to wake up slightly before node

1 during the next rounds. Figure 2(a) shows how the syn-

chronization takes place for two nodes.

The requirement of unidirectionality is a minor one:

WSNs are usually characterized by centrifugal broadcast



packets (from the Data Sink to the peripheral nodes) and

centripetal unicast packets (from the nodes to the Data

Sink). Broadcast packets are commonly used to establish

routes, refresh information about the end application, etc.

On the other hand, unicast packets tend to flow from the

periphery of the network to the data base. For the nodes

to correctly synchronize, the unicast packets must follow

a slowly-changing route. Moreover, regardless of the di-

rection taken by broadcast packets, the schedule for broad-

casting packets under MX-MAC does not break the existing

synchronization between nodes as the broadcast schedule

may not be interrupted by an ACK frame.

The synchronization process for more nodes is less in-

tuitive. Synchronization over multiple hops is achieved by

following the same rules: a sender must always back-off

by the same amount of time after it has successfully sent a

packet. For the case of three nodes, full route synchroniza-

tion is not achieved until after two packets have been sent,

as illustrated in Figure 2(b).

3.1.2 Synchronization Process

The number of unicast packets required to synchronize all

nodes over a temporarily fixed routing path is a function of

the number of hops. This observation, confirmed by prelim-

inary results, can be modeled as follows.

Let n = h be the number of hops from node 0 to node

n. τi designates the relative time at which node i wakes up

to probe the medium or send a packet. di separates τi and

τi+1 such that τi ≤ τi+1. We have:

τi = τi−1 + di−1

τn = τ0 +

n−1
∑

k=0

dk

When node 0 sends the first packet to node 1, both nodes

synchronize and their wake-up times differ by the synchro-

nization time tS :

τ1 = τ0 + tS

τn = τ0 +
n−1
∑

k=1

dk + tS

At the ith hop along the path, the transformation f hap-

pens:

{

τi = τi−1 + tS
τi+1 = τi + di

f(τi) = τi−1 + tS + di − tS = τi−1 + di

At the last hop, node n − 1 and n are separated by tS :

τn = τn−1 + tS = τn−2 + dn−1 + tS

= τ0 +

n−1
∑

k=1

dk + tS

In other words, τn − τ0 remains the same during the course

of the first packet transmission from the source to the desti-

nation.

When the jth packet is transmitted from node i − 1 to

node i we have:
{

τi = τi−1 + tS
τi+1 = τi + di+j−1

f j(τi) = τi−1 + tS + di+j−1 − tS = τi−1 + di+j−1

Thus, after the jth packet, we have:

τn = τ0 +

n−1
∑

k=j

dk + jtS

The nodes are synchronized when τn = τ0 + ntS, that is

after at most j = n packets have been properly sent1.

Once the path is synchronized, the delay can be expected

to be equal to tS + (n− 1)(ti + tS) + tRx, as suggested by

Figure 3.

This short analysis also shows that clock drift has no ef-

fect on path synchronization because this process uses only

the nodes’ relative—not absolute—positions in time. Syn-

chronization is reinforced with every packet sent, making

this protocol resilient as long as the clock drift is signifi-

cantly smaller than tS , which can be expected.

3.1.3 Urgent Packets

Regular packets are forwarded in the next duty cycle after

they have been received. On the other hand, urgent pack-

ets can be retransmitted immediately after they have been

received. If a packet is marked as urgent (the implemen-

tation details are not relevant to, and beyond the scope of,

this work) because of application or QoS requirements, the

radio is kept on, waiting for the upper layers of the proto-

col stack to request sending the packet. The delay associ-

ated with urgent packets is less than ti s, thus greatly reduc-

ing the packet delivery latency over regular packets. Over

synchronized paths, the delay of urgent packets is equal to

ntS + tRx.

1Synchronization will happen as long as the jth packet reaches at least

node n − (j − 1)



Figure 3. Node 0 pipelines packets and in-

creases the packet rate.

The decision to send urgent packets within the same ti
period, but to exclude regular packets from immediate re-

transmission is a design choice motivated by practical im-

plementation considerations. Support for urgent packets re-

quires protocols from the Data Link layer to the Routing

Protocol to collaborate and capably handle urgent deliver-

ies. Today, this is rarely the case. Processing on each packet

(snooping, queue reordering, next-hop calculation, loading

the radio FIFO, etc.) must be very limited in order to meet

the next-hop’s wake-up time. If tp is the processing time,

we must have tRx + tp < tS .

Moreover, nodes sending urgent packets would be at a

disadvantage when competing with a neighbor that is not

retransmitting packets, but originating them. Such a neigh-

bor would consistently send packets tRx + tp s before the

node, and while rare, this configuration would deny any use

of the channel if the neighbor created a packet every ti s.

In spite of these caveats, a protocol designer may wish to

treat all packets as urgent ones, and would thus benefit from

very short delays.

3.1.4 Pipelining of Packets on a Synchronized Path

Because packet transmissions happen in a sequential way,

packets can be pipelined over the path so that a packet is

sent every 2ti, as illustrated by Figure 3.

Pipelining is only possible with synchronized nodes be-

cause if nodes are not synchronized they would interfere

with one another and exacerbate the hidden node problem,

common to all LPL protocols.

3.2 Synchronization Over Several Unidi-
rectional Paths and Conflict Resolu-
tion

In some specific cases, the risk for packet collision still

exists on synchronized paths. This is particularly true when

a routing tree is formed of two or more parallel branches:

(a)

(b)

Figure 4. (a) Synchronized nodes along two
parallel paths: nodes {10, 11, 12, 30} form one

path, and {20, 21, 22, 30}another one. The dot-

ted lines indicate that the nodes can commu-
nicate with each other (and thus interfere).

(b) Mitigation of the problem.

nodes i hops away from the destination tend to wake up at

the same time, causing contention. This node configuration

is illustrated by Figure 4(a).

The incidence of this problem depends on several factors

such as the routing protocol (which may forward packets

along parallel paths for robustness), the network topology

(nodes from the same region may report highly redundant

information if no packet fusion strategy is employed) and

the application (which may require high data rates from col-

located sources).

Several techniques may be used to mitigate this phe-

nomenon, including information exchange among neigh-

bors, packet rate reduction, etc. However, the node schedule

already offers a good solution to prevent collisions and to

guarantee fairness among information flows. If two neigh-

boring nodes are part of two different synchronized paths



Figure 5. Bidirectional path synchronization

time line.

as Nodes 12 and 22 are in Figure 4(a), they will attempt

to send packets at about the same time. However, if node

12 can send its packet, it will wake up slightly after node

22. This is because node 12 will back off by tS from the

moment it receives an ACK frame, which happens after the

time it takes to receive the data packet (tRx)—a few tens of

milliseconds. Figure 4(b) illustrates this with a time line:

after sending a packet, nodes 12 and 22 are separated by

tRx s. They alternatively wake up before the other one as

they send packets, guaranteeing fairness between the two

branches of the routing tree.

3.3 Synchronization Over a Bidirectional
Path

Although uncommon in WSNs, some network topolo-

gies and applications may send unicast packets over paths

that are in part or in whole bidirectional. This could be the

case when several data sinks are deployed in the network.

We developed an algorithm that coordinates bidirectionality

on a path, although it induces overhead.

Let nodes i and j be the two ends of a sub-path Pi→j .

In order to synchronize nodes over Pi↔j , the MAC proto-

col must allow packets to travel in only one direction at a

time during synchronized rounds. Furthermore, cross-layer

information such as the number of packets sent per round,

and the number of hops from i and j is needed.

Upon forwarding the last packet of the synchronized

round, each node backs-off by −tS(2hk,{i,j} − 1) s, where

hk,{i,j} is the number of hops from node k to i or j. For

space considerations, and because this case is the exception

rather than the norm, we do not explain the bidirectional

synchronization algorithm in detail. However, it is available

at www.ece.rochester.edu/∼merlin/NodeSynchronization/

NodeSyncURTR.pdf and we provide Figure 5 to illustrate

this bidirectional synchronization process.

4 Simulation Results

In this section, we explore the advantages and limits of

node synchronization through Matlab simulations. Follow-

ing our work on MAC protocols in [7], we developed a very

accurate Matlab model for time and energy consumption of

the Tmote Sky [9] platform running MX-MAC. Through a

data acquisition board, we very precisely measured the time

and energy expended by each basic operation of the MX-

MAC protocol, including channel probe and packet recep-

tion. We then created a Matlab program that reconstructs

a desired scenario and estimates the energy use over the

simulation time. We verified our reconstruction model and

found it to be within 3% of the actual energy consumption.

Through practical experience, we were able to shed precon-

ceived ideas about radio and MAC behaviors. Thus, the

results provided by this section are those of an implementa-

tion reconstruction, rather than those of a simulation. How-

ever, to distinguish between direct results from our imple-

mentation, we use the words reconstruction or simulation.

In this section, 10 nodes are randomly placed to form

a multi-hop network. Unless otherwise specified, a source

node sends packets at a rate of 1/2ptk.s−1.

4.1 Synchronization Principle

We simulated a scenario in which ti = 1.5 s, and the

synchronization back-off tS is 50 ms. Notice that the tS
value is about twice the reception time of a 50B packet.

The duty cycle was chosen to be fairly low, since we expect

that the improvements brought by path synchronization will

allow the ti value to increase.

Figure 6 shows that 5 nodes synchronize on the tem-

porarily fixed path {1, 5, 4, 3, 10}. In the Figure, a tri-

angular marker △ represents a probe, ◦ a packet to send, ∗
a successful packet reception and × a failed one. After one

packet, nodes 3 and 10 have staggered probes, nodes 4, 3

and 10 after the second packet.

This scenario also illustrates the behavior of the nodes

when synchrony is lost: in the worst case scenario, it would

take n packets to reconstruct a synchronized path. However,

complete loss of synchronization is highly unusual because

whenever a node fails to receive a packet from its neighbor,

it simply wakes up ti seconds later, i.e., in the same relative

time position.

4.2 Packet Delay

Next, we investigate the packet delay after the nodes

have been correctly synchronized. We define packet delay

as the time between the first attempt to send a packet and the

successful reception of this packet, noting however that the

packet could have been created at most ti s before the first
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Figure 6. On the path {1, 5, 4, 3, 10}, the
nodes synchronize correctly after only a few

packets.

transmission attempt. We consider that if a synchronized

path is incapable of transmitting the required packet rate

(the node queue keeps expanding), ti needs to be lowered

in order to accommodate higher traffic. We offer a solution

to do so in [8].

4.2.1 Delay of Non-Urgent Packets

Figure 7(a) shows the packet delay for the node configu-

ration of the previous section. Because of the initial time

differences between node schedules, the path was synchro-

nized in only 4 packets. The packet delay then hovers

around 4.74 s, which is approximately equal to tS + 3(ti +
tS)+ tRx (tRx is modeled by a random variable with a nor-

mal distribution).

The first packet is sent without any synchronization be-

tween the nodes and its delay is 5.8 s, a value that depends

on the initial random wake-up times. Synchronization cut

the packet delay by over 18%.

4.2.2 Packet Delay of Urgent Packets

Figure 7(b) shows the packet delay of non-urgent and urgent

packets. The very first packet is sent without any synchro-

nization, and takes 7.47 s to be delivered. Once synchro-

nized, the delay is reduced by 35%. Packets 7 through 15

are marked as urgent: they are delivered almost immedi-

ately, with a delay of around 220 ms, which corresponds

to ntS + tRx when n = 4. The simulation shows that the

synchronization is not broken by urgent packets.
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Figure 7. (a) Packet delay on the same path as

Figure 6. (b) Same configuration, but packets
7 through 15 are marked as urgent.

4.3 Bidirectionality

Although it is rarely expected in a WSN, bidirectionality

may exist. We tested our algorithm over the same five-hop,

now bidirectional, path {1, 5, 4, 3, 10}. We had to lower

the ti value to 0.5 s in order to accommodate a larger load

on the path. The larger issue of ti control for int-LPL is

addressed in [8], which offers a method inspired by control

theory to dynamically set the duty cycle. In this section, the

packet delay is defined as the time difference between the

moment a packet is intended for delivery and the time when

it is successfully received. This definition, slightly different

from the other cases, allows results to reflect the time spent

in the queue by a packet.

Figure 8 shows the delay for bidirectional packets sent by

node 1 at a rate of 1/3 pkt.s−1 and node 10 at 1/5 pkt.s−1.

The average packet delay comes at 3.6 s, mostly because

packets must be queued while a node is not allowed to use

the path. The very first unidirectional packet experiences

a high delay (4 s), and the following two must be queued
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Figure 8. Delay on the same path as Figure 6
for bidirectional packets.

while the bidirectional path is established. Note that the

packet transmission from node 1 to 10 occupies the chan-

nel for the same amount of time as unidirectional packets

(because the various nodes are synchronized). We can then

consider that, on average, packets spend 1.8 s in the queue

for 1.8 s of travel from node 1 to 10.

This shows that our algorithm is capable of maintain-

ing synchronization over a bidirectional path, while keeping

packet delay in check.

4.4 Energy Consumption

In order to fairly evaluate the energy benefit of node syn-

chronization (and not just of LPL schemes), we compared

the energy consumption of the proposed scheme with that

of nodes running MX-MAC where neighbors wake up ran-

domly within the ti time interval.

Table 1 gives the average energy consumption of nodes

on a path. Node 0 is furthest from node n = h, the destina-

tion. With our naming convention, h is also the maximum

number of hops on the path. Because the destination node

h is always receiving, its energy consumption is very low

and depends only on the ti value (as ti increases, node h
still uses the same amount of energy to receive packets, but

it performs fewer channel probes). Thus, we excluded the

energy consumption of node h from the average.

Typically, the non-synchronized nodes consume on av-

erage 6 times as much energy as the synchronized case.

The reason for this difference is given by the average de-

lay shown in the Table. When h = 1, the packet delay

is about ti/2 ≈ 0.76 s when the nodes are not synchro-

nized, and tS + tRx ≈ 65 ms otherwise. This means that

non-synchronized nodes must spend much more time with

their radio active and transmitting than synchronized nodes.

Consequently, the per-node average energy consumption

greatly increases, by a factor of about ti/2(tS+tRx).

Table 1. Energy Consumption and Packet De-
lay.

Parameter Sync Non-sync

Av. Energy Av. Delay Av. Energy Av. Delay

(J) (s) (J) (s)

h 1 1.59 0.065 12.73 0.76

2 1.50 1.63 9.76 2.91

(ti = 1.5) 3 1.49 3.21 9.37 6.10

4 1.54 4.91 9.00 10.63

5 1.45 6.34 8.80 13.54

ti 0.5 1.77 1.74 5.73 3.08

1 1.67 3.26 8.99 6.62

(h = 4) 1.5 1.54 4.91 9.00 10.63

2 1.31 6.26 9.10 13.98

When the number of hops h is fixed and equal to 4, an in-

crease in ti reduces the per-node average energy consump-

tion. This is only true when nodes are synchronized: if ti
increases, non-synchronized nodes must spend more time

transmitting (for ti/2 s on average). On the other hand, syn-

chronized nodes must send for approximately tS + tRx s,

whatever the duty cycle. However, as the duty cycle de-

creases, the nodes have to spend less energy probing the

medium, and thus synchronized nodes see their global en-

ergy consumption reduced.

5 Implementation Results

We implemented the principles behind node synchro-

nization in TinyOS for the Tmote Sky platform. This in-

cludes code for MX-MAC, as well as for the back-off tech-

niques described here. We present results from this imple-

mentation.

5.1 Methodology

Once the MX-MAC code was set onto the Tmotes, gath-

ering results about packet delays appeared to be an in-

tractable issue. In order to visualize synchronization, we

needed to deploy a network of more than one hop. We

chose to replicate the case of h = 4 (in a linear topol-

ogy), often used in our simulations. In order to demonstrate

synchronization, we opted to let Matlab—not the motes

themselves—collect information about the packets. This

is because in very time-sensitive MX-MAC, time stamping

operations can be a delicate task for which CPU resources

may not always be available on the motes. This however

meant that all motes had to be in range of one-another and

of the computer running Matlab, and had to be loaded with

predefined neighbor graphs.

Yet, with this solution, motes that in a real deployment

would not have to compete for the channel could now hear

each other. However, because of the nature of synchronized
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Figure 9. Packet delay over the same path
of the implementation (failed packets do not

reach the eventual destination and are not
counted in the average delay).

paths, packet collisions from motes placed at different levels

of the routing tree did not compete for the medium at the

same time, thus considerably alleviating this problem.

Our results are obtained from a mote receiving all pack-

ets transmitted over the channel and forwarding them to

Matlab. Consequently, we cannot display channel probes

since they are “silent” (the radio is in Rx mode only). We

present results in spite of these caveats.

Finally, we cannot show the energy consumption of our

implementation. This is because the Tmote sky can only

measure its internal voltage through the ADC. This value is

typically noisy, and the battery voltage does not evolve as a

linear function of the energy remaining. Because the MX-

MAC protocol is very energy efficient, the voltage drop over

a measurable period of time is well within the natural ADC

noise, with or without node synchronization.

5.2 Synchronization Principle

The goal of this section is to prove that node synchro-

nization is practical and offers results in actual platform im-

plementations.

Figure 9 shows that the motes on the 4 hop path

P0→1→2→3→4 successfully synchronize after the predicted

number of packets. They also send packets in about 4.5 s
once they are synchronized, which is the delay predicted by

the simulation model (within 4%, probably because Mat-

lab starts time-stamping packets only after the first one has

been received, and stops before the ACK frame is sent).

5.3 Urgent Packets

Next, we present the delay of urgent packets in Fig-

ure 10(a) and confirm the results obtained through the re-
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Figure 10. (a) Delay of non-urgent and urgent

packets over a synchronized path. (b) Time
line of transmissions of an urgent packet.

construction model. Packets 7 through 10 are marked as

urgent, and they see their delay hover between 766 ms and

172 ms, the actual value of the delay being hard to measure

because of the typically slow link between the mote and the

PC. It also shows that urgent packets do not break the path

synchronization.

The fast delivery of urgent packets is obtained through

the immediate repetition of a received packet as shown in

Figure 10(b). Small variations in the transmission times at

every mote are natural, but the differences observed here are

mostly due to the capture by Matlab, which does not receive

ACK frames and can only deduce that a transmission has

ended after another has started. This causes some bars in

the graph to be “glued” together.

5.4 Packet Pipelining

Finally, Figure 11 shows the medium activity when the

source node 0 sends a packet every 2ti. Thanks to node syn-

chronization, packet transmissions can be staggered over
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non-continuous wireless links. The packet rate can then

climb to 1/2ti
pkt.s−1, even though the packet delay re-

mains the same.

This set of results shows that node synchronization over

a temporarily fixed path is practical and works for the cases

tested in simulation.

6 Conclusion and Future Work

The family of interruptible low-power-listening MAC

protocols is a powerful set of protocols recently developed.

Only now are we beginning to use them to the extent of their

potential. We showed in previous work [7] that lower duty

cycles tended to increase the energy consumption of mostly

sending nodes, which, with packet delay, was an important

obstacle to higher ti values.

We now propose a simple approach to synchronizing

nodes on a temporarily-fixed path. Through analysis, we

proved that the path is automatically synchronized after

n = h packets have been sent from node 0 (the farthest)

to node n. In other words, the requirement to have a fixed

path is a weak one.

Node synchronization has several benefits: it drastically

reduces the packet delay, and it reduces the energy use at

every node by a factor of about ti/2tS
, removing the limit

standing in the way of lower duty cycles.

In addition, we proposed several strategies to increase

the packet rate and further reduce the packet delay. By

pipelining packets over synchronized paths, we doubled

the packet rate. Our approach also allows urgent packets

to be delivered almost immediately, taking the delay from

tS + (n − 1)(ti + tS) + tRx to ntS + tRx.

Through simulation and implementation on the Tmote

Sky platform with TinyOS, we showed that node synchro-

nization is both possible and practical.

Maybe most importantly, the improvements on the node

lifetime and packet delays require no overhead or cost in

most WSN cases: nodes do not need to exchange On / Off

schedules with their neighbors, and in the unidirectional

case, no explicit synchronization phase or messages are re-

quired. Simply by the sheer MAC schedules used by MX-

MAC and X-MAC / C-MAC can the nodes organize them-

selves automatically.

In future work, we plan to investigate further special

node deployment cases, such as those that require bidirec-

tionality. This will require developing cross-layer routing

protocols and applications capable of taking advantage of

the MAC schedules: for instance, it may be beneficial to let

the application send a packet a little before the end of the ti
interval. We will also research issues of fairness further.
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