
SENSOR NETWORK MIDDLEWARE FOR
MANAGING A CROSS-LAYER ARCHITECTURE ∗

Christophe J. Merlin
Department of Electrical and Computer Engineering
University of Rochester
Rochester, NY, USA
merlin@ece.rochester.edu

Wendi B. Heinzelman
Department of Electrical and Computer Engineering
University of Rochester
Rochester, NY, USA
wheinzel@ece.rochester.edu

Abstract Cross-layer designs have received much attention recently. While not
as general as layered architectures, they prove to be more tunable and
energy-efficient in many scenarios. This flexibility can be exploited by
a middleware whose principal task is to adapt quality of service pro-
vided by the network to the application’s needs using the pre-defined
parameters of the cross-layer protocol. In this paper, we study the ways
in which a middleware (Milan) can control a cross-layer protocol for
wireless sensor networks (DAPR), thereby ensuring that the network
provides the application’s required quality of service while removing
this burden from the application designer.

Keywords: Cross-layer protocols, middleware, wireless sensor networks

1. Introduction
The sensor network community has dedicated much attention to cross-

layer protocols in recent years. In order to increase the effectiveness of
cross-layer architectures for different applications, oftentimes they have
several parameters whose value can be tuned to better serve each specific
application. However, it would not be reasonable to expect the applica-

∗This work was supported in part by NSF #CNS-0448046.



2

Figure 1. A DAPR round.

tion itself to control these different parameters—this is better handled
through an intelligent middleware. The middleware’s task is to coor-
dinate application needs to quality of service rendered by the network,
using commands understandable by the protocol. Our goal in this paper
is to show how a sensor network middleware can meet this requirement
by appropriately managing a cross-layer sensor network protocol.

We base our work on the cross-layer protocol DAPR (Distributed
Activation with Predetermined Routes) [1] and the sensor network mid-
dleware Milan (Middleware Linking Applications and Networks) [2].
DAPR is a cross-layer protocol that integrates the sensor selection, rout-
ing, and MAC layers. Milan is a proactive middleware that controls the
sensors in order to meet the application quality requirements by adapting
the network to the application needs as they vary over time, specifying
which sensors should send data, route packets, etc.

In the next sections we describe DAPR and Milan in greater detail.
Following this, we propose an extension to Milan to fully utilize all the
advantages provided by a cross-layer design such as DAPR. Then, we
provide initial results that show the advantages of using Milan to control
DAPR. Finally, we provide a discussion of related work and conclusions.

2. DAPR and MiLAN

2.1 DAPR: a Fully Integrated Protocol
DAPR [1] is a cross-layer protocol that quantifies a sensor’s impor-

tance to the application to avoid using the key sensors as routers in the
network. Each sensor is assigned an application cost that reflects the
criticality of the node’s data, and DAPR selects routes with the smallest
cumulative cost to the base station. Simultaneously, nodes whose cov-
erage is not beneficial to the network are turned off to conserve energy.

In DAPR, the data sink sends periodic queries that trigger three
phases that form a round, as shown in Figure 1. Each DAPR round
starts with a route discovery phase, followed by a role discovery phase,
and finally the query processing phase during which routes and node
activations are typically fixed.



Sensor Network Middleware for Managing a Cross-Layer Architecture 3

2.1.1 Route Discovery Phase. All nodes are assigned an ap-
plication cost. This cost represents the importance of the sensor’s data
to the application, and is a parameter that can be changed for different
applications. For example, for an application that requires full cover-
age of the network at all times, application cost provides a measure of
the sensor’s coverage of a certain region relative to the coverage of this
region provided by other sensors (see [1] for details).

Routes are set up when the sink floods its query packet to indicate an
interest in data. These queries are sent via shortest-cost paths, thereby
setting up reverse lowest cumulative cost routes to the sink. Once routes
are set, each node routes packets through these low cost paths.

2.1.2 Role Discovery Phase. In the next phase, sensors whose
data are not beneficial for the application can be turned off without
degrading the network’s quality of service. For example, for coverage
applications, sensors whose data does not add to the global coverage
of the network can be turned off, saving their energy for later. The
delay to determine whether a node should turn off is proportional to
its cumulative application cost so that sensors with high cost routes are
turned off first.

2.1.3 Query Processing Phase. During the final phase, all
active sensors send their data to the sink through the pre-determined
routes for a period of time (Vs) that can be altered depending on appli-
cation needs. A longer query processing phase means less overhead for
the protocol but also less optimal network operation, as active sensors
and routes are not updated frequently.

2.2 Milan: a Sensor Network Middleware
Several sensor network applications require that only certain sensors

be activated at a given time, and that this set of required sensors change
over time. For example, a home/office security application may require
that only entries to a room be monitored during normal operation mode,
whereas different sensors are needed when an intrusion is detected. Sim-
ilarly, a health monitoring system may require only a few vital signs to
be monitored while the individual is healthy, but when signs of stress
are detected, more vital sign monitoring is needed. Controlling sensors
for such dynamic operation, where the set of active sensors depends not
only on the sensors themselves (remaining energy, location, etc.) but
also on the state of the application and the system being monitored, is
difficult to do directly from the application. Milan was designed to ease
this burden on the application designer by incorporating all the neces-



4

Figure 2. Overview of Milan. A and B start when the application starts or changes
its state depending on data received from the sensors. C is the normal mode of
operation when conveying the sensors data to the application.

sary mechanisms for controlling the network within the middleware [2].
Milan provides the application an API through which it can specify its
quality of service (QoS) goals, and Milan takes care of appropriately
setting network parameters to meet these QoS goals over time. Large
gains in lifetime can be obtained by allowing Milan to adapt a set of
tunable network parameters over time to just meet the application’s QoS
requirements.

We assume that the quality of different sensed data can be quantita-
tively evaluated. In order to configure the sensors and the network pa-
rameters to meet application needs, Milan must know (1) the variables
of interest to the application, (2) the required QoS for each variable,
and (3) the quantitative QoS of data output by sensors. All of these
quantities may vary over time. This information is conveyed to Milan
through “State-based Variable Requirements” and “Sensor QoS” graphs,
as shown in Figure 2 (see [2] for details). Using this information, Milan
configures the sensors and begins the normal network operation, where
sensors send data to the application.

The following section discusses how to use Milan to control the op-
eration of DAPR, thereby improving overall lifetime of the network and
easing the application of the burden of sensor and network management.

3. Managing DAPR Through MiLAN
Previous work on Milan focused solely on one-hop networks using

standard, layered protocol architectures (e.g., Bluetooth, IEEE 802.11).
Multi-hop heterogeneous networks and cross-layer architectures offer



Sensor Network Middleware for Managing a Cross-Layer Architecture 5

new challenges to Milan. We believe that Milan can exploit the tun-
able parameters of a cross-layer protocol like DAPR to save energy while
meeting application QoS for such multi-hop networks.

3.1 Overview of Milan/ DAPR Combination
Using Milan to orchestrate a network running DAPR will provide

many advantages in terms of extending network lifetime while meeting
dynamic QoS constraints. Parameters of DAPR such as application cost
definition and query interval can be adapted to provide maximum benefit
to the application. To effectively manage DAPR, Milan must obtain
the application’s current QoS requirements as well as the system state.
This global view of the application is used to create queries through
which Milan communicates with DAPR, as depicted in Figure 3.

3.1.1 Complex Queries. Milan has a clear view of the ap-
plication’s required QoS at every point in time. Its main goal is thus
to issue queries understandable by DAPR to meet the QoS goal while
minimizing energy dissipation. However, new and more sophisticated
applications will require complex queries. Such information as the mon-
itored variables, the required precision (also called confidence) for each
variable of interest, the area of interest in the network, and the reporting
mode (continuous or discrete) need to be included in these queries.

3.1.2 Variables and Precisions. Variables correspond to phys-
ical attributes (e.g., temperature, intruder presence) that can be de-
scribed by XML tags. Each node should know which variable it can
monitor and with what precision prior to deployment.

Milan also has global information on potential or future application
requirements. For instance, it may be readily known to Milan that a
precision of conf(vj) on variable vj is never needed. We propose using
a vector P j of weights or probabilities inferred from the various graphs
inherited from the application that indicates the relative importance
of each precision conf(vj) for variable vj . For simplicity, we quantize
conf(vj) by 10%, and thus P j indicates how often the variable vj is
required in different precisions from 0.0 to 1.0 in steps of 0.1.

In addition, Milan’s knowledge of the potential QoS requirements
can lead to the conclusion that a variable will never be needed, or that
a variable is extremely important in all application states. Thus, Milan
also issues a vector W that weights all the variables in the system. W and
P help assess the relative importance of all sensors to aim at conserving
the most critical ones.



6

3.1.3 Entities within the Monitored Region. The network
can also be divided into entities or groups of sensors. An entity can be
described by an XML tag such as windows, soldier A, or second floor.
We contend that each sensor needs to know to which group of sensors
it belongs, using high-level semantic descriptions. For practical reasons,
we propose that all sensors are attributed a tag, that is shared with other
sensors monitoring the same entity. Milan can use this tag to specify
the entity of interest in the queries.

3.1.4 Setting the Query Interval. The query interval is a
critical factor in the protocol overhead, and thus in the network lifetime.
While an application might need to frequently change the active sensors
because of changing QoS requirements, a small query interval degrades
the network lifetime. Moreover, for an application that requires full
network coverage, while a frequent query update can preserve 100%
coverage for longer times, it leads to a quicker mid to low range coverage
degradation later in time.

Intuitively, we can see that application states that correspond to
slowly changing situations probably do not require frequent network
changes and thus long query intervals are desirable. Once a more criti-
cal state is reached, such as a high stress state in a medical application,
a smaller query interval is likely to be used to meet possibly rapidly
changing application QoS. On the other hand, if the maximum attain-
able QoS is already significantly degraded, the query interval should be
made longer to increase the network lifetime by lowering the overhead.

3.2 Routing: New Variable-based Cost
For complex, non-coverage-type applications that require the network

to monitor one or more variables, any group of sensors that provides
data about each variable with greater than the required precision (con-
fidence) provides 100% utility or QoS. In some cases, only one sensor’s
data may be enough to provide 100% QoS. For these new variable-based
applications, the application cost in DAPR should evaluate the relative
importance of a node with regard to each variable. Thus, for this new
variable-based QoS metric, we define application cost for sensor k as:

Ck =
V∑

j=1

Wj · Cvj,k (1)

where V is the number of variables the network is capable of monitoring,
Wj is the weight of variable vj and the per-variable cost is:



Sensor Network Middleware for Managing a Cross-Layer Architecture 7

Cvj,k =
[

10∑
i=1

P j
i such that conf(vj,k) ≥ P j

i ] · 1
E(k)

N∑
m=1

[
10∑
i=1

P j
i such that conf(vj,m) ≥ P j

i ] · 1
E(m)

(2)

where P j is the probability vector (P j
i is the ith element of P j), conf(v j,k)

is the confidence with which sensor k can monitor variable vj , and E(k)
is the remaining energy of sensor k. Ck evaluates the attention given
to each variable and divides the precision of sensor k by the sum of all
precisions across all the sensors in the monitored entity. The normalized
inverse of the remaining energy is included to differentiate between nodes
whose remaining energy is very low but are critical to the application
and other sensors whose energy is still high. The sum in the denominator
is not an algebraic sum of all precisions per se, but rather an evaluation
of all the energy devoted to monitoring a variable with various precisions
or confidences.

3.3 Node Activation: a Distributed Process
New challenges in a multi-hop network, as well as the specificities of

DAPR, require that the node activation process be distributed. DAPR’s
node deactivation process ensures that a node will deactivate only if the
application requirements are met by other active sensors; otherwise, if
its own precision is within the tolerance of the required precision and no
other lower cost sensor can provide this data, the node will stay active.
Nodes consider deactivating in the order inverse to their cost. Figure 3
illustrates this process.

Immediately after this procedure, the selected nodes send a data
packet to the sink using their pre-computed smallest cumulative cost
path. Only the activated sensors and those contributing to the return
path (those that retransmit the packet) will remain active in the round.

4. Preliminary Results
This section presents results that will show the merits of using Milan

to manage DAPR over a simpler architecture that aims to serve a fixed
(often the strictest) QoS. The simulations are carried out in Matlab and
use one-hop networks to determine the advantage of intelligent selection
of the active sensors based on varying QoS requirements. A fixed amount
of energy per second is used by the active nodes (0.1% of the total initial
energy).



8

Figure 3. Nine sensors are monitoring two different entities (e.g., two different
soldiers in range of one another). The required precisions for the two variables of
interest are 1.0 and 0.9, with a tolerance of 0.2. Three cases are possible: only the
first entity (with sensors represented by circles), only the second entity (with sensors
represented by stars) or both entities are of interest.

4.1 One Variable with Low QoS Requirements
We first compare our application cost to the inverse of the energy cost

in order to validate our choice of application cost. For this simulation,
three sensors, each with the same initial energy, are able to monitor
one variable with precisions 0.1, 0.5, and 0.9 for sensors 1, 2, and 3,
respectively. The only QoS requirement is a non-zero precision, i.e.,
some idea of the measured variable is all that is needed.

Figure 4 shows the remaining energy of each node using application
cost and the inverse of remaining energy cost for a given P vector. The
sensors’ energy decreases by the same amount when the cost is the in-
verse of the energy since all nodes are eligible to be picked for activation,
and thus they are selected in a round-robin manner. Conversely, appli-
cation cost allows the energy of the most important sensor (with QoS
0.9) to be spared for longer. When sensor 1 dies, sensors 2 and 3 have
half and full remaining energies; when sensor 2 dies, sensor 3 has a third
of its energy remaining. Application cost would allow for better QoS as
illustrated by the shaded area, were the application to request it.

The effect of P is not trivial: when a higher weight is assigned to high
precisions, node 3 is spared for longer than when all weights are the
same, at the disadvantage of the remaining sensors. It may be good to
conserve the energy of important sensors, but this could be unnecessary
in some applications where high precision is never needed. We believe
statistical information on the application can help find a suitable P .

These results show the merits of our application cost. However, both
application cost and the inverse of energy cost bring a significant im-



Sensor Network Middleware for Managing a Cross-Layer Architecture 9

Figure 4. Node remaining energy over time. All three nodes are able to monitor a
single variable with precisions 0.1, 0.5, and 0.9. The QoS requirement is 0.1. a) and
b) have different P vectors.

provement compared to a system architecture that does not use a mid-
dleware to manage the network. To understand the full improvements
of our design, we need to evaluate the lifetime and QoS for a network
that does not have the benefit of a middleware, and thus simply selects
sensors providing the highest QoS available in the network.

4.2 QoS Increase with a Middleware
The conditions of these simulations are similar to the previous ex-

periments. We compare our system design (Milan managing DAPR)
to a system that has no smart middleware. The latter architecture is
only able to activate nodes that will provide the highest QoS available
in the network and does not adapt the network QoS to the changing
application needs. To quantify the gains in QoS, we calculate an index
that averages the percentage of requirement satisfaction. For instance,
if the application requires a precision of 0.9 but the network can only
provide 0.5, the index is equal to 0.5/0.9. Obviously, this QoS index has
no concrete significance since the precisions are not linear; however, we
believe it provides a good basis for comparison.

Figure 5 shows this QoS index during the simulation time (top graph).
Milan leads to significant improvements by adapting the network QoS to
that of the application (bottom graph). On the other hand, the simpler
design that selects the sensor with the highest precision at all times uses
the energy of high precision or scarce nodes first, even when this is not
necessary. During the simulation time, our architecture is always able
to provide nominal QoS, while the system with no middleware support
offers poor precision during many of the critical stages where a maximum



10

Figure 5. A measure of the QoS differences between a system with MiLAN man-
aging DAPR and a system designed for the strictest QoS. The graph at the bottom
shows the application QoS requirement.

QoS is needed. The shaded areas represent the QoS gains ascribable to
Milan.

4.3 Change of Query Interval
Figure 6 presents a comparison of simulations with an adaptive and

a fixed query interval from the perspective of QoS delivery. In these
simulations, two sensors are able to monitor a variable with precisions 0.5
and 0.9. The application requires precisions of 0.5, 0.9, or has no interest
in the variable, as shown in Figure 6 (c). In the adaptive query interval
scheme, the QoS provided by the network is submitted to “gravity”:
when the application QoS requirement increases, Milan waits for it to
be constant for 30s (a “weight”) before it issues a new query. Conversely,
when the QoS requirement decreases, Milan sends a query immediately.
In the fixed scheme, the query interval is set to 100s. Every 100s, Milan
checks for the current application requirement and floods a query with
this information. The network will try to meet the QoS for the remaining
query interval. In both cases, flooding a query costs the same amount
of energy, 0.5% of the initial energy in our simulations.

Figure 6 (a) and (b) present the QoS provided by the network in both
schemes. Figure 6 (b) shows that much of the energy is wasted when
the query is issued at the time of a QoS application requirement peak.
The network can also miss QoS requirements for up to 90s. In contrast,
an adaptive query length design is able to respond to an increase in the



Sensor Network Middleware for Managing a Cross-Layer Architecture 11

Figure 6. Network QoS response of the adaptive (a) and fixed (b) query length
schemes to the application needs (c).

application need within its 30s weight. Consequently, the QoS index for
the adaptive query length scheme is 40% higher than that of the fixed
query interval scheme.

Some applications may need an immediate response from the network.
We simulated an adaptive query length scheme with no gravitational pull
and found that the application requirements are always met, but for a
shorter time—the network lifetime is reduced by about 10%.

5. Related Work
K. Römer et al. [3] offer a look at challenges in designing middleware

for sensor networks. They identify the need for data-centric communica-
tions, adaptive fidelity functions, and QoS knowledge. They also define
middleware tasks as assigning high-level and complex sensing formula-
tion and adaptation to the network. Our research mostly follows the
precepts delineated by K. Römer et al.

Y. Yu et al. present a cluster-based middleware in [4] and provide a
level of abstraction that separates application semantics from the layered
protocol architecture. They introduce a cluster forming layer (within the
middleware virtual machine) responsible for building clusters around a
phenomenon in a distributed manner. They define knobs or mechanisms



12

designed to change the working mode of a sensor. These knobs are
similar in spirit to the tunable parameters presented in our work.

In [5], Cornea et al. study middleware optimizations for cross-layer
architectures dedicated to interactive mobile video streaming. The mid-
dleware identifies the viewing device and forwards this information to
the nodes, who then adapt their sleep and active periods, and their bit
rate, frame rate, and video resolution to the needs of the viewing device.

To the best of our knowledge, our work is the first to study the details
of using a middleware to manage a cross-layer architecture and to prove
the advantages of constantly adapting network and sensor parameters,
reflecting the application’s need to optimize the underlying structures.

6. Conclusions
We have shown the advantages of using a middleware to supervise

a cross-layer protocol: the combination of Milan and DAPR is able
to continuously adapt the sensor network to the application QoS re-
quirements. Gains in network lifetime and QoS are substantial when
the system design spares sensors whose data is critical to the applica-
tion. We have also shown the advantages of using Milan to adapt the
QoS requirements over a design with non-adaptive QoS. Finally, Milan
takes full advantage of DAPR’s flexibility by adjusting its tunable pa-
rameters such as complex queries, query interval, and application cost.
Through this tight cooperation, Milan is able to effectively manage the
underlying DAPR protocol while providing a level of abstraction to the
application programmer.

References
[1] M. Perillo and W. Heinzelman, “DAPR: A protocol for wireless sensor networks

utilizing an application-based routing cost,” in Proc. of the IEEE WCNC, 2004.

[2] W. Heinzelman, A. Murphy, H. Carvalho, and M. Perillo, “Middleware to support
sensor network applications,” IEEE Network, vol. 18, pp. 6–14, Jan. 2004.

[3] K. Romer, O. Kasten, and F. Mattern, “Middleware challenges for wireless sensor
networks,” ACM SIGMOBILE Mobile Computing and Communications Review,
vol. 6, no. 2, 2002.

[4] Y. Yu, B. Krishnamachari, and V. K. Prasanna, “Issues in designing middleware
for wireless sensor networks,” IEEE Network Magazine, vol. 18, Jan. 2004.

[5] R. Cornea, S. Mohapatra, N. Dutt, A. Nicolau, and N. Venkatasubramanian,
“Managing cross-layer constraints for interactive mobile multimedia,” in In Proc.
of the IEEE Workshop on Constraint-Aware Embedded Software, 2003.


