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A b s t r a c t  - A s  far as the  future of  c o m m u n i c a -  
t ions  is concerned ,  w e  have  s een  that  there  is great  
d e m a n d  for audio  and v ideo  data  to  c o m p l e m e n t  
t e x t .  Dig i ta l  s ignal  process ing  ( D S P )  is the  sci- 
ence  that  enables  tradi t ional ly  analog audio and 
v ideo  signals to  be  proces sed  digital ly for trans-  
miss ion ,  s torage ,  reproduct ion  and manipulat ion .  
In  this  paper ,  w e  wil l  expla in  the  various D S P  
archi tec tures  and its  s i l icon i m p l e m e n t a t i o n .  W e  
wil l  also discuss  the  s ta te -o f - the  art and e x a m i n e  
the  i ssues  perta in ing  to  performance .  

1 I n t r o d u c t i o n  

In the last few years, the future of communica- 
tions has been largely influenced by the rapid growth 
of wireless telephony, the Internet and mobile com- 
puting. The traditional purposes of signal processing 
such as modems, music synthesis and noise cancel- 
lation, while important ,  have been overtaken by the 
new-found Web based applications. These emerging 
technologies, especially in the area of wireless com- 
munications and Internet  audio/video, have led to a 
50% increase in DSP processor shipments in 1999 [1]. 

As a result of this rapidly expanding market,  DSP 
vendors are vying for an ever larger slice of the pie. 
To entice end product  manufacturers to adopt their 
chips as well as to meet the needs of the emerging 
technologies, new innovations in DSP capabilities are 
required. We will look at  the traditional DSP as well 
as the current features and the historical concepts 
behind the DSP architecture. 

Like its microprocessor counterpart ,  performance 
is of great interest. Benchmarking provides a com- 
mon means for DSP users to evaluate and compare 
DSP chips in the market.  These results show that  
DSP processors are also bounded by tradeoffs in 
terms of speed, power and computational tasks. 
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2 D S P  P r o c e s s o r  F u n d a m e n -  
ta l s  

In the literature, the definition of a digital signal 
processor takes many forms. In a strict sense, a DSP 
is any microprocessor tha t  processes digitally repre- 
sented signals [2]. A DSP filter for example, takes one 
or more discrete inputs, xi[n], and produces one cor- 
responding output,  y[n] for n . . . .  , - 1 ,  0, 1, 2 , . . . ,  
and i = 1 , . . . ,  N [3], where n is the n th  input or out- 
put  at t ime n, i is the i th coefficient and N is the 
length of the filter. In effect, the DSP implements 
the discrete-time system. As its name implies, it is 
assumed that  there must be some form of preprocess- 
ing if the signals are in the continuous time domain, 
and this is easily accomplished by an analog to digital 
converter (ADC). 

In general, DSP functions are mathematical  op- 
erations on real-time signals and are repetit ive and 
numerically intensive. Samples from real-time signals 
can number in the millions and hence a large mem- 
ory bandwidth is needed. It  is because of this very 
nature tha t  DSP processors are created with an ar- 
chitecture unlike those of conventional microproces- 
sors. Most DSP algorithms are not complicated and 
only require multiply and accumulate calculations [4]. 
Most, if not all, DSP processors have circuitry built 
and hard wired to execute these calculations as fast 
as possible. 

2.1 P r o c e s s o r  A r c h i t e c t u r e s  

The signal processing algorithms and functions 
define a suitable architecture for implementation. We 
use a simple example of an FIR filter as a basis for 
the building blocks of the DSP architecture. 

One algorithm used to create an FIR filter uses a 
direct form or tapped delay line s t ructure  with M + 1 
taps. The M + 1 most recent input samples are saved 
as "filter states". According to Equation (1), 
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y(n) -- ~ ~x(n  - i) (1) 
i----O 

the products of each filter state x(n - i) and its cor- 
responding coefficient ci are accumulated or added 
to produce the current output sample y(n). We can 
also use the signal flow graph as shown in Figure 1 
to represent this algorithm. However it is not clear 
as to the sequence of the computations since it looks 
like all the operations can be carried out at the same 
time. 

This cannot be the case as operations have to fol- 
low a sequence for proper algorithm functionality. It 
is also not stated as to where the locations of the data 
operands and coefficients are before they are used in 
the computations. Thus, a more accurate picture has 
to be formed by using micro-operations at the regis- 
ter transfer level (RTL), sequenced temporarily from 
left to right as seen in Figure 2 [3]. 

c o x~ c I • 
t o o  c 

y(n) 

Figure 1: Tapped delay line structure of a FIR filter. 
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Figure 2: Register transfer level representation of a 
FIR filter. 

The delayed inputs are stored in the data memory, 
D1 and the coefficients, Co, c l , . . .  C(M) are located in 
the coefficient memory. The contents of both memo- 
ries are fetched and multiplied together. The result 
is then added to the temporary memory, T1. T1 
is where the results of the previous taps are stored. 
This cycle is repeated with a different coefficient until 
completion, producing the final result as y(n). 

We can make certain assumptions for a funde- 
mental general purpose DSP architecture. From 

our understanding of DSP algorithms, we see that 
most computations are multiply and add operations. 
Looking at the example from the previous section, 
we will require multiple memory units for storage of 
different data as well as memory for the arithmetic 
operation sequences. Registers can serve as tempo- 
rary storage locations and buses will be needed to 
connect these units together. 

At this point, the reader may be tempted to ask 
how this design is different from a general purpose 
microprocessor (GPP). If we recap the issues central 
to a DSP function, most DSP calculations are repeti- 
tive, require a large memory bandwidth and numeric 
precision, all executed in real time [5]. One might 
also argue that modern GPPs have clock speeds and 
cycles per intsruction (CPI) that outperform DSP 
processors but GPPs have operations and program 
flexibility that are unecessary for DSP [4]. DSPs 
must execute their tasks efficiently while keeping 
cost, power consumption, memory usage and devel- 
opment time low [5], especially in the age of mobile 
computing. 

Since many signal processing applications process 
millions of samples of data for every second of op- 
eration, the minimum sample period is usually more 
important than the computational latency of the pro- 
cessor [3]. We define the sample period as the time 
between each sequential sample of the input data. 
The time difference between the input data and the 
result of its computation is known as the computa- 
tional latency. Once the initial sample is calculated 
with a certain latency, the subsequent results will 
however, be produced at the sample period rate. As 
the number of calculations increases, the relatively 
larger latency of the processor will be negligible com- 
pared to the sample rate. 

3 Processor  Evolut ion  

Even though DSP processors have seen dramatic 
changes through the past couple decades, there are 
certain features central to most DSP processors in the 
market today. We already know that these proces- 
sors need multiple memory banks with independent 
buses, but in addition, specialized instruction sets, 
addressing modes, control and peripherals are also 
required. 

It is widely known in the industry that the general 
DSP architectures can be divided into three or four 
categories or generations [5] [6] and we will look at 
each of them in turn. We will not address custom 
DSP architectures for specific DSP algorithms in this 
paper. 



3.1 E a r l y  S i n g l e  C h i p  D S P  P r o c e s s o r s  

The first single chip processors [7] were the foun- 
dation on which modern DSP processors were built. 
Although most of them were not commercially suc- 
cessful, manufacturers were quick to learn the pitfalls 
surrounding each of them. It is also interesting to 
note that among these early chip vendors, only one 
has maintained a DSP product line to this day. 

In 1978, AMI released a "Signal Processing Pe- 
ripheral" known as the $2811 which was designed 
to operate along with a GPP such as the 6800 from 
Motorola. The $2811's main function was to relieve 
the burden of performing math intensive subroutines 
from the main processor. In short, it behaved as a 
math coprocessor and was never used in large quan- 
tities in any end product. 

A year later, Intel announced an "Analog Signal 
Processor" which had an analog to digital converter 
(ADC) and digital to analog converter (DAC) re- 
siding on the die. The disadvantage of this proces- 
sor, 2920, was that it did not have a true multiplier. 
Multiplication was accomplished by bit shifting and 
adding partial products; thus the performance of the 
2920 was only silghtly better than a GPP. Commer- 
cially, the chip was only used in modems. 

AT&T's Bell Laboratories introduced the DSP1 in 
February of 1980. The DSP1 had most of the func- 
tional units seen in current DSP processors such as a 
multiply and accumulator (MAC), parallel address- 
ing unit, control and data memories. Its success was 
also due to the fact that development tools were avail- 
able for rapid prototyping. The DSP1 architectural 
heritage has survived until today, evolving into the 
DSP 1600 processor family from Lucent Technologies. 

3 .2  F i r s t  G e n e r a t i o n  C o n v e n t i o n a l  

This class of architecture represented the first 
widely accepted DSP processors in the market, ap- 
pearing in the early 1980's. There were a few 
key manufacturers that offered processors that share 
many similar traits. The chips were designed around 
a Harvard architecture with separate data and pro- 
gram buses for the individual data and program 
memories respectively. The key functional blocks 
were the multiply, add and accumulator units, but 
these processors could only perform fixed-point com- 
putations. The software that accompanied the chips 
had specialized instruction sets and addressing modes 
for DSP with hardware support for software looping. 

These processors were the TMS320C10 from Texas 
Instruments and the ADSP-2101 from Analog De- 
vices. A graphical representation of the general ar- 
chitecture is depicted in Figure 3. 
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3 .3  S e c o n d  G e n e r a t i o n  E n h a n c e d  
C o n v e n t i o n a l  

The next stage of development started in the 
late 1980's/early 1990's, and variants of this architec- 
ture have lasted until today. These processors retain 
much of the design of the first generation but with 
added features such as pipelining, multiple arithmetic 
logic units (ALU) and accumulators to enhance per- 
formance. The advantage in this is that most pro- 
cessors are code compatible with their predecessors 
while providing speedup in operations. 

Shrinkage of feature sizes also allowed more func- 
tional units to be included on the chip. Peripheral 
device interfaces, counters and timer circuitry, impor- 
tant to data acquisition, are now incorporated in the 
same die as the DSP. In addition, parallelism could 
be attained by duplicating key functional units. 

The TMS320C20 from Texas Instruments com- 
bines both a pipelined architecture and an Auxil- 
Iary Register Arithmetic Unit (ARAU). In addition, 
the on-chip data RAM can be configured either as 
data or program memory. The ARAU can provide 
address manipulation as well as compute 16-bit un- 
signed arithmetic, off-loading some of the processing 
from the Central Arithmetic Logic Unit (CALU) [8]. 

Another example from this era is the Motorola 
DSP56002. It has a three-stage pipeline and pe- 
ripherals such as a Serial Communications Inter- 
face (SCI), Synchronous Serial Interface (SSI), Paral- 
lel Host Interface, Timer/Event Counter and Phase 
Lock Loop (PLL). There are three RAMs, one for 
program and storage and two for data. A 24 by 24- 
bit multiplier is accompanied by two 56-bit accumu- 



lators [9]. 
The latest Lucent Technologies' fixed point 

DSP16xxx family of processors looks very much like 
its predecessor introduced in 1990, the DSP1600. Its 
enhancement is in its data path, which includes two 
16 by 16-bit multipliers, an additional 3-input adder 
and eight 40-bit accumulators [10]. The simplified 
data path is shown in Figure 4 for comparison with 
a traditional DSP architecture [10] [11]. Ignoring the 
shifters and swap/split multiplexers, the basic data 
flow of the multiplier, ALU and accumulator is con- 
ventional. 
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Figure 4: Simplified Lucent Technologies DSP16xxx 
data path. 

3 . 4  T h i r d  G e n e r a t i o n  N o v e l  D e s i g n s  

It is about this time that designers were looking 
at incorporating GPP architectures into DSPs. This 
speeds up computations while retaining the func- 
tions critical to DSP. Today's DSPs execute single in- 
struction multiple data (SIMD), very long instruction 
word (VL1W) and superscalar operations. On the 
software side, more advanced debugging and appli- 

cation development tools have been created to com- 
plement multiple instruction hardware loops, modulo 
addressing and user defined instructions [5]. 

SIMD is characteristic of most high performance 
GPPs that are also capable of multimedia extensions 
(MMX) and AltiVec algorithms. SIMD allows one in- 
struction to be executed on many independent groups 
of data. For SIMD to be effective, programs and data 
sets must be tailored for data parallel processing, and 
SIMD is most effective with large blocks of data [5]. 
In DSP, SIMD may require a large program memory 
for rearranging data, merging partial results and loop 
unrolling. The two common ways of implementing 
SIMD are to use split execution units and multiple 
execution units or data paths depicted in Figure 5 
[5]. 

32-bit x input register 

16bits I 1 

32-bit y input register 

16 bits 16 bits 

I functional units 

~its 

32-bit output register with two 16-bit results 

Figure 5: SIMD split execution unit data path. 

VLIW processors issue a fixed number of instruc- 
tions either as one large instruction or in a fixed in- 
struction packet, and the scheduling of these instruc- 
tions is performed by the compiler [12]. For VLIW 
to be effective, there must be sufficient parallelism in 
straight line code to occupy the operation slots. Par- 
allelism can be improved by loop unrolling to remove 
branch instructions and to use global scheduling tech- 
niques, but then a disadvantage of VLIW is low code 
density if loops cannot be sufficiently unrolled. 

Superscalar processors, on the other hand, can is- 
sue varying numbers of instructions per cycle and 
can be schedulled either statically by the compiler or 
dynamically by the processor itself [12]. As a result, 
superscalar designs may hold a couple of code density 
advantages over VLIW. This is because the proces- 
sor can determine if the subsequent instructions in a 
program sequence can be issued during execution, in 
addition to running unschedulled programs. 

Recently, we have seen that VLIW has been regain- 
ing popularity as a means to improve performance. 
The latest instruction set architecture co-developed 
by Intel and Hewlett-Packard, the IA-64, retains 
much of the VLIW flavor with nuances of CISC and 

- - 9 - -  



RISC [13]. This hybrid architecture is called explic- 
itly parallel instruction computing (EPIC) and its 
main purpose is to permit the compiler to group in- 
structions for parallel execution in a flexible fash- 
ion. This VLIW-like concept has also been ported 
to the DSP domain. The joint-venture between Mo- 
torola and Lucent Technologies, StarCore, has an- 
nounced a new DSP architecture known as variable 
length execution sets (VLES). Like EPIC, VLES 
combines CISC, RISC and traditional VLIW into an 
architecture that tries to eliminate VLIW's two ma- 
jor disadvantages: code density and code scalabil- 
ity/compatibility [14]. 

The latest DSP chip family from Texas Instru- 
ments, TMS320C64x, combines both VLIW and 
SIMD into their architecture known as VelociTI.2. 
Instead of varying the length of instruction groups as 
in EPIC and VLES, this scheme improves the perfor- 
mance of VLIW by allowing execution packets (EP) 
to span across 256-bit fetch packet boundaries [15]. 
Each EP consists of a group of 32-bit instructions 
and the EP can vary in size as seen in Figure 6. By 
removing these boundaries, no operation (NOP) in- 
structions, common in traditional VLIW, are elimi- 
nated and code size is minimized [16]. 

I I I I I I I I I  
9 ~ 

EPI 

I I I I I I I I I  
EP2 EP3 

I I i l 1 1 1 1 1  
EP3 EP4 EP5 

9 iP 

256 bits 

Figure 6:VelociTI.2 architecture allowing boundary- 
less EP. 

The VelociTI.2 architecture implements the SIMD 
philosophy in providing two register file data cross 
paths [15]. Each data path includes a general pur- 
pose register file and can be used for either data, data 
address pointers or condition codes. The cross paths, 
1X and 2X, allow functional units from one side to 
access a 32-bit operand from the register file of the 
other side. This access can be performed simultane- 
ously while the other side's functional units are using 
operands from its register file. Figure 7 is a simpli- 
fied diagram of the 'C64x data cross paths. The eight 
functional units are L1, L2, S1, $2, M1, M2, D1 and 
D2. DA1 and DA2 are the data address paths. 

The debate between the merits of superscalar and 

VLIW is not only restricted to the GPP universe. LSI 
Logic Corp. prefers the superscalar approach and is 
currently the major manufacturer to champion this 
architecture. We know that a key difference between 
superscalar and VLIW lies in the hardware and soft- 
ware complexity respectively. The argument pre- 
sented by LSI Logic is that the VLIW methodology 
requires a greater programming effort and is at the 
mercy of the compiler. A change in the processor 
hardware will also require a corresponding change in 
the compiler to preserve efficiency [17]. 

It is also common in DSP programming to hand 
code assembly code instructions for optimization, es- 
pecially in loop operations. However, because of 
VLIW's bundling of instructions, it is difficult for 
programmers to track the multiple instructions for 
different functional units in a deeply pipelined struc- 
ture. The ZSP architecture from LSI Logic, real- 
ized as the ZSP16400, intends to reduce program- 
ming and compiler complexity without loss of per- 
formance by implementing hardware techniques. In 
addition to adopting a five stage pipelined architec- 
ture, the superscalar ZSP16400 can issue up to four 
instructions per cycle to two MACs and ALUs. Many 
of the other features are almost identical to a GPP; 
a one cycle RISC instruction set, load/store architec- 
ture, fixed length instructions and hardware schedul- 
ing [18]. The ZSP processor architecture is shown in 
Figure 8 [18]. 

3.5 P o w e r  C o n s i d e r a t i o n s  

Power has been a major concern lately with in- 
creased use of DSPs in mobile computing. Fortu- 
nately, the architectural concepts we discussed in this 
subsection help to play a part in reducing power con- 
sumption. Power dissipation is lowered as parallelism 
is increased with the use of multiple functional units 
and buses. As a result, power usage is reduced when 
memory accesses is minimized [19]. 

Increasing the word size as well as implementing a 
VLIW-like algorithm allows more data to be fetched 
per cycle and improves code density. An optimum 
code density saves power by scaling the instruction 
size to just the required amount. This is the basic 
idea of a variable length instruction set processor. 
The burst-fill instruction cache in the Texas Instru- 
ments' TMS320C55x family is flexible enough to be 
optimized based on the code type. This mechanism 
improves the cache hit ratio and reduces memory 
accesses. The core processor can also dynamically 
and independently control the power feeding the on- 
chip peripherals and memory arrays. If these arrays 
and peripherals are not used, the processor switches 
them to a low power mode and brings them back to 
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Figure 8:ZSP16400 processor architecture. 
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full power when an access is initiated without any 
latency [19]. Another feature unique to this DSP 
processor is that the CPU, DMA, peripherals, exter- 
nal memory interface (EMIF), instruction cache and 
the clock generator can be switched to a low activity 
I D L E  mode using user controllable software. 

We cannot neglect the effects of CMOS process 
technologies. Motorola's HIP-6 or Lucent's COM2 
0.18 micron process will be used to fabricate Star- 
Core's SC140. The six layer copper interconnect 
chip's core is estimated to draw 198 mW at 1.5 V 
and 300 MHz and 28 mW at 0.9V and 120 MHz with 
3000 raw MIPS [14]. As a comparison, the 'C55x core 
consumes between 11.2 and 64 mW at 1.2/1.5 V and 
between 7 and 40 mW at 0.9 V. However, the 'C55x 
can only compute between 140 and 800 MIPS [20]. 
In summary, the low voltages are especially impor- 
tant as power consumption is defined by the product 
of load capacitance, voltage squared, transition fre- 
quency and clock frequency. 

3 .6  F o u r t h  G e n e r a t i o n  H y b r i d s  

The distinction between a true DSP product and a 
computer is getting fuzzier, and each day a larger per- 
centage of internet traffic is composed of audio and 
video data. The problem lies in processing the audio 
and video at the users' end. Here lies the dilemma; 
the need for signal processing in a computer based 
environment, sometimes simultaneously with general 
purpose computing. Or in other cases, to be capable 
of processing some digital signals but not wanting to 
incur the extra cost of a dedicated DSP chip. Devices 
such as these process control signals as well as digital 
data. 

Instead of a DSP core, the hybrids in the mar- 
ket now incorporate DSP circuitry with a CPU core. 
A positive side effect is that printed circuit board 
(PCB) real estate is saved, thereby reducing the size 
of the product, costs and more importantly the real 
savings in the power consumed. In the hybrid proces- 
sor, the GPP instruction set is retained and the ad- 
ditional DSP instructions offioad the processing from 
the GPP core. 

The first commercially marketed hybrid, the Hi- 
tachi SH-DSP is geared towards cellular applications 
and control intensive DSP products such as disk 
drives and modems [21]. The SH-DSP is actually a 
combination of two cores, the SuperH RISC proces- 
sor and the DSP core with on-chip peripherals such 
as timers, communications interfaces, I /O and mem- 
ory controllers [22]. It is interesting to note that the 
RISC core implements the yon Neumann architecture 
while the DSP is Harvard. Integer MAC operations 
are carried out by the RISC core while the DSP core 

processes the more complex DSP instructions. Both 
cores are fed from a load-store five-stage pipeline and 
both general purpose and DSP instructions can be in 
the same instruction stream. 

The I, X, Y and Peripheral buses are the four in- 
ternal buses with which the cores communicate with 
the memories and peripheral devices. The I bus is 
comprised of a 32-bit address and data bus known 
as the IAB and IDB respectively. This bus is used 
by both the RISC and DSP core to access any mem- 
ory block, i.e., X, Y or external. The X and Y bus 
is only accessible to the DSP core for the on-chip X 
and Y memories, and each bus has a 15-bit address 
bus and 16-bit data bus. This address bus is actually 
padded with a zero in the LSB position since mem- 
ory accesses are aligned on word lengths. Lastly, the 
Peripheral bus transmits bidirectional data to the I 
bus via the Bus State Controller (BSC) [22]. Figure 
9 presents a simplified block diagram of the SH-DSP 
architecture. The DSP enhanced RISC core is repre- 
sented by the Integer Unit. 

24kB ROM I 
4kB RAM) [ 

I bus 

Y bus 

X bus 

I II I 

I, 
CPU 

~ Periphera| 
Units 

Peripheral bus 

Figure 9: Simplified SH-DSP family processor archi- 
tecture. 

The latest hybrid design comes from Motorola, us- 
ing their MoCore RISC microcontroller unit (MCU) 
core in conjunction with a DSP56600 DSP core. The 
general idea is similar to the SH-DSP in which the 
hardware architecture is intended for cellular appli- 
ances. Both RISC cores are load-store, pipelined and 
require a single cycle to execute most instructions. 
The MoCore is a 32-bit processor but its instructions 
are 16-bit in length so as to reduce power consump- 
tion as well as cost [23]. The DSP core has only one 
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16 by 16-bit MAC but incorporates nested hardware 
for do loops [24]. In addition to MCU/DSP shared 
peripherals, the newest member of the DSP566xx 
family, the DSP56690, has many application spe- 
cific DSP peripherals such as a baseband port in- 
terface, serial audio codec port, Viterbi accelerator 
and layer-1 encryption. These embedded features are 
designed to support the most common wireless pro- 
tocols in use today; GSM, CDMA, TDMA, iDEN, 
GPRS [25]. To reduce die size and power consup- 
tion, the chips will eventually be manufactured in 
Motorola's HiPerMOS-6 (HIP-6) 0.18 micron tech- 
nology. 

3 . 7  N e x t  G e n e r a t i o n s  

Based on the current trends seen in DSP devel- 
opment, we can predict that the manufacturers will 
be following the path of GPP techniques. We have 
already seen that superscalar, VLIW and pipelining 
architectural methods, common in GPP, are in use 
in the latest DSP processors. Process technologies 
such as copper interconnect and submicron feature 
size will reduce chip area to enable smaller handheld 
devices. Since 1985, there has been an increase of 
almost 150% in DSP processor performance and this 
trend will certainly continue for the next few years 
[5]. 

This means that we can expect to see more on-chip 
peripherals and memory; the system-on-chip (SOC) 
may not be too far away. Clock speeds will increase 
to reduce MAC computation times, but supply volt- 
age must also correspondingly drop to reduce power 
consumption. In Section 5 of this paper, we will look 
at a few potential techniques currently developed for 
GPP that we think may be adopted or modified for 
use in DSP. 

3 .8  P r o d u c t  C o m p a r i s o n s  

In any study or evaluation, the inevitable ques- 
tion arises; which is the best? We will not attempt to 
answer the question but leave this as topic of discus- 
sion for the reader. Like in GPP studies, there are 
tradeoffs to be made and perhaps there is no clear 
choice. Perhaps another way of presenting this ques- 
tion is how to select the right DSP processor for each 
specific need, since one may be best suited for a par- 
ticular application but be a poor choice for another 
purpose [26]. 

We first consider the arithmetic format since the 
main purpose of a DSP is to process numerical data. 
DSPs can be classified into one of two types; fixed 
or floating point. Most general DSPs are fixed point 
since the circuitry is easier to design and manufac- 

ture. Data widths of fixed point processors are also 
smaller than floating point, generally 16-bits as com- 
pared to 24-bits respectively. Thus fixed point DSPs 
are cheaper and consume less power than their float- 
ing point counterparts and are usually used in high 
volume, compact sized, low power embedded appli- 
cations. However, floating point devices are easier 
to program since floating point arithmetic has more 
flexibility and a larger dynamic range. The dynamic 
range is the ratio between the smallest and largest 
numbers that can be represented. A fixed point pro- 
gram has to be carefully scaled by the user so as to 
preserve the numeric precision required within the 
tighter dynamic range. 

Speed is a number that tends to get every- 
one's attention, and the most common number 
quoted for processors is the clock rate specified in 
mega/gigahertz. The clock cycle is then the inverse 
of clock rate. However, it is incorrect just to com- 
pare performance purely on this figure as the work 
done per clock cycle by each processor can vary, even 
though a significantly high clock rate can outperform 
an efficient lower clock rate processor. A related met- 
ric that is frequently quoted is MIPS or millions of 
instructions per second. The problem with MIPS 
is that it is dependent on the instruction set [12] 
[26]. The VLIW DSP processors issue and execute 
multiple simple instructions per cycle and these sim- 
ple instructions typically perform fewer operations 
than conventional DSP instructions. Another com- 
mon DSP function is multi-bit data shifting which 
some processors can implement with a single instruc- 
tion while others may require multiple one-bit shift 
instructions. Speed and performance is a topic often 
debated and we will revisit this issue again in the 
benchmarking discussion. 

We present a case study [27] to illustrate these 
tradeoffs. Texas Instruments has released their lat- 
est DSP processors at about the same time, but each 
from a different family line tailored to meet specific 
needs. The 'C6000 family is optimized for the highest 
performance in terms of speed and simplicity in pro- 
gramming with a high-level language. On the other 
hand, the 'C5000 family was designed to operate on 
very low voltages and power consumption. This is to 
target the consumer digital market and battery pow- 
ered mobile products, whereas the 'C6000 is better 
suited for network communications that are powered 
by fixed line supplies. Some of these applications 
are modems, wireless base stations and machine vi- 
sion systems. Architecturally, the 'C6000 incorpo- 
rates many new techniques such as VLIW and spe- 
cial purpose instructions. This family is rated up to 
8800 MIPS at 1.1 GHz. The 'C5000 is an enhanced 
conventional processor with an additional ALU and 
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MAC and will deliver between 140 and 800 MIPS 
while running on 0.9 V. This study shows that the 
power/performance tradeoff is still a real issue that 
has not been solved. 

4 Benchmarking D S P  

As in GPP, DSP users need a basis to compare 
performance. This being said, benchmarking is not 
an easy task as there are many factors to consider. 
Like microprocessors, DSP performance is not gov- 
erned by just one factor but a series of specifications 
such as power, clock speed, word size, etc. Combina- 
tions of these factors may suit a particular applica- 
tion and not another [28]. 

Currently as well as in the past, the popular met- 
ric for quoting DSP performance is MIPS. How- 
ever~ MIPS is not clear as to what any proces- 
sor is good at for the reasons we have already dis- 
cussed. As a result, the GPP and computer commu- 
nity founded Standard Performance Evaluation Cor- 
poration (SPEC) in 1988 to develop a realistic set 
of standardized tests for rating computing systems 
[29]. SPEC is a suite of C language program frag- 
ments, applications and kernels that can be run on 
computer systems. The main advantage of suite test- 
ing is that the negative effect of one benchmark is 
offset by the rest of the programs in the suite [12]. 
Unfortunately, executing SPEC benchmarks on em- 
bedded and DSP processors would also be unrealistic 
as the SPEC suite of programs are general in nature 
and are not tailored for DSP. Also, it is common to 
manually code sections of DSP algorithms in assem- 
bly for optimum performance because C complilers 
are inefficient in translating C code to DSP assembly 
[2]. 

It is this reason that in 1994, an independent 
DSP technology analysis and software development 
firm, Berkeley Design Technology, Inc. (BDTi), de- 
veloped a set of DSP algorithm kernel benchmarks 
[30]. These algorithm kernels are implemented in 
hand optimized assembly and so are not architecture 
dependent. It is even possible to run these bench- 
marks on GPPs for comparison with DSP proces- 
sors. Unlike SPEC, BDTi implements and verifies 
these benchmarks but will publish these results on 
their web site without charge. 

BDTi's concept is to strictly define these bench- 
marks and to allow only realistic optimizations. 
These benchmarks axe described in Table 1 [2]. The 
algorithm optimizations are firstly for speed and then 
memory use except for the control benchmark in 
which memory is optimized first. 

The results of the benchmarking can be presented 
in terms of cycle counts or execution time and BDTi 

Function Description 

Real Block FIR Finite impulse filter op- 
erating on real data. 

Complex 
FIR 

Block FIR filter operating on 
complex data. 

Real Single Sample 
FIR 

FIR filter operating on 
single sample of real 
data. 

LMS Adaptive Fil- 
ter 

Least mean square adap- 
tive filter operating on 
single sample of real 
data. 

Two-Biquad IIR Infinite impulse response 
filter operating on single 
sample of real data. 

Vector Dot Prod- Sum of pointwise multi- 
uct plication of two vectors. 

Vector Add Pointwise addition of two 
vectors resulting in third 
vector. 

Vector Maximum Locate the value of the 
maximum vector. 

Viterbi Decoding Decode a block of convo- 
lutionally encoded bits. 

256-Point-In-Place 
FFT 

Fast Fourier transform to 
convert time domain sig- 
nal to frequency domain. 

Bit Unpack Unpack variable length 
data from a bit stream. 

Control Sequence of control op- 
erations e.g. test, pop, 
push, branch and bit ma- 
nipulation. 

Table 1: BDTi benchmark suite. 
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has chosen the latter in their reports. In some cases, 
a single numerical figure is required for quick com- 
parison and BDTi has formulated a score known as 
the BDTImark2000, based on their application ker- 
nels suite. The BDTImark2000 represents DSP speed 
and so a higher figure denotes better performance. 
The limitation of this score is that it is only an es- 
timate of the processor's execution speed and not of 
specific applications. Hence a processor's strength in 
a particular application may not be reflected in its 
BDTImarks score [31]. Energy consumption is ob- 
tained by multiplying the typical power usage of the 
processor by the execution time of a benchmark. Al- 
though it may be a less accurate method, it is less 
time consuming and easier to implement [2]. 

Another aspect of characterizing performance by 
BDTi is application profiling. The results give a bet- 
ter picture of how kernels are actually used in applica- 
tions. Essentially, profiling calculates the execution 
frequency of kernels in applications and it presents 
developers the relative weightings of each algorithm 
kernel benchmark in a certain application. The com- 
parisons between processors can be made by com- 
paring the product of kernel execution times and its 
number of occurences in the application. 

Recently a path taken by the industry was to fol- 
low in the footsteps of SPEC. In April of 1997, a 
consortium of 21 manufacturers led by a trade publi- 
cation, Electronic Design News (EDN), started work 
on a new set of benchmarks targeted towards embed- 
ded processors. This group is formally known as the 
EDN Embedded Microprocessor Benchmark Consor- 
tium (EEMBC), pronounced as "embassy". Their 
aim was to develop a group of tests that can be eas- 
ily ported to different processor architectures, hard- 
ware platforms and operating systems while mea- 
suring specific areas of the processor's performance 
independently [32]. The benchmark scores are re- 
ported individually for each test, unlike SPECint95 
or SPECfp95 [33]. However, EEMBC also provides 
a single composite scores for faster comparisons be- 
tween processors. This score is determined by as- 
signing a weight to each of the test in the suite. The 
EEMBC composite scores are created for each of the 
five application test suites, for example, the compos- 
ite score for telecommunications is called Telemark, 
and for networking, Netmark. 

The EEMBC suite of tests are written in ANSI C 
for portability and are similar to BDTi's idea of algo- 
rithm kernels. Since the embedded market is diverse, 
the benchmark algorithms are divided into five cat- 
egories so as to allow testers to quantify their prod- 
ucts with relevant tests, but there is nothing prevent- 
ing testers to run their processors on other test cat- 
egories. These five areas are automotive/industrial, 

consumer, networking, telecommunications and office 
automation. The six telecommunications tests would 
apply for purely DSP testing, and these algorithms 
are listed in Table 2 [34]. 

Algorithm Description 

Autocorrelation A voice data array and 
number of lags (time de- 
lays) input is used to cal- 
culate an array of sum of 
products for each lag. 

Bit Allocation The input data bits are 
allocated equally over a 
series of buffers (fre- 
quency bins) using a wa- 
ter level algorithm. 

Inverse Fast 
Fourier Transform 
(iFFT) 

Converting frequency do- 
main data into time do- 
main data using iFFT. 

Fast Fourier Trans- 
form (FFT) 

Converting frequency do- 
main data into time do- 
main data using FFT. 

Viterbi Decoder To recover an output 
data packet from an en- 
coded input data packet 
by decoding. 

Convolutional En- 
coder 

An output data stream is 
generated from an input 
data stream using a lin- 
ear shift register and ta- 
ble lookup. 

Table 2: EEMBC Version 1.0 telecommunications 
test suite. 

The testing procedure is similar to SPEC in which 
DSP vendors will perform the benchmarking and re- 
port the results to EEMBC. It becomes official only 
after EEMBC verifies the results with the identi- 
cal test parameters used by the manufacturers in 
EEMBC's testing lab, EEMBC Certification Lab- 
oratories (ECL). Both unoptimized and "tweaked" 
results can be reported to EEMBC [28]. However, 
EEMBC allows anyone to run these tests at any time 
and publish the results, but without EEMBC's offi- 
cial stamp of approval. Scores are currently reported 
in terms of iterations per second so higher figures 
represent better performance. 
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Prior to these proposed standards, DSP manufac- 
turers often had their own set of benchmarks and 
methods of obtaining performance figures. Most of 
these benchmark tests are still based on DSP algo- 
rithms such as FIR filtering, MAC operations and 
Viterbi decoding, but usually optimized and coded 
in the chip's assembly language. More often than 
not, the specifications are still quoted in MIPS. It is 
clear from the discussions at the begining of this sec- 
tion that other factors besides MIPS or even speed 
may have to be used to characterize DSP processors. 
Lucent Technologies has proposed a new measure of 
DSP performance called the Applications Cube [35] 
seen in Figure 10. The three parameters of the cube, 
power, performance and cost, define the axes of the 
cube in three dimensions. Each DSP processor when 
quantified in these three terms for a particular ap- 
plication, results in the volume of the cube and the 
smaller the volume, the more suited the DSP is to 
the appplication or function. The power parameter 
is represented by milliamperes (mA) per function for 
a certain voltage. Performance is still measured in 
MIPS per function and the cost is calculated as code 
size per function. 

To round off our discussion on benchmarking, we 
present the different benchmark scores [5] [6] [36] [37] 
[38] [39] [40] [41] [42] for selected fixed point DSP 
processors which we have discussed, for comparison 
in Table 3. The EEMBC scores are not listed because 
some DSP processors have not been formally tested 
with EEMBC as of yet. 

Although MIPS and to a certain extent, BDTI- 
marks are not truly accurate benchmarks, they core- 
late and it can be seen that in general, a high MIPS 
figure will also result in a high BDTI.marks number. 

5 Future  Direc t ions  

The trend to port GPP architectural techniques 
will most likely continue. At the same time, new 
methods of implementing these techniques are also 
being carried out for GPP. Rather than lagging be- 
hind GPPs, we see this as an opportunity for these 
ideas to be applied to DSP concurrently. 

An interesting idea that has been explored in dig- 
ital circuits is the concept of asynchronous logic de- 
sign. Although asynchronous circuits have been re- 
searched in the 1950's, the study is regaining popu- 
larity because of the positive benefits derived from 
the technique. Asynchronous circuits have the po- 
tential of providing high performance in terms of re- 
ducing data dependent delays, improving the elas- 
ticity of pipelines [43] and a higher operating speed 
[44]. More importantly for the area of mobile com- 
puting and Internet appliances is the benefit of low 

power dissipation and electromagnetic compatibility 
(EMC) [43] [44] [45]. 

The power savings in CMOS circuits is a result of 
minimizing signal transitions. Asynchronous circuits 
by nature do not use power in the idle areas of the cir- 
cuit and can instantly activate circuits, modules and 
storage elements when required, even without soft- 
ware assistance [46]. In circuits where radio frequen- 
cies are highly sensitive such as pagers, cellphones 
and wireless devices, the frequency spectrum har- 
monics of the supply current can cause interference 
in the signal reception. The clock in a synchronous 
system can contribute significantly to this frequency 
spectrum whereas an asynchronous system would not 
[43]. We have seen examples of asynchronous logic 
successfully applied to application specific DSP such 
as pagers [45] and hearing aids [44]. We believe that 
future work can be done to incorporate this technique 
to general purpose DSP processors. The execution 
pipeline of the AMULET2e embedded controller [46] 
has a shift and multiply functional unit providing 
data to an ALU. This bears a close resemblance to 
the architecture of a conventional DSP processor and 
modifications may possibly convert the AMULET2e 
for DSP use. 

While not related to asynchronism, perhaps a re- 
lated circuit technique is wave-pipelining. Although 
its roots are in pipelining, the "reduced" use of reg- 
isters, hence clocking elements, makes processing a 
series of inputs into a combinational circuit asyn- 
chronous. The pipelining effect is caused by the in- 
herent delays (resistances and capacitances) of the 
circuit. The advantages of wave-pipelining are a 
simplified clock distribution scheme and a very high 
pipeline rate. Wave-pipelining has been utilized in 
specialized DSP circuits, for example multipliers [47] 
and adaptive filters [48], but detailed studies into its 
use in general purpose DSP processors could be car- 
ried out further. 

Regarding software issues, we must not overlook 
the importance of compilers as well. The popular- 
ity and ease of use of commercial general purpose 
DSP processors is largely due to the availability of 
development tools [5]. However the compilers and 
tools are still inefficient in certain areas and hence 
require hand optimization in the resulting assembly 
code for better performance. More research can be 
done to improve software tools to reduce manual cod- 
ing; perhaps the first step is to reevaluate the choice 
of programming languages. 

6 Conclus ion  

We began by briefly reviewing a digital signal pro- 
cessing algorithm that influences the building blocks 
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MIPSffunction 

Evaluating thmc diffcrcnt DSP processors tbr a modem application 

Figure 10: The Lucent Technologies Applications Cube. 

Manufacturer Processor Family Speed (MHz) 1 Architecture MIPS 2 BDTImark2000 

Texas Instruments TMS320Clx 20 conventional 8.77 n /a  

Hitachi SH2-DSP 100 hybrid 1003 280 

Motorola DSP563xx 150 hybrid 150 450 

Analog Devices ADSP-21xx 754 conventional 75 230 

Texas Instruments TMS320C54xx 160 enh. conventional 160 500 

Lucent Technologies DSP16xxx 170 enh. conventional 1705 810 

LSI Logic ZSP164xx 200 superscalar 400 n /a  

Texas Instruments TMS320C62xx 300 VLIW 2400 1920 

Table 3: Comparison of benchmark scores for fixed point commercial DSP processors. 

in a DSP processor. Most DSP operations can be 
simplified into multiplications and additions, so the 
MAC formed the main functional unit in early DSP 
processor. Designers later incorporated techniques 
from GPPs to enhance the performance of DSPs. 
These architectures included pipelining, VLIW, su- 
perscalar, and although not discussed in this paper, 
branch prediction and speculation. These ideas will 
stay with DSP processors and we think that the dif- 
ferences between the DSP and GPP will become more 
blurred in the future. 

There has been a drive to develop new benchmark- 

lInstruction clock speed for fastest device in the family 
2MIPS for corresponding device speed 
3Assuming one instruction per clock cycle 
4Input clock is 37.5 MHz 
510 ns multiply and accumulate instruction cycle time 

ing schemes to measure performance since MIPS is 
becoming less acccepted as a reliable metric. We see 
two different groups taking an identical approach by 
using application kernels and a commercial vendor 
that also measures performance in terms of power 
consumption, performance and cost. Power issues are 
gaining importance as DSP processors are incorpo- 
rated into handheld, mobile and wireless devices. Fi- 
nally, we discussed techniques such as asynchronous 
digital circuits and wave-pipelining that could be ex- 
ploited in the future for performance as well as power 
awareness. 
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