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or several decades, distributed computing has been
both an enabling and a challenging environment in
which to build applications. Initially, the major diffi-
culty in implementing such systems was simply

exchanging data across distances and among heterogeneous
components. Today these problems are essentially solved, and
research is turning its focus to higher-level concerns such as
improved fault tolerance through replication, optimal data
access via distributed object placement, and methods of
enabling high-level communication abstractions such as event
dispatching and remote invocation. The end result of this
research into distributed systems is an expanding set of mid-
dleware platforms that reside above the operating system and
below the application, abstracting lower-level functionality
such as network connectivity and providing a high-level coor-
dination interface to the application programmer.

Often the combination of characteristics from the environ-
ment and application drive the design of the middleware. For
example, consider the new class of applications for sensor net-
works with the following features:
• Inherent distribution. The sensors are distributed throughout

a physical space and primarily connected wirelessly.
• Dynamic availability of data sources. Either mobility through

space, addition of new sensors, or loss of existing sensors
causes the set of available sensors to change over time.

• Constrained application quality of service demands. Sensor

network applications require a minimum quality of service
(QoS); this level must be maintained over an extended peri-
od of time. There may be many ways to achieve the QoS
(e.g., different sensors may offer data or services that meet
the applications’ QoS requirements). Furthermore, the
required QoS and the means of meeting it can change over
time, as the state of the application or availability of sensors
changes.

• Resource limitations. Both network bandwidth and sensor
energy are constrained. This is especially true when consid-
ering battery-powered sensors and wireless networks.

• Cooperative applications. Sensor network applications share
available resources (e.g., sensor energy, channel bandwidth)
and either cooperate to achieve a single goal or, at the very
least, do not compete for these limited resources.
One unique feature of sensor network applications with

these properties is that simply responding to the changing
environment is insufficient to achieve the required QoS over
time. Instead, the applications must be proactive, actively
affecting the network. Most existing middleware systems do
not support such a proactive approach with respect to the net-
work, leaving reactivity as the only choice and sacrificing
application quality over time. We believe a middleware that
enables applications to affect the network and the sensors
themselves is needed to support this new and growing class of
applications for sensor networks.
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Abstract
Current trends in computing include increases in both distribution and wireless con-
nectivity, leading to highly dynamic, complex environments on top of which appli-
cations must be built. The task of designing and ensuring the correctness of
applications in these environments is similarly becoming more complex. The unified
goal of much of the research in distributed wireless systems is to provide higher-
level abstractions of complex low-level concepts to application programmers, eas-
ing the design and implementation of applications. A new and growing class of
applications for wireless sensor networks require similar complexity encapsulation.
However, sensor networks have some unique characteristics, including dynamic
availability of data sources and application quality of service requirements, that
are not common to other types of applications. These unique features, combined
with the inherent distribution of sensors, and limited energy and bandwidth
resources, dictate the need for network functionality and the individual sensors to
be controlled to best serve the application requirements. In this article we describe
different types of sensor network applications and discuss existing techniques for
managing these types of networks. We also overview a variety of related middle-
ware and argue that no existing approach provides all the management tools
required by sensor network applications. To meet this need, we have developed a
new middleware called MiLAN. MiLAN allows applications to specify a policy for
managing the network and sensors, but the actual implementation of this policy is
effected within MiLAN. We describe MiLAN and show its effectiveness through the
design of a sensor-based personal health monitor.

Middleware to Support
Sensor Network Applications
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This article presents an overview of
related research in the areas of sensor net-
works and middleware, highlighting how
existing approaches to the management of
sensor networks could benefit from a mid-
dleware abstraction and showing that exist-
ing middleware does not meet the specific
needs of all sensor network applications.
Based on this observation, we propose a
new middleware for sensor networks called
Middleware Linking Applications and Net-
works (MiLAN). MiLAN allows sensor
network applications to specify their quali-
ty needs and adjusts the network character-
istics to increase application lifetime while
still meeting those quality needs. Specifi-
cally, MiLAN receives information from:
• The individual applications about their

QoS requirements over time and how to
meet these QoS requirements using dif-
ferent combinations of sensors

• The overall system about the relative importance of the dif-
ferent applications

• The network about available sensors and resources such as
sensor energy and channel bandwidth

Combining this information, MiLAN continuously adapts the
network configuration (e.g., specifying which sensors should
send data, which sensors should be routers in multihop net-
works, which sensors should play special roles in the network)
to meet the applications’ needs while maximizing application
lifetime. Figure 1 shows a high-level diagram of a system that
employs MiLAN.

Next we describe several sensor network applications that
could benefit from a middleware like MiLAN that proactively
affects different characteristics of the network. Following this,
we discuss existing sensor network management and middle-
ware approaches. Finally, we describe MiLAN and show how
the design of a health monitor sensor application can be sim-
plified using MiLAN.

Sensor Network Applications
As stated in the introduction, sensor network applications rep-
resent a new class of applications that are:
• Data-driven, meaning that the applications collect and ana-

lyze data from the environment, and, depending on redun-
dancy, noise, and properties of the sensors themselves, can
assign a quality level to the data

• State-based, meaning that an application’s needs with
respect to sensor data can change over time based on previ-
ously received data
Typically sensors are battery-operated, meaning they have a

limited lifetime during which they provide data to the applica-
tion. A challenge of the design of sensor networks is how to
maximize network lifetime while meeting application QoS
requirements. For these types of applications, the needs of the
application should dictate which sensors are active and the
role they play in the network topology. To further illustrate
this point, we discuss some specific sensor network applica-
tions and how they can benefit from this form of interaction.

Environmental Surveillance
Consider an environment where multiple sensors (e.g., acous-
tic, seismic, video) are distributed throughout an area such as
a battlefield. A surveillance application can be designed on
top of this sensor network to provide information to an end
user about the environment. The application may require a

minimum percentage of sensor coverage in an area where a
phenomenon is expected to occur. The sensor network may
consist of sensors with overlapping coverage areas providing
redundant information. If the application does not require all
this redundant information, it would be desirable to conserve
energy in some sensors by allowing them to sleep, thereby
lengthening the lifetime of the network. For example, as sen-
sors use up their limited energy, the application would like to
use different sets of sensors to provide the required QoS (in
this case, minimum sensor coverage area). This requires that
the application manage the sensors over time. Such manage-
ment can be as simple as turning sensors on and off, or as
complex as selecting the routes for data to take from each
sensor to the collection point in a multihop network. Further-
more, the needs of the surveillance application may change as
a result of previously received data. For example, if the appli-
cation determines that an intrusion has occurred, the applica-
tion may assume a new state and require more sensors to
send data to more accurately classify the intrusion. The imple-
mentation of these tasks can be complex, and they are diffi-
cult to incorporate into applications.

Home/Office Security
Home/office security systems are becoming increasingly com-
plex, monitoring for not only intrusion into the space but also
the occurrence of substances such as fire or carbon monoxide
gas. To be able to monitor the application variables, the secu-
rity system must obtain data from heterogeneous sensors such
as acoustic, motion, heat, and vibration sensors scattered
throughout the home/office. Making these sensors wireless
and battery-powered allows them to easily be placed in exist-
ing homes without major household modifications. To make
the sensor network last as long as possible, the application
may only want a subset of the sensors activated at any time.
Once a sensor’s activation has been triggered through some
event, the application must analyze the data and decide how
to change the configuration of active sensors. This can be
modeled as the application changing state based on received
data. For different application states, different sets of sensors
should be activated to provide the greatest benefit to the
security application. Thus, the application needs to be able to
control which sensors are activated over time. At the same
time, to allow the application to work as long as possible, the
set of sensors activated for a given application state should be
chosen wisely to reduce energy dissipation and maximize sys-
tem lifetime. Furthermore, sensors whose data are very

� Figure 1. A system that employs MiLAN. Each sensor runs a (possibly scaled down)
version of MiLAN. MiLAN receives information from applications about their QoS
requirements, a system user about the desired interaction among the applications,
and the network about available components and resources. MiLAN then decides
how best to configure the network to support the applications.
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important to the application, such as the video sensor, should
not be used as routers or control nodes, so their energy is
saved for sensing the environment and transmitting their data
to the application. Performing such optimizations, and con-
trolling the sensors and network functionality from within the
application would place an unreasonable burden on the appli-
cation.

Medical Monitoring
As a final example, consider a personal health monitor appli-
cation running on a PDA that receives and analyzes data from
a number of sensors (e.g., ECG, EMG, blood pressure, blood
flow, pulse oxymeter). The monitor reacts to potential health
risks and records health information in a local database. Con-
sidering that most sensors used by the personal health moni-
tor will be battery operated and use wireless communication,
it is clear that this application can benefit from intelligent sen-
sor management that provides energy efficiency as well as a
way to manage QoS requirements, which may change over
time with changes in the patient’s state. For example, higher
quality might be required for certain health-related variables
during high stress situations such as a medical emergency, and
lower quality during low stress situations such as sleep. We
will return to the details of this application when describing
our middleware system, MiLAN.

Sensor Network Management and
Middleware Approaches
There has been considerable research on the development of
low-level protocols to support sensor networks as well as high-
level middleware systems to support the development of dis-
tributed computing applications by hiding environmental
complexities. A recent trend includes the combination of
these into middleware designed for sensor networks. In this
section we describe these developments and explain why they
are insufficient for the unique style of many sensor network
applications.

Sensor Networks
One of the distinguishing characteristics of sensor networks is
their reliance on nonrenewable batteries, despite their simul-
taneous need to remain active as long as possible. Therefore,
initial work has been done to create network protocols tai-
lored to sensor networks that extend network lifetime consid-
ering the energy constraints of the individual sensors. Figure 2
highlights the different protocols we discuss here and how
they relate to different network services.

Some protocols make use of low-level node collaboration
to reduce the energy cost of data transfer by aggregating data
locally rather than sending all raw data to the application. For
example, with LEACH [1], nodes form local clusters, and all
data within a cluster are aggregated by the cluster head node
before being transmitted to the base station. This limited form
of low-level collaboration is also found in the query-based
technique of Directed Diffusion [2], in which nodes collabo-
rate to set up routes as interests for particular data are dissem-
inated through the network.

Another approach to reducing energy dissipation is to turn
nodes off whenever possible. As idle power can often be sig-
nificant, this approach can greatly extend application lifetime.
MAC-level protocols, such as PAMAS [3] and S-MAC [4] use
this technique to reduce energy dissipation in the MAC proto-
col, often trading off latency in packet delivery for energy effi-
ciency. Topology control protocols such as ASCENT [5], Span
[6], and STEM [7] use a similar technique of turning on and
off sensors to maximize network lifetime while keeping the
network fully connected. Other topology control protocols
such as Lint [8] aim to determine the minimum transmit
power necessary for a fully connected network, whereas proto-
cols such as those described in [9, 10] determine the optimal
transmit power to minimize overall energy dissipation.

In addition to the above two techniques, considerable ener-
gy can be saved by tailoring the routing protocol to the char-
acteristics of sensor networks, including the energy constraints
of the sensors, the data-driven nature of these networks, and
the many-to-one, many-to-some, or many-to-many collection
of the data. Sensor network routing protocols such as Rumor
Routing [11], Directed Diffusion [2], and SPIN [12] provide
lightweight data-centric solutions tailored to typical sensor
network traffic patterns. Although these protocols are effec-
tive in extending the lifetime of sensor networks, the gap
between the protocol and the application is often too large to
allow the protocols to be effectively used by application devel-
opers.

Middleware
Middleware has often been useful in traditional systems for
bridging the gap between the operating system (a low-level
component) and the application, easing the development of
distributed applications. Because wireless sensor networks
share many properties with traditional distributed systems, it
is natural to consider distributed computing middleware for
use in sensor networks. Figure 3 shows a high-level view of
the key relationships among the middleware we discuss here.

One of the most common middleware systems, Corba
[13], hides the location of remote objects, simplifying the
application’s interactions with these remote objects by
allowing all  operations to appear local.  Although this
could be applied to sensor networks to provide access to
the sensor data, by hiding the location of the object (e.g.,
the sensor), the context information (e.g., the location) of
the sensor is similarly lost. Additionally, by providing indi-
vidual sensor access through objects, the potential energy
savings by aggregation is lost. Jini’s [14] service discovery
protocol and leasing mechanisms allow client applications
to discover services and manage client-server connections
as the set of available services changes. Service discovery is
useful for dynamic sensor networks to know what sensors
and/or services are available; however, access to services
remains object-based, similar to Corba. The LIME middle-
ware [15] focuses on a different application programming
interface (API),  namely a shared memory scheme for
mobile ad hoc components through a Linda-like tuple
space [16]. Neither Jini nor LIME consider the limited

� Figure 2. Relationships between different sensor network proto-
cols and the network services they provide.
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energy constraints of sensor networks, and their supporting
protocols are heavyweight when compared to protocols tai-
lored to sensor networks.

Some middleware acknowledge the changing properties of
wireless networks and attempt to modify their own behavior
to match the conditions detected within the network. For
example, both Limbo [17] and FarGo [18] reorder data
exchanges or relocate components to respond to changing
network conditions such as bandwidth availability or link relia-
bility. At a lower level, Mobiware [19] supports various levels
of QoS by adapting streams within the network with active fil-
ters deployed in the routers. Other middleware systems pro-
vide hooks to allow the applications to adapt. For example,
applications built on the Odyssey platform [20] can register
for notification of changes in the underlying network data
rate. Similarly, the Spectra [21] component of Aura [22] moni-
tors the network conditions and the accessible computation
resources, deciding where computation should be performed
based on the network transmission required to complete them
as well as the expense of the computation on mobile versus
fixed nodes. These advances are applicable to wireless sensor
networks; however, they do not integrate any of the specific
data aggregation protocols of sensor networks, nor do they
consider the details of the low-level wireless protocols.

Among existing distributed computing middleware, QoS-
Aware Middleware [23] provides the closest example of a
middleware that can support sensor network applications.
This middleware is responsible for managing local operating
system resources based on application requirements specified
to the middleware. The application’s QoS information is com-
piled into a QoS profile to guide the middleware in making
resource use decisions.

Middleware for Sensor Networks

Recently, much work has targeted the development of middle-
ware specifically designed to meet the challenges of wireless
sensor networks, focusing on the long-lived and resource-con-
strained aspects of these systems.

Both the Cougar [24] and SINA [25] systems provide a dis-
tributed database interface to the information from a sensor
network with database-style queries. Power is managed in
Cougar by distributing the query among the sensor nodes to
minimize the energy consumed to collect the data and calcu-
late the query result. To support the database queries, SINA
incorporates low-level mechanisms for hierarchical clustering
of sensors for efficient data aggregation as well as protocols
that limit the retransmission of similar information from geo-
graphically proximate sensor nodes.

AutoSec [26], Automatic Service Composition, manages
resources in a sensor network by providing access control for
applications so that QoS requests are maintained. This
approach is similar to middleware for standard networks
because resource constraints are met on a per-sensor basis,
but the techniques for collecting the current resource utiliza-
tion are tailored to the sensor network.

DSWare [27] provides a similar kind of data service abstrac-
tion as AutoSec, but instead of the service being provided by
a single sensor, it can be provided by a group of geographical-
ly close sensors. Therefore, DSWare can transparently man-
age sensor failures as long as enough sensors remain in an
area to provide a valid measurement.

While these middleware for sensor networks focus on the
form of the data presented to the user applications, Impala
[28], designed for use in the ZebraNet project, considers the

� Figure 3. Relationships among different middleware. In this figure, “middleware reactive” refers to middleware that reacts itself to
changes in network behavior, whereas “middleware proactive” refers to middleware that proactively changes the network functionality.
Similarly, “enables reactive applications” refers to middleware that provides hooks so that applications can react to changes in the envi-
ronment, whereas “enables proactive applications” refers to middleware that accepts information from the application about how to
respond to changes in the network.
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application itself, exploiting mobile code techniques to change
the functionality of the middleware executing at a remote sen-
sor. The key to energy efficiency for Impala is for the sensor
node applications to be as modular as possible, enabling small
updates that require little transmission energy.

Although each of these middleware is designed for efficient
use of the wireless sensor network, they largely ignore the
properties of the network itself. In other words, most of these
approaches do not attempt to change the properties of the
network in order to manage energy, and they are not flexible
enough to support different protocol stacks or different appli-
cations’ QoS requirements.

MiLAN Middleware
As the summary of related work in the previous section
shows, most sensor network research has focused on designing
new network-level protocols (e.g., MAC layer, routing layer,
topology control), without considering existing standards or
how applications use the protocols. We argue that sensor net-
work applications may be built on top of existing protocols,
and thus some coordination framework is needed to leverage
the flexibility that exists in both standardized and
nonstandardized network protocols.

However, to make these protocols more use-
ful, application designers would benefit from a
middleware that encapsulates the protocols, pro-
viding a high-level interface. Although the mid-
dleware systems discussed provide reasonable
APIs, they either invent their own energy man-
agement protocols or provide limited mecha-
nisms to adapt to the constraints of the wireless
network. We argue that additional savings can be
achieved if the middleware varies the actual
parameters of the network over time while simul-
taneously meeting the requirements of the appli-
cation, thereby increasing the lifetime of the
network.

We are developing a new middleware named

Middleware Linking Applications
and Networks (MiLAN) that
receives a description of applica-
tion requirements, monitors net-
work conditions, and optimizes
sensor and network configurations
to maximize application lifetime.
To accomplish these goals, appli-
cations represent their require-
ments to MiLAN through
specialized graphs that incorporate
state-based changes in application
needs. Based on this information,
MiLAN makes decisions about
how to control the network as well
as the sensors themselves to bal-
ance application QoS and energy
efficiency, lengthening the lifetime
of the application.

Unlike traditional middleware
that sits between the application
and the operating system, MiLAN
has an architecture that extends
into the network protocol stack, as
shown in Fig. 4. As MiLAN is
intended to sit on top of multiple
physical networks, an abstraction
layer is provided that allows net-

work-specific plugins to convert MiLAN commands to proto-
col-specific commands that are passed through the usual
network protocol stack. Therefore, MiLAN can continuously
adapt to the specific features of whichever network is being
used for communication (e.g., determining scatternet forma-
tions in Bluetooth networks or coordinator roles in Span [6])
in order to best meet the applications’ needs over time.

Figure 5 shows an overview of the interactions among
MiLAN, the applications, and the sensors, together with a
partial API. This figure makes a distinction between the net-
work plugins and the core of MiLAN, emphasizing the sepa-
ration of computation that is specific to the selected network
type vs. the computation that always occurs, but the API spec-
ifies only the application- and sensor-level operations. To
make the description of the MiLAN API and network plugin
abstraction more concrete, we use the personal health moni-
tor application from earlier as a running example.

Application Performance
Many sensor network applications are designed to receive
data input from multiple sensors and to adapt as the available
sensors change over time, as either new sensors come within

� Figure 4. Milan components (shaded). Milan presents an API through which the application
represents its requirements with regard to different sensors that may be available. Milan also
presents an abstraction from the network-level functionality through which it issues com-
mands to determine available sensors and configure the network.
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� Table 1. Feasible sets FA for the personal health monitor application for a
patient in medium stress with high heart rate, normal respiratory rate, and low
blood pressure.

1 Blood flow, respiratory rate

2 Blood flow, ECG (3 leads)

3 Pulse oxymeter, blood pressure, ECG (1 lead), respiratory rate

4 Pulse oxymeter, blood pressure, ECG (3 leads)

5 Oxygen measurement, blood pressure, ECG (1 lead), respiratory rate

6 Oxygen measurement, blood pressure, ECG (3 leads)

Set # Sensors
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range or sensors go offline when they move away or run out
of energy. We assume that application performance can be
described by the QoS of different variables of interest to the
application, where the QoS of the different variables depends
on which sensors provide data to the application. For exam-
ple, in the personal health monitor, variables such as blood
pressure, respiratory rate, and heart rate may be determined
based on measurements obtained from any of several sensors
[29]. Each sensor has a certain QoS in characterizing each of
the application’s variables. For example, a blood pressure sen-
sor directly measures blood pressure, so it provides a quality
of 1.01 in determining this variable. In addition, the blood
pressure sensor can indirectly measure other variables such as
heart rate, so it provides some quality, although less than 1.0,
in determining these variables. The quality of the heart rate
measurement would be improved through high-level fusion of
the blood pressure measurements with data from additional
sensors such as a blood flow sensor.

In order to determine how to best serve the application,
MiLAN must know:
• The variables of interest to the application

• The required QoS for each variable
• The level of QoS that data from each sensor or set of sen-

sors can provide for each variable
Note that all of these may change based on the application’s
current state. As shown in Fig. 5, during initialization of the
application, this information is conveyed from the application
to MiLAN via “State-based Variable Requirements” and
“Sensor QoS” graphs. Examples of these graphs are shown in
Figs. 6 and 7, respectively. Figure 6a, an abstract State-based
Variable Requirements graph, shows the required QoS for
each variable of interest based on the current state of the sys-
tem and the variables of interest to the application, where
these states are based on the application’s analysis of previ-
ously received data. For a particular state (a combination of
system state, level A, and variable state, level B), the State-
based Variable Requirements graph defines the required QoS
for each relevant variable. Because variables (level C) can be
named in multiple variable states (level B), MiLAN must
extract the maximum QoS for each selected variable to satisfy
the requirements for all variable states. Figure 6b shows the
State-based Variable Requirements graph for the personal
health monitor. This application has two states, a system state
that includes the patient’s overall stress level, as well as multi-
ple states for each variable that can be monitored. The State-
based Variable Requirements graph specifies to MiLAN the

� Figure 5. a) A high-level overview of MiLAN operation. Segment A repeats when the application changes its state based on data
received from the sensors. Segment B repeats when sensors arrive in the network. Segment C repeats as data arrives from each sensor,
and represents the normal operation of MiLAN conveying information from the sensors to the application. b) Partial MiLAN API.
Applications represent their Sensor QoS graph to MiLAN using the SQoS structure and the define_qos_graph function, and they repre-
sent their State-based Variable Requirements graph to MiLAN using the SVRG structure and the define_variable_graph function. After
initialization, sensors send data to the application using the send data function and applications receive the data from MiLAN via an
upcall from the recv_data function. Applications specify to MiLAN that they have changed state through the update_state function.

/* application : set Qos */
int define_qos_graph (SQoS *sqos);

/* application: set variable requirements */
int define_variable_graph (SVRG *svrg);

/* sensor: push data */
int send_data (int dest_milan_id, int data_length, 
char *data)

/* application : set system state */
int update_state (int state);

/* upcall - MILAN gives data to application */
int recv_data (int *src_milan_id, int *data_length,
unsigned char *data, int *packet_type);
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from the sensor’s data, with 1.0 corresponding to 100 percent reliability.
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application’s minimum acceptable QoS for each variable (e.g.,
blood pressure or respiratory rate) based on the current state
of the patient. For example, the figure shows that when a
patient is in a medium stress state and the blood pressure is
low, the blood oxygen level must be monitored at a quality
level of .7 and the blood pressure at a quality level of .8.

For a given application, the QoS for each variable can be
satisfied using data from one or more sensors. The application
specifies this information to MiLAN through the Sensor QoS
graph (Fig. 7a). When multiple sensors are combined to pro-
vide a certain quality level to the variable, we refer to this as a
single virtual sensor. Figure 7b shows the Sensor QoS graph
for the personal health monitor. This graph illustrates the
important variables to monitor when determining a patient’s
condition and indicates the sensors that can provide at least
some quality to the measurement of these variables. Each line
between a sensor (or virtual sensor) and a variable is labeled
with the quality the sensor (or virtual sensor) can provide to
the measurement of that variable. For example, using data
from a blood pressure sensor, the heart rate can be deter-
mined with a .7 quality level, but combining this with data
from a blood flow sensor increases the quality level to 1.0.

Given the information from these graphs as well as the cur-
rent application state, MiLAN can determine which sets of

sensors satisfy all of the application’s QoS requirements for
each variable. These sets of sensors define the application fea-
sible set FA, where each element in FA is a set of sensors that
provides QoS greater than or equal to the application-speci-
fied minimum acceptable QoS for each specified variable. For
example, in the personal health monitor, for a patient in
medium stress with a high heart rate, normal respiratory rate,
and low blood pressure, the application feasible sets in FA that
MiLAN should choose to meet the specified application QoS
are shown in Table 1. MiLAN must choose which element of
FA should be provided to the application. This decision
depends on network-level information.

Network
The properties of specific network types as well as the current
condition of the network can constrain the set of feasible sets
to a subset of those in FA. As shown in Fig. 5, it is the network
plugin’s job to determine which sets of nodes (sensors) can be
supported by the network, as well as other protocol-specific
information, such as what role each node must play.

MiLAN uses a service discovery protocol (such as SDP [30]
or SLP [31]) to find new nodes and learn when nodes are no
longer accessible (due to mobility or exhausting their energy
resources). The service discovery protocol must return impor-

� Figure 6. The State-based Variable Requirements graph for specifying the variables and required QoS when the application is in vari-
ous states: a) abstract example; b) example for the personal health monitor application. This graph illustrates only a subset of the appli-
cation’s possible states.
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tant information about the node, such as the type of data that
can be provided by that node, the modes in which the node
can operate, transmission power levels, and the current resid-
ual energy level. Using this information from each currently
available node, the network plugin must determine which sets
of nodes can be supported by the network.

If we assume that all nodes are on a single-hop centralized
network, bandwidth constraints place limitations on the total
amount of data that can be transmitted to the application. For
example, if all nodes are on a Bluetooth piconet or an 802.11
network operating in infrastructure mode, all nodes transmit
data directly to the application (residing at the master in
Bluetooth or the access point in 802.11). Therefore, the net-
work constraint is the total rate and schedulability of all data
transmitted.

However, in more complex environments such as Blue-
tooth scatternets, 802.11 multihop networks, or hybrid net-
works, network topology plays an important role in
determining network feasibility and power costs. For exam-
ple, in Bluetooth it is necessary to choose a feasible scatter-
net topology, where nodes selected in the feasible set allow
the network to be fully connected. In addition to ensuring the
feasibility of a network configuration, we must also consider
how the power costs of nodes are affected by their roles in
the network (e.g., piconet masters or bridge nodes in Blue-
tooth scatternets, data aggregators in Directed Diffusion [2],
coordinators in Span [6]). The power cost of using a node is a
combination of the power to run the device, the power to
transmit its data, the power to forward the data of other
nodes in the set, and the overhead of maintaining its role in
the network. These costs can be influenced by MiLAN
through techniques such as transmission power control, effi-
cient traffic scheduling, and the setting of different sleep
states. In multihop networks, routing data from nodes to the
application also becomes an important factor. The plugin
should know all of the network’s protocol-specific features
that can be modified and choose how to set these features to
make sets feasible and energy-efficient.

The subsets of nodes that can be supported by the network
define a network feasible set FN . As only sets in FA provide the
required application QoS, we can combine these two con-
straints to get an overall set of feasible sets:

F = FA ∩ FN.

For the personal health monitor, suppose that the sensors
and processors communicate using an IEEE 802.11b network.
As these networks can support overall throughput of nearly 11
Mb/s, the network is able to support the transmission of all
data from each of the sensor sets in FA from Table 1 in real
time. However, if other applications (e.g., video gait monitor-
ing [32]) are running simultaneously on the network and the
personal health monitor application can only utilize 100 kb/s
of the throughput, the network would not be able to support
the transmission of data from the ECG sensor with either 3, 5,
or 12 leads. Thus, the set of network feasible sets FN will only
partially overlap with FA. This overlap is the set of feasible sets
F and consists of sets 1, 3, and 5 in Table 1. MiLAN must
choose a set of sensors from one of the sets in F based on the
trade-offs discussed in the next section. If FA is empty, MiLAN
should raise an exception to the application, allowing it to
decide the appropriate action.

Trade-offs
Among the elements in F, MiLAN chooses an element fi that
represents the best performance/cost trade-off. How should
“best” be defined? This depends on the application; the
MiLAN framework supports any method of deciding how to

choose an element of F. In most sensor network applications,
we want to allow the application to last as long as possible
using the limited energy of each of the sensors. Simple
approaches to choosing sensor sets may yield the set fi that
consumes the least power or will run for the maximum life-
time before the first sensor dies. However, if we want to
ensure that the application can run at the required QoS level
as long as possible, we should instead optimize the total life-
time by intelligently choosing how long to use each feasible
sensor set [33]. In some cases there are multiple ways to
schedule sensors so that the same total network lifetime is
achieved. In these cases we may want to maximize the average
quality of the sensor sets over time. For some applications the
goal may be to maximize some combination of lifetime and
quality. MiLAN is flexible enough to incorporate any of these
or other optimization criteria.

In Fig. 5 we show this trade-off computation occurring in
the core MiLAN component. After the computation is com-
plete and the first set of sensors is chosen, the MiLAN core
informs the plugin of the selection, and the plugin configures
the network accordingly, using information about the role
each sensor should play.

Conclusions
Current research trends suggest the power of middleware to
ease the application development task in complex environ-
ments. While conventional middleware operates above the
networking layer, for sensor network applications that rely on
multiple and varying sensors it is not a viable approach to
manage the network completely independent of the needs of
the application. We have argued that the needs of the applica-
tion should be integrated with the management of the net-
work into a single unified middleware system. Through this
tight coupling, the middleware can trade application perfor-
mance for network cost, while still retaining the separation
between the policy specifying how to react to a dynamic envi-
ronment (obtained from the application) and the mechanisms
to implement the policy (performed in the middleware). We
have shown that MiLAN, a sensor network middleware we are
developing to meet these goals, can aid the development of
sensor network applications. For more details on the MiLAN
project, including references to related papers, please visit the
project Web page at http://www.futurehealth.rochester.edu/
milan/.
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