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Abstract—Many sensor network applications require consistent coverage of the region in which they are deployed over the course of
the network lifetime. However, because sensor networks may be deployed randomly, node distribution and data redundancy in some
regions of the network may be lower than in others. The sensors in the sparsest regions should be considered more critical to the
sensor network application since their removal would likely result in unmonitored regions in the environment. For this reason, sensors
in the more densely deployed regions should be considered more favorable as candidates to route the traffic of other nodes in the
network. In this work, we propose several coverage-aware routing costs that allow traffic to be routed around the sparsely deployed
regions so that the coverage of the environment can remain high for a long lifetime. We also propose an integrated route discovery
and sensor selection protocol called DAPR that further lengthens network lifetime by jointly selecting routers and active sensors, again
with the goal of minimizing the use of sensors in sparsely covered areas. Simulation results show the effectiveness of our approach in
extending network lifetime nearly to the extent that can be reached using a centralized approach based on global network knowledge.
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1 INTRODUCTION

As wireless sensor networks continue to attract attention
for use in numerous commercial and military applica-
tions, there have been many efforts to improve their
energy efficiency so that they can operate for very long
periods with no manual maintenance. Because of the
limited energy supplies of typical microsensors, how-
ever, achieving long network lifetimes has been a very
challenging task. A great deal of research has focused
on power reduction in several areas, such as hardware,
operating system, and low-level protocol design, in order
to increase network lifetime. However, further steps
must be taken in order to balance, as well as reduce,
energy consumption so that sensor networks will be able
to realize their maximum potential lifetime.

As the cost of manufacturing sensor nodes contin-
ues to decrease and large-scale networks consisting of
thousands of sensors become realizable, the redundancy
that exists among the data generated by the sensors can
be exploited. Recent work in this area has focused on
techniques such as dynamic sensor selection, in-network
aggregation, and distributed source coding that reduce
the amount of data generated by the network but ensure
that the cumulative data from the sensor network at
any given time meets the sensor network’s application
quality of service (QoS) requirements. In this work, we
focus on networks in which data flow is reduced by
dynamically selecting only a subset of the sensors in the
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network to generate data at a given time. The generated
data are routed back to a single base station within
the sensor network, where it may be processed locally
or sent to an end user via a dedicated communication
channel.

Depending on the nature of deployment, it may be
the case that certain sensors are more important than
others in a sensing role due to non-uniformities in sen-
sor deployment, sensing capabilities, and initial energy
resources. The loss of these critical sensors could lead to
unattended regions of the network during early stages
of the network lifetime. To avoid this situation, these
sensors’ use in network roles such as data routing should
be avoided whenever possible in order to maximize their
lifetime and in turn, the useful lifetime of the sensor
network. In this work, we propose DAPR, an integrated
routing and sensor selection protocol for wireless sensor
networks that attempts to avoid these critical sensors by
assigning novel routing costs that incorporate coverage
overlap and choosing sensors to actively sense and
generate data with the knowledge of the effects that this
has on potential routers. Our proposed routing costs are
the first that attempt to avoid routing through sensors
that are critical in the sense of meeting application QoS
requirements.

This paper expands on previous work, proposing
variations on the routing costs originally presented in
[1] and providing additional simulations and analysis
to demonstrate the efficiency of our approach. Fur-
thermore, we compare our distributed solutions with a
centralized approach that uses global knowledge about
the network topology, sensing capabilities, initial energy
of each node, and base station locations over the course
of the network’s lifetime. Compared to this centralized
approach, DAPR performs very well, not quite reach-
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ing the lifetime afforded by the centralized approach,
but coming much closer than existing non-integrated
approaches and using distributed methods.

The rest of this paper is organized as follows. Section
2 addresses related work. Section 3 formally presents the
problem that we are addressing. Section 4 presents the
proposed coverage-aware routing costs, and Section 5
presents the DAPR integrated sensor selection and rout-
ing protocol. Section 6 provides simulation results and
analysis. Section 7 compares DAPR with a centralized
approach to sensor scheduling and routing using global
information. Section 8 concludes the paper and suggests
future work in this area.

2 RELATED WORK

A great deal of research has been dedicated to different
areas of role section in wireless sensor networks. In this
section, we give an overview of some relevant work in
the development of distributed protocols for two areas
of role selection - sensor selection and router selection.

2.1 Sensor Selection
Several energy-efficient coverage preservation protocols
have been developed to provide consistent environ-
mental coverage and robustness to unexpected sensor
failures. In PEAS [2], sleeping sensors periodically enter
a probing state, querying all sensors within a probing
range (based on communication and/or connectivity re-
quirements), and become active if no active sensors exist
within the desired probing range. In [3], the problem of
sensor selection was modeled as a Gur game, where sen-
sors operate as finite state machines and change states
(sending traffic only in selected ones) based on feedback
from the base station, which is based on the state of
the network’s current data resolution. The authors in
[4] propose a round scheduling scheme in which sen-
sors exchange reference times and schedule themselves
around their own reference time, guaranteeing that the
environment is completely covered at all times. In [5],
the authors propose a distributed selection algorithm
for coverage preservation in sensor networks, in which
a sensor measures its neighborhood redundancy as the
union of the sectors/central angles covered by neigh-
boring sensors within the sensor’s sensing range. In CCP
(Coverage Configuration Protocol) [6], sensors consult an
eligibility rule, in which each sensor finds all intersection
points between the borders of its neighbors’ sensing
radii and considers itself eligible for deactivation if each
of these intersection points is covered with the desired
sensing degree.

The aforementioned protocols generally aim to pro-
vide consistent coverage while ignoring the impact that
active sensors will have on other sensors in the network,
specifically the additional sensors that are required to
route the data generated by the active sensors. The algo-
rithms presented in [7], [8] consider routing implications
when activating sensors. The goal of these algorithms is

to find a minimum set of sensors and additional routers
necessary in order to cover a given geographical region.
Each iteration of the algorithm finds the sensor with the
best combination of a short path to the active subset and
a large number of additional unique sections covered.
That sensor and those along its path are selected for
inclusion in the sensor set. While this solution provides
some integration of sensor and router selection, it uses a
different model for achieving energy efficiency than the
one used in this paper. Specifically, the protocol in [7] as-
sumes that the activation of a sensor as a data generator
or routers incurs a constant cost on that sensor, while
we assume that power consumption is affected by the
amount of traffic transmitted and received. Also, while
the algorithm presented in [7] considers the potential
routers when selecting which sensors to activate, it does
not consider a node’s role in the sensing application
during route selection, and hence it does not avoid
selecting critical sensors as routers, as is achieved in our
approach.

2.2 Routing Protocols
The field of ad hoc routing has been explored extensively.
Initially, protocol design focused on efficiently finding
shortest path routes in the presence of node mobility
[9]. Later research addressed the need for energy-based
metrics to be used in energy-efficient ad hoc routing
protocols. Singh et al. proposed several routing costs
based on the residual energy of individual nodes [10].
Chang et al. proposed a routing cost that was a com-
bination of residual energy, normalized residual energy,
and required transmission energy and found an optimal
combination of these parameters [11]. We build on this
work by developing a routing cost for use specifically
in wireless sensor networks, where the property of node
redundancy is important. Our proposed coverage-aware
routing cost is based not only on a sensor node’s residual
energy, but also the residual energy of redundant neigh-
boring sensors, in order to ensure that the most critical
sensors are avoided and live long enough to maintain
high fidelity over long periods of time.

3 PROBLEM FORMALIZATION

In this work, we assume the use of an application
where the entirety or a portion of an area A needs to
be monitored by any one or multiple sensors that are
within their sensing range of that location. We refer to
the complete set of sensors as S = {s1, . . . , sNs}, where
Ns represents the number of sensors deployed in the
network. If we require the network to perform at some
predetermined level of QoS, or fidelity, we can assign a
nominal sensing range to the sensors so that sensors can
adequately monitor activity within this sensing range
(e.g., the signal-to-noise ratio exceeds a given threshold
at this range). While the region that a sensor is able
to cover does not necessarily need to be restricted to a
disc-shaped region, we consider this model throughout
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this paper. In general, let A(si) represent the sensor si’s
coverage area.

In order to provide coverage of the entire region that
is being monitored, it is possible to activate the sensors
in many combinations, each combination constituting a
cover set. A cover set ci is defined as any set in which
the constraint given in Equation 1 is satisfied.

⋃

j:sj∈ci

A(si) ⊇ A (1)

We refer to the set of Nc cover sets as C =
{c1, . . . , cNc

}, where for each cover set, ck ⊆ S. It
should be noted that our problem formalization does
not preclude the use of non-disjoint cover sets. The
sensor network is periodically queried by a single data
sink, and data from the sensors in the current cover
set are routed back to this data sink. In this work,
we consider the general scenario where the data sink’s
location does not remain constant over the course of
the entire network lifetime. In general, we assume that
there are Nsink data sink locations, represented as S∗ =
{sNs+1, . . . , sNs+Nsink

}. The total number of nodes in the
network (sensors and data sinks) over the course of the
network lifetime is Nt = Ns + Nsink.

We use the variable F to represent the traffic flow. F
consists of components fijm, which represent the total
traffic flow that sensor si forwards toward data sink
sNs+m using sj as its next hop. The variable T repre-
sents the scheduling of cover sets and component tkm

represents the scheduled time of cover set ck during the
operation of data sink sNs+m. Furthermore, R, P sense,
represent the bit rate and sensing power consumption
of an active sensor, respectively. Etx, Erx, and Einit.
Elements etx

ij , erx
ij , and einit

i , are vectors representing the
energy consumption to transmit a bit from sensor si

to sensor sj , the energy consumption to receive a bit
sent from sensor si to sensor sj , and the initial energy
of sensor si, respectively. Typically, the elements of Etx

depend on the distance of the link over which data is
being transmitted, while the elements of Erx do not. The
variables used in this paper are summarized in Table 1.

In our problem, we are limited by several constraints,
including constraints ensuring the conservation of data
flow (i.e., that the sum of a node’s incoming data and its
generated data must equal its outgoing data), expressed
in Equation 3.

Nt∑

j=1

fijm =
Ns∑

j=1

fjim +
∑

k:si∈ck

R · tkm (2)

∀i ∈ {1, . . . , Ns}, m ∈ {1...Nsink} (3)

Furthermore, we are limited by energy consumption
constraints that limit the total amount of time any sensor
can route and actively sense data by that node’s initial
energy.

Nsink∑
m=1

∑

k:si∈ck

P sense · tkm +
Nsink∑
m=1

Nt∑

j=1

fijmetx
ij +

Nsink∑
m=1

Ns∑

j=1

fjimerx
ji ≤ einit

i ∀i ∈ {1, . . . , Ns} (4)

Over the course of the network lifetime, queries may
arrive from a number of locations within the network, ei-
ther from multiple data sinks within the network or from
a single mobile sink roaming throughout the network.
The fraction of queries Q that will propagate from each
data sink location impose additional constraints given in
Equation 5.

Nc∑

k=1

tkm = qm

Nc∑

k=1

Nsink∑

m′=1

tkm′ ∀m ∈ {1, . . . , Nsink} (5)

The network lifetime L is the combined operating time
of all individual cover sets.

L =
Nc∑

k=1

Nsink∑
m=1

tkm (6)

In this work, we propose distributed methods for
determining the cover sets from C to use as the net-
work operates over time. Furthermore, for the sensors
included in any currently active cover set during the data
sink’s query, we choose routes from those sensors to that
data sink, essentially building up the values in F over
time. We choose the cover sets and routes in such a way
to maximize the network lifetime L. Formally, our works
attempts to solve the problem given in Figure 1. Section
4 and Section 5 describe a distributed solution to this
problem by presenting routing costs that can be used so
that the selected routes will build up the elements of F ,
and presenting a protocol for discovering these routes
and choosing the cover sets over time. Section 7 shows
how this problem can be solved to maximize lifetime
in a centralized fashion using linear programming and
compares the lifetime of our distributed protocol to this
linear programming solution.

4 COVERAGE-AWARE ROUTING COSTS

Our work is motivated by the intuition that for col-
laborative sensor networks, application goals should
play a role in many of the network decisions, such
as which sensors to activate and how to route the
data. Specifically, sensors that are more important to the
sensing application as data generators (e.g., those that
are located in sparsely deployed areas) should not be
chosen as routers over those that are less important to the
application (e.g., those with more redundant neighbors).
Because these nodes are expected to be used most often
to sense and generate data, they should be considered
critical sensors and avoided as routers for other sen-
sors that are generating data. Guided by this intuition,
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Given:
S = {s1, . . . , sNs}, the set of sensors.
S∗ = {sNs+1, . . . , sNs+Nsink

}, the set of data
sinks.
A(si), each sensor’s coverage area.
etx
ij , the energy consumption to transmit a bit

from sensor si to sensor sj .
erx
ij , the energy consumption to receive a bit

sent from sensor si to sensor sj .
einit
i , the initial energy of sensor si.

qm, the fraction of queries originating from
each data sink.
R, the average traffic rate of a sensor in-
cluded in an active cover set.
P sense, the average sensing power consump-
tion of a sensor included in an active cover
set.

Compute:
C = {c1, . . . , cNc}, a set of cover sets.
tkm, the amount of time for which each cover
set ck is scheduled during the operation of
data sink sNs+m.
fijm, the total traffic flow that sensor si

forwards toward data sink sNs+m using sj

as its next hop.

Goal:
Maximize L, the network lifetime, as given
in Equation 6, under the constraints given in
Equations 1, 3, 4, and 5.

Fig. 1. Problem Formalization.

Description Matrix Elements Size
Set of Sensors S si,

1 ≤ i ≤ Ns

Ns

Set of Data Sinks S∗ si,
Ns < i ≤ Nt

Nsink

Set of Cover Sets C ck Nc

Traffic Flow F fijm Nt×Nt×
Nsink

Cover Set Scheduling T tkm Nc ×
Nsink

Initial Energy Einit einit
i Ns

Transmit Energy (bit) Etx etx
ij Ns ×Nt

Receive Energy (bit) Erx erx
ij Ns ×Ns

Sink Time Fraction Q qm Nsink

Bit Rate R 1
Sensing Power P sense 1
Lifetime L 1

TABLE 1
Summary of variables in the optimization program.

we propose the use of “coverage-aware” routing costs
that consider the importance of the node to the sensor
network’s application QoS requirements. Since certain
nodes are more critical than others as data generators,
using a coverage-aware routing cost allows the network
to identify and avoid these sensors as routers.

A common “energy-aware” routing cost used in wire-
less ad hoc networks is the inverse of a node’s residual
energy eres

i .

Cea(si) = 1/eres
i (7)

With the use of this routing cost, nodes with little en-
ergy remaining are unlikely to be used to route the traffic
of other nodes and, consequently, this increases the time
before the first nodes die. In the application model that
we are considering, certain nodes are expected to be
used more often than others as data generators, meaning
that on average, their energy consumption will exceed
that of the other nodes in the network. As the network
progresses into its final stages, these nodes will have the
lowest remaining energy and will be avoided as routers.
However, this happens too late and these nodes may die
prematurely, as they are required to generate traffic very
often. In order to improve network lifetime, these nodes
should be avoided as routers even in the initial stages
of the network.

Because redundancy exists between the coverage of
the sensors, each location x is characterized by a sensor
set S(x) ⊆ S that is capable of monitoring it. We will
denote the total energy of all sensors that have location
x within their coverage area as E(x).

E(x) =
∑

si∈S(x)

eres
i (8)

We can define several cost functions based on E(x) that
allow nodes to indicate their unwillingness to route traf-
fic even before their residual energy drops significantly
below other nodes in the network. While these coverage-
aware costs can be used for the sensor network QoS
model considered in this work (i.e., coverage), other
methods for determining application QoS-aware costs
may be used for sensor network applications that do
not conform to this model. In developing an application
QoS-aware routing cost, the general goal is to provide
information about the importance of the individual sen-
sors to the sensing application.

4.1 Worst Coverage-Based Cost
In some applications, it may be critical that the entirety
of the region being monitored is covered as long as
possible. In other words, the utility of the application
drops significantly as the coverage falls from 100% to
just below 100%. For such situations, we define a worst
coverage-based cost Cwc(si)

Cwc(si) =
1

minx∈A(si) E(x)
= max

x∈A(si)

1∑
sj∈S(x) eres

i

(9)
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A B DC

S2 S3S1

Fig. 2. Example sensor network. Since s3 is the only
sensor that can cover region D, its worst coverage-based
cost Cwc(si) is the highest in the network. The com-
prehensive coverage-based cost Cwc(si) gives a more
complete encapsulation of a sensor’s value to the sensing
task and considers the area and redundant energy of
each subregion.

This cost assignment method finds the least-covered
subregion (in terms of energy) of each node’s coverage
area and sets the node’s cost equal to the inverse of the
sum of the energy of the individual sensors capable of
monitoring that critical subregion.

Consider the scenario illustrated in Figure 2, where
the rectangular area is the region to be monitored and
sensors s1, s2, and s3 are capable of monitoring the
regions within the circles representing their respective
sensing ranges. For simplicity, we assume that all sensors
have a single unit of energy. Any point in region A,
which we will refer to as xA, can be covered by 2 sensors
– s1 and s2. Thus, E(xA) = 2 and similarly, E(xB) = 3,
E(xC) = 2, and E(xD) = 1. Sensor s1 can monitor
regions A and B and since the coverage in region A
is the poorest in terms of total energy, s1’s cost is set
to Cwc(s1) = 1

E(xA) = 1
2 . Similarly, Cwc(s2) = 1

2 and
Cwc(s3) = 1.

Note that several sensors, whose least redundantly
covered portions of the monitored region consist of
overlapping portions, will have identical application
costs, regardless of their individual residual energy. This
follows the intuition of our design, since these sensors
are equally effective at monitoring this critical region of
the environment.

4.2 Comprehensive Coverage-Based Cost

In some scenarios, the utility of a sensor network appli-
cation may degrade gracefully with the amount of area
that is covered. To account for this, we propose another
routing cost Ccc(si) that considers the comprehensive
coverage in the regions that a sensor can monitor instead
of the single least-covered region. This comprehensive
coverage-based cost is set as a weighted sum of 1/E(x),
weighted by the area of each subregion. In other words,
to obtain Ccc(si), we integrate the inverse of E(x) over
si’s coverage region.

Ccc(si) =
∫

A(si)

dx

E(x)
=

∫

A(si)

dx∑
sj∈S(x) eres

j

(10)

Again, consider the scenario illustrated in Figure 2.
Sensor s1 will set its cost as Ccc(s1) =

∫
A(si)

dx
E(x) =∫

A
dx
2 +

∫
B

dx
3 = area(A)

2 + area(B)
2 . Similarly, Ccc(s2) =

area(A)
2 + area(B)

3 + area(C)
2 and Ccc(s3) = area(B)

3 +
area(C)

2 + area(D)
1 . This comprehensive coverage-based

routing cost provides a more balanced view of a node’s
importance to the sensing task.

4.3 Combining Several Cost Functions

So far, we have proposed two coverage-aware cost func-
tions that capture the importance of individual nodes
to the sensing of the environment. However, the useful-
ness of sensors is not limited to their ability to sense
the environment and generate data; they are useful for
routing the data of other sensors as well. While the
objective of our proposed costs is to use the sensors that
are not important as data generators more liberally as
routers, some combination of the coverage-aware costs
proposed in this work and a connectivity cost could
ensure that these sensors are not used too liberally.
Consider a network in which a number of nodes that can
serve as routers but do not have any sensing capabilities
are deployed in addition to the microsensors that we
have considered thus far. Using Cwc(si) and Ccc(si)
as routing costs, these nodes will be assigned a cost
of 0. Large amounts of traffic will be routed through
these nodes and sent as far toward the data sink as
transmission ranges permit, even when large distances
between these nodes and the data sink cause energy
inefficient transmissions. Clearly, this routing strategy
is not optimal. In an energy efficient solution, these
router-only nodes would be used more conservatively
as routers and a greater portion of their energy would
be saved for use in the later stages of the network.

Thus, we propose the use of a routing cost that con-
siders a node’s importance as a router as well as a data
source. Here, we simply use the energy-aware routing
cost Cea(si) to help balance the importance of a node. It
should be noted that this is a very coarse approximation
of the importance of a node to maintaining connectiv-
ity, but it is typically a closer approximation than the
coverage-aware routing costs. In future work, we plan to
develop a connectivity cost that measures the importance
of individual sensors in routing data and maintaining
good network connectivity.

We considered several methods for combining the
energy-aware routing cost and the comprehensive
coverage-aware routing cost, including the weighted
arithmetic mean, the weighted geometric mean, and the
weighted maximum. Simulation results have shown that
using the maximum value of the worst coverage-based
cost and a weighted value of the energy-aware cost is
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most effective in extending network lifetime with 100%
coverage.

C(si) = max(Cwc(si), βCea(si)) (11)

Similarly, the use of the maximum value of the com-
prehensive coverage-based cost and a weighted value
of the energy-aware cost is effective in providing long
network lifetimes with graceful degradation.

C(si) = max(Ccc(si), βCea(si)) (12)

In each case, the parameter β can be optimally tuned to
maximize network lifetime, as we will show in Section
6.3.

5 DAPR - DISTRIBUTED ACTIVATION WITH
PREDETERMINED ROUTES

We have designed a simple distributed protocol called
DAPR (Distributed Activation with Predetermined
Routes) that integrates the services of sensor selection
and route discovery. Most architectures proposed for use
in coverage-preserving wireless sensor network applica-
tions use a modular approach where sensor selection and
routing are performed independently. Even in those that
use an integrated approach (e.g., [7]), the integration is
rather loose, as the sensor selection algorithm considers
the effect of the potential routers, but the routers are
not chosen with any consideration of the sensor selec-
tion algorithm. In the proposed DAPR protocol, route
discovery and sensor selection are performed separately,
but decisions made in each process are influenced by the
other. The premises for the design of DAPR are twofold
— that sensors critical to the sensing applications as data
generators should be avoided as routers and that the
selection of a sensor for active sensing affects its potential
routers as well as the sensor itself.

In DAPR, finite-length queries, which are triggered
by the sending of Query packets, are processed for a
predetermined query length by a subset of the sensors
available in the network. Before the query is processed,
the network undergoes a Route Discovery Phase, which
is followed by a Sensor Selection Phase. Upon com-
pletion of the Sensor Selection Phase, sensors process
the query and provide data to the querying node for
the duration of the query. In previous work [1], we
considered a round-based approach where a data sink
collects data for long periods of time, and sends Round
Start messages periodically so that roles are updated
regularly and energy is balanced throughout the lifetime
of the network. The single-query approach proposed
here is simply a more generic version of this protocol
and can be made equivalent by requiring queries to be
sent at the correct interval.

During the Route Discovery Phase, the Query packets
are broadcast throughout the network, with one copy of
the packet broadcast by each node, so that a spanning
tree, rooted at the data sink, is formed. As the packets are

flooded throughout the network, each node updates a
cost field within the packet, adding the cost of the link to
its parent node. Routing costs such as those proposed in
the previous section are assigned to individual sensors,
and the cost of a link is a weighted sum of the effort
that each sensor must put forth to transfer the data.
Specifically, the cost of a link is calculated as

Clink(si, sj) = C(si)etx
ij + C(sj)erx

ij (13)

where etx
ij represents the energy that is required by si to

transmit a bit to sj and erx
ij represents the energy that is

required by sj to receive a bit from si. The cumulative
cost of a sensor’s route is

Croute(si) =
∑

(sj ,sk)∈p(si)

Clink(sj , sk) (14)

where p(si) represents the set of links along the cho-
sen optimal path from si to the sink that minimizes
Croute(si).

After the Route Discovery Phase, each sensor must
decide in the Sensor Selection Phase whether or not it
is necessary to actively sense and generate data. After
initially assuming that it will actively sense and generate
data to process the query, each sensor will attempt to
deactivate itself if possible by sending a deactivation
beacon. To ensure that sensors with the highest route
costs are given the highest priority to deactivate, each
node backs off before broadcasting its deactivation bea-
con, with backoff delays set according to a decreasing
function of the route costs. The intuition behind priori-
tizing sensors based on route costs is based on the fact
that a sensor’s activation affects its potential routers as
well as itself. If, after its backoff delay, a sensor infers that
its coverage region is entirely covered by its neighbors
that have not yet sent a deactivation beacon, the sensor
sends its deactivation beacon, informing its neighbors
that it has decided not to actively sense or generate data.
It should be noted that this deactivation is for sensing
and data generation purposes only. A node that sends
a deactivation beacon must remain available for routing
purposes since routes have already been determined by
this time.

Implementation Issues
The calculation of our proposed coverage-aware routing
costs assumes that nodes have location information of
neighboring nodes with redundant coverage regions.
This information can be exchanged between neighbors
after being obtained through GPS or any number of
proposed location estimation algorithms in the current
literature [12], [13], [14]. Since DAPR was designed for
networks of static sensor nodes, location updates must
be performed only a single time at the beginning of
network operation, or very infrequently in the worst
case. Note that the need for location information is
not a drawback of the DAPR protocol or the proposed
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coverage-aware routing costs specifically – this informa-
tion is necessary in any coverage-preserving protocol.
Also, very loose time synchronization is required so
that nodes can identify the beginning and end of query
periods.

The coverage-aware routing costs also depend on
information about the residual energy of neighboring
nodes. This information can be conveyed within the
Query messages that are forwarded. Before forwarding
these messages, which each node should do once per
query, a node simply fills in a field in the packet header
that is reserved for residual energy information. Since a
node must know its own routing cost before forwarding
a Query message, it must calculate this value from
information obtained during the previous query. As long
as the query length is not so long that nodes may use a
significant portion of their initial energy during a single
query, the residual energy information should not be too
stale to calculate near-optimal routes. Alternatively, two
packets could be sent during the Route Discovery Phase
– the first containing only residual energy information
and the second containing route cost information.

We have assumed that nodes are able to begin the
dissemination of a query immediately after the data
sink broadcasts the initial Query packet. In practice, this
means that sensor nodes must listen to the channel in an
idle listening mode until receiving these packets. Since
it has been shown that power consumption in the idle
listening mode is typically comparable to that in the
receive mode, this can severely impact network lifetime.
If moderate delays are acceptable, then a low power
wakeup system may be used to inform nodes about a
predetermined time at which the Route Discovery Phase
will start [15]. However, idle listening during the Route
Discovery and Sensor Selection Phases is unavoidable,
as sensors do not know when their neighbors will send
the Query messages and deactivation beacons. Since
the Route Discovery and Sensor Selection Phases are
expected to be very short compared to the query length,
this will not greatly impact the energy efficiency of
DAPR. Also, this is not a requirement of the coverage-
aware routing costs specifically, and would be required
under a similar protocol using other routing costs. For
short-lived queries where the Route Discovery and Sen-
sor Selection Phases contribute significant overhead in
terms of energy consumption, DAPR should not be used.

For normal network operation during the processing
of the query, we assume that a schedule-based MAC
protocol is used so that idle listening does not contribute
significantly to overall energy consumption. The devel-
opment of such a MAC protocol is beyond the scope of
this work, but the reader is referred to [16], [17] for some
examples.

The determination of the existence and size of over-
lapping coverage regions during the calculation of the
proposed routing costs and decisions concerning deacti-
vation can potentially be very computationally intensive.
Our implementation uses an approximation in which

sensors create a grid of locations within their sensing
ranges and, point-by-point, observe the redundancy of
their neighbors. However, for the deactivation decision,
any of the coverage preserving rules described in the
current literature could be used in place of this method
[5], [6].

The deactivation beacons may be sent over a single
hop if it is assumed that the transmission range is at least
twice as great as the sensing range. If this assumption
is not valid, the beacons must be forwarded through
controlled flooding until they reach all sensors that
redundantly cover at least some portion of the sending
sensor’s coverage region (i.e., those within twice the
sensing range).

6 SIMULATIONS AND ANALYSIS

In this section, we present simulation results measuring
the performance of the proposed coverage-aware routing
costs and the DAPR protocol. The simulations in this
section were performed using Matlab, and they focus
on the routing and application layer while simplifying
MAC and physical layer implications.

In these simulations, a data sink sent periodic queries,
which were processed by sensors that sent constant
bit rate traffic to the sink. We assumed that queries
were generated from different locations in the network
throughout the network lifetime. This helped to avoid
rapid energy drain in the nodes surrounding the data
sink.

The energy model that was used in our simulations
was similar to that used in [18], in which the energy
required by si to send a bit to sj separated by a distance
of dij was

etx
ij = Eelec + ε dα

ij (15)

where Eelec represents the energy associated with the
radio electronics, ε characterizes the power amplification
component, and α represents the path loss exponent. The
energy required by sj to receive a bit from si was

erx
ij = Eelec (16)

Under ideal conditions (e.g., very high density), power
consumption is minimized by sending packets over dis-
tances of d∗ [19], [20], where

d∗ = α

√
2Eelec

(α− 1)ε
(17)

Using our power consumption numbers, given in Table
3, the optimal transmission distance d∗ was approxi-
mately 32 m. While ideal conditions were not seen in our
simulations and sensors may send traffic along circuitous
routes in order to avoid routing through critical sensors,
this distance, along with the geographic size of the
networks that were simulated, provides some indication
of the amount of routing that must be performed on the
data generated within the network.
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Scenario Uniform Clustered Video
Mean coverage overlap
(Number of sensors)

9.0 8.9 6.4

Standard deviation of
coverage overlap
(Number of sensors)

3.0 6.6 2.2

TABLE 2
Coverage overlap statistics for the three simulated

deployment scenarios.

In these simulations, we considered three deployment
scenarios. The first was a uniform deployment scenario,
in which sensor locations were selected uniformly from
a circular deployment region. In this scenario, coverage
nonuniformities were generally not very severe. While
the coverage-aware costs were not designed for such
networks, we include analysis of their performance in
these types of deployments for thoroughness. The sec-
ond scenario that we considered was a clustered deply-
ment scenario, in which small groups of sensors were
deployed in a normal distribution around a number of
locations chosen randomly from within the network. In
this scenario, more coverage nonuniformities existed as
a result of deployment nonuniformity. The third scenario
was a video network, in which cameras were mounted
in a grid deployment on four walls, each of which was
required to be monitored at all times. Each camera was
randomly tilted horizontally and vertically between -45
and 45 degrees. The simulations of this scenario helped
to measure the performance of the coverage-aware rout-
ing costs when the sensors’ physical proximity to each
other did not necessarily determine their coverage over-
lap. Examples of deployment patterns for each scenario
are given in Figure 3. The coverage nouniformities are
summarized in Table 2, which shows the mean and
standard deviation of the coverage overlap throughout
the region to be monitored. While both the uniform and
clustered scenarios have an average overlap of about 9
sensors, the standard deviation is more than twice as
high in the clustered scenario.

The rest of the parameters used in our simulations
are summarized in Table 3. All simulation results were
averaged over 25 trials. It should be noted that we
did not compare our results against other coverage-
preserving rules that exist in the literature. The reason
for this is that the major contributions of our work
are the incorporation of coverage information into the
routing protocol and the priority (as opposed to the
rules) for sensor selection. In fact, the rules by which
nodes determine whether or not they need to actively
sense and generate data to preserve coverage in the
network is not very important. Any of the coverage-
preserving decision rules in the literature could be used
with our protocol.
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Fig. 3. Example sensor deployment patterns for the
uniform deployment scenario (a), clustered deployment
scenario (b), and video scenario (c).

6.1 Performance of Coverage-Aware Routing Costs

In this section, we analyze the performance of our
proposed coverage-aware routing costs as alternatives to
traditional energy-aware routing, where C(si) = Cea(si),
and minimum power routing, where C(si) = 1, using
the DAPR protocol for sensor and router selection. All
networks in this section consisted of 150 sensor nodes.

Figure 4 shows the coverage degradation over time
for the uniform deployment scenario. Although the
coverage-aware routing costs were not designed for such
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Parameter Value
Packet Size 20 bytes
Packet Rate 1 packet/sec
α 2
Eelec 50 nJ/bit
ε 100 pJ/bit/m2

Query Length 24 hr
Initial Node Energy 1000 J

Sensing Range (Uniform, Clustered) 25 m
Deployment Radius (Uniform, Clustered) 100 m
Surveillance Radius (Uniform, Clustered) 90 m

Room Width (Video) 70 m
Room Height (Video) 30 m
Sensor Spacing (Video) 10 m
Sensor Field of View (Video) 30 degrees

TABLE 3
Default simulation parameters.
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Fig. 4. Coverage degradation over time for different
routing costs in the uniform deployment scenario.

networks in which node redundancy is approximately
equivalent throughout the network, it can be seen that
the coverage-aware routing costs perform very similar to
the energy-aware cost, and even slightly better. From this
plot and the results summarized in Table 4, we can see
that the lifetime before the first break in coverage is high-
est for the worst-coverage-based routing cost, giving an
improvement of 7% over the energy-aware routing cost.
Networks using the comprehensive coverage-based cost,
which was designed so that coverage degrades more
gracefully, were the last to drop below 98%, although the
gain over the energy-aware routing cost was minimal in
this scenario.

Figure 5 and Table 5 present the results for the
clustered deployment scenario. Because coverage is less
uniform throughout the network, the gains that can be
obtained from the use of the coverage-aware routing
costs are higher than in the case of the uniform deploy-
ment scenario. The worst coverage-based routing cost
gives an improvement of 48% over the energy-aware
routing cost in terms of lifetime before the first break in

C(si) 1 Cea(si) Cwc(si) Ccc(si)

100% coverage
lifetime (days)

362 1094 1178 904

98% coverage
lifetime (days)

521 1198 1184 1200

TABLE 4
Simulation results for different routing costs in the

uniform deployment scenario.
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Fig. 5. Coverage degradation over time for different
routing costs in the clustered deployment scenario.

coverage. The comprehensive coverage-based cost gives
an improvement of 49% in lifetime before coverage drops
below 98% over the energy-aware routing cost.

Figure 6 and Table 6 present the results for the
video scenario. The worst coverage-based cost gives
a significant gain in network lifetime before the first
break in coverage, increasing lifetime by 24%. However,
the comprehensive coverage-based cost performs very
poorly in this scenario. We suspect that the reason for
this is that this cost does not consider the utility of a
node as a router, but rather as a sensor only. Nodes
that should be kept alive for routing purposes may be
used too liberally, causing them to die and forcing other
sensors in the region to use suboptimal routes for the
remainder of the network lifetime. This is not a problem
in the uniform and clustered deployment scenarios since
a node’s importance as a sensor and as a router are both

C(si) 1 Cea(si) Cwc(si) Ccc(si)

100% coverage
lifetime (days)

62 247 365 376

98% coverage
lifetime (days)

81 260 377 388

TABLE 5
Simulation results for different routing costs in the

clustered deployment scenario.
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Fig. 6. Coverage degradation over time for different
routing costs in the video scenario.

C(si) 1 Cea(si) Cwc(si) Ccc(si)

100% coverage
lifetime (days)

381 855 1063 717

98% coverage
lifetime (days)

585 1097 1108 921

TABLE 6
Simulation results for different routing costs in the video

scenario.

tied to its location. One way to avoid this problem for
video networks is to use a combined routing cost, as
discussed in Section 6.3.

6.2 Effect of Sensor Selection Criteria
In this section, we explore the effect of the sensor
selection criteria when using the worst-coverage based
routing cost. Recall that sensors are deactivated by
sending a deactivation beacon to neighboring sensors
after a backoff timer expires. In these simulations, we
compare network lifetime when setting the backoff timer
according to three different criteria – randomly, based on
the sensor’s individual cost, and based on the sensor’s
cumulative route cost, given in Equation 14. As the
activation or deactivation of a sensor affects its routers
as well as itself, we expect lifetime to be highest when
setting the backoff timer according to the cumulative
route cost. As shown in Table 7, choosing sensors based
on their cumulative cost improves network lifetime over
using sensors’ individual costs by a modest 8% in the
uniform deployment scenario, almost nothing in the
clustered deployment scenario, and a more significant
33% in the video scenario. These values can be explained
by the fact that nearby sensors typically have very
similar routes to the data sink. For this reason, when
selecting which sensors to deactivate among multiple
nearby sensors that cover the same region, the choice
will probably affect only the sensors being deactivated,

Selection
Criteria

Random Individual
Cost

Cumulative
Routing
Cost

Uniform 1036 1088 1178
Clustered 364 365 365
Video 818 800 1063

TABLE 7
Network lifetime (days) before first coverage break when

using the worst coverage-based routing cost with
different selection criteria.

but few or none of the routers, since they are probably
the same for all sensors under consideration. This is
the case in the clustered deployment scenario and to
less of an extent, in the uniform deployment scenario.
However, in the video scenario, two sensors that cover
the same region may have very dissimilar routes to the
base station. In this situation, the choice of which sensor
to deactivate will affect different groups of sensors. Thus,
the gain in network lifetime is highest in this scenario.

6.3 Combining Routing Costs

In this section, we explore the effectiveness of combining
the coverage-aware routing costs with the energy-aware
routing cost in order to account for both coverage and
connectivity requirements. We simulated similar net-
works as in the previous sections as well as heteroge-
neous networks, in which 150 sensors capable of sensing
the environment and generating data for the data sink
were deployed along with additional nodes that could
only be used to route data (50 for the uniform and
clustered scenarios and 32 for the video scenario). We ran
simulations in which we set the nodes’ routing costs to
C(si) = max(Cwc(si), βCea) and others in which we set
the nodes’ routing costs to C(si) = max(Ccc(si), βCea),
as described in Section 4.3, and we tuned β to maximize
network lifetime.

Network lifetime (for 100% coverage) when set-
ting the routing cost as the combined cost C(si) =
max(Cwc(si), βCea) are summarized in Table 8. The re-
sults show that network lifetime before coverage de-
grades below 100% is typically maximized or very nearly
maximized when β is set around 0.25 in these scenarios.
The improvement is most significant in the heteroge-
neous networks since the router-only nodes’ value is
most misrepresented by the coverage-aware cost in this
case. In the heterogeneous networks, the use of the com-
bined routing cost with this value of β improves network
lifetime by 20% over the use of the worst coverage-based
routing cost and by 17% over the use of the energy-aware
routing cost for the uniform deployment scenario. For
the clustered deployment scenario, these numbers grow
to 21% and 43%, respectively. In the video network, the
combined cost improves lifetime by 8% over the use of
the worst coverage-based routing cost and by 20% over
the use of the energy-aware routing cost.
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β 0 0.05 0.25 0.5 1
Cwc Cea

Uniform 1178 1192 1224 1093 1094
Clustered 365 365 360 245 247
Video 1062 1082 1106 853 855
Uniform
(add.
routers)

1368 1572 1635 1549 1402

Clustered
(add.
routers)

476 567 576 525 403

Video
(add.
routers)

1214 1299 1306 1083 1083

TABLE 8
Network lifetime (days) before first coverage break for
heterogeneous networks when using a combination of

worst coverage-based energy-aware routing costs.

The effects of the combined cost are less dramatic in
the scenarios that contain only sensing-capable nodes, as
in the simulations of the previous sections. The network
lifetime improvement is about 4% for the uniform and
video scenarios when using a β value of 0.25. Mean-
while, the clustered scenario does not benefit at all from
the use of the combined cost.

Network lifetime (for 98% coverage) for each sce-
nario when setting the routing cost as C(si) =
max(Cwc(si), βCea) are summarized in Table 9. The re-
sults show that network lifetime before coverage de-
grades below 98% is typically maximized or nearly max-
imized when β is set at 100m2 for each scenario. Again,
the impact is greatest in the heterogeneous networks.
The use of the combined routing cost with this value
of β improves network lifetime by 20% over the use
of the comprehensive coverage-based routing cost and
by 2% over the use of the energy-aware routing cost
for the uniform deployment scenario. In other words,
we gain very little in using the combined cost over
using the energy-aware cost alone. For the clustered
deployment scenario, these numbers grow to 29% and
28%, respectively. For the video scenario the combined
cost improves network lifetime by 42% over the use of
the comprehensive coverage-based routing cost and by
7% over the use of the energy-aware routing cost.

As in the case of the worst coverage-based cost, the
improvements are not as great in the networks contain-
ing only sensing-capable nodes.

7 CENTRALIZED ROLE SELECTION

If global information about the network topology, sens-
ing capabilities, initial energy of each node, and base sta-
tion locations throughout the lifetime of the network is
available, it is possible to optimize the sensor scheduling
and data routing so that network lifetime is maximized
[21], [22], [23], [24]. In this section, we present a central-
ized approach incorporating an optimization program

β 0 20m2 100m2 400m2 β →∞
Ccc Cea

Uniform 1203 1210 1240 1212 1212
Clustered 419 419 418 346 281
Video 943 1064 1163 1142 1143
Uniform
(add.
routers)

1392 1554 1670 1646 1645

Clustered
(add.
routers)

487 569 629 561 493

Video
(add.
routers)

1232 1595 1747 1629 1629

TABLE 9
Network lifetime (days) before coverage drops below

98% for heterogeneous networks when using a
combination of comprehensive coverage-based

energy-aware routing costs.

that is used as a baseline to measure the performance of
DAPR.

In Section 3, we described several constraints that
we are subjected to in our sensor network model. If
all cover sets could be enumerated, a linear program
with constraints given by Equations 3, 4, and 5 and a
goal of maximizing L (given in Equation 6) could be
run to find the maximum achievable network lifetime
for a given network scenario. However, the problem of
finding all cover sets may be computationally infeasible
for networks consisting of a large number of sensors
and a large amount of sensing redundancy. Rather than
enumerating all of these cover sets, we would like to find
a subset of C whose optimal scheduling would yield a
similar lifetime as the optimal scheduling of C. Berman
et al. showed how the calculation of the cover sets can
be accomplished simultaneously with the scheduling of
the sets for a single-hop sensor network [25], using an
algorithm proposed by Garg and Könemann [26]. The
Garg-Könemann algorithm yields a scheduling solution
whose lifetime is arbitrarily close (within some factor ε)
to the optimal value while considering only a subset of
the cover sets. Once the subset of cover sets have been
chosen and scheduled, the schedule may be modified
through a linear program optimization, and the resched-
uled lifetime may match or nearly match the true upper
bound when a small enough value of ε is used.

While Berman et al.’s work looked at the scheduling
of cover sets in single hop sensor networks, we are
interested in the maximum obtainable lifetime of mul-
tihop wireless sensor networks. We wish to develop a
schedule that determines the length of time that each
cover set should be used and the fraction of traffic that
each sensor should route toward each of its neighbors. In
our centralized approach, we initially generate a diverse
group of cover sets using the single hop scheduling
algorithm of Berman et al. Once we have determined a
large enough group of cover sets, we run the optimiza-
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tion program with Equations 3, 4, and 5 as constraints
and the maximization of L in Equation 6 as a goal.
Note that the lifetime resulting from this optimization
program is not necessarily the true upper bound on
network lifetime since all feasible cover sets have not
been enumerated. However, the lifetime does give us
a good baseline against which to test our distributed
protocol.

In some situations (e.g., if this program is being used
to plan the actual operation of a wireless sensor net-
work), it may not be reasonable to expect that the values
of qm in Equation 5 (the fraction of queries originat-
ing from each data sink location) are known a priori.
However, we are performing these optimizations for the
purposes of providing a baseline for the performance
of our proposed algorithm. Thus, we use the fraction
of time that the data sink was located in each of its
locations in the simulations and proceed with these
numbers to find the maximum lifetime that could have
been obtained with ideal sensor and route selection.

7.1 Comparison of DAPR and Centralized Approach
Our simulation results of DAPR with the worst
coverage-based cost are compared with the lifetime ob-
tained via the centralized approach in Figures 7(a), 7(b),
and 7(c) for the uniform, clustered, and video scenarios,
respectively. We compare several approaches here:

1) a typical non-integrated approach - setting node
costs as Cea(si) (energy-aware routing) with sensor
selection based on the individual sensors’ costs,

2) the non-integrated approach, but setting node costs
as Cwc(si),

3) DAPR, using energy-aware routing cost Cea(si),
4) DAPR, using the worst-coverage routing cost

Cwc(si), and
5) DAPR, using a combination of the energy-aware

routing cost and the worst-coverage routing cost,
as described in Section 4.3, with β set to 0.25.

In the uniform scenario, the use of the combined
worst-coverage and energy-aware cost with DAPR gives
a total network lifetime gain of 14% over the non-
integrated approach, closing the gap with the centralized
solution by 56%. The results for the clustered deploy-
ment scenario show that DAPR with the worst-coverage
routing cost performs especially well in this scenario,
improving lifetime by 56% and closing the gap between
the non-integrated approach and the centralized solution
by 77%. Most of this improvement in this scenario is due
to the use of the coverage-aware routing cost rather than
the selection of sensors based on the cumulative route
cost. Finally, the use of DAPR with the combined worst-
coverage and energy-aware cost in the video scenario
gives a total network lifetime gain of 50% and closes
the gap between the non-integrated approach and the
centralized solution by 76%. Most of the improvement
in this case comes from the selection of sensors based on
the cumulative route cost.
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Fig. 7. Comparison of DAPR with the centralized ap-
proach.
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8 CONCLUSIONS AND FUTURE WORK

In this work, we have proposed the use of coverage-
aware routing costs and a distributed, integrated proto-
col for sensor selection and routing for use in coverage-
preserving wireless sensor network applications. Our
approach integrates application layer and routing layer
functionality in two ways - by assigning routing costs
with awareness of each node’s importance to the appli-
cation goals, and by choosing sensors that participate
in the application with the knowledge of the effects
that this has on potential routers. The proposed worst
coverage-based cost aims to maintain 100% coverage for
the maximum lifetime by finding each node’s worst-
covered subregion and assigning costs inversely pro-
portional to the energy of nodes covering that region.
The comprehensive coverage-based cost gives a more
balanced interpretation of a node’s value to the sensing
task by considering all – not just the worst-covered –
subregions. Because these routing costs avoid the nodes
that will be used most often as data generators even in
the early stages of the network, their use can significantly
improve sensor network lifetime. Our simulation results
have shown that the gains in network lifetime from using
these coverage-aware costs become highest when many
nonuniformities exist in the sensing redundancy (e.g.,
the clustered deployment scenario).

In addition to the advantages of using a coverage-
aware routing cost, DAPR considers the effect that sensor
selection has on potential routers by selecting sensors to
actively sense and generate data based on their cumula-
tive route costs. Our simulation results have shown that
the gains in network lifetime from using this approach
become highest when sensing overlap between sensors is
not as directly tied to physical proximity (e.g., the video
scenario).

We have compared the lifetime achieved by the DAPR
protocol with that achieved with a centralized approach
using a large-scale optimization program. Results show
that DAPR can significantly close the gap between exist-
ing non-integrated and non-coverage-aware approaches
and the lifetime of the centralized approach.

In this work, we considered a sensing model in which
sensors make a simple decision of whether to turn on
or off depending on the current quality of coverage in
their neighborhood. One aspect of our future work is to
develop similar coverage-aware routing costs for other
sensing models, including
• the CEO problem [27], in which a group of sensors

obtain noisy measurements of the same process and
send measurements independently to the data sink,
where the process must be reconstructed subject to
some distortion criteria,

• the reconstruction of a data image, where applica-
tion quality is measured by the signal-to-noise ratio
of the reconstructed signal,

• edge detection, where application quality is mea-
sured by the uncertainty in the edge approximation,

and
• target tracking, where multiple sensors must be able

to detect and estimate the range of a target within
their coverage region.

The design of application QoS-aware routing costs for
these applications, as well as for networks consisting of
multi-mode sensors, is a challenging task.
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