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Abstract. In this paper, we address a fundamental problem concerning the best flooding strategy to minimize cost and latency for target
discovery in wireless networks. Should we flood the network only once to search for the target, or should we apply a so-called “expansion
ring” mechanism to reduce the cost? If the “expansion ring” mechanism is better in terms of the average cost, how many rings should there
be and what should be the radius of each ring? We separate wireless networks based on network scale and explore these questions. We
prove that two-ring and three-ring schemes can reduce the cost of flooding compared to a single attempt, and we provide a general formula
to determine good parameters for the two-ring and three-ring hop-based flooding schemes. Through simulations, we show that choosing
flooding parameters according to our techniques gives performance close to that of ideal flooding schemes. Afterwards, we extend our work
from the single target discovery problem to the multi-target discovery problem. We show that a properly chosen searching radius can save
much more searching cost than a simple radius selection scheme for multi-target discovery problems.
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Abbreviations: EXP—EXPansion ring scheme; DSR—Dynamic Source Routing; AODV—Ad hoc On-Demand Distance Vector routing

1. Introduction

Flooding is a basic operation and has extensive applications
in target discovery in wireless networks, such as those widely
utilized in the route discovery process in several routing
protocols [8,12], those used in wireless sensor networks
for sensor discovery [7], or those used in wireless ad hoc
networks for service discovery [16]. Query packets are
flooded inside the network to search for a certain target node.
When the target node receives the query packet, it responds
to the source node, not only to inform the source node about
its existence, but also to avoid further unnecessary flooding
attempts from the source node.

However, even if the flooded packet reaches the target,
packets flooded towards other directions continue. Differ-
ent types of networks introduce different methods to con-
trol the flooding. Flooding may be controlled by setting the
hop limit, which guarantees a packet will not be transmit-
ted more than the maximum number of hops, or by set-
ting a distance limit from the source, which guarantees a
packet will not be transmitted beyond a certain geographical
limit.

Using hop limit, the authors of DSR consider a mechanism
called “expansion ring” to search for a target [8] (see Section
2 for a description of expansion ring). The authors claim that
in this way, a node can explore for the target progressively
without flooding the entire network, and the only drawback
of this scheme is the increasing latency due to multiple dis-
covery attempts. However, DSR applies a simpler scheme that
searches the one-hop neighbors first and then the entire net-
work. The idea of the expansion ring was implemented later
in AODV [12]. An interesting question is whether or not using
the expansion ring technique always reduces flooding over-
head compared with flooding the network just once. If not,

when and how should the expansion ring technique be ap-
plied?

We can generalize this question as follows. With a certain
restriction on the searching scheme, either the maximum hop
limit or the longest distance from the source node, how many
attempts should we take to achieve minimum cost or latency
to find the target? If multiple attempts are better than one,
what should be the radius for each of these attempts? What
if we are looking at small-scale networks in which a node
has no restrictions in flooding and is allowed to search the
entire network? More generally, what is the optimal searching
scheme if at least k targets are required to be discovered from
multiple identical targets?

In this paper, we explore these questions and provide an-
alytic solutions for each question. We mainly focus on the
first question, which is to find only one target with the small-
est cost. We briefly investigate the other questions, but due
to space constraints, we limit our discussion of these topics.
Our contributions are more than just solving these problems.
First, we propose a general framework to model and analyze
flooding schemes in wireless networks. Second, most of our
conclusions and algorithms can be directly applied to existing
networks and protocols. Finally, we clarify that the “expan-
sion ring” scheme can reduce the searching cost only under
certain conditions, and they are usually non-optimal. To the
best of our knowledge, this is the first formal study undertaken
to compare different searching strategies.

The rest of this paper is organized as follows. Section 2 pro-
vides an overview on the previous efforts in reducing discovery
overhead and some other related work. Section 3 presents the
analytic framework and procedures we will use throughout
this paper. In Section 4, we address the flooding problem in
large-scale networks. In Section 5, we extend the problem to
small-scale networks with no restrictions, that is, nodes may
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flood the entire network if necessary. Section 6 provides exten-
sive simulations and compares the performance of our schemes
with existing schemes and ideal schemes in terms of both cost
and latency. Section 7 extends the problem to a multi-target
discovery problem. Section 8 concludes the paper.

2. Related work

The most common use of target discovery is in routing pro-
tocol implementations. Typical examples are DSR [8] and
AODV [12]. In both protocols, nodes search for a target grad-
ually in order to avoid flooding the entire network. The proce-
dure in DSR is relatively simple. A node searches its one-hop
neighbors first, and if the target is not found, the node then
searches the entire network. AODV uses a different approach,
where a node increases its searching radius linearly from an
initial value until it reaches a predefined threshold. After that, a
network-wide search has to be performed. Both of these expan-
sion ring schemes assume that there are route caches residing
in the nodes. When the route caching condition is weak and
node mobility is high, these schemes will not reduce the search
overhead compared with flooding the entire network once as
effectively as expected. Instead, an improper utilization of the
expansion ring scheme will lead to even more overhead. How
to discover a single target efficiently is the main topic of this
paper.

There has also been some work on target discovery in
sensor networks, such as ACQUIRE [14] and rumor rout-
ing schemes [1]. ACQUIRE avoids flooding and traditional
query/response stages by refining the query into sub-queries
and resolving each sub-query by means of local searching
and random forwarding. Rumor routing manages to find an
optimal balance point between query flooding and event no-
tifications flooding. Both these two algorithms show a bet-
ter performance than the basic flooding search algorithms.
However, both of them are confined to certain circumstances
and are application-specific. In contrast, the conclusions pre-
sented in this paper can be applied to general target discovery
scenarios.

There are some other routing protocols that reduce dis-
covery overhead by assuming there are some location-based
devices to aid the routing [18]. The cost and the inaccuracy
of these devices confine the implementation of these proto-
cols. In our paper, we do not assume the existence of such
devices.

Multi-target discovery, which is to find at least k targets
from m members, also has extensive applications in wireless
networks. Examples that require a mandatory multi-target dis-
covery are NTP (network time protocol) [10], ITTC (Intrusion
Tolerance via Threshold Cryptography) [17], sensor localiza-
tion [2], and sensor information collecting [11]. Examples
that require a multi-target discovery for robustness are NIS
(network information system) [15], NTP [10] and any appli-
cation requiring auxiliary backups. Examples that require a
multi-target discovery for load distribution are peer-to-peer
systems [4] and distributed computing systems [13].

3. Assumptions, terminology and analysis methodology

Before Section 7, we focus on the single target discovery prob-
lem, which is to find only one target from the area of interest.
Multi-target discovery will be addressed in Section 7.

All of the analysis in Sections 4 and 5 is based on blind
flooding. In this basic flooding scheme, nodes forward a packet
once and only once, only if they are not the destination of the
packet and the nodes are allowed to forward, e.g., the hop
limit is not zero. Also, we ignore the potential increase of the
packet length and the cost it brings during packet propaga-
tion. For simplicity, we also ignore potential packet collisions,
which can be effectively decreased by inserting a random delay
time before forwarding. Also, we assume that the first flooded
packet that arrives at a certain node follows the shortest path.
This assumption is valid since packets following the shortest
path usually need less transmission time and delay.

During our analysis, we assume we are studying a snapshot
of the network and nodes are static during the analysis. How-
ever, even if nodes are mobile, there are several reasons that
our analysis is still valid. First, the flooding searching time is
short and nodes will not move too far away. Second, we are
looking at broadcasting which does not have the problems of
unicasting such as link failures. Third, since nodes are moving
randomly and independently, the number of nodes in a cer-
tain region is stable and will not have adverse effects on our
analysis.

The main part of this paper is organized according to the
following methodology. We classify wireless networks into
two categories, large-scale networks and small-scale networks,
which provide different assumptions for our analysis. For
large-scale networks, we ignore edge effects and assume every
node is identical; while for small-scale networks, nodes are no
longer the absolute center of the flooded area and edge effects
have a significant impact on the desired flooding scheme.

We study hop-based flooding control, where the source
node will set a hop limit that a flooded packet can reach. Upon
receiving this packet, intermediate nodes decrement the value
and check the value. If the value becomes zero, the node will
discard the packet. If not, the node will forward the packet
with the decremented value.

We will focus on two metrics: cost and latency. Cost is de-
fined as the total number of packets transmitted and is closely
related to the consumed energy. Latency is defined as the total
time that the source node takes to receive a response from the
target node.

Besides theoretical interests, most of our analysis results
can be directly employed into realistic wireless network ap-
plications and protocols. For example, the analysis results for
hop-based flooding in large-scale networks can be employed
in DSR route discovery and can even be extended to wired net-
works, and the results for hop-based flooding in small-scale
networks can be applied to service discovery protocols in ad
hoc networks.

For quick reference, we list our terms and notations in this
paragraph. Once-for-all is a strategy that nodes only flood once
to discover a target. n-ring is a strategy that nodes attempt at
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Table 1
Notations used throughout this paper.

Cn Cost of an n-ring scheme
Ln Latency of an n-ring scheme
hi Number of hops
M Maximum hop number
NT Total number of nodes
Ni Number of nodes exactly i hops away
Di, j Cost difference between an i-ring and a j-ring scheme
ρ Node density
A Area of a flooded region
Rt Node transmission range

most n times to discover a target. Two-ring and three-ring are
special n-ring strategies and are fully studied. Other notations
are listed in Table 1.

4. Single target discovery: Restricted search
in large-scale networks

In this section, we consider the flooding strategy problem in
large-scale networks. The most important property of this type
of network is that flooding is limited to a small area compared
to the whole network. The border of the network is far away
from the reaching range of the flooding process, so edge effects
are ignored during analysis.

In a general case, nodes adopt a hop limit scheme to control
the flooding. Let us model the question under this hop-based
assumption as shown in figure 1. Please refer to [3] for details
with geography-based flooding.

A large number of nodes are placed uniformly and indepen-
dently in a two-dimensional space R

2 with node density ρ. A
node wants to search nodes within the hop limit M . Suppose
the number of nodes that are exactly i hops away from the
source node is Ni , for i ∈ {1 . . . M}.

Suppose we apply an n-ring scheme, n ≥ 1. For the i th
attempt, we set the hop limit to hi . Thus we have a corre-
sponding hop set H = {hi , i ∈ {1 . . . n}, hi ∈ {1 . . . M}}. The
source node will start searching by setting the hop limit to

Figure 1. Model of target discovery for large-scale wireless networks using
hop-based flooding control.

h1; if it fails for the i th attempt, it will set the searching
limit to hi+1 and take the (i + 1)st attempt, until searching
for the last time by setting the hop limit to hn = M .1 The
question becomes: what is the optimal number of attempts
n, and what is the optimal set H to achieve minimum av-
erage cost and minimum average latency, given a specific
n?

To aid our analysis, we define N0 = 1 and h0 = 0, which
can be understood as the number of nodes that are 0 hops away
from the source node is 1, the source node itself.

4.1. Cost

To flood with hop count set to hk , the average cost equals the
number of nodes whose distance is less than hk hops. Note
that nodes that are exactly hk hops away will not forward the
packet and are not taken into account for cost calculation. That
is, cok = ∑hk

j=1 N j−1.
Suppose the target node is hd hops from the source node

and hi < hd ≤ hi+1, for i ∈ {0 . . . n − 1}. To find the target,
the source node has to fail for the first i attempts and succeed
at the (i + 1)st attempt. Thus the total cost is Ci = ∑i+1

k=1 cok =
∑i+1

k=1
∑hk

j=1 N j−1.
If the target is in the searching area and the number of nodes

inside the ring i and i + 1 is
∑hi+1

m=hi +1 Nm , the probability that
the target node hop hd is within hi and hi+1 is:

Pi = P{hi < hd ≤ hi+1} =
∑hi+1

m=hi +1 Nm
∑M

m=1 Nm

.

The average cost Cn to search for a random node using an
n-ring scheme is:

Cn =
n−1∑

i=0

Pi Ci =
n−1∑

i=0

[∑hi+1
m=hi +1 Nm

∑M
m=1 Nm

i+1∑

k=1

hk∑

j=1

N j−1

]

(1)

NT is the total number of nodes inside the M-hop searching
area, including the source node, and equals

∑M
m=0 Nm .

We start by studying the cost when n = 1.

1. n = 1. In this once-for-all scheme, all the nodes transmit
except those that are exactly M hops away. Thus, we have
the cost C1 = NT − NM .

2. n = 2. Suppose we set hop limit h1 = k for the first at-
tempt, and for the second attempt we set hop limit h2 = M .
To simplify the equations, let us define ak = ∑k

i=1 Ni ,
which is the total number of nodes within k hops of the
source, k ≥ 1. From Equation (1), we have

C2 = P1C1 + P2C2

= ak

NT − 1
(N0 + ak − Nk)

+ NT − 1 − ak

NT − 1
[(N0 + ak − Nk) + (NT − NM )]

1 Note the difference between hi+1 and hi + 1, as they may look similar in
the text.
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= 1

NT − 1
(2(NT − 1) + (NT − 1)2

− NM (NT − 1) − (NT − 1)Nk + ak NM − ak) (2)

Subtracting C1 from C2, we have the difference between
the two-ring scheme and the once-for-all scheme

D2,1 = C2 − C1

= 1

NT − 1
(NT − 1 − (NT − 1)Nk + ak NM − ak)

(3)

If D2,1 < 0, which means C2 < C1, the two-ring scheme is
preferred; otherwise, the once-for-all scheme is better. The
only variable of D2,1 is k, which is the hop number for the
first searching attempt, and all the other parameters such
as NM and NT are constants for a given network. Now we
want to determine if there is some k that enables D2,1 < 0,
and if so, what the optimal k should be to achieve min D2,1.

After placing a large number of nodes in a disk of unit
radius and determining the number of the nodes within the
first k hops from the center node, we found that before edge
effects occur, the number of nodes at a certain hop distance
from the source is roughly linear with hop number.2

Thus, we can estimate Ni ≈ Bi for large scale networks,
where B is a constant value larger than 1 and is closely
related to the network density ρ. Thus we estimate the se-
quence N0, N1, . . . , NM as 1, B, 2B, . . . , M B. Using this
estimation, the total number of nodes inside M hops, NT ,
equals

∑M
i=0(Bi), and the cost difference equation (3) fi-

nally becomes D2,1 = B(k−M)(−1−M+k(−1+B M))
M(M+1) .

D2,1 is a parabola function with k ranging from 1 to
M − 1. By analyzing this function, we reach two con-
clusions. First, when kopt = � M

2 �,3 D2,1 achieves its min-
imum value, and this value is less than zero. Thus, by ap-
plying a two-ring scheme with kopt as the first attempt
hop number, we can achieve less cost than the once-for-all
scheme. Second, when k = 1, D2,1 reaches its maximum
max D2,1 = B(−1+M)(2+M−B M)

M(M+1) . This value is less than zero
when B > 1.

Based on our estimation, we conclude that the costs of
all the two-ring schemes are less than the cost of the once-
for-all scheme. Furthermore, the cost of a two-ring scheme
reaches its minimum when the first attempt hop limit is set
to � M

2 �. The cost reaches its maximum among all the two-
ring schemes when the first attempt hop limit is set to 1.

3. n = 3. In a three-ring scheme, there are two parameters to
adjust, the first attempt hop limit h1 and the second attempt
hop limit h2. Let us look at a special scheme in which h1 =
1 first. Using similar procedures as above, we find that the
best performance occurs when we choose h2 = � M+1

2 �.

2 This can be seen from part (3) and (4) of figure 3 when the source node is
located at the network center with the distance to the network border x = 1.
The node distribution shows a linear tendency with small numbers of hops
before edge effects occur.

3 �x� means the smallest integer greater than or equal to x .

Also, we find that the cost of this (1, � M+1
2 �, M) scheme

is even lower than the cost of an (� M
2 �, M) scheme when

B > 4.
In a more general case, h1 does not equal 1. However, we

cannot prove that the special three-ring scheme of h1 = 1
is the best among all the three-ring schemes.

4. n ≥ 2. Also, we are not able to prove that an (n + 1)-ring
scheme derived from an n-ring scheme is always worse.
From the final equation of the cost difference equation be-
tween these two schemes, we notice that there is one neg-
ative term on the order of h3

i , while there are two positive
items on the order of h4

j for 1 ≤ hi , h j ≤ M . This indicates
that there are very few choices for a derived (n + 1)-ring
scheme to be better than an n-ring scheme in terms of cost.

In this part, we have studied hop-based flooding schemes
in large scale networks in terms of cost. Let us summarize our
conclusions.

1. To obtain a good two-ring scheme, the first hop limit should
be set to � M

2 � and the second hop limit should be set to M .
We have proven that this two-ring scheme has less cost than
the once-for-all scheme and is optimal for all the two-ring
schemes.

2. To obtain a good three-ring scheme, set the first hop limit
to 1, the second hop limit to � M+1

2 � and the third hop limit
to M . We have proven that this three-ring scheme has even
less cost than the optimal two-ring scheme.

3. However, we cannot prove that our three-ring scheme is
optimal among all the three-ring schemes. We also cannot
prove that it leads to higher cost by splitting an n-ring
scheme to an (n+1)-ring scheme. However, we conjecture
that it is quite probable that any (n + 1)-ring scheme will
have a larger cost than the n-ring scheme from which it
was derived for n ≥ 3.

4. The scheme that is applied currently in DSR, which is to
set the hop limit to 1 for the first attempt and M for the
second attempt, can be seen as one of the two-ring schemes.
Based on our results, we show that this approach leads to
the highest cost among all the two-ring schemes.

For geography-based flooding, using similar analytical
methods as above, we can easily prove that the once-for-all
scheme has the same cost as the two-ring scheme, and this cost
is the lowest among all the costs of possible n-ring schemes.
These conclusions are valid for both large-scale and small-
scale networks [3].

4.2. Latency

Let us define a constant T as the time interval from when
a node receives a packet to when it finishes forwarding the
packet. Then the time a flooded packet takes to reach a node
l hops away is lT . Suppose the target node is i hops from
the source node and hk < i ≤ hk+1, for k ∈ {0 . . . n − 1}. To
find the target, the source node has to fail for the first k times,
which takes 2hm T time for the mth attempt m ∈ {1, · · · k}, and
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succeed at the (k + 1)st attempt, which takes 2iT time. Note
that each attempt time is doubled because the source node has
to wait enough time for a potential acknowledgement from
the target. Thus we have the total latency to search for a target
i-hops away is Li = ∑k

m=1 2hm T + 2iT .
Since Ni is the total number of nodes exactly i hops away

from the source, the probability that a node is i hops away from
the source node is Pi = Ni∑M

i=1 Ni
= Ni

NT −1 , for i ∈ {1 . . . M}.
The average latency L to search for a random node is:

L =
M∑

i=1

Pi Li

=
[

M∑

i=1

2Ni i +
n−1∑

k=1

hn∑

i=hk+1

(2hk Ni )

]
T

NT − 1
(4)

Applying mathematical induction on equation (4), we can
easily prove that for all the (n + 1)-ring schemes with n ≥
1, we can find an n-ring scheme that has a shorter latency.
Furthermore, we can prove that the once-for-all scheme has
the shortest latency of all the schemes (proof omitted).

5. Single target discovery: Unrestricted search
in small-scale networks

In the previous section, we assumed that during the discovery
process, nodes are unwilling to flood the whole network and
have certain restrictions on the maximum region to be covered.
In this section, we extend the model to small-scale networks in
which nodes may search the whole network for a target. The
main difference between this model and the previous model
is that nodes are no longer the absolute center of the flooded
region and edge effects must be taken into account during
analysis. In other words, the node distribution at certain hops
away from the source node no longer shows a linear tendency
and is closely related to the source node’s position.

In this section, we will confine our discussion to the once-
for-all and the two-ring schemes. The average cost is slightly
different from that in Section 4. Not knowing what the largest
hop number is, in order to guarantee that the whole network is
covered, the source node has to apply a large enough hop limit
number for the last attempt. The direct effect is that nodes at
the maximum hops also have to forward the packet; while in
Section 4, nodes at M hops do not forward the packet.

As before, we look at the cost from n = 1.

1. n = 1. All the nodes have to forward and the cost C1 = NT

(note the difference with that in large-scale networks).

2. n = 2. The cost of a two-ring scheme with k as the first
attempt hop number is

C2 = 1

NT − 1
[ak(1 + ak − Nk)

+ (NT − ak − 1)(1 + ak − Nk + NT )] (5)

where ak = ∑k
i=1 Ni , which is the total number of the first

k hops nodes, as defined earlier.

Figure 2. The intersection area is the region covered by flooding. When r <

x0, it is f1(x, y); when r ≥ x0, it is the intersection of two areas.

Whether to use the once-for-all scheme or a two-ring
scheme depends on D2,1, the cost difference between these
two schemes.

D2,1(k) = C2 − C1

= [(NT − 1) − ak − Nk(NT − 1)]
1

NT − 1
(6)

If we apply k + 1 for the first attempt hop limit instead of
k, the difference becomes

D2,1(k + 1)

= (NT − 1) − ak − Nk+1 − Nk+1(NT − 1)

NT − 1
(7)

If D2,1(k +1) < D2,1(k), a two-ring scheme applying k +1
is preferred over a two-ring scheme applying k. Subtracting
equations (7) and (6), we have

D2,1(k + 1) − D2,1(k)

= [Nk(NT − 1) − Nk+1 NT ]
1

NT − 1
≈ Nk − Nk+1

(8)

As can be seen, as long as Nk < Nk+1, we should apply
a two-ring scheme using k + 1 as the first attempt hop limit
instead of k. This trend continues until Nk starts to becomes
larger than Nk+1. To determine this turning point, an estimation
of the sequence Ni is necessary.

Just as we estimated Ni in Section 4, we provide a general
algorithm for the sequence estimation of nodes at different
locations. We set up two-dimensional coordinates as shown
in figure 2. The node is located at x0 away from the network
border. When the flooding radius is large, part of the potential
flooding area exceeds the edge of the network. In figure 3, we
show the geographic overlapping area A(r ) and the number
of nodes at different hop numbers when the source node is
located at different distances x0 from the network border. We
notice that the node distribution in the lower part is just like
the sampling of the derivative of the continuous geographic
overlapping area shown in the upper part. Thus, we only need
to estimate the maximum hop number and do proper sam-
plings at each hop number. Due to space constraints, we omit
the details here. We suppose that given the node’s distance
from the border x0 and the network parameters of the total
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Figure 3. Area A(r ) of flooded region and the relation between the number of nodes Ni exactly i hops away with d A(r )
dr . Part (1) is the flooded area A(r ); part

(2) is d A(r )
dr ; part (3) is the Ni in a network of 1000 nodes and transmission range 0.1; part (4) is the Ni in a network of 2000 nodes and transmission range 0.2.

Part (3) and part (4) look like a sampling of part (2).

number of nodes NT and the node transmission range Rt , we
have the estimated sequence Ñi,x0 of Ni for a node at location
x0.

5.1. Self-location aware

First, suppose a node knows its distance to the border of the
network x0 and can adjust its own hop limit k for the first
attempt. Here is our proposed two-ring scheme for this case:
the node first estimates Ñi,x0 based on its location x0. Then it
finds out from the estimated sequence Ñi,x0 the value of i where
Ñi,x0 ≈ Ñi+1,x0 and sets k to this value for the first attempt. If
this fails, the node must pick a large enough number for the
second attempt to ensure that the flooded packet reaches all
nodes in the network.

5.2. Self-location unaware

More realistically, nodes do not have knowledge of their loca-
tion in the network. Every node has to apply the same flood-
ing strategy and set the same predetermined values for each
attempt. Now we consider how to minimize the cost from the
system view.

First, we can prove that for a uniformly distributed network,
the Probability Distribution Function (pdf) of a random node
located X away from the border is

fX (x) = 2(1 − x) for 0 < x ≤ 1 (9)

For a node located at x , after the estimation of its node
number sequence, we can correspondingly calculate the cost

C(x, k) of a two-ring scheme with first attempt k from equa-
tion (5). Since a consistent strategy has to be applied, suppose
every node sets ksys as its first attempt. We find the overall cost
for the whole system Csys(ksys) as

Csys(ksys) =
∫ 1

0
fX (x)C(x, ksys) dx

=
∫ 1

0
2(1 − x)C(x, ksys) dx (10)

Based on equations (5) and (10), we propose our two-ring
scheme here. First, gather enough samples of x and estimate
the sequences Ñi,x for each sample of x . Then from equa-
tion (5), calculate the two-ring cost sequence C2(x, k) of each
sample x . Put each C2(x, k) into equation (10) and calculate
the system cost Csys(k). Finally, determine the global point
kopt as the point where the minimum Csys is achieved. The
calculation of this good ksys can be implemented during the
network design phase and input to each node as a system
parameter—nodes do not need to calculate this value on the
fly.

Overall, we propose a good two-ring scheme to reduce the
cost for hop-based small-scale networks. For the first attempt,
if a node has knowledge of its current position with regard to
the network boundary, it can set its first hop limit from the esti-
mation of Ñi,x to minimize cost. If it has no such information,
it should set the number to the pre-calculated good value to
minimize overall system cost. For the second attempt, nodes
just need to set a large enough hop limit to cover the entire
network.
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6. Simulations

6.1. Goals, metrics and simulation models

We have drawn several conclusions in Sections 4 and 5. The
first goal of our simulations is to verify our conclusions and
conjectures. Since we have proposed some good schemes
based on the analysis of estimated Ni , another goal of our
simulations is to verify the accuracy of the estimation and the
performance of these schemes by determining how far away
our proposed schemes are from the ideal schemes. The ideal
n-ring scheme is found by thoroughly testing all the possible
n-ring schemes through simulations on randomly generated
scenarios.

In each simulation section, we compare the cost savings per
target search and the latency performance of different schemes.
We measured the cost savings of each scheme compared to
the basic once-for-all scheme whose cost is constant for a
fixed scenario. This metric indicates how much improvement
we can achieve by replacing the once-for-all scheme with the
investigated scheme. Every test is repeated on 50 different
random scenarios, and the results are averaged.

The schemes that are tested are: the once-for-all scheme,
the expansion ring scheme, the DSR scheme, our two-ring
scheme, our three-ring scheme, the ideal two-ring scheme, the
ideal three-ring scheme and the ideal four-ring scheme. The
expansion ring scheme is an n-ring scheme, which sets the
first attempt hop limit to 1 and doubles the hop limit upon
each failure until the maximum restriction M is reached. The
current DSR scheme can be seen as a two-ring scheme with
the first attempt hop limit set to 1. The choice of our schemes
varies for different types of networks and will be specified in
each individual simulation part.

6.2. Performance comparison for large-scale networks

In this section, we compare the cost and latency performance
of different schemes in hop-based large-scale networks. For
these simulations, 20000 or 40000 nodes with transmission
range Rt = 0.03 are placed in a unit radius disk. The center
node searches for a random target from nodes within M hops
away. We test for M = 12 and M = 16; with these values
of M , the flooding area is far away from the border of the
whole large networks and no edge effects need to be taken
into account.

Our proposed two-ring scheme is to set the first hop limit to
� M

2 � and the second hop limit to M . Our proposed three-ring
scheme is to set the first hop limit to 1, the second hop limit
to � M+1

2 � and the third hop limit to M . We also measure the
performance of all possible two-ring, three-ring and four-ring
schemes and pick the minimum of each scheme as the ideal
value for these n-ring schemes.

Figure 4 shows the results. As can be seen from this fig-
ure, the expansion ring’s savings are less than zero, that is,
it costs even more than the basic once-for-all scheme. The
DSR scheme, as a member of the two-ring scheme family,
does have some savings over the once-for-all scheme. How-
ever, the savings are low. The reason is that it is the worst of
all the two-ring schemes, as proven in Section 4. Our two-ring
scheme has less cost saving than our three-ring scheme. How-
ever, their difference is small, and both schemes’ performance
approaches that of the ideal schemes. From simulation, the
performance of the best four-ring scheme is less than that of
the best three-ring scheme, which supports our conjecture that
(n+1)-ring schemes may not be better than n-ring schemes for
n ≥ 3. The network density and the maximum number of hops

Figure 4. Cost savings per search for each scheme. From left to right labeled as 1 to 7: (1) expansion ring, (2) DSR, (3) our two-ring scheme, (4) our three-ring
scheme, (5) ideal two-ring scheme, (6) ideal three-ring scheme and (7) ideal four-ring scheme. The y-axis indicates the number of packets saved per search.
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M have an effect on the amount of the cost savings. However,
they do not affect our above conclusions.

Earlier, we have claimed that all other schemes’ latency is
larger than the once-for-all scheme. Through simulations, we
find that our two-ring and three-ring schemes have close cost
performance and they have a higher latency than the once-
for-all scheme with a percentage around 50–60%. The expan-
sion ring scheme has around 120% higher latency, while the
DSR scheme has only around 10% higher latency. The la-
tency is not related to the network density. When the network
density changes, Ni changes with the same scale, and from
equation (4), L remains the same.

6.3. Performance comparison for small-scale networks
with location knowledge

In this part, we compare the performance of different schemes
in a small-scale network in which nodes have knowledge of
their own locations x0 as in figure 2. The total number of nodes
NT varies from 1000, 4000, 7000 to 10000. Nodes have dif-
ferent costs for target searching based on their locations. In
figure 5, the x-axis is the different location x0 of the investi-
gated nodes. The y-axis is the cost of nodes at location x0 ap-
plying different schemes of once-for-all, expansion ring, DSR,
our two-ring scheme, the ideal two-ring scheme and the ideal
three-ring scheme. Our scheme is to estimate Ni with the given
location x0 as Ñi,x0 and find the point where Ñk,x0 = Ñk+1,x0 as
the first attempt hop number. The second attempt hop number
is chosen large enough to cover the entire network.

As can be seen from figure 5, our scheme performs con-
sistently close to that of the ideal schemes, which indicates

that our estimation matches reality quite well. DSR also per-
forms consistently and is close to the once-for-all scheme.
Nodes at different locations have much different costs when
applying the expansion ring scheme. Some nodes may achieve
less cost while other nodes may achieve more cost. Over-
all, the expansion ring’s cost tends to be larger than that of
the once-for-all scheme. When x0 = 1, which means nodes
are close to the center, the average cost decreases since more
nodes are a relatively smaller number of hops away from the
center.

As for latency, nodes that are close to the center usually
need less time to cover the whole network and the resulting
latency in finding the target is smaller.

6.4. Performance comparison for small-scale networks
without location information

In this part, we compare the system cost savings of different
schemes in a small-scale network without location informa-
tion. Nodes have to apply a consistent parameter for a search-
ing scheme instead of choosing different values for the first
attempt.

In the right part of figure 6, we find that our estimated opti-
mal point through equation (10), which is 13 for the network
of 1000 nodes and 16 for the network of 2000 nodes, is quite
close to the real optimal point. For this reason, the cost of our
scheme is also close to that of the optimal scheme. Again,
the expansion ring is the worst scheme and the DSR scheme
achieves little cost savings.

Figure 5. Cost of different schemes for nodes at different locations in small-scale networks. The X-axis indicates the location of the investigated nodes.
The Y-axis indicates the cost of different schemes. Different network sizes of 1000, 4000, 7000 and 10000 nodes are simulated. The tested schemes are: the
once-for-all scheme, the DSR scheme, the expansion ring scheme, our two-ring scheme, the ideal two-ring scheme and the ideal three-ring scheme.
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Figure 6. The cost savings of different schemes for small-scale networks. From left to right labeled as 1 to 5: (1) expansion ring, (2) DSR, (3) our two-ring
scheme, (4) the ideal two-ring scheme, (5) the ideal three-ring scheme. The graph on the right shows the system cost for different ksys of the two-ring scheme.
Our estimated points are 13 for 1000 nodes and 16 for 2000 nodes, which are close to the true optimal points.

6.5. Summary

Based on our analysis for different network scales, we con-
clude the single target discovery problem with Table 2.

From analysis and simulation results, we find that, first, the
cost saving percentage using an optimal n-ring scheme rather
than the once-for-all scheme is less than 10% for most of
the cases. Second, the cost saving percentage decreases when
the number of nodes involved increases.4 Third, the latency
increases significantly when using an n-ring scheme instead
of the basic once-for-all scheme. All this information implies
that, for fast discovery, the best strategy is to flood just once.
By applying the schemes presented in this paper, less than
10% of cost (lower in most cases) can be saved. Thus, even
the optimal scheme may not be worth using, as there will be a
substantial sacrifice in latency in exchange for an insignificant
gain in cost savings. DSR and the arbitrary “expansion ring”
scheme are not suitable for this target discovery problem due
to their performance degradation in both cost and latency.

Table 2
Summary of the single target discovery problem.

Network scale Flooding control Metrics Proposal Parameters

Large Hop-based Cost Two-ring � M
2 �,M

Three-ring 1,� M
2 �,M

Latency One-ring M
Small Location aware Cost Two-ring Nk = Nk+1

Location unaware Cost Two-ring Valley of Csys

4 We conjecture that the percentage saving is on the order of
√

log(N )
N .

7. Multi-target discovery

So far, we have studied the single target discovery problem,
finding one target from a total of one target. In this section,
we extend our study to the multi-target discovery problem,
which is to find a certain number of targets from multiple
targets. The existence of multiple targets makes the multi-ring
searching scheme more promising in reducing searching cost.
We will mainly look at the problem of finding at least one
target out of multiple targets. We name this branch the one-
out-of-m problem. The study of a more general problem of
finding k out of m targets is similar, and here we only provide
the conclusions for the one-out-of-m problem.

7.1. One-out-of-m

The only difference between this problem and the previous
one is that there are a total of m equivalent targets distributed
uniformly within a unit area. The question is the same: what is
the optimal scheme to search this unit area to find at least one
target using the minimum cost? In other words, how many
searching attempts n should be performed and what should
be the searching area set A(n) = {A1, A2, . . . , An} for these n
searching attempts?

Here, we define cost as the total area that has been searched.
This general assumption does not contradict the previous cost
definition as the number of transmissions. In wireless net-
works, a node usually needs to forward packets for other nodes,
and in order to search a certain area, the nodes within this
area have to forward the queries. Thus, the number of query
transmissions to search an area of A is proportional to A by
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a constant coefficient determined by the forwarding mech-
anism such as flooding and gossiping. Also, by defining the
cost directly as the searching area, we minimize the number of
variables and simplify our analysis without loss of generality.
The conclusions drawn from this definition can be specified for
different applications simply by mapping the area to realistic
application parameters.

To aid the expression, let us define a virtual 0th attempt
search for the area of A0 = 0. For the i th search attempt, the
cost Ci is simply the cost summation of the first i attempts
Ci = ∑i

j=1 A j The probability for one target to be outside the
area A is (1 − A), and the probability for all the m targets
to be outside the area A is (1 − A)m . In order to perform an
i th search attempt and complete the task, all the m targets
must be outside the area Ai−1, or else the task would have
been completed earlier. Also, not all the m targets are outside
the area Ai , otherwise the task will not end at the i th search
attempt. Thus, the probability Pi for the task to be completed
in the i th attempt is

Pi = P{all targets outside Ai−1,

but not all targets outside Ai }
= P{all targets outside Ai−1}

− P{all the targets are outside Ai }
= (1 − Ai−1)m − (1 − Ai )

m (11)

The expected cost Cn for a general n-ring searching approach
is

Cn =
n∑

i=1

Pi Ci

=
n∑

i=1

((1 − Ai−1)m − (1 − Ai )
m)

(
i∑

j=1

A j

)

=
n−1∑

i=0

Ai+1(1 − Ai )
m (12)

The final equality above can be easily proven through mathe-
matical induction.

7.2. Algorithms

Based on equation (12), we can perform a brute force search
over the n-dimensional space A(n) = {A1, . . . , An} to find the
optimal solutionA(n)

opt to minimize Cn , given a specific n. How-
ever, this method is prohibitive since the computational re-
quirement increases as O(( 1

δ
)n), where δ is the brute force

searching granularity. To reduce computations, we propose
two heuristic solutions: a pre-calculated algorithm called Ring
Splitting (RS) and an online algorithm called Online Ring
Splitting (ORS).

RS is a greedy algorithm that starts from the one-ring
searching scheme with [A0 = 0, A1 = 1] and splits a ring if it
provides the largest cost reduction until there are no possible
choices to split a ring to achieve any more cost savings. The
procedure is as follows.

1. Start with the ring [0, 1].

2. With an existing n-ring scheme, a given ring set of {[0, a1],
[a1, a2], . . . , [an−1, 1]} already exists. Check all these n
rings and find out the candidates that can be split to further
reduce the cost.

3. Terminate if there are no more candidates. Else, go to Step
4.

4. Pick the candidate that will reduce cost the most and split
it. Go back to Step 2.

Whether a ring between [Ak, Ak+1] should be split and
become a candidate is determined as follows.

1. From equation (12), find out the cost difference D between
the old n-ring scheme and the new (n + 1)-ring scheme
when A j is inserted between the ring [Ak, Ak+1].

D = Cn − Cn+1

= Ak+1(1 − Ak)m − (A j (1 − Ak)m + Ak+1(1 − A j )
m)

(13)

2. By solving ∂ D
∂ A j

= 0, we have the potential splitting point
A j . Numerical methods are required to find A j .

3. First, check if A j is within [Ak, Ak+1]. Second, check if
D(A j ) is larger than zero. Only when both requirements
are satisfied, should A j be a ring splitting candidate for
[Ak, Ak+1].

ORS is derived from RS for online calculations. Unlike
RS that calculates the entire searching area set in advance,
ORS tries to split the remaining ring to achieve the lowest
expected cost upon each failure. Due to the lack of global
knowledge, ORS can only split the remaining ring; hence it
performs slightly worse than RS. However, it requires even
less computation than RS. There is only one computation for
each additional searching attempt, and there is no wasted com-
putation.

Figure 7 shows the optimal expected cost for each algo-
rithm, where BF indicates the brute force method. The sub-
plots show the optimal expected cost for the 2-ring and 3-ring
schemes. The table shows the overall optimal cost by each
algorithm and the respective computations. By comparing the
results of the RS, ORS, and brute force approaches, we reach
the following conclusions.

1. For each specific n, there exists an optimal solution. The
overall optimal cost is reduced when n increases from 1.
However, there exists a certain value n0 such that the op-
timal overall cost will not decrease after this value. In the
table of figure 7, BF finds its optimal at the 4th ring, while
RS finds its optimal at the 6th ring and ORS finds its opti-
mal at the 5th ring.

2. The optimal two-ring approach may reduce the cost dra-
matically, while the optimal three-ring approach may
reduce cost around 2 to 5 more percent and it is already
very close to the overall optimal. More searching attempts
can only reduce the cost by a negligible amount of less than
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Figure 7. The optimal expected cost for each solution and the optimal performance for 2-ring and 3-ring schemes. The cost is normalized by the cost of
the once-for-all scheme. The x-axis indicates the targets available in the searching area. The y-axis indicates the minimum expected cost. Details about the
behavior of different schemes for finding one out of three targets are shown in the table on the right.

1% and are unnecessary. This can be clearly seen from the
subplots in figure 7.

3. RS performs close to BF while ORS requires even fewer
computations with only a trivial 2–5% extra cost. The op-
timal cost saving ratio is (1 − 0.38) × 100% = 62% for
searching a total of 5 targets and (1 − 0.08) × 100 = 92%
for 30 targets (see figure 7). When more targets are avail-
able, a smaller local searching area is preferred and the
expected searching cost is smaller.

Unlike the single-target discovery problem where only in-
significant cost savings can be obtained, a considerable amount
of cost can be saved in the multi-target discovery problem. The
comparison of our algorithm RS and the brute force method
indicates that a simple 2-ring scheme can save almost as much
searching cost as the optimal scheme as long as the first search-
ing ring is properly chosen. Therefore, our next work is to im-
plement RS in ad hoc networks, especially hop-based small-
scale networks, and to compare its performance with DSR and
EXP in terms of cost and latency.

8. Conclusions

In this paper, we extensively studied target discovery prob-
lems in wireless networks, including single target discovery
and multi-target discovery. In summary, for the single tar-
get discovery problem, only insignificant cost can be saved
even using the optimal searching scheme. For the multi-
target discovery problem, a near maximum cost saving can be
achieved using no more than 3 searching attempts. Algorithms
to achieve this near optimal performance within 3 searching
attempts are proposed.

In this paper we assume that targets are uniformly dis-
tributed in the searching area. This is the major reason why
only insignificant searching cost can be saved for single target

discovery. In reality, requested targets may be more likely to
be located in the nearby area. How to determine the optimal
multi-ring searching schemes for non-uniform target distribu-
tion discovery is of interest to us and will be studied in our
future work.

In on-demand routing protocols, a source node finds the
route to a destination either by finding the destination itself
or by finding a route cache in intermediate nodes. Although
this problem looks like a multi-target discovery problem, we
cannot apply the conclusions in this paper directly. That is
because we assume that targets are identical to each other in
our study, while route caches may be stale and invalid. How to
determine the optimal multi-ring searching schemes for target
discovery with caching is another area of our future work.

References

[1] D. Braginsky and D. Estrin, Rumor routing algorithm for sensor net-
works, in: Proc. International Conference on Distributed Computing
Systems (ICDCS-22) (2002).

[2] N. Bulusu, J. Heidemann and D. Estrin, Adaptive beacon placement,
in: Proceedings of the 21st International Conference on Distributed
Computing Systems (ICDCS-21), Phoenix, Arizona, USA (April 2001)
pp. 489–498.

[3] Z. Cheng and W. Heinzelman, Flooding strategy for target discovery in
wireless networks, in: Proc. of the 8th International Workshop on Mod-
eling Analysis and Simulation of Wireless and Mobile Systems (MSWIM
2003) (Sept. 2003).

[4] Gnutella peer-to-peer file sharing system. http://www.gnutella.com.
[5] Y.-C. Hu and D.B. Johnson, Caching strategies in on-demand routing

protocols for wireless networks, in: Proc. ACM/IEEE MobiCom (Aug.
2000) pp. 231–242.

[6] Y.-C. Hu and D.B. Johnson, Ensuring cache freshness in on-demand
ad hoc network routing protocols, in: Proc. POMC 2002 Workshop
on Principles of Mobile Computing, ACM, Toulouse, France (October
2002) pp. 25–30.

[7] C. Intanagonwiwat, R. Govindan and D. Estrin, Directed diffusion: A
scalable and robust communication paradigm for sensor networks, Mo-
bile Computing and Networking (2000) pp. 56–67.



618 CHENG AND HEINZELMAN

[8] D.B. Johnson and D.A. Maltz, Mobile Computing, Chapter Dynamic
source routing in ad hoc wireless networks, pp. 153–181. Kluwer Aca-
demic Publishers, Imielinski and Korth edition, 1996.

[9] M.K. Marina and S.R. Das, Performance of route caching strategies
in dynamic source routing, in: Proc. the Int’l Workshop on Wireless
Networks and Mobile Computing (WNMC) in Conjunction with Int’l
Conf. on Distributed Computing Systems (ICDCS) (2001) pp. 425–432.

[10] D.L. Mills, Network Time Protocol (Version 3), RFC (Request For Com-
ments) 1305 (March, 1992).

[11] T. Oates, M.V. Nagendra Prasad and V.R. Lesser, Cooperative informa-
tion gathering: A distributed problem solving approach, Computer Sci-
ence Technical Report 94-66-version 2 , University of Massachusetts,
Amherst, MA.

[12] C. Perkins and E.M. Royer, Ad hoc on-demand distance vector routing,
in: Proceedings of IEEE WMCSA’99 (Feb. 1999) pp. 90–100.

[13] M. Roman, C.K. Hess, R. Cerqueira, A. Ranganathan, R.H. Campell
and K. Nahstedt, Gaia: A middleware infrastructure to enable active
spaces, IEEE Pervasive Computing (Oct-Dec, 2002) pp. 74–83.

[14] N. Sadagopan, B. Krishnamachari and A. Helmy, ACtive query forward-
ing in sensor networks (ACQUIRE), Computer Engineering Technical
Report CENG 02-11 (2002).

[15] Sun Mircorsystems, System and Netowrk Administration (March, 1990).
[16] E. Woodrow and W. Heinzelman, SPIN-IT: A data centric routing pro-

tocol for image retrieval in wireless networks, Proc. International Con-
ference on Image Processing (ICIP ’02) (Sep, 2002).

[17] T. Wu, M. Malkin and D. Boneh, Building intrusion tolerant application.
in: Proc. of the 8th USENIX Security Symposium (1999).

[18] Y. Xu, J. Heidemann and D. Estrin, Geography-informed energy con-
servation for ad hoc routing, in: Proc. Seventh Annual ACM/IEEE In-
ternational Conference on Mobile Computing and Networking, Rome,
Italy (July, 2001).

Zhao Cheng is a PHD. candidate in the Depart-
ment of Electrical and Computer Engineering at
the University of Rochester. He received a B.S.
degree in Radio Engineering from Southeast Uni-
versity, China in 2000 and M.S. degree in Electri-
cal and Computer Engineering from University of
Rochester in 2003. His current research interests lie
in the areas of sensor networks, quality of service
(QoS) and reliability for mobile ad-hoc networks,
and efficient discovery strategies for mobile ad-hoc

networks.

Wendi Heinzelman is an assistant professor in the
Department of Electrical and Computer Engineer-
ing at the University of Rochester. She received a
B.S. degree in Electrical Engineering from Cornell
University in 1995 and M.S. and Ph.D. degrees in
Electrical Engineering and Computer Science from
MIT in 1997 and 2000, respectively. Her current re-
search interests lie in the areas of sensor networks,
quality of service (QoS) and reliability for mobile
ad-hoc networks, and multimedia communication.

She is a member of Sigma Xi, the IEEE, and the ACM.


