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Abstract

In multi-hop wireless sensor networks that are char-
acterized by many-to-one (converge-cast) traffic patterns,
problems related to energy imbalance among sensors of-
ten appear. When the transmission range is fixed for nodes
throughout the network, the amount of traffic that sensors
are required to forward increases dramatically as the dis-
tance to the data sink becomes smaller. Thus, sensors clos-
est to the data sink tend to die early. Network lifetime can
be improved to a limited extent by the use of a more intel-
ligent transmission power control policy that balances the
energy used in each node by requiring nodes further from
the data sink to transmit over longer distances (although
not directly to the data sink). Alternatively, policies such
as data aggregation allow the network to operate in a more
energy efficient manner. Since the deployment of an aggre-
gator node may be significantly more expensive than the de-
ployment of an ordinary microsensor node, there is a cost
tradeoff involved in this approach. This paper provides an
analysis of these policies for mitigating the sensor network
hot spot problem, considering energy efficiency as well as
cost efficiency.

1 Introduction

Large scale wireless sensor networks are an emerging
technology that have recently gained attention for their po-
tential use in applications such as environmental sensing
and mobile target tracking. Since sensors typically oper-
ate on batteries and are thus limited in their active lifetime,
the problem of designing protocols to achieve energy effi-
ciency to extend network lifetime has become a major con-
cern for network designers. Much attention has been given
to the reduction of unnecessary energy consumption of sen-
sor nodes in areas such as hardware design, collaborative
signal processing, transmission power control polices, and
all levels of the network stack. However, reducing an indi-

vidual sensor’s power consumption alone may not always
allow networks to realize their maximal potential lifetime.
In addition, it is important to maintain a balance of power
consumption in the network so that certain nodes do not die
much earlier than others, leading to unmonitored areas in
the network.

Previous research has shown that because of the char-
acteristics of wireless channels, multi-hop forwarding be-
tween a data source and a data sink is often more energy ef-
ficient than direct transmission. Based on the power model
of a specific sensor node platform, there exists an optimal
transmission range that minimizes overall power consump-
tion in the network. When using such a fixed transmis-
sion range in general ad hoc networks, energy consump-
tion is fairly balanced, especially in mobile networks, since
the data sources and sinks are typically assumed to be dis-
tributed throughout the area where the network is deployed.
However, in sensor networks, where many applications re-
quire a many-to-one (covergecast) traffic pattern in the net-
work, energy imbalance becomes a very important issue,
as a hot spot is created around the data sink, or base sta-
tion. The nodes in this hot spot are required to forward a
disproportionately high amount of traffic and typically die
at a very early stage. If we define the network lifetime as
the time when the first subregion of the environment (or a
significant portion of the environment) is left unmonitored,
then the residual energy of the other sensors at this time can
be seen as wasted.

Intuition leads us to believe that the hot spot problem can
be solved by varying the transmission range among nodes
at different distances to the base station so that energy con-
sumption can be more evenly distributed and the lifetime
of the network can be extended. However, this is only true
to some extent, as energy balancing can only be achieved at
the expense of using the energy resources of some nodes in-
efficiently. Alternatively, it may be possible to form clusters
within the network and distribute the processing of sensor
network data regionally. Not only does this mitigate the
hot spot problem significantly, but it increases the power



efficiency of the network, as data is sent over many fewer
hops on average. However, as the deployment of aggregator
nodes may be more expensive than deployment of an ordi-
nary sensor node, the optimal deployment method should
be considered from a cost perspective. In this paper, we
explore this tradeoff and propose cost efficient deployment
solutions.

The rest of this paper is organized as follows. Section 2
explores the effectiveness of transmission power control in
mitigating the hot spot problem. Section 3 investigates the
effectiveness and cost efficiency of the deployment of mul-
tiple aggregator nodes as an alternative solution to the hot
spot problem. Section 4 concludes the paper and suggests
future work in this area.

2 Transmission Power Control

In this section, we review the transmission range dis-
tribution optimization problem, originally addressed in [4].
This problem is solved by determining how a node should
distribute its outgoing data packets over multiple distances,
always using the minimum transmission power necessary
to send over each distance. Given the energy constraints
and data generation rate of each sensor node, the lifetime
of the network, which we define to be the time at which
the first sensor dies, can be maximized by using this opti-
mal distribution. In our model, we make several basic as-
sumptions. First, we assume that the power consumption of
sensor nodes is dominated by communication costs, as op-
posed to sensing and processing costs. We also ignore the
overhead that would typically be introduced by the routing
and MAC layers.

The power consumption model that we use is such that
the amount of energy to transmit a bit can be represented as
Ebit,tx = Eelec+εdα, and the amount of energy to receive a
bit can be represented asEbit,rx = Eelec, whereEelec rep-
resents the electronics energy,ε is determined by the trans-
mitter amplifier’s efficiency and channel conditions, andα
represents the path loss exponent [3]. It has been shown
that using our power model, there exists an ideal energy
efficient transmission range wireless networks in the ab-
sence of the convergecast-specific hot spot problem equal

to d∗ = α

√
2Eelec

(α−1)ε [1, 2]. In all simulations, we used values

of Eelec = 50 nJ/bit andε = 100 pJ/bit/m2, resulting in
a value ofd∗ = 32m.

In this section, we provide simulation results in order
to observe the optimal transmission range distributions for
two-dimensional sensor network deployments of uniform
sensor distribution. The initial energy and data generation
rate of all nodes in the network were arbitrarily set to1 J
and1 bit/second. In these simulations, we compared the
lifetimes obtained using the optimal distribution, using the
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Figure 1. Optimal transmission range distrib-
ution for sensor fields with radii of 150m (a)
and 250m (b).
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Figure 2. Comparison of lifetime using differ-
ent transmission power control policies.

optimal fixed network-wide transmission range, and using
a heuristic routing scheme. In this heuristic scheme, rout-
ing costs are assigned to sensors to be the inverse of their
residual energy. Link costs are set equal to a weighted sum
of the energy consumed by the transmitting node and the
receiving node, as given by Equation 1.

Clink(si, sj) = 1
Eres(si)

Etx,bit(si, sj)+
1

Eres(sj)
Erx,bit(si, sj)

(1)

Finally, minimum cost routes are found through Dijkstra’s
algorithm.

The optimal transmission range distributions are shown
in Figure 1 for network radii of50m, 150m, and250m.
We have observed similar results in randomly deployed
two-dimensional sensor networks. However, we have omit-
ted these results due to space limitations. Figure 2 shows
network lifetime as a function of network radius for two-
dimensional networks using the optimal transmission range
distribution, using the optimal fixed transmission range, and
using the heuristic routing scheme.
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Figure 3. Lifetime vs. percentage of the total
energy consumed in the network.

2.1 Energy Inefficiency

While transmission range distribution optimization is
somewhat effective in extending network lifetime compared
to schemes using a fixed transmission range, this improve-
ment is limited because of the energy inefficiency forced on
the sensors farthest from the data sink in order to evenly dis-
tribute the energy load among the nodes. In fact, in order to
achieve near-optimal network lifetimes, it is only necessary
to use a fraction of the energy available in the network. Fig-
ure 3 shows how network lifetime increases with the total
energy used in the network when the energy consumption
of each individual sensor node is limited at1 J . If energy is
to be allocated among the nodes in any way in order to max-
imize network lifetime (i.e., if only the total energy con-
sumption, but not individual energy consumption, is lim-
ited), network lifetime should increase proportionally with
the energy consumed. This lifetime is illustrated by the dot-
ted line in the figure. With the individual energy consump-
tion constraints imposed by our assumption of uniform node
distribution and equal energy allocation, however, the ob-
tainable lifetime, illustrated by the solid line in Figure 3, is
found to be only a fraction of this. The shape of the energy-
lifetime curve implies that when all of the network energy
is completely used, marginal network lifetime improvement
is minimal and energy is being used inefficiently.

2.2 Networks with Limited Transmission Ranges

Finally, we observe the effect of setting a maximum
transmission range on network lifetime. Figure 4 illustrates
the obtainable lifetime as a function of network radius for
various maximum transmission ranges. Limiting the maxi-
mum transmission range severely affects network lifetime,
especially for large network radii. In addition to the penalty
in network lifetime incurred from the uniform deployment
constraint (as illustrated in Figure 3), an additional penalty
of is incurred from limiting the transmission range. Since
all transmissions in a network with a well-balanced traffic
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Figure 4. Network lifetime as a function of net-
work radius for limited transmission ranges.

load are very likely to be around32m, this penalty can also
be attributed to the convergecast traffic model. Clearly, so-
lutions that balance the traffic load more efficiently must
be considered. This gives further motivation for the work
presented in the following section, in which more energy
efficient and cost efficient solutions are considered.

3 Clustering Approach

In the network deployment plans outlined in the previous
section, only one node serves as the data sink for the entire
network at one time, even if multiple aggregator-capable
nodes have been deployed. In this section, we consider a
clustering approach in which multiple aggregator-capable
nodes are deployed and each sink collects data from only
part of the sensor network for the entire network lifetime.
Such clustering schemes have been proposed for wireless
sensor networks in [3, 8]. Previous work in this area deals
primarily with homogeneous networks, in which any of the
deployed nodes is capable of acting as cluster head. In
this section, we consider heterogeneous networks, where
nodes equipped with the capability of acting as cluster head
(e.g., those with larger batteries, more processing power and
memory, and possibly a second radio to link back to a cen-
tral base station) are significantly more expensive than or-
dinary microsensors. In our model, a sensor may send its
traffic to whichever cluster head it chooses (typically, but
not necessarily, the closest cluster head).

We must first define a general metric to describe the ef-
ficiency of a network deployment plan. For this purpose,
we use the normalized network lifetimẽL, which measures
how many total bits can be transported on the network per
unit of energy. For a given network scenario and power
model, linear programming allows us to find the optimal
lifetime Lopt that can be achieved. Lifetime can be arbitrar-
ily increased by simply increasing the energy density in the
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Figure 5. Normalized lifetime vs. number of
cluster heads deployed for networks with a
radius of 150m (a) and 250m (b).

network (either by scaling up the deployed sensor density
or the average energy per sensor). Also, since we assume
that protocols that manage the amount of traffic sent (e.g.,
[7, 6, 5]) may be used so that the density of active sensors
does not necessarily correspond to the density of deployed
sensors, lifetime can similarly be increased by decreasing
the required active sensor density. Similarly, lifetime can
be increased by reducing the bit rate among active sensors.
To account for these factors, the normalized network life-
time L̃ is given as

L̃ = Lopt

(
Raλa

λe

)
(2)

whereλa represents the density of active sensors,Ra rep-
resents the average bit rate among active sensors,λe repre-
sents the energy density of the network (we assume uniform
distribution of energy), andLopt is the maximum lifetime
achievable with the given parameters.

We ran simulation to observe the energy efficiency of the
clustering approach. The energy model used was the same
as the previous section and each node’s maximum transmis-
sion range was set at75m. The relationship between the
normalized lifetime (given in bits per Joule) and the num-
ber of cluster heads that are deployed is shown in Figures
5(a) and 5(b) for a150m radius network and a250m radius
network, respectively. In both figures, the normalized life-
time is given for optimal cluster head placement as well as
random placement. As expected, when more cluster heads
are deployed, the network lifetime improves significantly in
both cases. It is obvious that for a smaller network, fewer
number of cluster heads are enough to solve the “hot spot”
problem, and the figures verify this.

We can find the number of sensorsNs(L,Nc) that need
to be deployed to achieve a lifetimeL when Nc cluster
heads are deployed, as we did in the previous section when
we considered the necessary number of sensors whenNl

data sink locations are used. For the scenario in which we
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Figure 6. Number of sensors required vs.
number of data sinks deployed for networks
with a radius of 150m (a) and 250m (b).
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Figure 7. Network deployment cost vs. num-
ber of cluster heads deployed for networks
with a radius of 150m (a) and 250m (b).

plan a sensor network to operate for one year with active
sensors sending data at 1 bit per second and activated at
a density of 0.0001sensors/m2, the required number of
sensors are shown in Figures 6(a) and 6(b), respectively.

If the cost of a cluster head node isCa, the total cost of
deploying a heterogeneous clustering network is

C(L, Nc) = CaNc + CsNs(L,Nc) (3)

This cost is plotted in Figures 7(a) and 7(b) for a150m ra-
dius network and a250m radius network, respectively. As
expected, the most cost-efficient number of cluster heads
deployed becomes larger as the price of a cluster head be-
comes smaller. Also, for the same cost of a cluster head,
more cluster heads should be deployed in the larger network
than in the smaller network since the “hot spot” problem is
worst in large networks.

4 Conclusions

We have studied the optimal transmission range distrib-
ution that allows the lifetime of sensor networks to be max-
imized. Based on this model, we revealed the upper bound



of the lifetime of several typical scenarios and demonstrated
the inability to make good use of the energy of nodes fur-
thest from the base station, even when utilizing the optimal
distribution. Thus, varying the transmission power of indi-
vidual nodes cannot alone solve the hot spot problem. In
addition to transmission power control, we have considered
the use of a clustering hierarchy, where heterogeneous sen-
sors are deployed, some of which can act as a data aggre-
gator/compressor. When analyzing the use of each strategy,
we also considered the necessary extra costs incurred and
show how the network configuration can be optimized for
cost efficiency in each case.
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