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Abstract— Wireless sensor networks are uniquely character-
ized by tight energy and bandwidth constraints. These networks
should be designed to provide enough data to their application
so that a reliable description of the environment can be derived,
while operating as energy-efficiently as possible and at the same
time meeting bandwidth constraints. These goals are typically
contradicting and must be balanced at the point where the
application is best satisfied. In this paper, we address the problem
of maximizing lifetime for a wireless sensor network while
meeting a minimum level of reliability. This maximization is
achieved by jointly scheduling active sensor sets and finding paths
for data routing. Simulation results show that network lifetime
can be significantly increased through such methods.

I. INTRODUCTION

Interest in the use of wireless sensor networks has blos-
somed over the last several years due to technological ad-
vances enabling smaller devices and the realization of the
potential benefit of such networks in many applications. In
some situations, sensor networks may consist of sensors with
overlapping coverage areas providing redundant information,
providing an application with a level of reliability that is
more than necessary. Rather than provide this unnecessary
reliability, it may be desirable to reduce power consumption
and conserve energy in these sensors to lengthen the lifetime
of the network or minimize the rate at which the sensors
must be replenished with energy. This energy conservation
can be accomplished through a number of ways. For example,
sensors reporting rate or data resolution can be adjusted, or
the sensors can be turned off completely for an extended period
of time. Balancing the application reliability with this goal
of energy-efficiency essentially provides a type of application
quality of service (QoS). To efficiently provide this QoS to
the application, interaction with lower levels of the sensor
network’s protocol stack is required. Recently, efforts have
been made to develop middleware providing this interaction
while simplifying software development efforts [1] [2]. In this
work, we discuss the advantages of efficient sensor manage-
ment when used in such a middleware system.

In thiswork, we show how the use of two strategies - turning
off redundant sensors and energy-efficient routing - can be
used to extend network lifetime for a given required level of
data reliability. Recent research has focused on methods of
in-network data aggregation to reduce the amount of commu-

nication in dense wireless sensor networks. In this case, low-
level fusion is typically performed on data from neighboring
sensors before being sent to a data sink. As an alternative
to this approach, redundant sensors can be turned completely
off for periods of time to save energy. Of course, there is
a tradeoff between power consumption and data reliability
when choosing which approach to use. We consider the latter
approach in this work but realize the benefits of the former.
Our work also takes careful consideration at the routing layer.
Many power/energy-aware routing a gorithms have been pro-
posed over the last several years. Most of these algorithms are
designed to work without knowledge of future traffic patterns
in the network, which turns out to be quite critical. We show
in this paper that joint optimization of sensor scheduling and
data routing can extend the lifetime of a network considerably
compared to approaches using unintelligent scheduling, even
when used with power-aware routing algorithms.

The rest of this paper is organized as follows. Section I
gives the problem formalization. Section Ill provides sim-
ulation results. Section IV provides context for where this
intelligent scheduling/routing can be used. Section V addresses
related work. Section VI concludes the paper.

Il. MULTIHOP SENSOR NETWORK MANAGEMENT
PROBLEM

If an application is able to perform at an acceptable level
using data from a number of different sensor sets, we would
like to schedule the sets so as to maximize the sum of the
time that all sensor sets are used. Acknowledging the impact
that route selection will have on network lifetime, we would
like to determine route selection in conjunction with the sensor
schedule. In general, the routes should be chosen so that nodes
that are more critical for use as sensors are routed around as
often as possible. On the other hand, when determining the
length of time for which a sensor set should be used, it is
important to consider that the affected sensors are not only
those that are active in the set, but also those being used in
the chosen path(s) to the data sink. Obvioudly, it is wise to
tightly couple the scheduling of sensor sets with selection of
routes. In this section, we formalize this problem and model
it as a generalized maximum flow problem with additional



constraints. For adescription of the generalized maximum flow
problem, the reader is referred to [3].

We assume that for the majority of the network lifetime,
the sensors act in a vigilant state, looking for a potential
phenomenon in the environment being monitored. In this case,
the state of the application remains constant over time. In
applications such as object tracking where higher reiability
is required in the vicinity of the object and nearby sensors
become more critical, the application state changes frequently
and the problem becomes much more difficult to model.
In this work, we assume the simpler model of a constant
state application but discuss the implications that multi-state
applications would have on our model in Section 11-C.

A. Problem Formulation

In previous work, we have shown how to maximize network
lifetime via optimal scheduling in single hop wireless sensor
networks [4]. Here, we extend the model to account for mul-
tihop networks. We consider a multihop network consisting
of Ng multi-mode sensors and refer to the complete set of
sensors as S = {S;,j € {l...Ng}}. In general, we will
assume that all sensorsin the network are capable of operating
in N,,,; active modes and additionally in sleep mode, where
the sensor’s power consumption is negligible. An example of
a sensor that is capable of operating in multiple active modes
is a video camera that can send data at variable resolution or
an ECG system that can work with different numbers of leads.

In order to achieve the application’s required QoS, it may
be possible to use a number of the sensors by themselves or
in combination. A sensor set is determined to be feasible if
i) the total bandwidth necessary to support the traffic of the
set in any region is below the capacity of the network and the
data is guaranteed to be schedulable and ii) the set provides
the necessary reliability to the application. We will refer to
the set of feasible sensor setsas F' = {F;,i € {1...Ng}}. In
order to describe the makeup of each feasible sensor set F;,
we use a variable a;jx, which is equal to one if sensor S; is
being used in mode & during feasible sensor set F; and equal
to zero otherwise. We must aso define P; ;1 , which represents
the power consumption of sensor S; when used in mode k.
This power consumption includes both the sensing power and
the transmission power (typically the dominant term).

Now we will define a representation of the available routes
from each node with variable r;, ;,;, which is equal to one if
sensor S, is included on sensor S;,’s Ith distinct path to the
data sink (routes are arbitrarily numbered from 1 to Np;,,
which represents the number of distinct paths from sensor S,
to the data sink). P, j, j,x represents the power consumption
of sensor S, when routing sensor S;,’s data during mode &
and includes receiving, processing, and transmit power.

We wish to devel op a schedul e that determines which sensor
combinations should be used to monitor the environment and
for how long and how the data from these sensors should be
routed to the application. Let T; represent the length of time
that feasible sensor set F; is being used in the schedule. T,
provides al the information that needs to be known about the

schedule since the order of usage is of no consegquence as long
as startup costs of using the sets are negligible.

We aso need to determine f;;;, the fraction of time that
path [ is used to route sensor S;’s data during the time that
feasible sensor set F; is used.

Sensor set lifetime is limited by the sensor battery levels
E;, which introduces our first constraint.
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This constraint says that the total amount of time any node
can route other nodes data and the total amount of time any
node can be an active sensor are limited by that node’s initial
energy.
Another obvious constraint in this problem is that a sensor
cannot realistically operate in multiple modes within a single
sensor set, which means that
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If a sensor is not in direct communication range with the
data sink, its data needs to be forwarded to the data sink for
the entire duration of each of its sensor sets' scheduled time.
Thisis true for each feasible sensor set in which the sensor is
used. This gives the constraint
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The objective of the problem is to maximize
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B. Interpretation of Joint Scheduling and Routing Problem as
a Generalized Maximum Flow Problem

The joint scheduling and routing problem that was formal-
ized in the previous section can be modeled as a generalized
maximum flow graph problem. Consider an energy bank
represented by source node s in Figure 1. In our model, we will
initially represent energy consumption as the flow «;; along
arc (4, 7). Nodes that represent sensors that are available for
use by the application can be seen in the second column in
Figure 1. Since the energy bank supplies the sensor nodes
with their energy, arcs (s, S;) must be drawn from the source
node s to each of the sensor nodes .S;. Each sensor can only
be supplied with the energy that is contained locally, and so
there is a capacity u,s, on each arc (s, S;), such that

{ 1 datasink notin S;’s Tx range

0 otherwise v(i, 4)
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Additionaly, there are nodes in the graph representing the
feasible sensor sets F;. An arc (S;, F;) is drawn on the
graph iff sensor S; is included in feasible sensor set F;. Once
flow arrives at one of the nodes in F, it is more appropriate
to consider the flow as time rather than energy. The arc
multipliers to accomplish this will be described later.

If we wish to map the multihop case to the graph problem,
we must represent data forwarding on the graph. In order
to do this, we introduce two additional sets of nodes to the
graph. A node in the first set R;; (fourth column of nodes
in Figure 1) represents the collective task of routing sensor
S;'s data during the operation of feasible sensor set F;. Since
the routing contributes to the sensor set, there are arcs drawn
from these nodes to the sensor set during which they forward
data. The number of these arcs is equal to the number of
active sensors in F; that are not within direct communication
range of the data sink. For example, in Figure 1, sensor set
Fy consists of sensors S, and S3, but there is only one such
arc, for S, since S3 is within transmission range of the data
sink.

A node Pj; in the second additional set of nodes (third
column of nodes in Figure 1) represents the [th distinct
path used in forwarding S;'s data during F;. In the case of
multipath routing, several of these path nodes exist for each
node described in the previous paragraph. The number of these
nodes P;; having an arc drawnto R; is equa to the number
of distinct paths from sensor .S; to the data sink. Arcs are also
drawn from each sensor on the path to the path node.

A destination node d that represents the application is
shown in the last column in Figure 1. Arcs (F;, d) are drawn
from each feasible sensor set to the destination node. As in
all generalized maximum flow problems, the objective is to
maximize the total flow into the destination node.

Finally, we must define the multiplier values for each arc.
On arcs (S;, F;) and arcs (S, Pjy), we wish to convert flow
from units of energy to units of time. The multiplier on (S},
F;) is the inverse of the power consumption of S; when used
in F;.
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The multiplier on (S;,, Pj,) is the inverse of the power

consumption of sensor S;, when routing sensor S;,’s data
during F;.
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Multipliers also need to be included on the arcs connecting
the feasible sensor sets and the destination node. These need
to be included because the time that set F; is used is equal to
the time that each of its active sensors is used, not the sum as

the problem currently stands. The multiplier vz, 4 on each arc

(F3, d) must be equal to the inverse of the sum of the number
of active sensors in the set and the number of active sensors
requiring data routing.
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Themultiplier yp,,, r;, Oneacharc (P;;, R;;) must be equal

to the inverse of the number of intermediate nodes on the ith
path from sensor S; to the data sink.

1

N,
> j25:1 Tjzj1l

Additional constraints are that the flows on each individual
arc entering each feasible sensor set (from both nodes repre-
senting collective routing tasks as well as those representing
sensors) must be equal. This is because of the fact that all
sensors must be active for the entire duration of the sensor set’s

scheduled time in order for the set to be considered feasible
from the application’s perspective.
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Also, the time that each node used in a path contributes to
that path must be equal.
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Since we are attempting to maximize application lifetime,
the objective of this graph problem is

Np
E VF;dXF;d
i=1

Because of the constraintsin Equations 11, 12, and 13, none
of the algorithms that are commonly used to solve generalized
maximum flow problems in polynomial time can be used for
the sensor scheduling problem. Instead, we use a ssimple linear
programming approach. It has been shown that linear programs
are solvable in polynomial time [5].

Maximize (14)

C. Extension to Multi-State Applications

The previously described model applies specifically to ap-
plications where the set of sensor sets providing reliable data
to the application remains fixed over time. In many cases,
current environmental conditions may cause these sets to
change over time. An example of this is a persona health
monitoring system where abnormal conditions detected at the
base station node require more intense monitoring of certain
vital signs. Ancther extreme case of this is an object tracking
application. For these types of applications, more sensors may
be required to be active in the current vicinity of the object
being tracked. These applications can have a huge number of
possible states. To incorporate this into the graph problem,



Fig. 1.

one would simply need to list al feasible sets for all possible
states in the column where feasible sets are currently listed.
The arcs from the feasible sets to the destination node would
be replaced by arcs to a new set of nodes representing the
possible application states. Arcs would be drawn from nodes
representing feasible sensor sets to each state in which the set
provides the acceptable application QoS. Finally, arcs would
be drawn from these state nodes to the destination node.
Further constraints would need to be placed on the problem
so that the flows on the arcs from the state nodes to the
destination are proportiona to the fraction of time that the
system is expected to be in the respective states. Depending
on the application, building a probabilistic model to find these
fractions may be simple or very complicated. Also, for such
applications, it may be necessary to rerun the optimization
program periodically to to reflect deviations from the expected
behavior of the application state over time.

I1l. SIMULATIONS AND ANALYSIS

We expected that the potential relative lifetime improvement
achieved through schedule/routing optimization rather than
unintelligent sensor management methods would be quite
large, especially in multi-hop networks, where the choice of
sensor sets affect a larger number of sensors, namely all those
in the selected path(s) to the data sink. In order to observe the
size of the relative improvement that could be achieved and the
effects of various factors on this improvement, we ran ssimula-
tions of applications that require a minimum sensor coverage
area over an environment where a potential phenomenon is
expected to occur. We contrasted the lifetime of the optimal
scheduling/routing with those under identical situations when
sensor sets are chosen randomly from the set of feasible sensor
sets. In these randomly chosen sets, we used shortest path
routing and shortest cost routing, where the cost of routing a

Interpretation of the scheduling problem in a multihop network as a generalized maximum flow problem.

packet through node j was ﬁ and E; represents the current
normealized energy capacity of sensor S ;. Our results show that
depending on the situation, relative lifetime improvement can
vary from nothing to more than a factor of 4.

It should be noted that our optimization uses global infor-
mation. In larger networks, this is not redlistic as the cost
of gathering this information and the complexity of solving
the optimization problem grows quickly. With larger networks,
an aternative approach might be to perform several smaller
optimization problems instead. Also, in al smulations, we
did not consider the overhead of setting up and tearing down
routes, although we acknowledge that in real scenarios, this
could in fact impact average power consumption and network
lifetime.

We placed a number of sensors, each capable of monitoring
the environment within a constant sensing range, at random
locationsin arectangular environment. The feasible sensor sets
were found by determining which combinations of sensors
would allow 100% of a predetermined portion of the area
to be monitored. The choice of this method for specifying
feasible sets is not necessarily important; any method that
provides the possible sets of sensors that provide acceptable
application QoS would be able to map to our framework.
Because the complexity of finding every possible feasible set
increases exponentially with the number of sensors used, we
found 50 feasible sensor sets that represent a subset of F
for each simulation. The way that these feasible sensor sets
were chosen was as follows. Starting with a randomly chosen
sensor, additional sensors were iteratively added to the set until
the 100% coverage threshold was met. Additional sensorswere
chosen randomly with probability proportional to the added
coverage that they would potentially provide.

In al simulations, we set initial sensor energy to 1 J for



each node. The energy to transmit a packet was 15 pJ and
the energy to receive a packet was 10 pJ. The energy to
forward a packet was equal to the sum of the energy to
transmit a packet and the energy to receive a packet (sensing
and processing power was ignored, although this could easily
be incorporated into the model). Each sensor was capable
of operating in a single mode in which it sent packets at
a rate of 1 packet/second. Assuming that we were working
well under the point where network congestion becomes an
issue, all sets were considered feasible from the network
perspective. Each data point is averaged over 10 scenarios. For
each scenario, we found the optimal scheduling/routing and
ran 10 trials using the random scheduling with each routing
method. All simulations for a single scenario used identical
sensor locations and feasible sensor sets.

In the first simulations, we kept the number of nodes
constant at 100 and varied the nodes transmission range to
observe the effect of path length on the potential relative
improvement in application lifetime through optimization. The
size of the environment was fixed at 100 m x 100 m and the
sensing range was fixed at 25 m. The sink to which all datawas
routed was located in the center of the environment. Plots of
application lifetime using the optima scheduling and routing
and using the randomly chosen sets with shortest path and
shortest cost routing are shown in Figure 2a. A plot of the
lifetime achieved through the random approaches normalized
to the optimal solution’s lifetime is shown Figure 2b. The
size of the benefit of scheduling/routing optimization seems to
decrease with transmission range until the network becomes
more and more of a single-hop network where all sensors
can communicate directly with the data sink. After this point,
the size of the benefit should remain relatively constant, as
our result verify. We have also plotted the relative lifetime
improvement against the average length of the shortest path
from the sensors in the network to the data sink in Figure 3.
As expected, it can be seen that as routing becomes more and
more critical, random set selection with shortest path and with
shortest cost routing performs poorly.

Next, we varied the number of sensors while keeping
the transmission radius fixed at 25 m and the size of the
environment fixed at 100 m x 100 m to observe the effect of
sensor node density. A plot of relative lifetime improvement
using the optimal scheduling/routing and using randomly
chosen sets with shortest path routing and with shortest cost
routing is shown in Figure 4a. As more energy is distributed
throughout the network, network lifetime is extended for all
scheduling and routing methods. The relative improvement
achieved through optimization is shown in Figure 4b. In
previous work [4], we have shown that the size of the relative
improvement seemed to be influenced very little by sensor
node density for the single hop case. For multihop networks,
sensor node density seems to have a small effect on the size
of relative improvement as well.

Finally, we kept the node density constant at 0.01 node/m?
and varied the size of the environment to observe the effect
of the size of the problem. If the network were consis-
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Fig. 2. Absolute lifetime (a) and lifetime normalized to optimal solution (b)
of the sensor application, as a function of transmission range.

tently single hop and sensors were distributed very uniformly
throughout the environment (e.g., in grid-like fashion), we
would expect the absolute lifetime to stay relatively constant.
Since sensor location is random, however, the possibility of
a lightly covered area in the environment, limiting network
lifetime, increases. Also, the average power consumption in
the network should increase as the sensor data needs to be
forwarded along more hops on average. These two factors
should cause network lifetime to decrease as network size
increases. Figure 5a verifies this intuition and shows that
network lifetime decreases with an increase in the size of
the environment using all three approaches. Figure 5b shows
that as the problem becomes large and there are more free
variables to be solved, the benefit that can be achieved through
optimization of the scheduling and routing becomes higher.
A summary of our results is given in Table I.

IV. MOTIVATION

We have begun development of a middleware for sensor
networks whose purpose is to optimally balance the tradeoff
between application performance, power consumption, and
network lifetime. MiLAN (Middleware Linking Applications
and Networks), an ongoing project at University of Rochester's



[ Routing method || Transmission range | Number of nodes | Field Size | Normalized lifetime |
Optimal (25m - 65m) 100 100 m x 100 m 1
Shortest path routing (25m - 65m) 100 100 m x 100 m (0.31+0.02 - 0.48+0.05)
Shortest cost routing (25m - 65m) 100 100 m x 100 m (0.34+0.03 - 0.50+0.04)
Optimal 25m (50 - 150) 100 m x 100 m 1
Shortest path routing 25m (50 - 150) 100 m x 100 m (0.34£0.11 - 0.30+0.04)
Shortest cost routing 25m (50 - 150) 100 m x 100 m (0.41£0.11 - 0.34+0.04)
Optimal 25m 100 (60 m x 60 m - 100 m x 100 m) 1
Shortest path routing 25m 100 (60 mx 60 m - 100 m x 100 m) | (0.4740.06 - 0.24+0.05)
Shortest cost routing 25m 100 (60 mx 60 m - 100 m x 100 m) | (0.51+0.09 - 0.29+0.04)
TABLE |
SUMMARY OF RESULTS.
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Fig. 3. Lifetime of the sensor application using optimal scheduling/routing
and using random feasible sets with shortest path and shortest cost routing
normalized to the optimal schedule, as a function of average shortest path
length.

Center for Future Health [6], will hide al network configu-
ration information and decision-making from the application,
simplifying program development efforts [1]. The main idea
behind MiLAN is that sensor networks often consist of sensors
that provide redundant information and are capable of provid-
ing more information than what the underlying application
requires. MiLAN should decide the states of each sensor and
be able to dynamicaly modify these states in response to
changes in network topology and application state. Initially,
we are developing MiLAN as a centralized middleware, where
a central base station running the application makes all de-
cisions regarding network configuration. Eventualy, we plan
to develop a distributed version of MiLAN, where sensors can
either receive commands from local administrators instructing
them about the ideal state that they should be in at a given
time or actually make decisions by themselves based on local
information.

There are many ways that an energy-performance tradeoff
can be balanced. In some detection problems, the reporting
rate of sensors can be varied so that a low delay between the
time of event occurrence and the time that the application
is notified can be given up for lower power consumption.
Also, sensors can be turned off completely if their data is not
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Fig. 4. Absolute lifetime (a) and lifetime normalized to optimal solution (b)
of the sensor application, as a function of the number of sensor nodes.

important to the application. In that case, one might question
why these additional sensors were deployed in the first place.
The additional sensor deployment is justified because the state
of the application or environment being monitored can change
over time, and some sensors data might be more critical
during one state than in others. Also, it may be wise to
deploy additional sensors for redundancy in the sense that if
one sensor dies or malfunctions, it can be easily replaced by
another.
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Sensors can have diversity or similarity either spatially or
in the type of information that they provide to the application.
Activating sensors that are similar in either sense may be
unnecessary and even undesirable when power consumption
is a critical issue, as is often the case. For example, consider
a heart-monitoring application that we are developing as the
testbed for MiLAN. One type of sensor that we are using
in our network is a blood pressure monitor. The application
may want to monitor blood pressure with a number of sensors
located at different places to see if there are blood pressure
abnormalities anywhere on the body. The correlation of the
data being sent from these sensors depends on the spatia
diversity of the sensors. Using a sensor whose coverage area
has large overlap with another sensor that is already being used
is not wise since the marginal information that it provides to
the application isminimal. To illustrate diversity (or similarity)
in the type of information that a sensor provides, consider the
use of an ECG system in conjunction with a simple direct
heart rate monitor. While the heart rate monitor provides useful
information in the absence of the ECG system, it does not
provide much additional information when the ECG is aready
being used, and its energy could be conserved by turning the

sensor off with no penalty in application performance. More
importantly, the bandwidth consumed by such a sensor could
prevent a sensor with more diverse information, such as a
pulse oxymeter or gait analyzer, from joining the network if
network congestion is an issue.

In this paper, we have considered sensor management for
the spatially diverse sensor management problem. Specifically,
for a given level of application reliability (in our simulations,
we consider reliability to be the fraction of area covered by the
sensor network), we show how to optimally schedule sensors
to extend the system lifetime to its maximum. In addition
to the blood pressure monitor that we have mentioned, it is
obvious that this strategy will have benefits in many other
types of sensor networks, such as smoke detection in forests
and chemical detection in disaster situations.

In some network architectures, the entire set of spatially
diverse sensors can be fused and interpreted as a single
“virtual sensor.” This “virtual sensor” would be capable of
operating in multiple modes, varying from large coverage/high
confidence and short lifetime/large power consumption to
little coverage/low confidence and long lifetime/little power
consumption, depending on what level of reliability is met. For
an application where reliability is determined by the minimum
distance from any point in the field to the nearest sensor, an
example of this tradeoff curve is shown in Figures 6aand 6b.
Before determining the sensor set scheduling and routing, the
application could look at one of these curves to determine its
available options. If the application absolutely needs data to
have a certain level of reliability, it would set a threshold on
the horizontal axis and determine the lower bound on power
consumption or the upper bound on network lifetime. If on
the other hand, the application sets a hard constraint on power
consumption or network lifetime, it would set a threshold on
one of the vertical axes, determining the reliability that should
be obtained before running the optimization.

Running these optimization programs may in fact be too
computationally intense for some networks, especially in those
where the base station itself is an energy-constrained node.
One option that can be used in situations with spatialy
determined feasible sets is to divide the problem into several
local optimizations. This could simplify and distribute the
optimization computation significantly. If these optimizations,
even when scaled down through distribution, are still too
costly, this optimization method will at least be atool to let us
know how close to the optimum alternative sensor scheduling
and routing algorithms actually work.

V. RELATED WORK

A great deal of research has focused on developing
energy/power-aware routing algorithms to be used to extend
the lifetime of wireless networks. Singh et al. argued for the
use of new power-oriented metrics to be used when determin-
ing paths in routing protocols [7]. In Li's maxz — minx P,
method, paths are chosen by maximizing the minimum resid-
ual energy of al nodes on the chosen path while bounding the
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Fig. 6. Reliability/lifetime/power consumption tradeoff for sensor application.

total power consumption [8]. Chang et al. found local algo-
rithms that provide routing solutions allowing network lifetime
to be extended near or equal to the optimal off-line calculated
solution [9]. Many others have written about ways to achieve
energy-efficiency in routing protocols [10] [11] [12]. These
methods al have the same fundamental limitation of not
having knowledge of future traffic patterns (namely, in our
case, the predetermined sensor set schedule). In this paper, we
have shown the advantage that this knowledge can provide
when determining routes.

Many researchers have considered sensor management from
a variety of perspectives [13] [14] [15] [16]. Limited energy
resources are typically considered the primary design con-
straint for wireless sensor networks. Several sensor manage-
ment schemes have focused on providing energy-efficiency
in wireless sensor networks. STEM, proposed by Schurgers
et al. [17], and SPAN, proposed by Chen et al. [18], alow
smart sensors to be turned off whenever they are not being
used as atraffic source or in a vital role in packet forwarding.
Other cluster-based protocols such as LEACH, developed by
Heinzelman et al. [19], take advantage of the redundant nature
of data from densely populated wireless sensor networks by
aggregating sensor data before forwarding to the data sinks,
greatly reducing the communication involved. While most of
the research in this area has attempted to minimize power
consumption by reducing communication, not much has been
done to modify sensor modes (and in turn reduce the amount
of sensed data in the network) when the amount of data being
collected is more than necessary. Tilak et al. have shown the
advantages of modifying the sensor mode (reporting rate) so
that an efficient point on the reliability curve is met [13]. In
this work, the limiting factor being considered was network
congestion rather than sensor energy.

The work of Bhardwaj et al. is the most similar to that de-
scribed in this paper, although we were unaware of their work
at the time of our work [20]. Bhardwaj solves a similar sensor
management optimization problem from a dlightly different
perspective. Our work considers the problem from a high-

level perspective, and is flexible in terms of finding feasible
sensor sets for a variety of sensor network applications. The
model described in this paper was intended for applications
which spend the most of their time in a “vigilant” state,
with alarm states occurring infrequently and for short periods
of time. Meanwhile, the work of Bhardwaj et al. is more
focused on efficiently sending event-triggered sensor data to
the data sink, and the model is aimed more toward tracking-
type applications.

VI. CONCLUSIONS AND FUTURE WORK

Intelligent sensor management is one way to provide Qual-
ity of Service to an application. We have formalized a sensor
management problem and shown through simulations that
for applications using spatially diverse sensors, improvement
larger than a factor of 4 can be obtained when sensor
scheduling and routing are solved optimally and jointly when
compared with more random methods. Simulation results show
that improvement increases rapidly with the volume of the data
routing but is less dependent of the network density.

In our model, average power consumption of a node to
route data is proportional to the routing load. In real networks,
this power cost may actually depend on the state of the
node. For example, in an |EEE 802.11 network, the marginal
power cost to route data for a node already being used as
an active sensor in the current set is significantly less than
for one that is otherwise idle. For the active sensor, the
energy cost is approximately proportional to the difference
between idle power and the average of the receive power
and transmit power. Meanwhile, a sensor that is not being
used in the current sensor set would otherwise have its radio
turned off, and the marginal cost is proportional to the sum of
the receive power and transmit power. Similarly, if a node is
being used to route data in multiple paths, its energy cost per
forwarded packet is significantly less. When modeling such
types of networks, the problem can no longer be modeled as
a generalized maximum flow problem and becomes NP-hard,
requiring a heuristical approach to solve.



While not representative of all networks, we believe that
our model does represent some typical networks that are
likely to be used in sensor networks. Many TDMA-based
networks can be modeled as having power dissipation that is
nearly proportional with the routing load, as we have modeled.
Such networks include Bluetooth networks when an intelligent
scheduling method is used. Still, even in these TDMA-based
networks, traffic schedules may need to be set up to allow for
this efficiency, and this overhead is not accounted for in our
model.

In al simulations, we did not consider the overhead of
setting up and tearing down routes. We acknowledge that
in real situations this could in fact impact average power
consumption and network lifetime and our model would need
to account for these additional factors before running the
optimization program. It should also be noted that these
simulations were quite simplified and that quirks of specific
routing protocols and other factors could cause discrepancies
in performance measurements. For example, in our simula-
tions, we considered only routes in which each successive hop
moves toward the base station to be valid. In fact, there are
additional valid indirect routes that are not accounted for in
our simulations. Our approach also requires global information
about the neighborhoods of each node. For small networks,
this may not be a problem, but requiring this information to
be propagated back to the base station would not scale well
for larger networks.

The motivation for this work was a larger project in which
we are developing a middleware system for use in wireless
sensor networks. We will incorporate the ideas and strategies
presented in this paper during the development of this middle-
ware. We are also developing a distributed algorithm in which
sensors use information from neighboring nodes, gathered
through eavesdropping, to determine what their current state
should be. We hope that this algorithm will achieve lifetime
results that are near the upper bounds that can be found by
the methods described in this paper.
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