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Abstract
Wireless networks of visual sensors have recently emerged
as a new type of sensor-based intelligent system, with per-
formance and complexity challenges that go beyond that of
existing wireless sensor networks. The goal of the visual
sensor network we examine is to provide a user with visual
information from any arbitrary viewpoint within the moni-
tored field. This can be accomplished by synthesizing image
data from a selection of cameras whose fields of view over-
lap with the desired field of view. In this work, we compare
two methods for the selection of the camera-nodes. The
first method selects cameras that minimize the difference
between the images provided by the selected cameras and
the image that would be captured by a real camera from the
desired viewpoint. The second method considers the energy
limitations of the battery powered camera-nodes, as well as
their importance in the 3D coverage preservation task. Sim-
ulations using both metrics for camera-node selection show
a clear trade-off between the quality of the reconstructed
image and the network’s ability to provide full coverage of
the monitored 3D space for a longer period of time.

1. Introduction
Rapid advances in CMOS technology have enabled the de-
velopment of cheap (on the order of $10), low-power cam-
era modules, as evidenced, for example, by the ubiquitous
cellular phone cameras. We believe that in the near future,
these cameras will be combined with low power radios to
create visual sensor networks that will provide more suit-
able solutions, compared with existing networks of high-
power and high-resolution cameras, for many image-based
applications that assume no infrastructure on site or no time
for planning of the cameras placement.

In visual sensor networks, the camera-nodes can be sim-
ply stuck on walls or objects prior to use without the need
for preplanning of the cameras placement, thereby obtain-
ing arbitrary positions/directions. Furthermore, camera-
nodes are powered by batteries, and therefore, they do not
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require a constant power supply. This makes visual sensor
networks suitable for use in applications where temporary
monitoring is needed and in applications that require fast
deployment and removal of the camera network. For exam-
ple, a visual sensor network can be quickly deployed in a
room that is temporarily used for an exhibition or lecture.
These networks can be used for monitoring remote areas,
which may be outside and thus not contain any fixed infras-
tructure. In emergency situations, these visual sensor net-
works can provide valuable information from unaccessible
areas affected by some disaster (e.g., flood, fire, earthquake)
and hazardous areas.

In this work, we consider a visual sensor network based
telepresence system, which enables the user to take a virtual
tour over some remote location through interaction with the
system’s interface [1]. In such a system, the user is able to
virtually move through the monitored space, and to see im-
ages of the monitored space from any desired viewpoint. In
order to provide images from arbitrary viewpoints, it is im-
portant that the cameras provide coverage of the entire 3D
space over time. Each camera “covers” a three dimensional
view volume (i.e., field of view). In this paper, we consider
3D coverage as follows: a point in 3D space is considered
covered by the network if and only if this point is contained
in the view volume of at least one camera.

When there is sufficient coverage, image data from sev-
eral camera-nodes with overlapped views can be combined
together in order to generate an image from any arbitrary
viewpoint in the network. However, it is necessary to select
the set of camera-nodes that will provide enough images
of the scene so that the desired view can be reconstructed.
This problem of selection of the best cameras has not been
fully addressed in the literature. Therefore, in this paper
we explore two different methods to select which parts of
the image from each camera should be sent to reconstruct
the desired view while avoiding redundant data and con-
serving the camera-nodes’ energy. The first camera selec-
tion algorithm is based on the minimum angle between the
users’s desired view direction and the camera’s direction.
This heuristic approximates the maximum peak signal-to-
noise ratio (PSNR) solution. The second camera selection
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algorithm is based on cost metrics that measure the cam-
era’s importance to the preservation of full coverage of the
3D monitored space, considering the overlap between the
cameras’ visible volumes as well as the remaining energy
of the nodes.

2. Related work
The problems related with the selection of cameras in a
camera-based wireless network have been previously inves-
tigated. For example, the authors in [3] investigate the prob-
lem of the optimal allocation to each camera-node of a part
of a scene that has to be transmitted back to the base sta-
tion, so that the lifetime of the sensors is prolonged. While
they look at 2D coverage, we extend this problem to cover-
age over a 3D space. Also, we consider not only the battery
lifetime of the camera-nodes but also their importance in the
3D monitoring task.

In order to extract images from a specific location, the
authors in [4] use a look-up table that covers all locations
within the cameras’ view volume and determines which
camera is most suitable to provide the desired image from
a certain location. This is similar to our approach for se-
lecting the favorable cameras based on minimum angle be-
tween the user’s and the camera’s directions. However, we
also consider the limited energy of the camera-nodes, and
we discuss the implications of such an approach on the net-
work’s coverage-time.

The authors in [5] describe the architecture of a Reali-
tyFlythrough telepresence system that uses video streams
from mobile cameras in order to acquire visual information
from a monitored site. The main limitation of such a sys-
tem is the incomplete and perturbing coverage provided by
the head-mounted cameras attached to personnel, since they
cannot monitor every part of the space over time. Our work
differs from the work presented in [5] in several aspects.
First, we assume that all cameras in the system are static
after deployment, thereby providing fixed (unchangeable)
coverage of the monitored area. Also, we are more con-
cerned with the energy constraints of such a system, which
influences the selection of the “best” cameras to provide the
desired view and increase the system lifetime.

In [6] we analyzed the problem of selecting camera-
nodes to cover a planar scene and selecting routers, utiliz-
ing an application-specific cost metric that considered cov-
erage of the planar scene. Here, we extend this application-
specific cost metric for the 3D coverage case.

3. System Scenario
The camera-based network in our scenario consists of the
camera-nodes sm, m ∈ 1..N , mounted at random locations
on the four vertical walls of a room (an art gallery, for exam-
ple). The direction of each camera c, which is represented
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Figure 1: Experiment with aligned cameras.

by a vector in 3D space ~nc, is arbitrarily chosen toward the
room’s interior.

We assume that a user is able to “move” through the
room, meaning that the user can change position and view-
ing angle over time. As the user virtually moves through the
monitored space, the system periodically receives queries
that contain the user’s 3D location in the room and viewing
direction (represented by ~nq). From the system perspective,
a user can be replaced by a virtual camera that has the same
intrinsic parameters as the cameras used in the system.

Our initial scenario assumes that the room monitored by
the camera-node system does not contain objects that could
partially or fully occlude the view of some cameras. Such
a scenario is a simplified version of the more realistic case,
when objects appear in the monitored scene. We will come
back to this more complex problem in Section 7 and provide
insights on how this problem can be approached by using
the work presented here. In the absence of objects that oc-
clude the scene, the user’s view of an arbitrary scene is just
the view of the planar scene from the desired viewpoint.
The planar scene is projected according to the perspective
projection model [2] onto the user’s image plane, forming
the user’s requested image.

4. Camera Selection Metrics
As the angle between the directions of a selected camera
and the user’s desired view (which corresponds to the spa-
tial angle between ~nc and ~nq) becomes larger, it is expected
that the difference in the image obtained by this camera and
the desired user’s image (ground truth image) is larger. In
order to evaluate this intuition, we conducted an experiment
with several cameras aligned as illustrated in Figure 1. Each
camera captures an image of the planar scene in front. The
angle between each camera’s direction and the user’s direc-
tion (camera 0) increases with the distance of the camera
to the user. We aligned the images taken from each camera
to the image taken by the user camera, by finding the ho-
mography mapping [2] between the user’s image and each
camera’s image, and we measured the peak signal-to-noise
ratio (PSNR) of the rendered images. We use the same sets
of feature points, the projective model and bilinear inter-
polation of any missing pixels in the reconstruction of the
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warped images from all cameras. We found that the PSNR
of the aligned images does in fact decrease with an increase
in the angle between the user’s and the camera’s viewing
directions. Therefore, the angle between the user’s and the
camera’s directions can be used as an approximate measure
of the quality (PSNR) of the reconstructed image.

Thus, if the camera-nodes are not constrained by limited
energy, the preferable way to select cameras that jointly pro-
vide the user’s desired image is by choosing those cameras
that contain parts of the scene a user is interested in, and
that have the smallest angle between their directions and
the user’s direction. However, since the camera-nodes are
battery-operated, this camera selection method should be
modified so that it considers the remaining energy of the
camera-nodes as well. Also, another constraint for camera
selection comes from the fact that the monitored space is
non-uniformly covered (monitored) by the cameras, due to
the random placement of the camera-nodes on the walls.

As the cameras’ visible volumes are overlapped, the vol-
ume of one camera can be partially or fully contained in the
visible volume of other cameras. In the absence of objects,
the scene viewed by a camera may be recovered from the
images taken by the cameras with overlapping views (al-
beit with differing quality levels depending on the angles of
view). Therefore, the loss of a redundantly covered cam-
era will not prevent a user from seeing the part of the scene
that is covered by this camera. On the other hand, the case
when the system looses an “important” camera—one that
solely monitors some part of the space—can be prevented
(delayed) when the selection of the active camera-nodes is
done based on a metric that combines information about the
remaining energy of the camera-nodes with information of
how redundantly each camera’s visible volume is covered
by the rest of the cameras. Since this metric does not con-
sider the angle between the directions of the selected camera
and the user, it is expected that the images from the cameras
selected based on this metric differ more from the image ex-
pected by the user, compared to images obtained from the
cameras selected based on the “minimum angle” method.

For a given position and direction of the user’s desired
view, there is a group of camera-nodes that can provide im-
ages of the scene in response to the user’s query. We label
this group of cameras as a set of candidate cameras (CC).
However, to prevent the selection of the cameras that pro-
vide very different images from the image expected by the
user, we exclude from the set CC every camera for which
the angle between its optical axis ~nc and the user’s direc-
tional view ~nq is larger than some threshold angle αth.

Based on these ideas, we introduce three methods for the
selection of cameras as described next.

4.1. Minimum Angle Camera Selection
Based on the experimental results shown in the previous
section, in this minimum angle selection approach, the cam-
eras are chosen by minimizing the angle between the cam-
era’s axis and the user’s view direction. Although this
method is straightforward and will minimize the distortion
between the reconstructed image and the desired image,
there is a drawback — it does not consider the importance
of the camera-node to the task of coverage preservation over
the monitored space. Thus it may cause a premature loss of
the nodes important to monitoring areas that are not redun-
dantly covered by other camera-nodes’ viewing volumes.

4.2. Volumetric Camera Cost (VCC)
In order to define this cost metric, we use the volumetric de-
scription of the scene, which is a concept commonly used in
3D computer graphics for the reconstruction of a scene or an
object based on joint consideration of all cameras’ available
views. In the simplest case, the monitored space is divided
into small equidistant cubical elements called voxels [1].

Knowing the field of view of each camera, for each voxel
we can find the group of cameras that contain this voxel
in their view volumes. If each camera-node has remaining
energy Er(sm), m ∈ 1..N , we can find the total energy of
each voxel as the sum of the remaining energies of all the
cameras that contain this voxel:

Etotal(c(i, j, k)) =
∑

{sm|c(i,j,k)∈V V (sm)}
Er(sm) (1)

where c(i, j, k) is the center of the voxel, and V V (sm) is
the visible volume of camera-node sm.

The volumetric camera cost (VCC) measures the cam-
era’s importance to the monitoring task, and it is defined as
the sum of the energies of all voxels (defined in equation 1)
that belong to this camera’s viewing volume:

CV CC(sm) =
∑

c(i,j,k)∈V V (sm)

1
Etotal(c(i, j, k))

(2)

4.3. Direction Based VCC (DVCC)
Although the cameras can share the same 3D space, the in-
formation content of their images may be completely differ-
ent. For example, two cameras on opposite walls can have
overlapped visible volumes, but they image completely dif-
ferent scenes. Based on this observation, we define a di-
rection dependent volumetric camera cost metric (DVCC),
which considers not only the fact that the cameras share
the same visible volume, but also whether or not they view
the scene from similar viewing directions. DVCC considers
only those cameras that share the same 3D space with this
camera and for which the angle between their direction and
this camera’s direction is smaller than 90◦.
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For every camera sm, m ∈ 1..N , we can find a subset
of the cameras that satisfy these requirements, labeled as
Ss(m). As seen from camera sm, the total energy of the
voxel c(i, j, k) is equal to the energy of all cameras from
the subset Ss(m) that contain this voxel:

Etotal(c(i, j, k)){m} =
∑

{st|c(i,j,k)∈V V (st),st∈Ss(m)}
Er(st)

(3)
The direction based cost of the camera is thus:

CDV CC(sm) =
∑

c(i,j,k)∈V V (sm)

1
Etotal(c(i, j, k)){m}

(4)

5. Block-Based Camera Selection
The low-power camera-nodes used in this work are envi-
sioned to have the ability to send only a part of the captured
image instead of the entire image. Using inputs from the
user about the desired view and any of the proposed cost
metrics as a criteria for camera selection, the main process-
ing center (MPC) runs a camera selection algorithm to de-
termine the set of active cameras that take part in the recon-
struction of the user’s desired view along with the specific
image parts needed from each active camera.

At system start-up, the image plane of each camera is
projected onto the plane (wall) in front of the camera.
These visible regions of the scene are labeled as Bm, m ∈
{1..N}). The user’s image plane is divided into equal size
blocks of pixels. Based on the current position and direction
of the user, the system projects the user’s image plane onto
the plane (wall) that the user currently sees. The cells of the
projected user’s grid onto the wall are labeled as GPu.

When the VCC or DVCC metrics are used, from all cam-
eras in CC that see a part of the scene the user is interested
in, the MPC first chooses the camera c with the smallest
cost. Then, the MPC determines all the grid cells from GPu
that are contained in the viewing region Bc of this camera.
This subset of grid cells from GPu is then mapped back
to the camera image plane, determining the region of the
image captured by camera c that will be transmitted back
to the MPC. All cells from GPu that belongs to the view-
ing region Bc of this camera are mapped as covered. For
the rest of the still uncovered cells from GPu, the selection
algorithm repeats the same procedure. The algorithm stops
once either all the cells of the user’s projected grid GPu are
covered or there are no more cameras from CC that can be
considered by this algorithm.

When the cameras are chosen based on the “minimum an-
gle” criteria, the selection algorithm has to consider a per-
spective projection of the scene onto the cameras’ image
planes, where the angle between a ray from the camera to
some point on the user’s projected grid and a ray from the
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Figure 2: A change in the viewing direction of the camera
and the user across the planar scene.

user to the same point changes over the planar scene (wall),
as illustrated in Figure 2. The MPC finds the best camera
from the set of candidate cameras CC for each cell from
GPu individually. Among all cameras that contain this cell
from GPu in their field of view, the selection algorithm
chooses the camera-node with the smallest angle between
the ray that passes from the camera through the center of
this cell and the ray from the user to this cell’s center.

6. Simulation Results
We performed simulations for 10 different scenarios with
the proposed camera selection metrics. Each scenario uses
a visual network of 40 camera-nodes, mounted on the four
vertical walls of a room of size 10 × 10 × 4 meters. Each
wall contains 10 camera-nodes, and the height and direc-
tions of the cameras are chosen randomly. The selection
of the camera-nodes, which together reconstruct the user’s
desired view, is repeated in every iteration, where in each
iteration the user moves to a different position in the room.
The cameras provide images with a resolution of 320× 240
pixels, and the horizontal viewing angle (field of view) for
all cameras is equal to 40◦. The image plane of the user
is divided into blocks of 8 × 8 pixels. We assume that the
energy needed for transmission of an image part from the
camera node to the MPC is proportional to the size of the
transmitted image part.

6.1. Coverage vs. Quality Trade-off
Figure 3(a) shows how the coverage (expressed as the per-
centage of all voxels that are in the view volume of at least
one alive camera-node) of the monitored 3D space changes
over time for different cost metrics. The simulations show
that over time, a larger part of the 3D monitored space is
considered covered when the VCC or the DVCC costs are
used to find the set of cameras, compared with using the
“minimum angle” metric. Since both the VCC and the
DVCC metrics consider whether the view volume of a cam-
era is covered by the view volumes of other cameras, these
metrics direct the camera selection algorithm to avoid the
selection of cameras that are not redundantly covered, thus
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(a) Coverage of 3D space over time,
αth = 90◦.
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(b) Average angle between the
user’s and the selected cameras’ di-
rections, αth = 90◦.

100 120 140 160 180 200 220 240 260 280
60

70

80

90

100

Number of iterations

V
ol

um
et

ric
 C

ov
er

ag
e 

[%
]

Minimum Angle Cost
Volumetric Camera Cost
Directional Camera Cost

(c) Coverage of 3D space over time,
αth = 60◦.
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(d) Average angle between the
user’s and the selected cameras’ di-
rections, αth = 60◦.

Figure 3: Simulation results for the different cost metrics
used for camera selection.

prolonging the lifetime of these high cost camera-nodes.
Also, as the camera-node’s remaining energy gets smaller,
the cost of the camera-node increases significantly, again
with the purpose of keeping the camera-node from being
selected as an active node whenever the selection algorithm
can find another suitable camera.

In order to estimate the quality of the reconstructed im-
age, we measured the average angle between the user’s di-
rection and the direction of the selected cameras, as shown
in Figure 3(b). The advantage of using “minimum angle”
camera selection is that the images are, on average, less
warped compared to the images from the cameras selected
using VCC or DVCC. The smaller angle between the user’s
direction and the selected cameras’ directions equates to a
higher PSNR of the images compared to the ground truth
image. Thus, by combining the results provided in Fig-
ures 3(a) and 3(b), we can see that there is a clear trade-off
in the time during which the monitored space is completely
covered by the visual network, and the quality of the recon-
structed images requested by the user of this system.

6.2. Influence of αth on 3D Coverage
The simulation results discussed in the previous section are
obtained for the case when the set of cameras CC is chosen
based on threshold angle αth = 90◦. For smaller values of
αth, the average angle between the cameras’ and the user’s

direction gets smaller, as can be seen by comparing Fig-
ure 3(b) with Figure 3(d) where the angle αth is set to 60◦.

Surprisingly, we notice that partial (less than 100%) 3D
coverage is preserved for a longer period of time when αth

has a smaller value. In order to explain these coverage re-
sults, we compared the amount of data transmitted from all
selected cameras to the MPC during the simulations. We
found that once the coverage drops below 100%, for smaller
αth it happens more often during the simulations that the
user’s image cannot be fully reconstructed, since there are
not enough cameras that can provide all the required image
parts. The cameras on average thus send less data to the
MPC, which results in less energy spent over time. This
is the reason for the prolonged partial coverage over time
compared with the case when αth is equal to 90◦.

6.3. Camera Direction Dependent Coverage
The previous results show that the DVCC metric achieves
slightly better performance in terms of prolonged coverage
over the 3D space compared to the VCC metric. DVCC
more specifically determines the cost of the camera-node,
since it considers the fact that the information content from
the camera’s image depends on the camera’s direction, so
that cameras that share the same information content should
have smaller cost, and vice versa.

Following this logic, every camera-node can measure the
3D coverage of the space in its view volume from its direc-
tion. Since the measurement of the 3D coverage from each
camera’s direction is complex, we measure the direction de-
pendent 3D coverage in the following way. The directional
coverage represents the percentage of the space (in terms of
voxels) that is seen by at least one camera-node from a cer-
tain direction. We choose four directions (nwi , i ∈ [1..4]) in
the room, which correspond to the normals of the four walls
of the room. The cameras choose their groups according to
the angle between their directions and nw. Each group of
cameras observe the monitored space from a different di-
rection, and each of them see different facets of the voxels.
We measured the percentage of the voxels’ facets contained
in the field of view of at least one camera from each group
of cameras.

The results for this directional based 3D coverage are
shown in Figure 4, for two arbitrarily chosen groups of cam-
eras (the cameras from each group see the 3D space from
one main direction). These results show that since the in-
formation content of the images depends on the cameras’
directions, the 3D coverage can be seen as a measure of the
amount of 3D space covered by the cameras from certain
directions. Therefore, the 3D space not only needs to be
covered by the cameras, but it also has to be covered uni-
formly from all possible directions, and the DVCC metric
can be used to achieve this.
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(a) Coverage from the first direc-
tion.
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(b) Coverage from the second direc-
tion.

Figure 4: Directional coverage: coverage measured for two
arbitrarily chosen directions and with different cost metrics.

6.4. Reconstruction of the User’s Image
Upon reception of the image parts from the selected camera-
nodes, the MPC must map these image pieces to the virtual
image plane of the user, and it must stitch the image parts
together. In this section, we present the results of an exper-
imental set-up with 7 cameras. The goal of this experiment
is to mosaic the parts of the images provided based on the
different camera selection metrics, and to show what the fi-
nal images would look like. The cameras are mounted in
one plane, and they point toward the observed plane.

Figure 5(a) shows the mosaiced image from the cameras
that have the most similar directions with the user. Fig-
ure 5(b) shows the same reconstructed user’s view, gen-
erated from the cameras that have the smallest volumetric
cost. By visually comparing these two images we can no-
tice that the image in Figure 5(b) has more distortion than
the image in Figure 5(a), since the chosen cameras lie fur-
ther away from each other. However, this result is provided
for illustrative purposes, and it presents only a rough esti-
mation of the quality of the final images obtained by both
metrics. The characterization of the quality of the images
obtained by the different proposed camera selection criteria
is further discussed in [7].

7. Conclusions and Future Work
In this work we analyze the problem of selecting cameras
based on different cost metrics in order to reconstruct a
view of the monitored space from an arbitrary viewpoint.
Our goal was to explore camera selection methods that will
lead to prolonged coverage of the 3D monitored space. By
considering the redundancy in the coverage of the cam-
eras’ view volumes as well as the remaining energy of
the camera-nodes, we define several new selection metrics
(VCC and DVCC), and we show that these metrics can pro-
vide full coverage of the 3D space for longer than using a
“minimum angle” selection criterion, which approximates a
maximum PSNR selection method. Comparing all of these
metrics shows clearly the trade-off in the quality of the re-

(a) “Minimum angle” criteria (2
cameras selected).

(b) VCC criteria (4 cameras se-
lected).

Figure 5: The user’s desired image obtained by mosaicing
the images parts.

constructed images versus the time during which the net-
work is able to maximally cover the monitored 3D space.
Also, since the information captured by a camera depends
on the camera’s direction, we show that 3D coverage de-
pends on and can be measured with respect to the cameras’
view directions.

The scenario presented in this work is a special case of a
more general scenario, in which there may be one or more
objects in the monitored area. The work presented here will
serve as a cornerstone for exploring the problem of camera
selection in the presence of objects in the 3D scene. In order
to reconstruct an image when the 3D space contains an ob-
ject, it is important to locate the object in 3D space. Instead
of finding the full shape of the object, which is computa-
tionally expensive, each object can be approximated by a
bounding box. Then, each side of the bounding box can
be seen as a plane (planar scene), so we can use the same
cost metrics and algorithms presented here to find the best
cameras that see each plane of the object’s bounding box.
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