
Stack Architectures and Protocols for Emerging Wireless
Networks

by

Chen-Hsiang Feng

Submitted in Partial Fulfillment

of the

Requirements for the Degree

Doctor of Philosophy

Supervised by

Professor Wendi B. Heinzelman

Department of Electrical and Computer Engineering

Arts, Sciences and Engineering

Edmund A. Hajim School of Engineering and Applied Sciences

University of Rochester

Rochester, New York

2013

ii

Biographical Sketch

The author received his Bachelor of Science degree in Electrical Engineering from Feng

Chia University in 2004. He attended the Computer Science Department at Chung

Hsiang University, Taichung, Taiwan from 2004 to 2006 and graduated with a Master

of Science degree in Computer Science in 2006. He began graduate studies in the

Department of Electrical and Computer Engineering at the University of Rochester in

2007 and received the Master of Science degree from the University of Rochester in

2011. He has worked with Intel Corporation since 2011.

The following publications were a result of work conducted during doctoral study:

Chen-Hsiang Feng, Ilker Demirkol, and Wendi B. Heinzelman, “Enabling Heteroge-

neous Devices using Virtual Interfaces,” In Submission, 2013

Chen-Hsiang Feng, Yuqun Zhang, Ilker Demirkol, and Wendi B. Heinzelman, “State-

less Multicast Protocol for Ad-Hoc Networks,” IEEE Transactions on Mobile Comput-

ing, 2012.

Chen-Hsiang Feng, Ilker Demirkol, and Wendi B. Heinzelman, “UPS: Universal Pro-

tocol Stack for emerging wireless networks,” Elsevier Ad-Hoc Networks, 2010.

Yuqun Zhang, Chen-Hsiang Feng, Ilker Demirkol, and Wendi B. Heinzelman

“Energy-Efficient Duty Cycle Assignment for Receiver-BasedConvergecast in Wireless

Sensor Networks,” Proceedings of IEEE GLOBECOM 2010.

Chen-Hsiang Feng, Ilker Demirkol, Wendi B. Heinzelman, “UPS: Unified Protocol

Stack for wireless sensor networks,” Proceedings of Mobile and Ubiquitous Systems:

Networking & Services, MobiQuitous, 2009.

Chen-Hsiang Fengand Wendi B. Heinzelman, “RBMulticast: Receiver Based Multi-

cast for Wireless Sensor Networks,” IEEE WCNC 2009.

Christophe J. Merlin,Chen-Hsiang Feng, and Wendi B. Heinzelman, “Information-

Sharing Architectures for Sensor Networks: the State of theArt,” SIGMOBILE Mobile

Computing and Communication Review, 2009.

iii

Acknowledgements

I would like to thank my advisor, Professor Wendi Heinzelman, for the opportunity

to work with her over the past six years. I thank her for all theenergy and time she

has spent for me. Her incredible patience and support have motivated me to believe in

myself and progress towards my doctorate degree.

I would also like to express my thanks to Professors Mark Bocko and Jefferey

Bigham for acting as members of my thesis committee.

I would also like to thank to all of my colleagues at the University of Rochester

in the Wireless Communications and Networking Group. Specifically, I would like to

thank Yuqun Zhang. It was a pleasure to collaborate with him,and he has been a great

friend to me over the years. I would also like to express my thanks to my colleagues

from Intel Labs, Xiaocheng Zhou and Shoumeng Yan. They are terrific career role

models, and their encouragement has kept me going though thedifficult times.

I owe my thanks to my parents, for their strong support of my education and my

move to America. Most of all, thanks to my wife, Shio-Chen, for her love and for

giving me all the happiness as I finished my degree.

iv

Abstract

Recent devices developed for emerging wireless networks, such as 4G cellular net-

works, wireless mesh networks, and mobile ad hoc networks, support multiple com-

munication substrates and require execution of multiple protocols within a layer, which

cannot be supported efficiently by traditional layered protocol stack approaches. Our

goal in this thesis is to discover the minimal set of requirements for simultaneously

supporting the use of multiple protocols in the same stack layer without requiring mod-

ifications of the protocols and retaining that the modularity of the stack architecture so

that future protocols can easily be incorporated.

To achieve this goal, we propose Universal Protocol Stack (UPS), which provides

support for the execution of multiple protocols within a layer simultaneously in a modu-

lar way through packet-switching, information-sharing, and memory management. The

implementation and simulations of UPS show that the overhead incurred to implement

UPS is very low, and little or no modifications are required toadapt existing protocols

to the UPS framework, yet there is benefit to the application in terms of reduced traffic

or reduced delay/energy. As an example, we develop an approach to support multiple

radio interfaces by abstracting all the available interfaces using a single virtual interface

within the UPS framework. The selection of the specific physical interface to use per

packet is done by the virtual interface, thus ensuring that no modifications of the upper

layer protocols are required. This provides the opportunity for algorithms at the virtual

interface to optimize the selection of the physical interface to improve the network per-

formance. Results from simulations show that the use of a virtual interface is feasible

and can improve the network performance.

While new protocol stack architectures are important to support multiple proto-

cols and communication interfaces, efficient protocols areequally important to support

emerging networks. We propose a stateless receiver-based multicast protocol, called

RBMulticast (Receiver-Based Multicast), which removes the need for costly multicast

tree and neighbor table maintenance, yet provides high success rates and low delay.

This makes RBMulticast an excellent choice for multicasting in dynamic networks,

where state maintenance is costly. Additionally, using theidea of receiver-based rout-

ing for convergecast transmissions, we find the duty cycle ofa node as a function of its

distance to the sink to minimize the expected energy dissipation.

v

Contributors and Funding Sources

This work was supervised by a dissertation committee consisting of Professors Wendi

Heinzelman (advisor) and Mark Bocko of the Department of Electrical and Computer

Engineering and Professor Jefferey Bigham of the Department of Computer Sciences.

The X-Lisa architecture described in Chapter 3 was developed by Dr. Christophe J.

Merlin. The simulations described in Chapters 6 and 7 were conducted in part by

Yuqun Zhang and were published in 2010 and 2012. All other work conducted for the

dissertation was completed by the student independently. Graduate study was supported

in part by the National Science Foundation under grant #CNS-0448046.

Contents

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Motivation for a New Protocol Stack Architecture 2

1.2 Existing Protocol Stack Architectures 3

1.3 Motivation for Receiver-Based Protocols 5

1.4 Research Contributions . 5

1.5 Thesis Organization . 7

2 Related Work 8

2.1 Protocol Stacks for Multiple Protocols 8

2.2 Receiver-Based Routing . 10

2.3 Multicast Routing . 11

2.4 Duty Cycle Control . 12

3 Evaluation of the X-Lisa Cross-Layer Protocol Architecture 14

3.1 X-Lisa: Cross-Layer Information-Sharing Architecture 15

3.2 XLM: A Fused-Layer Protocol for Wireless Sensor Networks 16

3.3 XLM/X-Lisa: Example of Layer Fusion Decomposition 18

3.3.1 Layer Implementation . 18

3.3.2 Information Exchange with X-Lisa 20

3.3.3 Input/Output Packet Flow . 21

3.4 XLM/LPL: Example of Protocol Swapping23

vi

vii

3.4.1 Protocol Swapping Implementation 23

3.5 Conclusions . 25

4 UPS: Universal Protocol Stack for Emerging Wireless Networks 26

4.1 Introduction . 27

4.2 UPS Framework . 31

4.2.1 UPS Protocol Interface (UPS-PI) 34

4.2.2 UPS Message Pool and Message Pool Interface (UPS-MPI) . . 36

4.2.3 UPS Information-Sharing Interface (UPS-ISI) 38

4.2.4 Power Manager . 42

4.3 UPS Architecture Case Studies .43

4.3.1 TinyOS Experiments for UPS with Wireless Sensor Networks . 43

4.3.2 Simulation Results for UPS with MANETs 50

4.3.3 Notes on Implementing UPS for Off-the-Shelf Protocols 53

4.4 Conclusions . 53

5 Enabling Heterogeneous Devices using Virtual Interfaces 58

5.1 Introduction . 58

5.2 The Virtual Interface . 61

5.2.1 Internet Stack . 61

5.2.2 Sending Packets . 61

5.2.3 Receiving Packets . 62

5.3 One vs. Multiple Interfaces .63

5.4 Weighted Random Interface Selection 64

5.5 Adaptive Random Interface Selection 66

5.6 Interface Selection while Using TCP 69

5.7 Limitations . 71

5.8 Machine Learning Interface Selection 72

5.9 Conclusions . 73

5.10 Future Work . 73

6 Stateless Multicast Protocol for Dynamic Networks 74

6.1 Introduction . 75

6.2 RBMulticast Protocol Description 77

viii

6.2.1 RBMulticast Overview . 78

6.2.2 Multicast Regions . 80

6.2.3 Packet Splitting . 80

6.2.4 Virtual Node . 82

6.2.5 RBMulticast Header . 84

6.2.6 Group Management . 85

6.2.7 Summary . 85

6.3 Analytical Bounds on Average Hop Count Performances 86

6.3.1 RBMulticast Performance . 86

6.3.2 Analysis for Using Multiple Unicast as Multicast 91

6.3.3 Validation of Hop Distance Analysis and Performance Com-

parisons . 94

6.4 RBMulticast Performance Evaluation 95

6.4.1 Outline of Implemented MAC Unicast Protocol 95

6.4.2 Split Packet Contention Problem in RBMulticast and the Pro-

posed Solution . 96

6.4.3 MAC Level Improvements . 97

6.4.4 Simulation Results . 98

6.5 Tmote Sky Implementation . 108

6.6 Conclusions . 110

7 Energy-Efficient Duty Cycle Assignment for Receiver-Based Convergecast112

7.1 Introduction . 113

7.2 Distance-based Duty Cycle Assignment Methods 115

7.2.1 Traffic Rate Analysis . 115

7.2.2 Duty Cycle for a Given Expected Traffic Rate117

7.2.3 Duty Cycle Assignment Methods Proposed 120

7.3 Performance Evaluation of Duty Cycle Assignment 121

7.4 Conclusions . 124

8 Conclusions and Future Work 125

8.1 Conclusions . 125

8.2 Future Work . 126

ix

8.2.1 Routing Layer Protocol Selection 126

8.2.2 Cross-Layer Protocol Selection 127

9 Bibliography 128

List of Tables

1.1 Comparison of emerging networks. 2

3.1 Simulation results of XLM/LPL/X-Lisa and XLM/X-Lisa. 24

4.1 Selected information-sharing protocols with their shared information

and optimization goals. For more generalized classification, see [1,

Table 1]. 39

4.2 The overhead of context switches in TinyOS (and hence UPS) and of

sending a 36 byte packet using the Tmote Sky motes. This tableis a

modified version from P. Levis [2, Fig. 10]. Packet time for sending a

36 B packet is measured from our experiments.49

4.3 Comparison of execution code size. 50

6.1 Definition of symbols in the multicast analysis. 88

6.2 Packet Delivery Ratio in terms of SPTI. 96

x

List of Figures

3.1 X-Lisa architecture. 15

3.2 A neighbor table is kept at every nodei with information about itself

and each of its neighborsj. 16

3.3 The original XLM (a), was broken into a layered scheme (XLM / X-

Lisa) (b), and its MAC layer was replaced (c). Arrows show packet

exchanges between layers, and squares show information exchanges. . 19

3.4 The flow graph for sending a packet. The arrows ofβ, λ, andd in-

dicate the packet buffer usage, packet rate, and distance information

exchanged through the X-Lisa interfaces. 21

3.5 The packet flow graph of a node acting as the receiver node.The arrows

of β, λ, andd indicate the packet buffer usage, packet rate, and distance

information exchanged through the X-Lisa interfaces. 22

3.6 The source node is at (0,0) and the sink node is at (60,60).Radio range

is 30m. 24

4.1 An example of the high level system block diagram of the UPS frame-

work. 29

4.2 Packet header format of XLM/Net and RBMulticast packets. 33

4.3 Packet flow diagram example for the UPS framework. 35

4.4 The internal packet structure ofUPS Message Pool. The first memory

block stores the packet header, and the packet data payload starts from

the second block. This is a snapshot of an output packet inside the

XLM/Net module. XLM/Net will be illustrated in Section 4.3.1. 37

4.5 Block diagram of the UPS framework and protocol modules developed

for the WSN environment. 44

xi

xii

4.6 a) The experimental network in this chapter. The dotted node is the uni-

cast destination, and the shaded nodes are multicast receivers. b) MC:

Multicast only, c) MU: Mixed Multicast-Unicast, and d) UC: Unicast

only. 45

4.7 Statistics of the experimental network in different scenarios. 47

4.8 a) Packet success rate. b) Total number of packets sent by

all nodes. This number counts all MAC layer packets (e.g.,

RTS/CTS/DATA/ACK). Packet delay is not considered here because it

is difficult to calculate time difference without synchronization among

sensor nodes. 55

4.9 The simulation scenario of a mixed static and mobile network. 56

4.10 The high level system block diagram of the UPS stack consisting of the

TCP/IP and AODV ad hoc routing protocols. 56

4.11 The performance comparison of the three protocol stacks for a) average

packet success rate, and b) average traffic load of the network. 57

5.1 Virtual interface block diagram. 60

5.2 Success rate using three interfaces compared with one interface. WiFi

is configured with OFDM rate 6 Mbps and CSMA is configured with

channel bandwidth 5 Mbps and delay 2 ms. 63

5.3 Delay using three interfaces compared with one interface. 64

5.4 Success rate and delay using three interfaces and the weighted random

selection method compared with the random selection method. 65

5.5 Additional traffic to saturate the WiFi channel. 68

5.6 Success rate and delay using the adaptive random, weighted random

and uniform random client selection methods. 68

5.7 Success rate of the different interface selection algorithms using TCP. . 70

5.8 Delay of the different interface selection algorithms using TCP. 70

5.9 Situation showing the need for all physical interfaces to have the same

MAC address. 72

xiii

6.1 Example showing how RBMulticast delivers multicast packets. The

source node is the square node. Multicast members are shadedcircles,

and virtual nodes are dotted circles. Because every destination node

will become a virtual node at the end, they are all shown with dotted

circles. The number on the side of the lines indicate the destination of

that packet. 82

6.2 Two possible ways to divide a space into multicast regions: a) dividing

the space into four quadrants, and b) dividing the space intothree 120◦

regions. c) demonstrates how to choose a next hop node. The solid node

is the source node, and the gray nodes are the multicast members. The

solid line is the route when choosing a target node near the geographic

mean of the multicast members, and the dotted line is the route when

choosing a target node close to the nearest multicast member. We can

see that the longest distance is two hops distance in the firstcase, and it

is three hops distance in the second case.83

6.3 Packet header of the RBMulticast protocol. 84

6.4 The region considered in the multiple unicast analysis.. 91

6.5 Performance comparisons for RBMulticast with perfect location infor-

mation and no packet collisions. 93

6.6 Matlab simulation results of total number of hops with different number

of sink nodesM for the original version of RBMulticast. 95

6.7 Adjustment oftimeoutCTS for MAC improvement. 97

6.8 Multicast member (sink) locations in the simulation. The additional

members align along the boundaries for different simulations. Note that

this figure shows a blow-up of the north-east quadrant of the simulation

area. 99

6.9 Performance comparisons for RBMulticast: static scenario, 5 sinks. . . 101

6.10 Performance comparisons for RBMulticast: mobile scenario, 5 sinks. . . 102

6.11 Performance comparisons for RBMulticast: mobile scenario, varying

number of sinks. 104

6.12 Packet delivery ratio vs. data generate rate. (mobile scenario with speed

10 m/s, 5 sinks). 105

xiv

6.13 Performance comparisons for RBMulticast: mobile scenario, uni-

formly distributed sinks. 107

6.14 Packet delivery ratio with location estimation error of N (0, σ2): 5 uni-

formly distributed sinks. 108

6.15 The experimental network for comparing results in the Tmote Sky im-

plementation and the TOSSIM simulations. Node 0 is the source node

and the shaded nodes are multicast destination nodes. 109

6.16 Comparison of Tmote Sky implementation to TOSSIM simulations. . . 110

7.1 Sample network topology. 116

7.2 Representation of packet exchange durations. 119

7.3 Simulation results in terms of the number of sources. 122

7.4 Simulation results in terms of source packet generationrateλg. 123

Chapter 1

Introduction

Wireless network applications are becoming increasingly popular with the advance-

ment of semiconductor technology leading to affordable mobile platforms. Entirely

new networks and application areas, such as vehicular networks [3], wireless sensor

networks [4], mesh networks [5], body area networks [6], andsmart grid networks [7],

have been launched because of the advances in speed, reliability, and low power op-

eration of wireless devices. This has led to pervasive wireless deployments, provid-

ing users with Internet access or phone services virtually anywhere in developed ar-

eas. However, the current protocol architectures, which include the traditional layered

approach (e.g., the OSI or TCP/IP layered protocol stacks),cross-layer information-

sharing, and layer fusion architectures, do not fully utilize the advancement of wireless

technology and cannot provide adequate support to these emerging networks and appli-

cations.

Additionally, advances are needed in protocols that support the network dynamics

often encountered in emerging networks, due to node mobility, node duty-cycling for

energy savings, and time-varying wireless channels. This thesis addresses these chal-

lenges, by proposing a protocol stack architecture and efficient protocols to best support

these emerging networks.

1

2

Table 1.1: Comparison of emerging networks.

4G Wireless Mesh Networks

(WMNs)

Multiple MAC

of radios Multiple (heterogeneous) Multiple (homogeneous) Single

Switching Network Radio/Channel MAC

Switching

frequency

Low (high penalty) Rare (static network) High (packet based)

Switching

objective

Always best connected Increase bandwidth Always best connected

1.1 Motivation for a New Protocol Stack Architecture

The evolution of communication technology has gone from wired communication to

wireless communication and from infrastructure-based communication to infrastruc-

tureless communication. Emerging wireless networks bringnew challenges due to the

distinct capabilities of the devices and the specific requirements of the corresponding

applications.

For example, 4G network studies and standardization works target the integration of

different radio access techniques into a common network. The concept of Always Best

Connected (ABC) [8] aims to provide the best connectivity toapplications anywhere

and at anytime. Users and mobile devices can choose the best available access networks

from 2G, 3G, WLAN, WMAN, etc., in a way that best suits their needs. To achieve

this goal, the protocol stack architecture has to support mechanisms to recognize all

possible incoming and outgoing traffic.

Several wireless mesh network (WMN) [9] studies assume routers have the ability

to switch among multiple radios. Routers can be inter-connected wirelessly to form

a network to replace the wired infrastructure network in rural areas. Similarly, multi-

MAC networks [10] allow multiple MAC protocols sharing a single radio to increase

the one-hop bandwidth to a neighbor node. The idea behind such systems is that the

MAC protocol can be selected out of a set of MAC protocols at run time according to

real time network conditions. To achieve this goal, the protocol stack architecture has

to support fast interface switching on multiple radio devices on a per-packet basis.

In Table 1.1, we list the properties of these emerging networks that lead to the need

3

for a new protocol stack architecture that supports multiple protocols and information-

sharing. This table shows that these emerging networks either require switching be-

tween multiple radios, or switching between multiple communication protocols, or

both. Thus, there is a need to investigate a new cross-layering scheme that has uni-

fied support for emerging wireless networks with multiple communication substrates.

1.2 Existing Protocol Stack Architectures

A communication protocol stack is placed within both the software and the hardware

of a system. Typically, the physical layer and the MAC layer are within the hardware.

The remaining protocol layers are implemented within the software, including the rout-

ing and transport protocols, along with intermediate middleware and platform specific

modules, which are programmed in the kernel of operating systems such as Linux or

TinyOS, the operating system designed for wireless sensor networks [11]. In order to

support the communication protocols, system services are often required, such as ser-

vices for domain name resolution (DNS), or services monitoring the residual energy

and link quality of the node’s neighbors, which may be necessary for making routing

decisions.

Recent wireless devices, such as cellular phones, tablet computers, and laptop com-

puters, are designed to support multiple radio communication substrates, including

GSM, CDMA, WiFi, Bluetooth, or ZigBee. A common method to enhance the connec-

tivity of current multi-radio devices is to provide an ordered list of networks to access.

For example, when a user is within WiFi coverage, the multi-radio device uses WiFi for

connectivity, and only if WiFi coverage is not available, then the device switches to a

cellular network [12]. Such methods view the network and channel conditions in a very

simplistic way, and they do not consider the QoS requirements of different applications,

such as delay or throughput. Furthermore, such methods and supporting architectures

are network and framework specific and thus are limited to predefined networks and

devices.

The traditional layered protocol stack approach does not offer support for multiple

protocols in a single layer; therefore the protocol designer has to make some appropriate

modifications of the stack (e.g., middleware, or off-flow of the regular packet path) in

4

order to support multiple MAC/PHY protocols or multiple routing protocols. In order

to support different networks, researchers today mostly focus on supporting handover

between specific networks, and only Layer 1 criteria are taken into consideration for

the handover decision [13].

At the other extreme of the layered protocol stack are cross-layer protocols. These

protocols are often designed for a specific network to improve the lifetime or end-to-end

quality of service (QoS) provided to the application. Thereare two types of cross-layer

protocols: ones that share information among several non-adjacent layers (information-

sharing), and ones that combine two or more layers into a single, integrated layer (layer

fusion). Both of these cross-layer designs let protocols cooperate and share information

to best support the application and the specific network deployment, but they require

custom designs and cannot easily support multiple protocols simultaneously. The lack

of modularity also makes these cross-layer designs inflexible.

What is needed, instead, is an architecture that enables stack-level support for het-

erogeneous networks, as well as the protocols and algorithms that allow nodes to make

smart decisions regarding the use of multiple heterogeneous networks. Eventually,

through the merging at the individual devices, and with the introduction of techniques

to enable cross-layer/cross-node interactions, we can provide benefit to all devices in

the co-located networks. This will have the following advantages: i) more efficient use

of scarce network resources such as bandwidth and device energy, ii) providing seam-

less network connectivity, and iii) enabling the optimization of different application

QoS objectives, such as low delay.

In order to support not only current but also emerging and future wireless networks

and protocols, a protocol stack should be flexible, easy to use and to update, and sim-

ple. Flexibility is important, as new protocols must be ableto operate within existing

networks, and the amount of work necessary to migrate protocols into any new stack

framework should be low. Thus, a good protocol stack should be designed to support

protocol swapping. In order to ensure fast adoption, the protocol stack should be sim-

ple enough to make it easy to use and update. We believe that these goals can be met

through a layered protocol stack that provides unified access to its data structures and

does not include hidden operations.

5

1.3 Motivation for Receiver-Based Protocols

Dynamic networks are common in the pervasive wireless deployments of emerging

networks. The source of these dynamics varies for differentapplications and different

networks. For example, node mobility is one cause of networkdynamics, imposing re-

strictions on the routing protocol. Frequent route requests caused by topology changes

can result in a considerable amount of overhead and will affect the performance of the

network. Commonly used duty-cycling (sleep-awake cyclingof the nodes) in wireless

sensor networks also contributes to the dynamic nature of the networks. Sensor nodes

may temporally go off-line to save energy, and hence all nodes need to repeatedly poll

the neighbors to avoid transmission failures and excessivedelays.

All of these issues arise due to the attempt to maintain updated network information

in dynamic networks. In proactive and reactive protocols, decisions about routing and

medium access control are made by the sender, using whateverstate information the

sender has available, which may be stale in dynamic wirelessnetworks. Receiver-

based protocols represent a fundamentally different way ofmaking decisions, where the

potential receivers of a packet make decisions in a distributed manner, rather than the

sender making decisions. Thus, the current spatio-temporal neighborhoods participate

in the decision making processes to avoid frequent updates of information necessitated

by traditional sender-based protocols.

As we will show in our proposed Receiver-Based Multicast (RBMulticast) protocol,

by ensuring that neighbors that make the most forward progress to the destination have

a higher priority to become the next hop node, we are able to remove the need for

costly state maintenance (e.g., tree/mesh/neighbor tablemaintenance). This is a crucial

property, making receiver-based protocols ideally suitedfor dynamic networks.

1.4 Research Contributions

This thesis aims to understand the issues associated with wireless communication pro-

tocol stack design and to develop a protocol stack and associated protocols that can

better support current and emerging networks that require 1) unified access to data

structures, 2) support for multiple protocols in the same stack layer, and 3) efficient

protocols that support network dynamics. The specific contributions of my work in-

6

clude the following:

• The concept and benefits/limitations of a traditional layered approach and of

cross-layer interactions are studied, and the requirements of new emerging net-

works are discussed, leading to a set of goals for a new protocol stack architec-

ture [14].

• As part of the work in [14], a single layer cross-layer protocol XLM [15] is im-

plemented into the X-Lisa information-sharing protocol stack architecture. The

advantage of modularized protocol design through switching the MAC protocol is

demonstrated through swapping the existing XLM MAC with a new Low Power

Listening MAC protocol called XLM/LPL. Simulation resultsshows that X-Lisa

can be successfully used as a flexible information sharing stack protocol, but it

lacks the ability to support multiple protocols in the same layer simultaneously,

and it does not provide a universal information-sharing interface.

• A new protocol stack architecture called UPS (Universal Protocol Stack) is pro-

posed [16]. UPS standardizes a modular protocol stack that supports concurrent

protocol operation and information sharing. This architecture offers a new per-

spective on protocol selection by implementing protocol switches between layers.

Each protocol thus focus on its core task, and the information sharing and packet

path through the protocol stack are handled by the stack.

• The use cases of UPS are demonstrated through simulations ofmixed mobile and

static networks as well as through a TinyOS sensor network implementation of

UPS [16]. The results demonstrate that the UPS framework canbe applied to

existing protocols with no interference between differentprotocol modules in the

same layer.

• A virtual interface approach is proposed that abstracts allthe available interfaces

using a single virtual interface. No modifications to the layer 3 (L3) routing pro-

tocol and above layers are required, and packets can be seamlessly transmitted

from any of the available interfaces. This provides the opportunity for performing

smart physical interface selection at the virtual interface to improve the network

7

performance. Results from these simulations show that the use of a virtual inter-

face can improve the network performance.

• A stateless receiver-based multicast protocol is developed that simply uses a list

of the multicast members’ (e.g., sinks’) addresses, embedded in packet head-

ers, to enable receivers to decide the best way to forward themulticast traf-

fic [17, 18]. This protocol, called RBMulticast (Receiver-Based Multicast), ex-

ploits the knowledge of the geographic locations of the nodes obtained through

UPS information sharing to remove the need for costly state maintenance (e.g.,

tree/mesh/neighbor table maintenance), which makes RBMulticast ideally suited

for multicasting in dynamic networks.

• An adaptation method for distance-based duty cycling is proposed for receiver-

based convergecast networks [19]. Based on local observed traffic, we derive

a closed-form formula for the duty cycle that minimizes the expected energy

consumption at a given distance while ensuring packet delivery remains high.

Performance evaluations of the proposed duty cycle assignment method show

that it greatly improves the energy efficiency without sacrificing packet delivery

ratio or delay significantly.

1.5 Thesis Organization

This thesis is organized as follows: Chapter 2 elaborates onthe related work in the area

of protocol stacks, receiver-based routing, multicast routing, and node duty cycling.

Chapter 3 evaluates the X-Lisa information-sharing architecture with the implementa-

tion of a layer-fusion protocol XLM. Chapter 4 proposes a universal protocol stack,

UPS, for emerging wireless networks. Chapter 5 proposes a virtual interface to enable

heterogeneous devices in UPS. Chapter 6 proposes a stateless multicast routing proto-

col, RBMulticast, for dynamic networks. Similarly, Chapter 7 analyzes and optimizes

receiver-based convergecast with an energy-efficient dutycycle schedule assignment.

Chapter 8 finally concludes the thesis and provides thoughtson future research in this

area.

Chapter 2

Related Work

This chapter provides background on the issues addressed bythis thesis. We survey

the literature related to cross-layer designs, receiver-based protocols, multicast routing,

and duty cycle control.

2.1 Protocol Stacks for Multiple Protocols

Due to the inadequacies of the traditional OSI and TCP/IP stack approaches, there have

been several efforts to revise these stack structures. Thex-Kernel protocol architecture

proposed in [20] defines a uniform set of abstractions for encapsulating protocols. The

dynamic network architecture described in [21], built onx-Kernel, replaces the layered

approach by a complex protocol graph, where a protocol can have interfaces to multiple

other protocols. Although the protocol graph idea and the set of abstractions provide

similar functionality to the UPS Protocol Interface approach we propose in Chapter 4,

there is no information-sharing interface or unified packetaccess mechanism defined

in [21]. Moreover, an important contribution of this thesiswork is the investigation of

the execution of multiple protocols simultaneously, whichis not covered in either [20]

or [21].

The Recursive Network Architecture (RNA) [22] defines dynamic protocol stacks

that are recursively adjusted and expanded at runtime through protocol discovery of

self and neighbor nodes’ protocol stacks. However, such dynamic configuration mech-

anisms require reprogramming of existing protocols. On theother hand, UPS main-

8

9

tains the integrity of protocols and does not intervene withthe protocols outside the

well-defined UPS interfaces.

MobileMan [23] is proposed for MANETs where an abstracted database, called the

network status (NeSt), is used by all layers of the stack through a publish/subscribe

API. The protocols that need information from other layers have to register with NeSt

using a subscribe API for event notifications regarding thisinformation. A publish API

is used by protocols to notify NeSt of the occurrence of an event that may be of interest

to other protocols. Hence, MobileMan provides the analogous functions to our UPS

information sharing interface, although it lacks the UPS protocol interface functions to

offer flexible stack layer design and to support the co-existence of multiple protocols.

In [24], a staircase protocol stack is proposed for VANETs. Due to the wide spec-

trum of applications (vehicle-to-vehicle and vehicle-to-roadside communication) and

various types of communication (uni- and multicast, WiFi and sensor networks), ser-

vices in VANETs tend to be application-oriented. The staircase approach provides a

method whereby the application layer can directly bypass certain layers to control the

lower layers. The staircase approach is a special case of theUPS framework by placing

dummy bypass protocol modules into layers, as illustrated in Section 4.3.2.

Kumar et al. propose SensorStack [25], a five layer protocol stack for wireless

sensor networks where a “Data Fusion Layer” is employed instead of the traditional

“Transport Layer” in the OSI protocol stack [26]. SensorStack focuses on the ex-

change of information across stack boundaries. Cross-layer modules share information

through system-wide management modules in order to retain modularity. The services

of SensorStack are outside the protocol stack, since the design does not define a stack

that shares protocol modules. These services send packets directly to the radio, by-

passing the routing and MAC layer. This stack approach is notflexible and hard to

employ within a network since it defines direct access to the Physical layer without

going through the MAC, which results in channel access without any control for the

services.

X-Lisa [14] uses a similar concept of information-sharing to SensorStack, using

system-wide management modules to unify an information-sharing interface. How-

ever, X-Lisa inserts an additional layer between the Routing and MAC layers in the

original OSI protocol stack. This appended layer, called CLOI, exchanges informa-

10

tion between neighbor nodes through piggy-backing information onto broadcast pack-

ets. CLOI inserts and retrieves shared information from every broadcast packet that

is passed through the Routing and MAC layers. In this thesis proposal, we show that

two cross-layer protocols (DAPR [27] and XLM [15]) can be modified for the X-Lisa

architecture, and we show the qualitative and quantitativebenefits brought by using

X-Lisa. X-Lisa also enables the exchange of information between the nodes through

piggy-backing the information on outgoing packets. However, X-Lisa does not con-

sider the possibility of employing multiple network modules at the same time, hence

we developed the UPS protocol stack architecture.

The Chameleon architecture is proposed for wireless sensornetworks to build

generic MAC modules in order for a routing protocol to accessthe heterogeneous un-

derlying radio devices [28]. Chameleon decomposes the entire MAC layer and part

of the routing layer functionalities into basic functionalblocks to build these generic

MAC modules. This approach is specifically developed for multiple radio scenarios

where one routing protocol is associated with multiple MAC protocols. However, UPS

enables a more generalized method of protocol interface that can be used for all layers.

Chameleon also only provides limited cross-layer information-sharing support, where

information is exchanged through appending the intended information to packets.

TinyOS is an open-source operating system designed for wireless sensor networks.

Primitive support for multiple protocols is achieved via the Active Message mechanism

in [29]. However, Active Messaging is not a protocol stack architecture, instead it

provides a tool for packet handling. This mechanism can be used for implementing the

UPS-PI. The implementation of UPS in TinyOS includes a Message Poolwith internal

packet layout to support packet switching within the protocol stack

2.2 Receiver-Based Routing

Receiver-based communication is an opportunistic way of thinking about routing in

that decisions are not required to be made at the sender side but instead are made at the

receiver side. For example, a source node in ExOR [30] broadcasts packets that include

a potential forwarders’ list inside the header, and these potential forwarders contend to

forward the packet through the use of different back-off times, which depend on the

11

network distance to the destination. A source node in XLM [15] broadcasts packets

with the destination’s geographic location in the header, and every receiver contends

to forward the packet through the use of different back-off times, which depend on the

geographic distance to the destination. SOAR [31] uses the same idea, but in addi-

tion supports multiple paths for strategically selecting relay nodes. In other words, in

receiver-based routing, decision-making is deferred to the possible receivers, that make

decisions in a distributed manner.

Receiver-based routing is different from “On-demand” [32]or “Reactive” routing

in that reactive routing calculates a route at the time a packet is sent down to the MAC

layer. For example, AODV [33] begins transmission by first sending a “RouteRequest”

to create temporary routes among intermediate nodes and then transmits data packets

through the route established by the RouteRequest.

The ability to transmit data without requiring a route to be formed is enabled via

extra knowledge in the MAC layer and the joint decisions of receiver nodes. Nodes

could be assigned an ID in a structured manner and hence next hop nodes are implied

in the destination address itself. For example, a node’s ID can be assigned as the hop

count from the sink to the node, assigned from an initial flooding control packet. In

this case, DATA packets are broadcast by the MAC layer, and only potential next-hop

nodes (smaller ID nodes) relay it to the destination. As another example, nodes may

have statistics (e.g., energy, channel quality) that couldassist in making forwarding

decisions. A source node can send a request-to-send (RTS) packet, enabling potential

receivers to contend for the ability to forward the packet, with the receiver node that

has the best route being the first to return a clear-to-send (CTS) to receive this packet.

Researchers have analyzed the performance of receiver-based routing through math-

ematical models [34] [35] and shown that receiver-based routing protocols perform well

in terms of hop distance, energy and latency. Unicast trafficis assumed in these works,

hence, for convergecast and multicast traffic, further studies are required.

2.3 Multicast Routing

Existing multicast protocols for WSNs and mobile ad-hoc networks (MANETs) gener-

ally use a tree to connect the multicast members [36] [37] [38] [39] [40] [41]. For ex-

12

ample, the Takahashi-Matsuyama heuristic can be used to incrementally build a Steiner

tree for multicast routing [42] [43]. Additionally, multicast algorithms rely on rout-

ing tables maintained at intermediate nodes for building and maintaining the multi-

cast tree [44] [45]. ODMRP [36], CAMP [37] and PUMA [38] are suitable for high

mobility rates when a large number of nodes are needed to forward data messages.

MAODV [39], ADMR [40] and AMRIS [41] require fewer nodes but more recon-

structing of trees for forwarding data messages.

In location-based approaches to multicast routing [46] [47] [48], nodes obtain lo-

cation information by default as an application requirement (e.g., a home fire detection

sensor would know where it is located) or as provided by a system module (e.g., GPS

or a location-finding service). If location information is known, multicast routing is

possible based solely on location information without building any external tree struc-

ture. For example, PBM [49] weights the number of next hop neighbor nodes and total

geographic distance from the current node to all destination nodes and compares this

to a predefined threshold to decide whether or not the packet should be split. PBM is

a generalization of GFG (Greedy-Face-Greedy) [50] routingto operate over multiple

destinations. GMR [51] selects neighbors based on a cost over progress framework

integrated with greedy neighbor selection. Geocast [52] delivers multicast packets by

restricted flooding. Nodes forward multicast packets only if they are in the Forwarding

Zone calculated at run time from global knowledge of location information.

In this thesis, we propose RBMulticast, which differs from these location-based

approaches in that it is completely stateless and hence no costly state maintenance

is required. The state maintenance of conventional multicast protocols requires extra

traffic to keep the state information up to date, as well as requiring processing of the

state information communicated and storage of this state information. On the other

hand, in RBMulticast, only the node’s own location and the location of the multicast

members are needed for multicast packet routing.

2.4 Duty Cycle Control

Duty cycling is an aggressive means to save the energy of battery-operated devices. The

duty cycling method shuts down radio subsystems whenever nodes are not participating

13

in radio communication. For resource limited applications, it is intuitive to make nodes

sleep whenever possible. For example, wireless sensor nodes with low data rates will

spend most of their time in the idle state, and thus large gains can be achieved by

reducing the energy wasted in idle listening.

Most often, all nodes in the network have the same duty cycle,in order to facilitate

communication among the nodes. In some cases, all nodes’ duty cycles are synchro-

nized [53] [54], while in other cases, the nodes’ duty cyclesare asynchronous, so the

nodes wake up at random times in relation to each other [55] [56] [57].

Recent work has looked at adapting the duty cycle to the localnetwork conditions.

For example, adapting the duty cycle to the local traffic was proposed in PMAC [58],

where the sleep-wakeup schedule is represented by a string of bits that are updated

each period using local traffic information available at thenode. These schedules are

exchanged at the end of each period, so that neighboring nodes are aware of each oth-

ers’ schedules. Another adaptive duty cycle approach, ALPL, adjusts a node’s duty

cycle according to the node’s neighbors’ duty cycles in order to support the data flows

it receives [59]. However, none of these approaches optimize the duty cycle for con-

vergecast data patterns and receiver-based routing.

In convergecast communication, the packet traffic observedaround the sink node

is much higher than the traffic observed far from the sink, i.e., nodes with different

distances to the sink node receive and must relay different amounts of traffic. It is clear

that a network-wide fixed duty cycle will not provide the optimal trade-off between

energy efficiency and latency.

In this thesis, we utilize receiver-based protocols, whichenable nodes to commu-

nicate with no synchronization or neighbor information, and hence do not require all

nodes in the network to have the same duty cycle.

Chapter 3

Evaluation of the X-Lisa Cross-Layer

Protocol Architecture

In this chapter, we examine an existing information-sharing layered architecture called

X-Lisa [14] to evaluate its ability to support information-sharing among protocol lay-

ers. We select a layer-fusion cross-layer protocol called XLM [15] as our target com-

munication protocol. XLM is of particular interest becauseit represents an extreme in

cross-layer designs, consisting of only a single layer thatcarries out all of the func-

tionality from the application layer to the MAC layer. Hence, it is a good candidate to

test the benefits and limitations of a layered information-sharing architecture such as

X-Lisa.

We show that the XLM single layer protocol can be implementedin a layered stack

structure with information-sharing with no performance degradation. Additionally, we

show that we can easily swap MAC protocols if we properly design a communication

protocol using a layered approach.

The results of this chapter reveal some design limitions of the X-Lisa protocol stack

architecture that we discovered during the implementationof the XLM/X-Lisa protocol.

Therefore, a new universal protocol stack UPS will be introduced in the next chapter as

a solution for emerging wireless networks.

14

15

Figure 3.1: X-Lisa architecture.

3.1 X-Lisa: Cross-Layer Information-Sharing Archi-

tecture

The goal of X-Lisa is to provide protocol stack infrastructure support for information

exchange, either between layers within a node or among neighbors. X-Lisa combines

simplicity with support for cross-layer interactions, services, information propagation

and event notification.

X-Lisa maintains three data structures that are used to store shared information:

neighbor table, message pool, and sink table. Shared data structures are accessed

through an additional interface called CLOI (Cross-Layer Optimization Interface).

CLOI also includes an extended pseudo layer between the MAC and network layers

to intercept packets. This process is done implicitly to piggyback/exchange extra infor-

mation among neighbor nodes. The MAC and network layers do not need to know the

underlying manipulations behind CLOI and X-Lisa. The X-Lisa protocol architecture

is shown in Fig. 3.1.

The neighbor table stores shared information about the nodeitself and about neigh-

bor nodes. The categories of shared information are predefined though CLOI interfaces

at compile time. A default set of important parameters is identified as necessary for

improving the performance of many sensor network protocols. The default neighbor

table is shown in Fig. 3.2. Each row in the neighbor table stores the information shared

with a target neighbor node, and table entries are updated through information piggy-

16

Figure 3.2: A neighbor table is kept at every nodei with information about itself and

each of its neighborsj.

backed onto other packets, which are intercepted by the CLOIlayer between the MAC

and network layers.

The Message pool records information about data packets, including the type and

priority of the packets. The message pool can be used with theneighbor table to help

each layer make decisions about routing and sleep schedules. The Sink table stores

required critical information about the various sinks in the network, including distance

to the sink and attributes of the sink nodes. Both the messagepool and the sink table

need to be defined at compile time, and are not used in the implementation of XLM

described in this chapter. Detailed definitions of the data structures can be found in [14].

An important service provided by X-Lisa is the location service. The location ser-

vice of X-Lisa periodically updates a node’s coordinates, and CLOI exchanges this

information with the node’s neighbors. Thus the neighbor table is kept up-to-date on

the location of the node and each of its neighbors, removing the burden of perform-

ing this location service from the routing protocol. As willbe introduced in the next

section, XLM packet forwarding is based on the geographic location of the nodes, and

hence this location information is critical in the XLM protocol design.

3.2 XLM: A Fused-Layer Protocol for Wireless Sensor

Networks

The intention of XLM [15] is to avoid the issues in the traditional layered protocol

approach with a complete unified protocol. All the functionalities of the traditional

communication stack layers are converged into a single module in XLM. Hence, XLM

belongs to the the layer-fusion cross-layer approach. Evenwith a single layer design,

17

XLM provides the routing/MAC functionality and supports unicast communication.

By allowing all functionality to reside within a unified layer, routing decisions can

be made with the information exchange of MAC layer control packets. The expo-

sure of the lower layer information to the routing layer reduces the overhead of extra

information exchanges. Furthermore, because components can access any necessary

information directly, efficient energy consumption mechanisms and congestion control

can be implemented in a straight forward manner.

Network communication in XLM is based on a MACAW [60] style hand-shaking

protocol, where data transmission is based on 4 types of packets: RTS (request-to-

send), CTS (clear-to-send), DATA, ACK. The XLM message transmission process is

determined by the following hand-shake steps:

1. If node A wants to transmit a message to the sink, node A willfirst broadcast an

RTS packet. Other nodes that receive the RTS packet acknowledge with a CTS

packet to node A after a delay determined by a cost function that is based on their

distance to the sink.

2. Node A will choose the first returned CTS packet as the winner of this hand-

shake. This will trigger node A to start sending DATA packetsto the winner,

node B.

3. When node B receives a DATA packet, it responds with an ACK packet corre-

sponding to the received DATA packet. Thus, XLM implements astop-and-wait

acknowledgement protocol, where each ACK packet corresponds to a particular

DATA packet, and the transmitter (node A) does not send another DATA packet

until receiving an ACK for the previous DATA packet. This procedure is repeated

until all DATA packets are successfully received and acknowledged by node B.

4. The rest of the nodes covered in the radio range of any of theCTS/DATA/ACK

packets know that there are active on-going communications, and hence they

enter the sleep state to save energy and to avoid packet collisions.

In this routing/MAC mechanism, the sender node passively chooses the first re-

sponding node as the winner node to establish the connection. We classify this to be

receiver-based communication because, instead of the sender making the decision about

18

the next-hop node, the packet route is determined by the CTS backoff time chosen by

the potential receiver nodes.

The potential receiver nodes’ CTS return back-off delay times are a function of

distance from the node to the sink node. This back-off time isdetermined as follow. The

RTS packet coverage range is divided intoNp priority regions, in increasing distance

order from the transmitter. Each priority region corresponds to a backoff window size,

CWi. Nodes in the feasible region, which is the region where forward progress to the

sink is ensured, will send CTS packets with back-off time
∑Np−1

i=1 CWi + cwi, where

cwi is a random generated number number∈ [0, CWi]. Thus, nodes nearer to the

destination will become the winner of the current contention due to smaller back-off

times. Neighbor nodes not in the feasible region are furtheraway form the sink node

than the transmitter and will not return CTS packets in response to RTS packets.

XLM is also classified as a geographic routing protocol, because distance is used

to calculate the back-off delay function and to make routingdecisions. In our X-Lisa

implementation, this location information is stored and maintained by the neighbor

table in X-Lisa for every node.

3.3 XLM/X-Lisa: Example of Layer Fusion Decompo-

sition

XLM exhibits total layer fusion and is the counter-part of a layered protocol stack. It

is desirable for an information-sharing cross-layer approach (such as X-Lisa) be able

to replicate the performance achieved by XLM while maintaining the convenience of

modular protocol layers. In our work, we show that this is possible. Furthermore, we

illustrate the advantage of using a modular scheme by swapping the MAC protocol from

the original XLM’s MAC functions to a Low-Power-Listening (LPL) scheme [55].

3.3.1 Layer Implementation

In the initial protocol suite, we decomposed XLM into the layer modules shown in

Fig. 3.1 and included them in the X-Lisa architecture. The new entity, called XLM/X-

Lisa, is shown in Fig. 3.3(b) and is the layered version of XLM.

19

(a) (b) (c)

Figure 3.3: The original XLM (a), was broken into a layered scheme (XLM / X-Lisa)

(b), and its MAC layer was replaced (c). Arrows show packet exchanges between

layers, and squares show information exchanges.

From the application layer’s perspective, XLM/X-Lisa is designed to have the same

send/receive function call interface. With no change of theexisting code, the applica-

tion layer is able to switch from the original XLM to XLM/X-Lisa and expect the same

packet send/receive behavior.

The transport layer extracts information from the user dataand segments long data

packets. Long data will be decomposed into several small segments of data that can fit

into the network layer packet payload. A transport layer header will be added on these

data chunks before they are delivered to the lower layer.

In this suite, the network layer XLM/Net has limited roles. Because the role of

routing is transfered to the Linker layer, XLM/Net does not need to maintain a routing

table. Hence, there are no extra control packets generated from the Network layer.

Since there is no need to exchange information between network layers among different

nodes, XLM/X-Lisa minimizes the packet size by ignoring theNetwork layer’s header.

XLM/Net simply maintains a queue of stored packets for the Link layer.

The Link layer XLM/MAC performs the RTS/CTS/DATA/ACK packet hand-

shaking and controls the radio on/off for duty-cycling. Packet delivery failure informa-

tion is shared with the Application layer by X-Lisa’s CLOI interface to control traffic

congestion.

20

3.3.2 Information Exchange with X-Lisa

In XLM and XLM/X-Lisa, receiver nodes make routing decisions with an initiative

concept. According to dynamic statistics and an initiativeı, receiver nodes can calculate

and decide if they should accept a given RTS packet. The following is the calculation

of initiative ı:

ı =

1, if

ξRTS ≥ ξTh

λrelay ≤ λTh
relay

β ≤ βmax

Erem ≥ Emin
rem

0, otherwise

ξRTS is the SNR of the received RTS packet, andξTh is the SNR threshold. RTS

packets with lowerξRTS than the threshold will be ignored by the receivers.λrelay is

the current relay rate, which represents the number of packets that have been routed in

a unit time period.λTh
relay is the relay rate threshold. A node with too many packets

in the routing queue results in lager relay rate than the threshold; receiver nodes will

stop relaying more packets by not joining the current routing contention competition.

β is the current packet memory buffer usage, andβmax is the buffer usage threshold.

Erem is the remaining energy in the node, andEmin
rem is the minimum remaining energy

required. Nodes with low energy will not join the contentioncompetition and route

packets.ı = 1 means that the receiver is allowed to return a CTS packet, andı = 0

means that it is not allowed.

Congestion control is accomplished by coordinating the data generation rateλ of

the nodes. Data generation rate will vary according to the feedback of the sending and

receiving packets from the XLM/MAC layer. The Application layer utilizes a mecha-

nism that increases the data generation rateλ when an ACK packet is received. This

implies that the data rate can be increased whenever a data packet is successfully de-

livered. Additionally,λ decreases if no CTS packet is received after sending an RTS

packet. It is assumed that the cause of absent CTS packet is due to the busy states of all

neighbor nodes.

X-Lisa uses the neighbor table as a central storage of the nodes’ positions for loca-

tion look-up. Because X-Lisa piggy-backs necessary information to packets, the packet

21

Figure 3.4: The flow graph for sending a packet. The arrows ofβ, λ, andd indicate

the packet buffer usage, packet rate, and distance information exchanged through the

X-Lisa interfaces.

payload of the Link layer will have the extra information added by CLOI.

3.3.3 Input/Output Packet Flow

The sender side of the XLM/X-Lisa protocol is shown in Fig. 3.4. To initiate a trans-

mission, the sender side of the application generates a new request to send data. The

data will be forwarded to the Transport layer. The data generation rateλ is adjusted

according to the collision information of the MAC layer.

Data from the user will be segmented into small data packets and delivered to the

Network layer packet queue, and the Network layer will then issue a send-request to

the MAC layer. If the MAC layer is idle when the Network layer send the request,

it will accept the request and start the first RTS packet for the RTS/CTS/DATA/ACK

hand-shaking process.

If the MAC layer receives a response CTS packet, it knows thatthe relay node is

decided. Then, it will get the first data segment from the XLM/Net protocol, add a link

layer header, send out this DATA packet to the receiver node,and wait for an ACK

packet for this DATA packet. Every DATA packet has a corresponding ACK packet.

After the MAC receives the last ACK packet, it returns adoneevent to XLM/Net for

22

Figure 3.5: The packet flow graph of a node acting as the receiver node. The arrows

of β, λ, andd indicate the packet buffer usage, packet rate, and distanceinformation

exchanged through the X-Lisa interfaces.

cleaning the packet queue. The value ofλ will be updated by Link layer according to

the CTS and ACK packets’ status, as described in Sec. 3.3.2.

The sender node will go to the idle state if there are no futurepackets in the

XLM/Net queue. Otherwise, it will wait a random period before sending the next packet

to avoid network congestion.

A packet flow graph of a receiver node is presented in Fig. 3.5.When the node

receives an RTS packet, it uses CLOI to get the location of thesender and the destina-

tion node. It then calculates the distance to the destination node and the current feasible

region. If the receiver node is not inside the feasible region, the RTS packet will then be

dropped. The receiver node will go to the sleep state in orderto save energy. Otherwise,

the initiativeı is calculated from the current statistics of the node.

If ı equals 0, the node will go to the sleep state. Otherwise, ifı equals 1, then

the node will return a CTS packet with a backoff time according to its distance to the

destination node. The reciever node will go to the idle stateand wait for the first DATA

packet. After the requested DATA packet is received, it willbe forwarded to the upper

layer to a receiving buffer inside the XLM/Net layer. Immediately, the XLM/MAC

layer sends back an ACK packet. Every DATA packet has a corresponding ACK packet.

If it is the last ACK packet, the XLM/Net layer will be notifiedto do either of the

23

following two steps according to whether the reciever node is the destination node. If

the receiver node is the destination, it will upload all the data packets to the transport

layer. Otherwise, the receiver node will redirect the data packets to the output packet

queue inside the XLM/Net protocol. Fig. 3.5 assumes the reciver node is the destination

node of the arriving packet.

3.4 XLM/LPL: Example of Protocol Swapping

Modular designs allow replacing a protocol with little or nodifficulties, otherwise,

the benefit of including a new protocol may be outweighed by the amount of work

necessary to incorporate them into an existing framework.

X-Lisa enables the insertion of new protocols through the appropriate use of the

CLOI interface. To show the flexibility of X-Lisa, we experiment with swapping the

MAC protocol from the XLM/MAC to a low-power-listening (LPL) MAC protocol.

3.4.1 Protocol Swapping Implementation

The new protocol suite is a variant of XLM/X-Lisa: the original MAC layer was re-

placed by the LPL MAC protocol SpeckMAC-D [55], as illustrated in Fig. 3.3(c). We

named the new entity XLM/LPL/X-Lisa.

In SpeckMAC-D, every node sleeps forti s between wake-ups, whereti is the inter-

listening time. In order to guarantee that the receiver willwake up at some point during

a transmission, a sender must repeat the same packet forti s. If a node wakes up and

receives a packet, its MAC protocol forwards it to the network layer before sleeping for

the rest of the cycle. In SpeckMAC-D, no RTS/CTS/ACK controlpackets are used in

the packet delivery.

Because packet delivery of XLM/X-Lisa cross-layered design is based on location

information, SpeckMAC-D is modified to support location information by making re-

ceiver nodes route packets only if they are closer to the destination node. This is similar

to restricted flooding of packets in Geocast [52].

Similarly to XLM, we modified XLM/LPL/X-Lisa to route packets only if the node

is closer to the destination, which is determined via the “feasible region.”

24

Figure 3.6: The source node is at (0,0) and the sink node is at (60,60). Radio range is

30m.

Table 3.1: Simulation results of XLM/LPL/X-Lisa and XLM/X-Lisa.

XLM/LPL/X-Lisa XLM/X-Lisa

Received Packets 165 2036

Transmitted Packets 3674 378

Goodput 0.75 1.0

Latency 1.503 0.683

The two suites of protocols were implemented in TinyOS and emulated with

TOSSIM. We conducted emulations on 10 nodes with the topology shown in Fig. 3.6.

The source node at location (0, 0) sends a packet to the sink node at location (60, 60)

every 5s, for a total simulation time of 100s. The results are shown in Table 3.1.

These results show that XLM/LPL/X-LISA sends more packets than its original

counterpart because the LPL scheme repeatedly sends packets overti s. The RTS/CTS

handshake accounts for over a third of the 378 packets transmitted in the XLM/X-Lisa

suite.

On the other hand, XLM/X-Lisa receives more packets becauseevery communi-

cation requires a hand-shake, and because many nodes receive RTS/CTS/DATA/ACK

packets even though they have lost the contention to other nodes and are not part of

the communication. Finally, both suites exhibit high goodput (greater than 75%), with

25

XLM/X-Lisa showing better performance. Likewise, XLM/X-Lisa yields lower la-

tency.

These results show that the replacement of the original XLM/MAC protocol by

SpeckMAC-D is feasible and X-Lisa did not degrade the performance of the proto-

col: according to a set of quantifiable metrics, the two suites behave according to our

expectations.

3.5 Conclusions

In this chapter, we showed that X-Lisa is expressive enough to support the decomposi-

tion of the layer-fusion protocol XLM. We also showed that the design of a new protocol

suite is possible through “swapping” different protocol modules in a layered protocol

stack. A new protocol suite XLM/LPL/X-Lisa was proposed without modifying the

rest of the system, by simply swapping the MAC protocol modules.

Even though we demonstrated the strength of the X-Lisa information-sharing lay-

ered architecture, there are still many questions that remain. Does X-Lisa have the

complete/right support for networks beyond sensor networks? X-Lisa provides neigh-

bor tables for information exchange between neighbor nodes. Should we also maintain

records for nodes further away? Should we have the information table format the same

for all nodes and network protocols/applications? Different protocols require differ-

ent services, and there are potentially an infinite number ofpossible protocols. Should

CLOI keep growing to include all the unforeseen new services, or should we unhook

CLOI from the stack structure in order to reasonably maintain CLOI?

More importantly, recent devices developed for emerging wireless networks sup-

port multiple communication substrates and require the execution of multiple protocols

within a layer. The CLOI layer between the routing and MAC layers does not provide

adequate support for simultaneous execution of protocols.

In the next chapter, the experience learned from our work with X-Lisa is used to de-

velop a new protocol stack architecture. The proposed Universal Protocol Stack (UPS)

discussed in the next chapter intergrates the idea of “protocol switching” and achieving

the ability to execute multiple different protocols in the same layer at the same time,

which is a suitable approach for emerging wireless networks.

Chapter 4

UPS: Universal Protocol Stack for

Emerging Wireless Networks

Recent devices developed for emerging wireless networks, such as 4G cellular net-

works, wireless mesh networks, and mobile ad hoc networks, support multiple commu-

nication substrates and require the execution of multiple protocols within a layer, which

cannot be supported efficiently by traditional, layered protocol stack approaches. While

cross-layer approaches can be designed to support these newrequirements, the lack of

modularity makes cross-layer approaches inflexible and hence difficult to adapt for fu-

ture devices and protocols. Thus, there is a need for a new protocol architecture to

provide universal support for cross-layer interactions between layers, while also sup-

porting multiple communication substrates and multiple protocols within a stack.

In this chapter, we propose Universal Protocol Stack (UPS),which provides such

support in a modular way through packet-switching, information-sharing, and mem-

ory management. To show that UPS is realizable with very low overhead and that

it enables concurrent and independent execution of protocols in the same stack layer,

first, we present a wireless sensor network test-bed evaluation, where UPS is imple-

mented in TinyOS and installed on individual sensor motes. Two cross-layer routing

protocols are implemented and evaluated with UPS and without UPS. We also imple-

mented UPS in the OPNET simulator, where the IP and AODV routing protocols are

executed concurrently to support networks with both staticand mobile wireless nodes.

Our implementation shows that the overhead incurred to implement UPS is very low,

26

27

and little or no modifications are required to adapt existingprotocols to the UPS frame-

work. Both the implementation and the simulation studies also show the advantages of

enabling concurrent protocol execution within a stack layer, improving the successful

packet delivery ratio or the total number of packets sent forthe investigated scenarios.

4.1 Introduction

Emerging wireless networks such as 4G cellular networks, wireless mesh networks,

and wireless ad hoc networks aim to effectively utilize recent devices that employ mul-

tiple communication substrates, such as laptops with Ethernet and WiFi network in-

terfaces, or cellular phones with GSM and WiFi network interfaces. Existing protocol

architectures, which include the traditional layered approach (e.g., the OSI or TCP/IP

layered protocol stacks), cross-layer information-sharing, and layer fusion architec-

tures cannot provide sufficient support for these emerging networks. The traditional

layered approach does not provide support for multiple protocols in a layer; hence sup-

porting multiple MAC/PHY for different communication substrates requires that the

protocol designer make ad hoc modifications of the stack. While the fused-layer and

information-sharing cross-layer approaches can be designed to support multiple com-

munication substrates, the lack of modularity makes these approaches inflexible and

hence difficult to adapt to support future devices and protocols. Thus, there is a need to

investigate a new protocol architecture that has universalsupport for emerging wireless

networks with multiple communication substrates and that supports cross-layer inter-

actions and information-sharing to enable more efficient network operation.

Several wireless mesh network (WMN) studies assume routershave the ability to

switch among multiple radios. In [9], the authors investigated the implementation of

interface switching on multiple radio devices for WMNs, andthey found that existing

hardware and protocol stacks do not provide sufficient support for effective switching.

The authors indicated that there was excess delay due to slowhardware radio switching,

and high packet loss rate because packets in the old queue were discarded after switch-

ing to the new radio. The authors also found that when implementing routing protocols

for multiple radio interfaces in the Linux operating system, modifications of the stack

are needed because there is an implicit assumption that eachinterface is associated with

28

exactly one channel. The authors propose to alter the TCP/IPstack by adding a channel

abstraction module to switch packets between multiple interfaces and the routing layer.

Another implementation of multiple radio devices is investigated in [61] for Win-

dows XP. The authors propose similar modifications to the TCP/IP stack as proposed

in [9], where a virtual device driver runs between the Network layer and the Data Link

layer. This additional module performs multiplexing and demultiplexing across mul-

tiple physical interfaces to imitate a single network interface and MAC address to the

upper layer protocols. As shown by the approaches of [9] and [61], current operating

systems, which implement the layered protocol stack, lack support for general packet

switches, which is necessary for supporting devices with multiple radios.

Similarly, studies on the implementation of multiple MAC protocols sharing a sin-

gle radio [10,62,63] have found that traditional stack approaches are not sufficient. The

idea behind such systems is that the MAC protocol can be selected out of a set of MAC

protocols at run time according to real time network conditions. To achieve this goal,

two general interfaces supporting the set of MAC protocols are proposed between the

Network and the Data Link layer, and between the Data Link layer and the Physical

layer. These general interfaces provide fast switching forensuring that each packet is

sent to the appropriate MAC [62]. Inter-device control information exchange is im-

portant in addition to information exchange among protocollayers, because different

devices must use the same MAC protocol in order to communicate.

In this thesis proposal, we propose Universal Protocol Stack (UPS), a new proto-

col stack architecture where multiple radios and multiple concurrent protocols within

a layer are supported with very low overhead. Protocol IDs are used to identify pack-

ets of different protocols and to enable general protocol switches, as detailed in Sec-

tion 4.2. Additionally, UPS enables support for cross-layer interactions and information

exchange between different layers in order to optimize network performance.

UPS is illustrated in Fig. 4.1 for a node that runs multiple protocols in each layer

concurrently. Different protocols and services are executed as modules and managed

by theUPS protocol interfaces(UPS-PIs) with very low overhead incurred. UPS, thus,

can efficiently execute multiple protocols in the same stacklayer for different tasks,

for different communication substrates and different applications. For example, the

protocols can be IP using an IEEE 802.11 radio and AODV [33] using an 802.15.4

29

Figure 4.1: An example of the high level system block diagramof the UPS framework.

30

radio, where both networks are shared by the upper layer protocols (e.g., TCP/UDP)

and applications.

UPS defines three interfaces,UPS protocol interface(UPS-PI), UPS information-

sharing interface(UPS-ISI), andUPS Message Pool interface(UPS-MPI), along with

a packet memory management scheme, namely UPS Message Pool.Theprotocol in-

terface(UPS-PI), which is a protocol switch between stack layers, selectively delivers

packets to the correct upper or lower target protocol module. With very low overhead

incurred, UPS can efficiently execute multiple protocols inthe same stack layer for

different tasks. The same functionality could be achieved with specific customization

of layered stack approaches as proposed in [9, 61], however,UPS provides a flexible,

modular, and easily portable approach, enabling a well-defined framework for protocol

execution.

At the same time, UPS provides a universal means for information exchange among

the protocol modules through aninformation-sharing interface(UPS-ISI), making UPS

ideally suited for complex heterogeneous networks. UPS also defines a packet memory

management scheme,Message Pool, which is accessed via aUPS Message Pool Inter-

face(UPS-MPI). This scheme is required to manage the available memory segments

for packet storage and to provide a universal interface to protocols for accessing packet

memory storage dynamically, e.g., to access the vital packet specific information such

as the source or destination addresses.

We show that UPS is flexible and achievable in practice by implementing UPS

on physical sensor network devices. The results show that cross-layer interaction is

achieved with UPS easily and with very low overhead, while the well-defined interfaces

of UPS protect the independence and modularity of separate protocol modules.

Due to the numerous advantages of enabling the co-existenceof multiple protocols

in a stack layer and of information-sharing, UPS is ideally suited for emerging wireless

networks that require multi-functional or cross-layer support. Different protocols are

responsible for different tasks, and they share vital information among themselves. The

resulting output packets gracefully co-exist in the network. As an example, in this

chapter we show that having UPS to support concurrent execution of IP and AODV

routing protocols on a network with both static and mobile devices achieves better

overall performance than running only one of these protocols.

31

We demonstrate the gain of this novel approach by comparing it with previous sin-

gle protocol stack designs through detailed simulations and physical experiments. Two

different networking paradigms, namely wireless sensor networks (WSNs) and mobile

ad hoc networks (MANETs), are investigated with UPS. For each network, two rout-

ing protocols are used as protocol modules to show that different types of network

layer traffic can co-exist with UPS while sharing the same MAClayer in a predictable

manner: i) WSNs with the XLM [15] cross-layer protocol and the RBMulticast [17]

multicasting protocol, and ii) MANETs with AODV and TCP/IP.More specifically,

results show that utilizing UPS with two Network layer protocols running simultane-

ously and independently, the successful packet deliveriescan be increased significantly

while reducing the network traffic compared to using a traditional stack approach with

a single Network layer protocol. For the scenarios investigated in this thesis proposal,

the successful packet delivery ratio is increased up to 36% compared to using a tradi-

tional layered stack with TCP/IP/802.11, and up to 23% compared to using a traditional

layered stack with AODV/802.11.

Using UPS, complex network algorithms can be divided into independent pieces

for easy coding and analysis. As an example, we show in this thesis that for our sensor

network implementation with UPS, a location service can be independently designed as

a network protocol instead of being affiliated to a specific routing protocol, and locally

provided radio power management of the CC2420 radio device is shared by all com-

munication protocols via theUPS-ISIs, i.e., the UPS information-sharing interfaces.

The rest of this chapter is organized as follows. Section 4.2provides a detailed de-

scription of UPS, including theprotocol interface(UPS-PI), the information-sharing

interface(UPS-ISI), and themessage pool interface(UPS-MPI). Section 4.3 details

results from our wireless sensor network implementation with Tmote Sky motes with

UPS and from our OPNET simulations of UPS. Finally, Section 4.4 provides conclu-

sions.

4.2 UPS Framework

UPS (Universal Protocol Stack) defines three groups ofinterfacesfor interconnecting

protocol modules and for enabling information-sharing among the protocol modules.

32

Implementations of the individual protocol modules are outside the scope of UPS; how-

ever, the protocol modules should work with the universal interface provided by UPS,

or have protocol switch layers implemented, in order to interconnect with each other.

Examples of protocol switch layers are shown in Section 4.3.3.

The first group of interfaces,UPS protocol interfaces(UPS-PI), enable multiple

protocol modules to co-exist in the same stack layer and run concurrently and indepen-

dently. This is done using an ID-based packet-switching mechanism to send packets to

the correct upper or lower protocol modules.

The second group of interfaces, namelyUPS information-sharing interfaces(UPS-

ISI), provide a general means for a module to access another module’s information

stores, such as a neighbor table or location information, using unique information IDs

that specify the particular information store with the dataof interest.

The last group of interfaces,UPS Message Pool interfaces(UPS-MPI), are used to

enable multiple protocols to access common packet memory structures maintained in a

UPS Message Pool. This section details these three groups of interfaces along with the

proposedMessage Poolsystem.

The basic requirement of the UPS framework on protocol design is in the protocols’

packet header format. A leading header field that contains the unique Protocol ID is

required by UPS in the protocol’s packet header for packet switching. This Protocol

ID is analogous to the port number necessary for Internet services, and it is chosen by

the protocol designer. Each protocol is assigned a system-wide unique Protocol ID, as

packet switches perform multiplexing and demultiplexing of packets according to the

Protocol ID field. For example, the Network layer packet headers of the Network layer

modules XLM/Net [15] and RBMulticast [17], which are implemented for our sensor

network experiments, are shown in Fig. 4.2, where the first byte of both headers are the

protocols’ respective Protocol IDs.

The choice for the Protocol ID field size is a system design criteria. For the same

purpose, Ethernet uses a two byte field calledEtherType, to indicate which Network

layer protocol is being used in an Ethernet frame. TCP/IP also uses the same header

field, where the leading 4 bitsVersion [64] field in an IP header indicates different

modules in the IP protocol, and a one byteProtocol [65] field indicates the next layer,

i.e., Transport layer protocol.

33

(a) XLM/Net packet header

(b) RBMulticast packet header

Figure 4.2: Packet header format of XLM/Net and RBMulticastpackets.

Using the extra first leading byte for all protocols allows UPS to perform packet

switching on a per-packet basis. This enables packets from different protocols to mix

together seamlessly, and it provides a generalized means toenable protocols to operate

concurrently. While this does require that existing protocols be modified to provide this

leading byte Protocol ID, as we will show in Section 4.3.3, with additional intermediate

layers, existing protocols like IP and AODV can be integrated into UPS without any

modification to the protocol itself. However, the additional bytes of Protocol ID may

cause extra packet fragmentation in the other layers (e.g.,TCP, IP, or 802.11) due to the

packet size being over the maximum transmission unit (MTU).Therefore, the system

default MTU should be adjusted accordingly when the UPS framework is enabled. One

point worth noting is that 6LoWPAN [66] satisfies the Protocol ID requirement, since

theDispatch Valuefield used in the header can be used as the UPS Protocol ID.

In order to support legacy devices in networks using UPS, we can use a home agent

technique as used in Mobile IP [67] or gateway devices to enable indirect connections to

34

non-UPS-enabled devices. For example, a traffic flow coming from a non-UPS-enabled

device can be sent to a UPS-enabled home agent or gateway device and then translated

and redirected to the UPS-enabled device. These techniquesmay require some methods

to differentiate packet formats in order to deduce the appropriate Protocol IDs; how to

do this is outside the scope of our work.

4.2.1 UPS Protocol Interface (UPS-PI)

Unlike the TCP/IP stack model with five layers, UPS provides alayered protocol model

without any restrictions on the number of layers. We assume the Physical layer is con-

trolled by the Data Link layer, and there are no specific interfaces in between these

layers. For the other layers, each layer is connected to aPacket Switchthrough theUPS

Protocol Interface(UPS-PI). A Packet Switchis a generalized extension of Logical

Link Control in the IEEE 802 family of standards. Its purposeis to multiplex pack-

ets passed from the upper layer (when transmitting) and demultiplex packets from the

lower layer (when receiving). This is the key to the co-existence of multiple protocols in

the same layer, since protocol modules receive the correct packets without knowledge

of other modules in the protocol stack. Thus, instead of ad-hoc system components,

protocol modules can be easily identified by multiple protocols in other layers, and

protocols become tools with well-defined unified interfacesand predictable behavior.

Building a new system becomes an easy procedure of combiningprotocols from a well

defined toolbox without the need for customized protocol interfaces

UPS-PI consists ofInput and Output system calls. Input is the interface that a

protocol module would use for sending a packet up to a higher layer protocol module,

andOutputis the interface that a protocol module would use for sendinga packet down

to a lower layer protocol module. The function calls for these two interfaces are as

follow:

Input(Packet);

Output(Lower layer Protocol ID, Packet);

We demonstrate the use of these interfaces using a schematicdiagram in Fig. 4.3.

The Output interface requires the Protocol ID of the next (lower) layermodule for

multiplexing of the output packets from different modules.The Output interface is

35

Figure 4.3: Packet flow diagram example for the UPS framework.

necessary not only to ensure that this packet reach the correct lower layer module, but

also to enable the multiplexing of output packets from different modules by appending

the correct Protocol IDs in front of every packet. TheInput interface does not need

the Protocol ID parameter because it is indicated by the leading byte of the packet

header (the upper layer protocol module’s packet header).

One issue that occurs when including the next lower layer Protocol ID as an ar-

gument of theOutput interface is that we cannot select protocols that are not directly

below the current layer. This one-layer only association isnot necessarily a drawback,

because it limits the protocol dependency to adjacent layers, and is also employed by

current protocols (e.g., a selected socket implies TCP/UDP, TCP/UDP implies IP, etc.).

The implications of this can be seen in the Section 4.3 case studies, where protocols

implicitly assume the next layer protocol. An alternative is to have the application de-

cide which protocols to employ at each layer, and have the Protocol IDs of all selected

protocols stored within a general internal packet header, as will be introduced in the

next section. Another alternative is to provide smart switches [68], leaving the protocol

selection decision to be made by the smart switches on the fly and without input from

the user. We will explore this approach in the future work that provides cross-layer

36

interactions of the MAC and routing layers to best support application QoS goals. The

best network/interface combinations for networks that support multi-radio devices will

be explored.

Protocol IDs should be uniquely assigned without duplication. For example, Proto-

cols IDs can be managed by a central authority similar to the way the Internet Assigned

Numbers Authority (IANA) is responsible for maintaining the assignment of TCP/UDP

port numbers.

4.2.2 UPS Message Pool and Message Pool Interface (UPS-MPI)

Even if protocols conform to the sameInput andOutputsending interfaces, different

protocols still need a standardized memory structure for packets. One of the reasons

is to support packet switching, since Protocol ID fields should be identified by the

switches in the memory representation of the packet. Another reason is to provide

different protocols access to the vital packet specific information such as the source or

destination addresses. Moreover, to efficiently achieve access to a packet by multiple

protocols, a common memory space should be used for the packet to avoid multiple

memory copy operations.

The common memory structure is for internal packet processing within a specific

system, and it can vary among different UPS implementationsand devices. For exam-

ple, a UPS Message Pool implementation for Linux and Windowscan use the standard

packet memory structure defined by the corresponding operating system. On the other

hand, the packet layout definition is identical according tothe specific protocol specifi-

cation.

In UPS, the minimum information required for the common packet memory struc-

ture is encapsulated into aMessage Pool, which manages available memory segments,

and provides interfaces to protocols for accessing memory storage dynamically.

The Message Poolis accessed via theUPS Message Pool Interface(UPS-MPI),

whose pseudo-code is as follows:

Memory Block = get(): get a memory block from the pool.

put(Memory Block): return Memory Block to the pool.

TheMessage Poolconsists of memory blocks as shown in Fig. 4.4. As each mem-

ory block provides only a small amount of memory, to create a full packet, memory

37

Figure 4.4: The internal packet structure ofUPS Message Pool. The first memory block

stores the packet header, and the packet data payload startsfrom the second block.

This is a snapshot of an output packet inside the XLM/Net module. XLM/Net will be

illustrated in Section 4.3.1.

blocks must be combined together. We call this structure aMessage Chainbecause

the individual memory blocks from theMessage Poolare chained together by the

m next pointer to create the full memory structure for a packet, anddifferent pack-

ets are chained together by them nextpkt pointer to form a chain of packets. This

Message Chainidea imitates the implementation of packets within the Internet stack in

Linux and UNIX [69].

This Message Chainpacket format is independent from the packet data formats

specified by the individual protocols in the stack, and is crucial to provide space for

stackable protocol headers.

In actualUPS-MPIimplementations, wrapper routines can be provided as assistant

functions. For example, manipulation functions likegetNext(previousBlock)

or putChain(blockHead) can be added to the programming interface. The get()

and put() functions described above are listed as the minimum necessary interfaces

and thus must be provided to enable the Message Pool support.For theUPS-MPI

implementation for systems that have their own message poolaccessing interfaces, UPS

should reuse their interfaces as much as possible for maximum compatibility to existing

38

codes.

Although most operating systems such as Linux and UNIX already provide a sim-

ilar packet memory structure [69], simpler operating systems such as TinyOS require

implementation of theMessage Chain. By default, the internal packet structure of

TinyOS is a continuous memory space with the first 11 bytes dedicated to the Data

Link layer header, the last 7 bytes dedicated to the meta data, and a fixed-sized payload

in between. This packet structure does not support stackable protocol headers.

Protocol headers in the UPS stack model are organized as anonion skin, whereby

each layer adds to or tears off the outermost skin. In the leftmost memory block in

Fig. 4.4, headers are stored at the bottom of the memory blockin a bottom-up manner.

The data payload of a packet is stored in the second memory block in the chain and

expanded to additional blocks if the payload is too large fora single memory block.

Free space in the first block, shown in gray, is reserved for lower layer headers (e.g.,

the Link layer header), and space in the third block is unusedand left empty (as the data

payload did not utilize a full two memory blocks but requiredmore than one memory

block).

Because unused memory spaces in blocks are wasted, there is atrade-off between

the size of the memory blocks and how many blocks are needed for a packet. Pro-

tocol designers can adjust the size of the memory blocks to meet their goals. On the

other hand, variable block size can be provided to avoid wasted memory if the target

operating system provides variable size dynamic memory allocation.

4.2.3 UPS Information-Sharing Interface (UPS-ISI)

Information-sharing based cross-layer design has often been proposed for wireless

communication protocols due to dynamic radio conditions. UPS supports such cross-

layer information sharing by providing theUPS information-sharing interface(UPS-

ISI). Because of the variety of information shared among protocol modules, (e.g., see

Table 4.1) it is difficult to manage all of this information inone centralized data storage

as proposed in [25] [14].

UPS avoids centralized information storage by not providing storage explicitly. In-

stead, UPS assumes that the responsibility of information storage is on the provider

side, and thus each module independently manages its own information stores. UPS

3
9

Table 4.1: Selected information-sharing protocols with their shared information and optimization goals. For more generalized

classification, see [1, Table 1].
Model Shared Information Optimization Goals

App Net Link/Phy App Net Link/Phy

Sichitiu

[70]

Schedule: The actions and times of Ap-

plication and MAC layers,

• Sample, Application layer gen-

erates data sample and MAC

turns off radio power.

• Transmit, MAC turns on and

transmits a packet.

• Receive, MAC turns on and re-

ceives a packet.

Priority: MAC sends data packet imme-

diately. Control packet uses RTS/CTS

in MAC to guarantee transmission and

has lower priority than data packet.

Exception: Route table reset if collision

occurs, packet lost, and Synchronization

fails

Reduce

buffer size

because

schedule re-

duces packet

latency.

Link schedules to

eliminate idle listen-

ing, packet collision,

and delay.

SP [71] Urgency bit: This bit

in the packet notifies

the Link layer to treat

the packet as higher

priority.

Reliability bit: This

bit in the packet no-

tifies the Link layer

to acknowledge the

packet and retransmit

in case of failure.

Schedule: The MAC schedules are set

to listen, receive, transmit, and sleep.

Neighbor table update: Routing coper-

ates with MAC layer to maintain neigh-

bor table.

Neighbor table update: Updates to the

neighbor table on different Link layer

connections. Updates include address

of neighbor, link quality, and scheduling

information.

Message pool: Control feedback to Net-

work layer, indicating the next sent

packet in Network layer.

MDU: Link’s maximum data unit of a

specific Link protocol.

Congestion status: Feedback to Net-

work layer for routing decision making.

Providing

options

of urgent

packet and

reliable com-

munication.

Better packet

buffer con-

trol by using

message

pool.

Using Link schedules

to eliminate idle lis-

tening, packet colli-

sion, and delay.

RF [72] Data generation

frequency: Used for

computing routing

cost.

Number of descendants: Descendants

in the routing tree for MAC to decide

duty cycle.

Radio duty cycle: Used in computing

routing cost.

Route se-

lected to

reduce

routing cost.

Adapt radio duty

cycle according to

number of descen-

dants and neighbors’

duty cycle.

XLM/X-

Lisa [14]

Node location andbuffer size: For de-

cision making in Link layer packet con-

tention.

Congestion status: Allows Application

layer to adjust the data generation rate.

Adjusting

of data gen-

eration rate

to avoid

congestion.

Using Network layer

information in packet

contention decision.

40

simply provides a common interface for accessing the information stores of other mod-

ules. Modules offering information must thus provide the storage for their data, yet

allow other modules to be able to access these data stores through theaccessinterface

of UPS-ISI. When a protocol is unloaded from the stack, the corresponding data stor-

age will be removed as well, and thus there is no wasted storage space for unnecessary

protocols.

Furthermore, we refine the concept of centralized information-sharing services

by separating the concepts of “information” and “service”.Services should be self-

sufficient protocol stack modules working side-by-side with other stack modules in-

stead of integrated into a centralized unit outside the protocol stack or integrated within

the protocols themselves, and information should be retrieved from service modules

through a unified interface. Thus information exchange can be imagined as inter-

process communication in an operating system, where processes (services, protocol

modules) get information directly from each other through well-defined interfaces with

low overhead. UPS provides such a unified means for information exchange among

the protocol modules throughUPS-ISI. On the other hand, inter-node information ex-

change is implemented as separate services accessed viaUPS-PI, enabling the modules

to easily exchange information as required by cross-layer protocol designs.

For example, our Location Service module implementation has a location lookup

hash table for fast location inquiry, and can be accessed by any module through the

following pseudo-code:

access(InformationID, Operation, Methods, Argument),

where:

InformationID: ID of the Location Service Table

Operation: Get or Set

Methods: Location, Distance, Add or Remove

Argument: a memory space where the first two bytes is the hash

key, which is the target node address, followed by

space for a return value

Similarly, as will be introduced in Section 4.3.1, our implementation of the RBMul-

ticast [17] protocol maintains a multicast group table using a two layered double-list,

which can be accessed by any module through the following pseudo-code:

access(InformationID, Operation, Methods, Argument),

where:

InformationID: ID of the RBMulticast group table

41

Operation: Get or Set

Methods: Look Up Node, Add or Remove Node

Argument: a memory space that has a node address as the first two

bytes and space for a return value following the node

address

Although our examples show onlygetandsetoperations, in general, access control

is necessary for information data storage. In addition, a publish/subscribe mechanism

can be implemented to avoid the constant polling of information provider modules.

Protocol modules act as subscribers, registering and unregistering from the informa-

tion providers. The information providers act as publishers and maintain the list of

subscribers. The information providers send messages withupdated data to the sub-

scribers. Both the publish and subscribe functionality canbe supported through the

access interface:

access(InformationID, Operation, Methods, Argument),

where:

InformationID: ID of the information of interest

Operation: Pub or Sub

Methods: Update, and Reg or UnReg

Argument: a memory space for the information

The idea behindUPS-ISIis that the interface should be simple, with the data struc-

ture and control complexity left to the protocol designers.UPS provides the protocol

switch and information sharing architectures but not the protocol switch decisions. For

example, a system that uses a mix of CSMA/CA and TDMA MACs needs tight coor-

dination. ViaUPS-ISI, vital information like the TDMA schedule, CSMA/CA backoff

status, and queue length can be easily obtained by the other MAC protocol, enabling

the designer to develop the protocols to achieve the desiredcoordination.

As we show by the location lookup hash table and RBMulticast group table exam-

ples,UPS-ISIis general enough to support a variety of different types of information,

each of which is identified via a globally unique ID (Information ID). A module only

needs to know the particular “Information ID” of the information store it wants to ac-

cess, as well as the “Operations” and “Methods” supported bythat information store.

The unique Information ID values can be assigned using the same method as for Proto-

col ID assignment.

42

4.2.4 Power Manager

Duty Cycling is a common strategy for energy conservation in many wireless MAC

layer protocols, especially for wireless sensor networks.However, in the study of UPS,

we observed that future energy conservation in wireless networks will likely include

the joint optimization of different protocol layers. Use ofa commonly employed ran-

domizedDuty Cyclewill not meet future requirements. Furthermore, current energy

conservation techniques in wireless networks generally focus on optimizing a specific

protocol or specific application, and they inevitably have conflicts between different

approaches. Thus a centralizedPower Manageris urgently needed, with different pro-

tocol modules acting asclientsof thePower Manager. UPS provides access to such a

Power Managervia an interface with the following functions:

sleep_request(): ask the Power Manager to

turn off the radio

wakeup_request(): ask the Power Manager to

turn on the radio

awake(): called by the Power Manager at

the moment power is turned on

Sleep request() andwakeUp request() are called by clients to inform

thePower Managerof a request to change the radio state. These requests are consid-

ered in a centralized way by thePower Managerfor different purposes (e.g., power

conservation, least delay, reduce network traffic).Awake() is a function of the clients

called by thePower Managerfor the case when clients need to know that there was a

transition of the radio state (e.g., the MAC starts sending apacket immediately when

the radio power is turned on).

We designed a policy-basedPower Managerin our UPS implementation (although

any type ofPower Managercan be used in UPS). The policy that we implemented

follows these guidelines: a) turn off the radio as much as possible, and b) if any of

the client protocol modules request a wake-up at a given time, then turn the radio back

on. This policy-basedPower Manageris used in our Link layer protocol design. In

our implementation of the MAC protocol XLM/MAC, we made the communication

behave as if it were duplex by abstracting the MAC send and receive functions as two

independent components, with both acting as clients of thePower Manager. Under this

setting, the radio power will only be turned off if both are not transmitting or receiving

43

(from the radio or the upper layer protocol), which conformsto the intuition of how to

transmit packets correctly.

4.3 UPS Architecture Case Studies

To show that the proposed UPS architecture is beneficial to real world applications,

it is evaluated through both physical experiments and simulations. Meanwhile, two

different networking paradigms are investigated to indicate the wide applicability of

UPS and the potential gains achieved in different networks.A wireless sensor network

(WSN) test-bed is formed that implements the UPS architecture on the Tmote Sky

wireless sensor nodes [73]. To achieve this, the UPS architecture is implemented in

TinyOS. A realistic scenario is defined where two cross-layer routing protocol modules

are executed simultaneously, XLM [15] proposed for unicastdata transmissions and

RBMulticast [17] proposed for multicast data transmissions. In addition, a mobile ad

hoc network (MANET) is simulated using the OPNET simulator [74]. In this scenario,

two well-known routing protocols, AODV [33] and IP, are run simultaneously using

UPS in a network with both static and mobile wireless devices.

4.3.1 TinyOS Experiments for UPS with Wireless Sensor Networks

In this case study, we implemented UPS in TinyOS [11], a widely used sensor node

operating system. UPS is used to build the protocol stack shown in Fig. 4.5. XLM/Net

and XLM/MAC are the Network layer and Data Link layer modulesextracted from the

cross-layer protocol XLM [15], which is a hand-shake receiver-based unicast protocol.

The XLM/MAC controls the CC2420 radio chip and records network statistics into the

information store called XLM Statistics, which provides experimental data collection

that is then accessed by the Application layer through theUPS-ISI. RBMulticast [17] is

a Network layer multicast protocol that also makes use of XLM/MAC to provide mul-

ticast communication. RBMulticast stores information about the multicast members

in an RBMulticast Group Table, which is accessible via theUPS-ISI accessfunction.

An MPBuf Message Pool provides dynamic memory access to packet storage space for

all stack protocols. The Host Addr module manages differenthost addresses for dif-

ferent protocols. The Location Service module in the Network layer provides location

44

Figure 4.5: Block diagram of the UPS framework and protocol modules developed for

the WSN environment.

information, which is stored inside a Location Table, accessible via theUPS-ISI access

function described in Section 4.2.3. An additional MAC protocol, TinyOS/MAC, sends

data from the serial port to a computer for data collection. Finally, we implemented a

CC2420 Power Manager, which is a power manager that turns offthe radio as much as

possible when the radio is not used.

We implemented UPS and all the protocols in TinyOS, and we tested the perfor-

mance of the protocols using both the TOSSIM emulator as wellas an implementation

on Tmote Sky motes. In the simulations and experiments, six sensor motes are de-

ployed in the network as shown in Fig. 4.6(a). The locations of these motes are shown

in parentheses as X and Y coordinates. The mote parameters are set to give a radio

range of 30m, and dotted lines in Fig. 4.6(a) indicate possible connections between

motes. Mote 0 sends both unicast and multicast packets and thus plays the role of a

source node. Unicast mote 4 receives unicast data from the source node, and the three

multicast receivers, motes 2, 3, and 5, receive multicast data from the source node.

For easier explanation and comparison, node 4 is called theunicast nodeand node 3

45

(a)

(b) MC (c) MU (d) UC

Figure 4.6: a) The experimental network in this chapter. Thedotted node is the unicast

destination, and the shaded nodes are multicast receivers.b) MC: Multicast only, c)

MU: Mixed Multicast-Unicast, and d) UC: Unicast only.

is called themulticast nodein the following discussions. The remaining mote 1 does

not require data from the source node and simply acts as a router in this network. The

source node sends one unicast and one multicast packet, separated by a long period of

time to guarantee no congestion in the network. This sequence of unicast followed by

multicast packet transmissions is repeated 20 times in every simulation.

The number of transmitted packets in the following results includes all MAC layer

packets (e.g., RTS, CTS, DATA, ACK), and the success rate andthe packet delay are

calculated in the application layer of the sender and the receiver. Duty cycle is calcu-

lated as the duration of time the sensor’s radio is turned on in each 100 ms duration.

For example, a duty cycle of 0.2 (20%) means that in every 100 ms, nodes will turn

46

their radios on for 20 ms and then go to sleep for the remaining80 ms if not trans-

mitting/receiving; otherwise, motes will turn off their radios after completion of the

transmission/reception.

4.3.1.1 TOSSIM UPS Simulations

In this experiment, we aim to show that the UPS framework enables independent exe-

cution of multiple protocols in the same stack layer and doesnot introduce any inter-

ference between different protocols. We define three scenarios. In the first scenario,

motes can only run the multicast protocol (i.e., RBMulticast), and hence unicast com-

munication must be done using the multicast protocol. We setall unicast and multicast

destination motes to be in the same multicast group, and the Application layers in the

sensor motes have a filter that only accepts specific packets.This means that all packets

still need to be received and handled by the application layer. In the second scenario,

motes can run both the unicast and the multicast protocols. In the last scenario, motes

can only run the unicast protocol, and multicasting is done by consecutive unicast trans-

missions. Packets to the unicast destination will be sent prior to the three consecutive

unicast packets for the multicast destinations. All packets are separated at least 20

seconds to ensure there is no congestion in the network underlow duty cycles. Some

possible routes for these three cases are shown in Fig. 4.6.

All results in this section are the averages of 40 simulations. We show the overall

success rate, the number of packets transmitted, and the average packet delay observed

in Fig. 4.7. As seen in Fig. 4.7(a), the success rates of the three protocols only differ

slightly, which indicates that this performance metric is dominated by the performance

of the MAC layer, since both XLM/Net and RBMulticast rely on the same MAC proto-

col, XLM/MAC. Similar success rate results also show that the UPS-enabled concurrent

execution of multiple protocols introduces no interference in protocol executions. The

packet success rate values shown in Fig. 4.7(a) are observedto be correlated with the

nodes’ duty cycle, since the number of retransmissions are limited and the lower the

duty cycle the less likely a packet will be successfully delivered.

The total number of packets sent by all six nodes are shown in Fig. 4.7(b). The

results clearly show the benefits of using a UPS-enabled concurrent protocol approach,

where the total number of packets sent for the UPS approach isless than the other two

47

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duty Cycle

S
uc

ce
ss

 R
at

e

Multicast
Unicast
Multicast+Unicast

(a) Success rate.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

Duty Cycle

N
um

be
r

of
 P

ac
ke

t S
en

t

Multicast
Unicast
Multicast+Unicast

(b) Total number of packets sent.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

Duty Cycle

D
el

ay
 (

se
c)

Multicast
Unicast
Multicast+Unicast

(c) Average packet delay.

Figure 4.7: Statistics of the experimental network in different scenarios.

single protocol execution cases. The non-zero numbers of packets sent when the duty

cycle is zero in all three cases are due to the fact that the source sends RTS packets

but all other nodes are always sleeping. Our XLM/MAC implementation sends RTS

packets four times before dropping the packet.

The average total packet delay observed is given in Fig. 4.7(c). The delay results

again show the same characteristics due to using the same MAClayer, but with some

drifts due to the different Network layer routing protocols, where multicast packets have

more delay than unicast packets. We do not count the delay time of the interval between

consecutive packets. Otherwise, the unicast only scenariowould have excessive delay

overhead.

These results validate that when co-existing multicast andunicast protocols share

the same MAC protocol module, their packet success rates arethe same as the cases

48

where only a multicast or a unicast protocol exist, which provides strong evidence

that there is no disruptive interference among the protocols from the UPS protocol

stack. This means that UPS supports highly modularized, interference-less interfaces

for protocols and provides an efficient infrastructure for multi-functional WSNs.

4.3.1.2 Performance of UPS on Tmote Sky Motes

In this experiment, we consider the same three scenarios of Section 4.3.1.1, but reduce

the separation time between packets to introduce congestion into the network, which

better represents a practical scenario found in real applications. We measure the data

from the Tmote Sky motes and compare to TOSSIM simulations, both running the

same code to verify that UPS introduces low overhead and matches the requirements of

resource limited wireless sensor networks.

In the first scenario, motes can only run the multicast protocol, with all unicast and

multicast motes in the same multicast group and the application layers in the sensor

motes filtering packets so as to only accept specific packets.In this congested scenario,

two consecutive multicast packets, separated by one second, are sent every 5 seconds.

This means that both packets will exist in the network for some period of time. In the

second scenario, motes can run both the unicast, and the multicast protocols and the

multicast packet will be sent 1 second after the unicast packet, with 5 seconds between

the unicast packet transmissions. In the last scenario, motes can only run the unicast

protocol, and multicasting is done by consecutive unicast transmissions separated by

100 milliseconds. Packets are sent to the unicast destination prior to packets being sent

to the multicast destinations in all three cases. The experimental results using both

Tmote Sky motes and TOSSIM simulations are shown in Fig. 4.8.

Fig. 4.8(a) presents the packet success rate results. The average success rates are

still roughly the same for all scenarios, however larger variations are observed due to

packet congestion. As seen in the figure, the success rate is more closely correlated to

the duty cycle than in the previous simulations. The similarresults of all three scenarios

show that the common MAC protocol used is dominant in this performance metric. The

results of the Tmote Sky motes and the TOSSIM simulations arealso shown to be very

close, which validates the simulations performed.

As shown in Fig. 4.8(b), the UPS-enabled mixed multicast-unicast approach still

49

Table 4.2: The overhead of context switches in TinyOS (and hence UPS) and of sending

a 36 byte packet using the Tmote Sky motes. This table is a modified version from

P. Levis [2, Fig. 10]. Packet time for sending a 36 B packet is measured from our

experiments.

Overhead Time (clock cycles)

Interrupt Switching 8

Interrupt Handler Cost 26-74

Task Switching 108

Sending a 36B Packet 32,258

requires fewer packets than the other two cases, revealing the advantages of using

UPS-enabled multiple protocols for complex tasks. On the other hand, the unicast

only approach does not achieve better performance than the multicast only approach

as opposed to the scenarios evaluated in Section 4.3.1.1. This is because the conges-

tion in the unicast only case is more severe compared with thescenarios evaluated in

Section 4.3.1.1, as more packets are in the network at a giventime.

The experimental results of Figs. 4.8(a) and 4.8(b) show almost identical behaviors

of UPS in simulation and in real sensor nodes. This gives us strong confidence that

UPS introduces low overhead on hardware requirements, preserves the independence

of the protocols executed concurrently, and hence, is trulyan applicable framework for

protocol design in wireless sensor networks.

4.3.1.3 Overhead

One chief concern of the UPS stack model is the additional overhead among module

calls (orcontext switchoverhead in OS terminology) for supporting multiple protocols.

Generally this overhead is insignificant compared to the cost of sending a packet in

WSNs. For example, the context switch overhead and packet transmission time for

TinyOS (and hence UPS) are given in Table 4.2. The hundredfold difference means that

the cost of module calls in UPS is negligible compared to costof the communication.

UPS can even achieve near zero overhead under the TinyOS environment. This is

because the UPS interfaces consist of groups of interface functions, and TinyOS uses

procedure inliningby default to remove (expand) small function calls. All the indirect

calls through UPS are changed into direct calls in the final execution code, and hence

50

Table 4.3: Comparison of execution code size.

ROM Usage (Bytes)

Dummy TinyOS App 1398

Dummy TinyOS App (UPS) 1608

XLM (Single Layer) 25,252

XLM (UPS) 29,808

TinyOS App (BlinkToRadio) 11,516

the context switch delay is minimized.

Another overhead of interest is the code size. For the purpose of comparison, the

code size for different TinyOS programs with and without UPSare listed in Table 4.3.

The dummy TinyOS application is a primitive application that only counts OS overhead

(e.g., modules without radio communication). The second program is the dummy appli-

cation equipped with the UPS interfaces. The resulting codesize is only 210 B larger.

Single layer implementation of XLM [15] in TinyOS is found tooccupy 25,252 bytes

of ROM, whereas the XLM protocol within the UPS architectureis found to occupy

29,808 bytes of ROM. As expected, since UPS provides the message pool structure

and more sophisticated services, it requires more memory space, however the increase

is not prohibitive for most applications of UPS. As a reference, the basic radio ap-

plication (BlinkToRadio) in TinyOS requires 11,516 bytes of ROM. Considering the

multiple protocols implemented, the relative overhead of UPS will be much smaller.

4.3.2 Simulation Results for UPS with MANETs

The aim of this case study is to show that the UPS framework canbe applied to off-the-

shelf protocols with no interference between different protocol modules in the same

layer. We consider a scenario where a mobile ad hoc network and a static wireless

network are co-located as shown in Fig. 4.9. The nodes that are represented as squares

are static, and the nodes that are represented as circles aremobile nodes. Two appli-

cations are considered to be running on the central node, where the first application

requires multicast data transmission to a subset of static nodes that are defined as the

static destinations (SDs), and the second application requires unicast data transmissions

to a subset of mobile nodes that are defined as the mobile destination nodes (MDs).

Considering two common routing protocols used for static and ad hoc networks,

51

namely IP and AODV, for this specific scenario, there are two possible stack imple-

mentation alternatives without UPS: The first one is to design a new routing protocol to

incorporate these two routing protocols, which is not acceptable, since it is not feasible

to develop a new routing protocol for every possible case. The second possibility is

to require all nodes to run IP or to run AODV. We will show, however, that neither of

these approaches are ideal. Note that running two separate routing protocols is infea-

sible without an approach like UPS, since a received packet from the MAC protocol

cannot be directed without an explicit indication of the routing protocol.

In UPS, the solution is simply to run both protocols at the same time. Hence, we

investigate three protocol stack approaches: a TCP/IP/802.11 stack, an AODV/802.11

stack, and the UPS-enabled stack with two concurrent routing protocols with a common

802.11 MAC protocol, as shown in Fig. 4.10. The Bypass moduleis included because

we assume no Transport layer protocol for AODV.

Simulations are performed for 16 static nodes, among which 4nodes are defined

asSDs, and 32 mobile nodes, among which 4 nodes are defined asMDs. The three

different stacks are evaluated as follows. In the first case,the source node has UPS-

enabled TCP/IP and AODV co-existence, where multicast communication toSDs is

done through IP multicast and the unicast communication toMDs is done through

AODV. In the second case, all nodes, including the source node, run the TCP/IP/802.11

stack. In this case, the communication toSDs is done though IP multicast, and the

communication toMDs is done though multiple IP unicasts. In the third case, all nodes

can only run the AODV/802.11 stack, where both the static multicast communication

to SDs and the mobile unicast communications toMDs are done by individual AODV

unicast packets. The comparison of the stacks are done for two performance metrics:

success rate of the packet transmissions and the total traffic load generated in the net-

work.

The simulation is run for a 1 hour period, with all results being the average over

this 1 hour. The source node sends one packet/s to theSDs and one packet/s to each

of theMDs. The mobile nodes follow the Random Waypoint Mobility (RWPM) Model

where the mobile speeds are varied among the following intervals: [0, 0-5, 5-10, 10-15,

15-20] m/s. The interval represents the minimum and maximummobile speeds that are

used as the parameters of the RWPM model. The corresponding performance results

52

are shown for the maximum speed of the interval, e.g., 10 represents the interval of 5-

10 m/s. The simulation region is a 200m by 200m area, and the radio uses a free space

propagation model where the transmission power and the reception power threshold are

set to achieve a maximum of three hops distance between the nodes.

The simulation results of the performance under different mobility levels are shown

in Fig. 4.11. The average success rate of packets is shown in Fig. 4.11(a), where the

UPS enabled multiple protocol execution gives the highest success rates. The reason

why the nodes running only the TCP/IP/802.11 or the AODV/802.11 protocol stacks

have lower success rate is because IP cannot handle mobile nodes successfully, and

AODV cannot handle static nodes successfully. Although both the AODV/802.11 stack

and the UPS-enabled dual protocol approach use AODV to unicast packets, the success

rates are different. The AODV/802.11 stack performance is down about 10% compared

to the performance of the UPS-enabled dual protocol approach. The reason is that

AODV sends route requests to all nodes and builds a route via both the static nodes

and the mobile nodes. When the mobile nodes move, the routes to static nodes are also

broken, thus reducing the success rate of packet delivery even to static nodes. On the

contrary, for the UPS-enabled dual protocol case, routing for static and mobile nodes

are independent, and thus a static node will not become a relay for a mobile node in

AODV.

Fig. 4.11(b) shows the total traffic generated in the networkfor the three different

cases. The AODV/802.11 stack induces a huge amount of trafficbecause it transmits

many control packets for route discovery to staticSDs. The TCP/IP/802.11 stack, on

the other hand, has the lowest traffic because IP assumes a static network, and packets

to unreachable nodes are simply dropped without routing discovery overhead. The

deficiency of IP is the low success rate of the packets transmitted toMDs.

In conclusion, in the simulations, the UPS-enabled multiple protocols approach has

the highest packet success rate and a low traffic load for a mixed static and mobile net-

work. This approach benefits from the strengths of both the IPand the AODV routing

protocols, that is, low overhead in the static network and high success rate in the mo-

bile network, and hides the drawbacks by the auxiliary protocol. The spirit of the UPS

framework is that we do not design a new protocol for the special scenario of mixed

static and mobile networks. What a designer needs to do is to choose the right protocols

53

from the existing protocol pool and use the UPS interfaces toglue them all together.

4.3.3 Notes on Implementing UPS for Off-the-Shelf Protocols

In order to not change the internal algorithms of IP and AODV,we implemented the

switch function as additional layers between the OSI layers. The switch layer only ap-

pends a Protocol ID to multiplex a packet to the lower layer, and subtracts the Protocol

ID to demultiplex a packet to the upper layer. With this approach, all protocol details

of the original protocols remain the same.

4.4 Conclusions

In this chapter, we presented our Universal Protocol Stack (UPS) architecture, which

considers the needs of emerging wireless networks, where network efficiency is the

primary concern. Previous stack approaches have not considered the possibility of run-

ning different protocols in the same stack layer concurrently, combined with cross-layer

information-sharing between modules or layers. Our approach, UPS, uses the “Packet

Switch” concept to provide support for both of these features observed in emerging

wireless networks. The UPS protocol interface,UPS-PI, provides packet switches be-

tween stack layers that selectively deliver packets to the correct upper (input) or lower

(output) target protocol modules, enabling the modules in different layers to seamlessly

work together. The design of UPS also considers the need for cross-layer cooperation

and hence enables cross-layer information-sharing among different protocol modules

through theUPS-ISIinterface. In addition, a common packet memory structure ispre-

sented, namely by theUPS Message Pool, to enable multiple protocols to have unified

access to internal data of a packet via theUPS Message Pool Interface(UPS-MPI).

A test-bed was built to investigate the UPS framework on wireless sensor motes.

Our physical experiments with a TinyOS implementation of UPS, that are verified by

the results of TOSSIM emulations, show that UPS indeed enables the co-existence of

multiple protocols in the same stack layer, with very low system overhead, and further-

more UPS can provide the benefit of concurrent operation of multiple protocols and

cross-layer information exchange. Thus, UPS has been shownto provide a promising

54

architecture for emerging wireless networks with complex multi-functional applica-

tions.

We also implemented the UPS framework in the OPNET simulator, which en-

abled the simultaneous execution of the off-the-shelf TCP/IP and AODV protocols

with an underlying IEEE 802.11 MAC protocol, and the resultsshow that the UPS-

enabled stack withmultiple-protocollayers has excellent performance in a mixed static-

dynamic network compared to the conventional TCP/IP/IEEE 802.11 stack and to the

AODV/IEEE 802.11 stack. More importantly, while achievingthis performance, no

modification of the investigated protocols is needed to integrate them in UPS. Hence,

UPS provides a generic and universal way to support multipleprotocols within a layer,

which is an important requirement of emerging wireless networks. Note that, these

advantages can be generalized to wired networks.

55

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duty Cycle

S
uc

ce
ss

 R
at

e

TOSSIM:Multicast
Tmote:Multicast
TOSSIM:Unicast
Tmote:Unicast
TOSSIM:Multicast+Unicast
Tmote:Multicast+Unicast

(a) Success rate.

0 0.2 0.4 0.6 0.8 1
100

200

300

400

500

600

700

800

900

1000

Duty Cycle

N
um

be
r

of
 P

ac
ke

t S
en

t

TOSSIM:Multicast
Tmote:Multicast
TOSSIM:Unicast
Tmote:Unicast
TOSSIM:Multicast+Unicast
Tmote:Multicast+Unicast

(b) Total number of packets sent.

Figure 4.8: a) Packet success rate. b) Total number of packets sent by all nodes. This

number counts all MAC layer packets (e.g., RTS/CTS/DATA/ACK). Packet delay is not

considered here because it is difficult to calculate time difference without synchroniza-

tion among sensor nodes.

56

Figure 4.9: The simulation scenario of a mixed static and mobile network.

Figure 4.10: The high level system block diagram of the UPS stack consisting of the

TCP/IP and AODV ad hoc routing protocols.

57

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Speed (m/sec)

A
ve

ra
ge

 S
uc

ce
ss

 R
at

e
(%

)

UPS−enabled stack
TCP/IP/802.11 stack
AODV/802.11 stack

(a)

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7
x 10

4

Speed (m/sec)

A
ve

ra
ge

 L
oa

d
(b

its
/s

ec
)

UPS−enabled stack
TCP/IP/802.11 stack
AODV/802.11 stack

(b)

Figure 4.11: The performance comparison of the three protocol stacks for a) average

packet success rate, and b) average traffic load of the network.

Chapter 5

Enabling Heterogeneous Devices using

Virtual Interfaces

A majority of existing communication protocols are developed with the assumption of

a single radio. While there has been some initial work on protocols that use multiple

radios, existing approaches are limited to specific application domains and specific ra-

dio interface implementations. In this thesis, we propose anew approach to supporting

multiple radio interfaces that abstracts all the availableinterfaces using a single virtual

interface. The selection of the specific physical interfaceto use per packet is done by

the virtual interface, thus ensuring that no modifications of the upper layer protocols

are required. This provides the opportunity for algorithmsat the virtual interface to op-

timize the selection of the physical interface to improve the network performance. To

test the virtual interface approach, we evaluate scenarioswith multi-radio devices that

support LTE, WiFi, and a CSMA network through simulations inns-3. Results from

these simulations show that the use of a virtual interface isfeasible and can improve the

network performance. Different interface selection algorithms as well as the limitations

of the virtual interface approach are discussed.

5.1 Introduction

Since packet radio networks were introduced, numerous wireless communication pro-

tocols have been designed to enhance network efficiency. However, a majority of the

58

59

proposed protocols are developed with the assumption of single radio devices. For in-

stance, MAC protocols IEEE 802.11 [75] and IEEE 802.15.4 [76] assume each device

has exactly one radio interface. Similarly, routing protocols such as AODV [33] and

Directed Diffusion [77] also assume one radio interface foreach node, and thus the

adaptations of these protocols to multi-radio devices are not trivial.

Recent research has proposed the use of homogeneous multi-radio devices to in-

crease connectivity, where all devices have the same set of radios. For example, multi-

radio solutions are widely recognized as the standard approach for wireless mesh net-

works [5, 78, 79]. In these multi-radio scenarios, the approach is to use channel as-

signment for all of the radio interfaces in order to reduce transmitter/receiver interfer-

ence [80] [81]. While these approaches use multiple radios,nevertheless, all the results

are limited to specific application domains and specific radio interface implementations.

Recently, with the prevalence of wireless hand-held devices, several communication

standards including GSM, CDMA, LTE, WiFi, Bluetooth, ZigBee, and RFID have been

developed. Most mobile devices, such as cellular phones, tablet computers, and laptop

computers, are manufactured with many of these heterogeneous radio communication

substrates, and the challenge of managing these multi-radios has begun to receive atten-

tion. A common method to enhance the connectivity of currentmulti-radio devices is to

provide a prioritized list of networks to access. For example, when a user is within WiFi

coverage, the multi-radio device uses WiFi for connectivity, and only if WiFi coverage

is not available, then the device switches to a cellular network [12]. As another exam-

ple, 4G introduces the concept of Always Best Connected (ABC) [8], which claims to

integrate different radio access techniques, such as 2G, 3G, WLAN, WMAN, etc., into

a common network.

Many innovative projects have started to develop solutionsfor supporting these het-

erogeneous radio networks. For example, multiple parallelMAC protocols [82] [83]

and routing protocols [84] can be adaptively selected according to the network con-

ditions. However, current methods require architectural modifications of the existing

communication protocols.

In this thesis, we propose an approach that abstracts all theavailable interfaces

using a single virtual interface. Since we assume that all the interfaces are connected

to the same IP network, no modification to the layer 3 (L3) routing protocol or layers

60

Figure 5.1: Virtual interface block diagram.

above is required, and packets can be seamlessly transmitted from any of the available

interfaces. We evaluate a scenario with multi-radio devices that support LTE, WiFi,

and a CSMA network through simulations in ns-3 [85]. The key technique we use is to

expose a virtual interface to control all the physical interfaces, with the virtual interface

controlled by the IP layer. Because of this additional virtual layer, the selection of

the physical interface is completely hidden from the IP layer, and the actual physical

interface selected has no impact on the functionalities of the upper layer. This provides

the opportunity for performing smart physical interface selection at the virtual interface

to improve the network performance.

The rest of this chapter is organized as follows. We describethe virtual interface

system model in Section 5.2, and we present the results compared with using a single

interface in Section 5.3. Section 5.4 discusses an interface selection algorithm that uses

a weight function. Adaptive random selection schemes are discussed in Section 5.5.

The use of a virtual interface with TCP traffic is described inSection 5.6. Limitations

of the virtual interface approach are discussed in Section 5.7. Conclusions are provided

in Section 5.9, and future work is presented in Section 5.10.

61

5.2 The Virtual Interface

The virtual interface is proposed to enable the aggregationof all the available interfaces

to a single virtual interface. Instead of the conventional solution, where all the physical

interfaces are directly exposed to the layer 3 (L3) routing protocol, the proposed virtual

interface disconnects the existing physical interfaces from L3. Fig. 5.1 shows the

virtual interface system block diagram. The virtual interface provides access to the

physical interfaces and seamlessly incorporates all of thephysical interfaces into the

network. All of this can be achieved without user intervention. The Internet stack

requirements and the packet send/receive flow will be discussed in this section.

5.2.1 Internet Stack

The physical interfaces controlled by the virtual interface do not need to be customized.

Any layer 1 (L1) and layer 2 (L2) interfaces that are compatible with the L3 IP protocol

requirements can be used as a target interface. We call the physical interfaces controlled

by the virtual interface asclient interfaces. Only the virtual interface is assigned an IP

address, the client interfaces do not have individual IP addresses. We assume that all

the target nodes are equipped with the same set of client interfaces. The impacts of this

assumption will be discussed later in Section 5.7.

The protocols above L3 consist of the TCP/UDP protocols, which implies that

ARP/IPv4/IPv6 are used by all the nodes in the L3. Since TCP/UDP and the appli-

cation layers are above L3, from the L2 point of view, they areirrelevant to the virtual

interface. Any protocol that is compatible with the Internet stack can be used with the

virtual interface without modification. In our ns-3 implementation, the entire Internet

stack and physical interfaces are used as is from the ns-3 code repository.

5.2.2 Sending Packets

When the virtual interface receives an outgoing packet fromthe L3 layer, a client inter-

face must be selected from the candidates. The selection method can use information

from the physical interfaces to make this decision. The procedure for sending a packet

is summarized by the pseudo code in Algorithm 1.

62

Algorithm 1 Send via a Virtual Interface
Input: Packet from upper layer

Output: Packet inserted to a client interface

1: Select an interfacei according to

• Available interfaces

• Available information

2: Send the packet to interfacei

In the Internet protocol stack, only minimal information isshared between layers.

For example, the only information shared between the L2 interface and the routing layer

is the packet itself and the destination address. Unless there are custom modifications,

such as using link quality at the routing protocol, no information such as packet success

or delay is available to the routing protocol from the L2 interface. Therefore, for the

typical case of using the client interface on a device as is, i.e., without modification,

we expect that the virtual interface cannot obtain any extrainformation from the client

interfaces.

Due to this lack of information, the best interface selection method that the virtual

interface can implement is to evenly distribute the load to all the available client inter-

faces. We refer to this asuniform random selection methodin this chapter. This can be

improved if some form of user input is available or modifications of the client interfaces

are allowed. In Sections 5.4 and 5.5, we will discuss how we use extra information to

design intelligent client interface selection algorithms.

We assume that all the L2 MAC protocols are tightly coupled tothe corresponding

radio devices. Therefore, the selection of a specific clientinterface means the selection

of the corresponding L2 MAC protocol and the L1 physical device.

5.2.3 Receiving Packets

Since we assume all nodes are running IP protocols with the Internet stack, all the

incoming packets are in the same IP format. Therefore, received packets are simply

forwarded from the client interface through the virtual interface to the L3 layer.

63

10
0

10
1

10
2

10
3

10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Source Data Rate (Pkt/Sec)

S
uc

ce
ss

 R
at

e

LTE: Success Rate
Wifi: Success Rate
CSMA: Success Rate
LTE+Wifi+CSMA: Success Rate

Figure 5.2: Success rate using three interfaces compared with one interface. WiFi is

configured with OFDM rate 6 Mbps and CSMA is configured with channel bandwidth

5 Mbps and delay 2 ms.

5.3 One vs. Multiple Interfaces

We first consider the experiment of using multiple interfaces with the uniform random

interface selection method compared with using a single interface. Intuitively, as more

interfaces leads to higher overall bandwidth, throughput should be increased compared

with using only a single interface.

Using ns-3, we simulate a scenario with a pair of source-destination nodes in the

network. IPv4 is used as the L3 protocol, and the source application sends UDP traffic

with Poisson distribution. Note that, with this setup, packet success rate is directly

proportional to the resulting throughput because there is no interfering traffic.

Fig. 5.2 shows the success rates when using one client interface versus three client

interfaces, LTE + WiFi + CSMA. As expected, the packet success rate is higher when

more interfaces are used in the communication. From the results, we can see that the

success rates are virtually the same under low traffic. This implies that if the target

application is for a low traffic network, using multiple interfaces does not necessarily

increase the network performance, although there is no harmin terms of success rate in

using more interfaces.

Fig. 5.3 shows the application layer’s average delay from the simulations. The

results indicate that average delay increases while the packet success rate increases with

multiple client interfaces. The LTE only scenario has lowerdelay than using multiple

64

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

Source Data Rate (Pkt/Sec)

D
el

ay
 (

m
se

c)

LTE: Delay
Wifi: Delay
CSMA: Delay
LTE+Wifi+CSMA: Delay

Figure 5.3: Delay using three interfaces compared with one interface.

interfaces. The reason for the lower delay in the simulationis that LTE uses 1 ms time

frame for Transmission Time Interval (TTI), and hence the delay is a constant 1 ms for

all source data rates, plus a small delay of routing overhead(ARP packets). LTE in the

ns-3 implementation does not support burst packets, and packets are dropped if multiple

packets are waiting to be sent in a TTI frame. Dropped packetsare not included in the

delay calculation.

5.4 Weighted Random Interface Selection

A natural enhancement of the uniform random interface selection method is to weight

the probability of selecting a particular client interfaceusing input from the user. In

this experiment, we choose the expected channel capacity asthe weight, so higher

bandwidth client interfaces will receive a higher portion of the traffic load. The experi-

mental throughput value of maximum packets per second are used as the weights of the

interfaces:

LTE WiFi CSMA

Weight (pkt/s) 508 604 256

Note that the actual throughput depends not only on the channel bandwidth but

also characteristics of the protocol, for example, back-off time, control packets (e.g.,

RTS, CTS, and ACK packets), and queue length. In our simulations, all the protocol

parameters are set to the ns-3 default values.

65

10
0

10
1

10
2

10
3

10
4

0

0.5

1

S
uc

ce
ss

 R
at

e

Source Data Rate (Pkt/Sec)

10
0

10
1

10
2

10
3

10
4

0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64

D
el

ay
 (

m
se

c)

10
0

10
1

10
2

10
3

10
4

0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64

Uniform Random: Success Rate
Weighted Random: Success Rate
Uniform Random: Delay
Weighted Random: Delay

Figure 5.4: Success rate and delay using three interfaces and the weighted random

selection method compared with the random selection method.

The procedure of the weighted random selection method is summarized by the

pseudo code in Algorithm 2.

Algorithm 2 Weighted Random Interface Selection
Input: Available client interface listI and list of weightswi

Output: Interfacei ∈ I is selected

1: CalculateWtotal =
∑

wi

2: Select interfacei with probabilitypi =
wi

Wtotal

The LTE client interface in our experiment transmits packets via an up-link channel,

from a user node to a base station. This is a lower throughput channel compared with

the down-link channel, and it is slower than the WiFi channelin our environment. Fig.

5.4 shows the simulation results. Although the user input channel capacity provides

direct information about the client interfaces’ performance, the packet success rate is

only marginally increased. The reason is that there is a non-linear relationship between

the application input data rate and the success rate. The success rate is 100% for low

data rate values, however, it suddenly drops after a threshold data rate. This indicates

that using a constant weighted selection algorithm is not necessarily helpful in making

the client interface selection decision, especially considering that the user may enter in-

correct weight information. This constant weight method isalso vulnerable to changes

in channel conditions, which will be considered in Section 5.5.

66

The resulting delays for the uniform random and weighted random selection algo-

rithms are also shown in Fig. 5.4. We can see that weighted random selection of the

client interfaces decreases the delay. The reason for the lower delay in the simulation

using the weighted random selection algorithm is because more packets are sent via

LTE (since it has a higher weight than CSMA), the packet delayis reduced.

The resulting delays in Figs. 5.3 and 5.4 show that optimization of more than one

metric is much more difficult for heterogeneous interfaces.For example, no set of

weights can provide both the best success rate and delay at the same time in these

experiments. The optimal weights for delay are (1, 0, 0), i.e., all packets are sent

through LTE, but this will result in lower packet success rate, as shown in Fig. 5.2.

5.5 Adaptive Random Interface Selection

As discussed in Section 5.2.2, uniform random selection is the best approach we can

use without supplying user input or modifying the client interfaces to provide extra

information to the virtual interface. From Section 5.4, we see that user input may im-

prove the performance, but using constant weights suffers from any changes in channel

conditions for the different client interfaces.

In this section we propose anadaptive random interface selection methodto over-

come these problems. In this approach, information is extracted from client interfaces

to calculate the weights for each client interface, and the weights are adjusted with

changes in the run time client interface conditions. This algorithm uses channel con-

gestion information from the client interfaces to adaptively balance the traffic loads.

For system support of information sharing, the Universal Protocol Stack (UPS) [86] is

selected as the infrastructure for the ns-3 implementation.

For the LTE interface, because the ns-3 implementation doesnot have an ARQ

Indicator Channel [87], there is no NACK to identify packet losses. In order for the

virtual interface to obtain packet drop information, a callback function is added to the

LTE protocol to inform the sender that a packet was dropped.

For the WiFi interface, a notification event is added when thesender node per-

forms an RTS retransmission, as this indicates a packet collision for one of the

RTS/CTS/DATA/ACK packets.

67

For the CSMA interface, a notification event is added when thesender detects the

channel to be non-idle while trying to send a packet. The packet will be assigned to

another back-off slot and retransmitted.

Each interface uses a counter to record the number of events of that interface. This

counter is used to calculate the runtime weight of the interface, and the resulting weight

is used for the interface selection probability calculation. The higher the count, the

lower the probability of that client interface being selected, so a congested client inter-

face will receive less traffic from the virtual interface. Wealso use the TCP-analogous

moving average technique that decreases the count over time, so the lower weight in-

terface will start receiving more traffic until congestion finally occurs again. The pro-

cedure of adaptive random selection is summarized by the pseudo code in Algorithm

3. Default weightwidef in Algorithm 3 is the weight for the weighted random interface

selection provided by the user, as discussed in Section 5.4.

Algorithm 3 Adaptive Random Interface Selection
Input: Available client interface listI

Output: Interfacei ∈ I is selected

1: for interfacei in list I do

2: /* Count of congestion event for interfacei = ci */

3: /* For each congestion event, increaseci by 1 */

4: /* For each predefined periodT , decreaseci by 1 */

5: /* Weight of interfacei = wi */

6: /* Default weight of interfacei = widef */

7: if ci ≥ 10 then

8: wi = 0

9: else

10: /* Weight calculated as a moving average that is decreased by10% */

11: wi = widef × (1− ci × 0.1)

12: end if

13: end for

14: CalculateWtotal =
∑

wi

15: Select interfacei with probabilitypi =
wi

Wtotal

68

Figure 5.5: Additional traffic to saturate the WiFi channel.

10
0

10
1

10
2

10
3

0

0.5

1

S
uc

ce
ss

 R
at

e

Source Data Rate (Pkt/Sec)

10
0

10
1

10
2

10
3
0

2

4

6

8

D
el

ay
 (

se
c)

10
0

10
1

10
2

10
3
0

2

4

6

8

10
0

10
1

10
2

10
3
0

2

4

6

8

D
el

ay
 (

se
c)

Weighted Random: Success Rate
Adaptive Random: Success Rate
Uniform Random: Success Rate
Weighted Random: Delay
Adaptive Random: Delay
Uniform Random: Delay

Figure 5.6: Success rate and delay using the adaptive random, weighted random and

uniform random client selection methods.

69

In order to simulate runtime changes in channel conditions,the original source and

destination nodes in the previous experiments are surrounded by an additional 20 pairs

of source/destination nodes, as shown in Fig. 5.5. These 20 source nodes generate

Poisson traffic to saturate the WiFi channel. The weighted random interface selection

method is expected to perform poorly because it unconditionally sends packets to the

congested WiFi interface.

Fig. 5.6 shows the simulation results, where the resulting success rate for the

weighted method is worse than that of uniform random interface selection method.

This is because the weighted random selection does not consider the dynamic channel

information and results in high number of packets sent to congested WiFi interface. The

optimal weights for success rate in this experiment are (508, 0, 256), i.e., avoid packets

sent through WiFi, but this will result in lower packet success rate in different traffic

patterns. The adaptive random interface selection method successfully avoids the WiFi

interface and achieves higher packet success rate for all source packet loads.

The spike and decrease of the resulting delay for the weighted random interface

selection is due to the packet drops in the WiFi and CSMA channel. Since dropped

packets from WiFi are not included in the delay calculation,the overall average delay

for all three interfaces is reduced when a higher proportionof packets are sent through

LTE.

5.6 Interface Selection while Using TCP

In order to determine the effects of TCP’s congestion control algorithm on the selection

of the physical interface, we ran experiments using all of the previous interface selection

algorithms as well as the individual physical interfaces for a single source-destination

pair utilizing TCP with Poisson traffic distribution. Fig. 5.7 shows the success rate for

these simulations. The delay results are shown in Fig. 5.8. No background traffic is

considered in these simulations.

The results of these simulations show that LTE has the lowestsuccess rate. As

discussed in Section 5.3, the LTE implementation in ns-3 drops some packets when

sending burst traffic, and this results in long delays due to TCP re-transmissions. The

CSMA success rate drops sharply from the input rate 512 pkt/sec. This is because high

70

10
0

10
1

10
2

10
3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

 R
at

e

Source Data Rate (Pkt/Sec)

LTE
WiFi
CSMA
LTE+Wifi+CSMA: Uniform Random
LTE+Wifi+CSMA: Weighted Random
LTE+Wifi+CSMA: Adaptive Random

Figure 5.7: Success rate of the different interface selection algorithms using TCP.

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

10
4

D
el

ay
 (

m
se

c)

Source Data Rate (Pkt/Sec)

LTE
WiFi
CSMA
LTE+Wifi+CSMA: Uniform Random
LTE+Wifi+CSMA: Weighted Random
LTE+Wifi+CSMA: Adaptive Random

Figure 5.8: Delay of the different interface selection algorithms using TCP.

source data rate overflows the CSMA internal packet queue, and the TCP protocol tries

to retransmit the dropped packets. However, retransmission results in more traffic to the

interface, which leads to even worse queue overflow. The queue length is 100 packets

in this experiment.

From Fig. 5.7, we can see that WiFi and CSMA have the highest success rates,

and all the random selection methods have sub-optimal and similar results. This means

that for TCP traffic, the optimal per-packet selection rule is to use only one interface

(e.g., WiFi or CSMA), instead of multiple interfaces. Although the random interface

selection methods provide smoothed results to avoid the worst case of concentrated

LTE interface usage, they do not achieve the optimal packet success rate.

The reason for the reduction in success rate is due to out-of-order packet delivery in

71

the multiple interface scenarios. TCP performs flow controland packet retransmission

with the use of “Acknowledgement Number” for tracking the order of packets [88].

If the number of the out-of-order packets is over a threshold, TCP will assume that a

segment has been lost, and TCP then performs a retransmission without waiting for

a retransmission timer to expire. In the case of multiple interfaces, if a sequence of

packets is randomly distributed to the WiFi and CSMA interfaces, although the WiFi

interface might contain packets later in the order, since WiFi has higher bandwidth and

shorter delay, the packets will reach the destination earlier than the CSMA packets, and

hence this results in receiving packets out-of-order.

The delay results of the TCP experiments also confirm the sameobservation. Even

in the low source data rate and 100% success rate regions, allthe multiple interfaces

selection methods have higher delays due to TCP retransmission. This indicates that

the performance of interface selection methods changes with the traffic pattern, and the

optimal interface selection methods for UDP cannot be directly applied to TCP.

To enhance the success rate, per-stream interface selection methods should be used.

To retain the packet order, all traffic of a TCP stream should be forwarded to one des-

ignated interface, and different TCP streams should use different interfaces to increase

the throughput. The design of a per-stream interface selection method is left as future

work.

5.7 Limitations

The virtual interface has some limitations. First, in the current implementation, all the

nodes need to have the same set of physical interfaces. Otherwise, a packet may be

initially routed to a relay node in the IP routing table, but at the virtual interface it is

forwarded to a client interface that is not connected to thatrelay node. That means that

the virtual interface can only select the interfaces that are connected to the destination

node. This limitation can be solved by adding a nodes-interfaces table to each virtual

interface to record the interfaces of neighbor nodes.

The second limitation is the client interfaces’ MAC addresses. All the client inter-

faces of a node need to have the same MAC address. The problem is explained in Fig.

5.9. Because the virtual interface can select an interface with the wrong destination

72

Figure 5.9: Situation showing the need for all physical interfaces to have the same MAC

address.

MAC address, the destination node will assume this is an invalid packet and drop it. By

assigning all client interfaces of a node with the same MAC address, all the destination

interfaces will have the correct addresses and the packet can be processed.

There may be additional application specific limitations. For example, if the WiFi

hotspot needs login information input from the user, the virtual interface may fail to

complete the authentication process and can impact the resulting performance. In gen-

eral, any dependencies between the network interfaces and the rest of the protocol lay-

ers (i.e., cross-layer interactions) have to be carefully examined when deploying virtual

interfaces in the target system.

5.8 Machine Learning Interface Selection

We have done some preliminary MATLAB experiments with machine learning tech-

niques for the interface selection, including Saturating Counter [89], Learning au-

tomata [90], Optimal stopping [91], Bayesian Learning [92], Multiarmed Bandit [93],

Kalman Filter [94], and Particle Filter [95]. The results show only marginal differences

in the performance.

All the methods are similar in their ability to track the network status, but the simu-

lation results are dominated by the traffic patterns and algorithm parameters. Algorithm

parameters optimized for one traffic pattern have failed on other traffic patterns, and no

73

single method can out-perform the others in all conditions.The results show that unless

the learning method is custom designed to a specific device interface setup and for an

application traffic pattern, simple random selection provides adequate performance for

general use.

5.9 Conclusions

In this chapter, we proposed an approach that abstracts all the available interfaces us-

ing a single virtual interface. By using the proposed virtual interface, packets can be

transmitted from any of the available interfaces, without modifying the Layer 3 routing

protocols and the Layer 2 MAC protocols. Because this additional virtual layer hides

the physical interfaces from the IP layer, novel physical interface selection algorithms

can be applied at the virtual layer to improve the network performance. Three interface

selection algorithms were proposed in this chapter: uniform random interface selection

method, weighted random interface selection method, and adaptive random interface

selection method. We evaluated UDP and TCP traffic scenarioswith multi-radio de-

vices that support LTE, WiFi, and a CSMA radio interface through simulations in ns-3.

The results showed that supporting multi-radio devices with a virtual interface improves

the network performance, but the performance of the interface selection algorithms is

influenced by the traffic pattern and algorithm parameters.

5.10 Future Work

Our future work will focus on the limitations of the virtual interface implementation.

We also plan to add more interface selection algorithms to the virtual layer as libraries,

and to implement the virtual interface on physical mobile devices to make it a viable

option for future multi-radio device deployments.

Chapter 6

Stateless Multicast Protocol for

Dynamic Networks

The previous chapters have explored novel protocol stack architectures to provide sup-

port for cross-layer information sharing, as well as the execution of multiple protocols

in the same stack layer. Such architectures are important tosupport the goals of emerg-

ing wireless networks. Additionally, emerging wireless networks have several features

that require a re-thinking of protocols. Specifically, these networks are often dynamic,

due to node mobility, limited node energy requiring duty-cycling of the nodes, and

channel conditions. Thus, it is important to consider how best to support the protocol

goals in these dynamic conditions. Specifically, in this chapter, we take a fresh look

at multicasting in dynamic networks, while in the followingchapter we explore the

appropriate setting of node duty-cycles in convergecast transmission scenarios.

Multicast routing protocols typically rely on the a-prioricreation of a multicast tree

(or mesh), which requires the individual nodes to maintain state information. In dy-

namic networks with bursty traffic, where long periods of silence are expected between

the bursts of data, this multicast state maintenance adds a large amount of communi-

cation, processing and memory overhead for no benefit to the application. Thus, we

have developed a stateless receiver-based multicast protocol that simply uses a list of

the multicast members’ (e.g., sinks’) addresses, embeddedin packet headers, to en-

able receivers to decide the best way to forward the multicast traffic. This protocol,

called RBMulticast (Receiver-Based Multicast), exploitsthe knowledge of the geo-

74

75

graphic locations of the nodes to remove the need for costly state maintenance (e.g.,

tree/mesh/neighbor table maintenance), making it ideallysuited for multicasting in dy-

namic networks. RBMulticast was implemented in the OPNET simulator and tested

using a sensor network implementation. Both simulation andexperimental results con-

firm that RBMulticast provides high success rates and low delay without the burden of

state maintenance.

6.1 Introduction

In our daily life, several applications require data delivery to multiple destination nodes,

where the use of multicast routing is an ideal approach to manage and reduce network

traffic. These applications range from member-based TV/Video broadcasting to push

media such as headlines, weather and sports, from file distribution and caching to mon-

itoring of information such as stock prices, sensors and security. Oftentimes these

services are required over highly dynamic networks, such asmobile ad hoc, vehicular,

or wireless sensor networks. These networks are dynamic dueto the mobility of the

nodes in the network and/or the random sleep/awake cycles that are often utilized to

minimize energy dissipation of the devices. Providing robust multicast routing in such

dynamic network environments is an important design challenge for supporting these

applications.

In some wireless multicast applications, the source and intermediate nodes are mo-

bile, but the multicast recipients’ locations are fixed and known. For example, fixed,

road-side stations may require traffic updates from cars in avehicular ad hoc network.

Similarly, applications including habitat monitoring, wildfire detection, and pollution

monitoring utilize data from mobile sensors that must be sent to stationary sinks in the

region. In all of these applications, the locations of the particular set of destinations for

some data are fixed and known a-priori by the nodes in the network. In other wireless

multicast applications, all nodes, including the multicast destinations, are mobile. In

this case, in order to support any type of multicast service to particular devices, the

source nodes must know the locations of the multicast destination nodes. This can be

provided by a service discovery protocol that sits outside the routing protocol, updating

the source(s) with the current location of the sink nodes. Ineither case (fixed sink nodes

76

or mobile sink nodes with a service discovery protocol providing updates on the sinks’

locations), the routing protocol can assume knowledge of the sinks’ locations. We can

exploit this knowledge to design a stateless multicast routing protocol.

In this thesis, we propose a Receiver-Based Multicast protocol, RBMulticast, which

is a stateless cross-layer multicast protocol where packetrouting, splitting packets into

multiple routes and the medium access of individual nodes rely solely on the location

information of multicast destination nodes [17]. RBMulticast includes a list of the mul-

ticast members’ locations in the packet header, which prevents the overhead of building

and maintaining a multicast tree at intermediate sensor nodes, because all the necessary

information for routing the packet is included within the packet header. Additionally,

the medium access method employed does not require any stateinformation such as

neighbor wake-up time or any a-priori operations such as time synchronization. No

tree creation or maintenance or neighbor table maintenanceis required, making RB-

Multicast require the least state of any multicast routing protocol, and it is thus ideally

suited for dynamic networks.

RBMulticast is areceiver-basedprotocol, which means that the relay node of a

packet transmission is decided by the potential receivers of the packet in a distributed

manner. This routing approach does not require routing tables and enables the use of

the current spatio-temporal neighborhood; this can be compared to proactive and reac-

tive routing protocols where the route is decided using the latest available information,

which can be stale. This is a crucial property, especially for dynamic networks. In

RBMulticast, receivers contend for the channel based on their potential contribution to-

wards forwarding the packet, which is inspired by the cross-layer protocol XLM [15], a

receiver-based unicast protocol designed for wireless sensor networks (WSNs). Nodes

that make the most forward progress to the destination will contend earlier and hence

have a higher chance to become the next-hop node. In RBMulticast, the multicast rout-

ing uses the concepts of “virtual node” and “multicast region” for forwarding packets

closer to the destination multicast members and determining when packets should be

split into separate routes to finally reach the multicast members.

The total number of hops that packets travel to reach their destination is an im-

portant performance metric for routing protocols, as it provides an indication of band-

width usage and of the energy efficiency of the protocol. In this chapter, we derive a

77

mathematical model for the lower and upper bounds on averagehop count realized by

RBMulticast given the network parameters: target area, node density, duty cycle of the

nodes, number of multicast members and the communication range. These analytical

bounds are validated by simulation runs of RBMulticast performed in Matlab.

To detail the network performance of the RBMulticast, packet level simulations are

performed using the OPNET simulator [74]. The performance of RBMulticast is com-

pared to that of the XLM unicast protocol to show the performance gain achieved by

the proposed multicast routing protocol. The results show that RBMulticast achieves

much better performance in terms of latency and network traffic. Physical experiments

of RBMulticast are also conducted using Tmote Sky motes to validate the simulations.

Results of these experiments show that RBMulticast achieves high packet delivery suc-

cess rate even in highly dynamic networks, e.g., over 90% where relay nodes move

at speeds up to 30 m/s. Such high performance is not realizable for highly dynamic

networks using other multicast approaches, since nodes must keep updated information

about the network. RBMulticast is lightweight and robust, making it ideally suited for

multicast applications in ad-hoc networks such as WSNs and MANETs.

6.2 RBMulticast Protocol Description

RBMulticast is a receiver-based cross-layer protocol thatperforms multicast routing

based on receiver-based geographic unicast protocols suchas XLM [15]. The receiver-

based unicast only needs the sender node’s location and the final destination node’s

location, which are provided in the MAC packet, to decide thenext hop along the route.

We assume that the “void” (hole) problem in geographic routing is solved implicitly,

for example, using the right-handed rule as in GPSR [96].

Throughout this chapter, we will assume that the multicast members are stationary,

such as multiple stationary sinks in WSNs or stationary roadside access points in vehic-

ular ad-hoc networks. The intermediate nodes can be either static or mobile. Although

mobile intermediate nodes result in route breaks in conventional multicast protocols,

since no multicast tree or mesh is used in RBMulticast, mobile intermediate nodes are

supported at no additional cost in RBMulticast. Mobile destinations (multicast mem-

bers) create a challenging problem for multicast protocols, and its solution is out of the

78

scope of this work.

6.2.1 RBMulticast Overview

Nodes in RBMulticast create what we call “multicast regions” centered around them-

selves. There are several ways to create these regions (see Section 6.2.2). However,

we use a quadrants approach due to its simplicity and good performance, where each

multicast region corresponds to one quadrant of the network, for a grid centered at the

node.

When a user initiates a request to send a packet to a multicastgroup, data is passed

down to the RBMulticast module in the protocol stack. Once the RBMulticast module

gets this packet, it retrieves the group list from its group table, assigns the group nodes

to the multicast regions based on their locations, and usingthese locations, calculates

a “virtual node” location for each multicast region. RBMulticast replicates the packet

for each multicast region that contains one or more multicast members and appends a

header consisting of a list of destination nodes (multicastmembers) in that region, TTL

(Time to Live) value, and a checksum value. The destination of a replicated packet

is the “virtual node” of the corresponding multicast region, which can be determined

in several ways (see Section 6.2.4), e.g., as the geometric mean of the locations of all

the multicast members in that multicast region. In the end, all packets for all multicast

regions are inserted in the MAC queue, and are then broadcasted to the neighborhood.

The node closest to the virtual node (within the available relay nodes as determined

by receiver-based contention at the MAC layer) will take responsibility for forwarding

the packet. The procedure for transmitting packets is summarized in pseudo code in

Algorithm 4.

When a node receives a multicast packet, RBMulticast first examines the checksum

in the packet header, and drops the packet if any corruption exists in the packet. It also

drops the packet if it is not in the forwarding zone. The forwarding zone is the area

within the radio range of the sender that has a smaller distance to the destination than

the sender-destination distance.

After a node receives a multicast packet, it then retrieves the destination node list

from the RBMulticast packet header. If this node is inside the destination list, it removes

itself from the list and passes a copy of the packet to the upper layers in the protocol

79

Algorithm 4 RBMulticast Send
Input: Packet output from upper layer

Output: Packets inserted to MAC queue

1: Get group listN from group table

2: for noden in group listN do

3: for multicast regionr in 4 quadrants regionsR do

4: if n ∈ r then

5: Add n into r.list

6: end if

7: end for

8: end for

9: for r ∈ R do

10: if r.list is non-emptythen

11: Duplicate a new packetp

12: Add RBMulticast header (TTL, checksum, r.list) to p

13: Insertp to MAC queue

14: end if

15: end for

80

stack. RBMulticast then checks the TTL value and drops the packet if the TTL is lower

than 0. Finally, if there still remain nodes in the destination list, multicast regions and

virtual nodes are recalculated, and new packets are generated if required. The packets

(one per multicast region that contains multicast members)are then inserted in the MAC

queue for transmission. The procedure executed after receiving packets is summarized

in pseudo code in Algorithm 5.

Fig. 6.1 gives an example of how RBMulticast is employed. Thetwo multicast

regions, the south-west and north-west quadrants, containonly one multicast member

each, and thus a packet is sent directly to these multicast destinations. The north-east

multicast region has three multicast members, and thus a single packet is sent to the

virtual node located at the geometric mean of the locations of the multicast members

(dotted circle with label3 in the figure). The south-east multicast region has no multi-

cast members, and hence no packet is transmitted into this region. Once a packet sent

towards a virtual node reaches an intermediate node for which the multicast members

are no longer in the same multicast region, the node will split off packets to each of the

multicast regions accordingly.

6.2.2 Multicast Regions

Once a node receives a multicast packet (from the application layer or from a previous

hop node), it divides the network into multicast regions, and it will split off a copy of

the packet to each region that contains one or more multicastmembers. We show two

possible divisions of the network into multicast regions inFig. 6.2(a) and 6.2(b).

There is no method that is clearly best. Influencing factors include the sink node

locations and how the relay nodes are distributed. For the quadrants approach, the

multicast region decision only needs two comparisons (X andY axes) for each multicast

member and is extremely fast. We believe that it is preferable for systems with low

computational capacity such as wireless sensor nodes.

6.2.3 Packet Splitting

In Algorithms 4 and 5, we describe the RBMulticast method that splits packets at relay

nodes for which the multicast destinations reside in different regions. This method is

81

Algorithm 5 RBMulticast Receive
Input: Packet input from lower layer

Output: Forwarded packets inserted to MAC queue

1: Calculate checksum. Drop packet if error detected

2: Drop packet if not in Forwarding zone

3: Get destination listD from packet header

4: for noded in destination listD do

5: if I amd then

6: Duplicate the packet and input to upper layer

7: Removed from listD

8: end if

9: end for

10: if TTL in header =0 then

11: Drop the packet

12: return

13: end if

14: for d ∈ D do

15: for multicast regionr in 4 quadrants regionsR do

16: if d ∈ r then

17: Add d into r.list

18: end if

19: end for

20: end for

21: for r ∈ R do

22: if r.list is non-emptythen

23: Duplicate a new packetp

24: Add RBMulticast header (TTL− 1, checksum, r.list) to p

25: Insertp to MAC queue

26: end if

27: end for

82

1

2

2

2

2

2

1

3

3

3

3

5
5

44

6

6

6
6

Figure 6.1: Example showing how RBMulticast delivers multicast packets. The source

node is the square node. Multicast members are shaded circles, and virtual nodes are

dotted circles. Because every destination node will becomea virtual node at the end,

they are all shown with dotted circles. The number on the sideof the lines indicate the

destination of that packet.

used in the protocol description due to its simplicity.

In a variation of this method, namely RBM-V, the packets are instead split off at

the neighbor nodes of the virtual node, which delays splitting the packets compared to

the former method. Hence, in RBM-V, certain packets need to travel backwards after

splitting, which may increase the total hop count. However,as will be shown in Section

6.3.3, this variation of RBMulticast requires similar or lower average number of hops

to reach all members.

6.2.4 Virtual Node

Network layer multicast protocols, which require multipledestinations, are built on top

of Link layer protocols that typically allow only a single (unicast) or all (broadcast)

83

(a)

120

(b) (c)

Figure 6.2: Two possible ways to divide a space into multicast regions: a) dividing

the space into four quadrants, and b) dividing the space intothree 120◦ regions. c)

demonstrates how to choose a next hop node. The solid node is the source node, and

the gray nodes are the multicast members. The solid line is the route when choosing a

target node near the geographic mean of the multicast members, and the dotted line is

the route when choosing a target node close to the nearest multicast member. We can

see that the longest distance is two hops distance in the firstcase, and it is three hops

distance in the second case.

destinations. Possible ways to adapt the need for multiple multicast destinations to a

MAC layer that can only handle a single destination are choosing a node that is close to

the geographic mean of the multicast members, or close to thenearest multicast node,

as shown in Fig. 6.2(c).

In RBMulticast, because we assume no knowledge of neighbor nodes and no rout-

ing tables, we assign a “virtual node” located at the geographic mean of the multicast

members for each multicast region. This virtual node is usedas an imaginary desti-

nation for the multicast packet in that region. The virtual nodes are not necessarily

reachable or even physically exist as illustrated in Fig. 6.1. The idea behind this is

that even if a virtual node does not exist, we can still find a route using the assumed

receiver-based MAC protocol to get the packet closer to the location of the virtual node.

On the other hand, when using the nearest multicast node as the destination, all node

addresses physically exist and virtual nodes are not necessary.

84

Figure 6.3: Packet header of the RBMulticast protocol.

6.2.5 RBMulticast Header

The goal of a stateless approach is to keep intermediate nodes from having to store any

data for routing and medium access. This is possible only if all information required

to multicast a packet is carried along with the packet. The question is how much in-

formation the multicast packet needs to carry for successful delivery to all multicast

members. Fig. 6.3 shows the structure of an RBMulticast header.

The first byteProtocol ID is for protocol identity in the protocol stack [86].TTL

(Time To Live) provides a maximum time, in hop number, that a packet should last in

the network.TOS(Type Of Service) indicates four kinds of packets in RBMulticast,

which are “data”, “join”, “leave”, and “update” packets. The update packets are used

in group management and periodic group list updates.DLL (Destination List Length)

indicates how many nodes are in the node list, and thus will determine the length of

the header. The RBMulticast header size is not fixed since thedestination list length

is variable. Source Addressis the address of the source node, which equals the RB-

Multicast group ID of this packet, andDestination List Addressstores the locations of

the DLL destination nodes. The RBMulticast group ID is not actuallyneeded in this

protocol since all the multicast members are included in thepacket header.

Because we assume a receiver-based MAC layer, the next hop isdetermined by

a joint decision among potential receivers. Hence, the RBMulticast header does not

need to carry any state for routing the packet. However, we still need to decide when

the packet must be split off to different destinations. Thisis usually implied by tree

branches in tree-based multicast approaches. Because of the location information as-

sumption, we can use multicast regions to decide when packets must be split off without

any tree structure. A packet will be split off to each multicast region if multicast mem-

85

bers exist in these regions. Therefore, adestination listis the only requirement for

multicast packet delivery: this destination list must be carried inside the packet header.

As with any multicast protocol that uses a destination list,the packet header length

will increase linearly with the number of destination nodes. The maximum number of

multicast members allowed in a group is restricted by the packet size. For packets in

the IEEE 802.15.4 standard of Wireless Sensor Networks, themaximum packet size is

128 bytes, and hence the maximum number of nodes in the destination list is around

50, which is sufficient for practical purposes. The impact ofpacket length on energy

consumption can be reduced by adjusting the power control ofthe MAC protocol, as

shown in [97]. The idea is to compensate for the increased packet collision rate due to

long packet lengths by increasing the transmit power.

6.2.6 Group Management

RBMulticast supports multicast group management where nodes can join or leave any

multicast group. Some nodes manage the multicast groups andact as the group heads.

Nodes join and leave a group by sending “join” and “leave” packets to the group head.

Join and leave packets are multicast packets with destination lists that contain only the

group head address.

RBMulticast supports Many-to-Many multicast mode, and thus every node in a

multicast group can multicast packets to all other nodes in the same group. The extra

burden is that the node must maintain group node lists for groups it has joined. In the

case of nodes joining or leaving, the group head must send “update” packets including

a list of its updated multicast group members to all group nodes. Nodes send “join”

packets periodically to the group head, and nodes that die without sending ”leave”

packets are removed from the list after a time-out period.

6.2.7 Summary

In summary, RBMulticast uses virtual nodes to embed multicast packets into a receiver-

based unicast protocol, and it uses multicast regions to split off packets to different

multicast members. All the required information is carriedby the packet headers, and

hence no state is stored by the intermediate relay nodes. Theonly required information

86

for packet delivery is the location of the relay source node and the multicast members,

thus the size of the packet header grows with the number of multicast members. For a

multicast group, a group head maintains the group list, which is the only state informa-

tion of our RBMulticast protocol.

Compared to non-stateless multicast protocols that need toupdate the routing table

at intermediate nodes, RBMulticast stores no state at intermediate nodes, making it

ideally suited for multicasting in dynamic networks.

6.3 Analytical Bounds on Average Hop Count Perfor-

mances

Average hop count performance of a protocol is an important performance metric, since

it provides information about the network traffic generatedby the protocol and the total

energy consumed for packet delivery.

6.3.1 RBMulticast Performance

For the sake of brevity in the analysis, we consider the variation of RBMulticast where

the packet splits are not done until the packets reach a relaynode within one hop dis-

tance of the virtual node, which is named RBM-V. As will be shown by simulations in

Section 6.3.3, the hop count performance of RBM-V is similarto or better than that of

RBMulticast.

RBMulticast is investigated under the conditions that nodes are assumed to know

their own location information and to use a perfect MAC with no packet collisions.

Nodes are uniformly deployed with densityρ in a2R diagonal square area. The source

node is located at the center of the area, andM multicast destinations are uniformly dis-

tributed in the square area. Quadrant multicast regions areused. Transmission ranges

of the nodes are normalized to1 in the analysis. All nodes except the source and the

multicast members employ a fixed duty cycle,d. The average number of available re-

lays in the radio coverage area is defined asN = dρπ. Symbols used in the multicast

analysis are defined in Table 6.1.

We calculate the expected number of packet splits and the expected packet distance

87

from the relay nodes to the virtual nodes iteratively, whereat each iteration packets are

split and are sent to the updated virtual nodes. The total expected number of hopsE[m]

is the iterative summation of the multiplication of the expected number of packet splits

with the expected number of hops for each split packet.

Since the multicast members are uniformly distributed among all multicast regions,

the virtual node location of a region is the geometric mean ofthe multicast members’

coordinates, i.e., the center of mass of the multicast members.

For the case of quadrant multicast regions, with the radius of the experiment area

R, the expected location of the virtual node in the first quadrant is,

~r =

∫

S
ρS~rdS

∫

S
ρSdS

=

∫

R
√

2

0

∫

R
√

2

0 ρS
(

x
y

)

dxdy

ρS(
R√
2
)2

=

(R
2
√
2

R
2
√
2

)

, (6.1)

whereρS is the density of sink nodes (multicast members) in the multicast regionS.

The expected distance from the relay node to the virtual nodeis hence|~r| = R
2
, and the

average advancement ratio for the first virtual node isα = |~r|
R

= 1
2
.

At iterationi, NRi multicast packets are sent to all virtual nodes, each of which is at

average distanceDi = αDi−1 due to symmetry. The average distance to a virtual node

at iterationi is thus

Di = (α)iR = (
1

2
)iR. (6.2)

The iteration ends if the distance from the relay nodes to thevirtual nodes is less than

1, i.e., ifDi < 1. Hence, from (6.2),

(α)iR < 1 ⇒ i <

⌈

log 1
R

logα

⌉

. (6.3)

We ignore the expected number of hopsE[n′
i] for Di < 1 for simplicity.

For the case of four90◦ quadrant multicast regions, given that a total ofM sink

nodes are uniformly distributed in all four regions, the probability mass function of the

number of regions having at least one sink node,NR, can be written as

PNR
(NR = k|M) = (

1

4
)M

(

4

k

) k
∑

i=1

(−1)k−i

(

k

i

)

iM . (6.4)

88

Table 6.1: Definition of symbols in the multicast analysis.

Symbol Definition

ρ Density of relay nodes.

d The probability of a node to have its radio turned on

at any given time, corresponding to the duty cycle.

N N = dρπ is the average number of available relays

(neighbors) in the radio coverage area.

R The radius of the experiment area.

M The number of multicast members.

Md The number of target destination nodes for a packet.

α The average advancement ratio: the ratio of the

distance to the virtual node to the radius of the

multicast region at each iteration.

NRi Number of multicast regions that have at least one

sink node at theith iteration.

A(r,D) The forwarding zone area at distanceD ≥ 1.

A(r,D) = 2
∫ r

D−1
a arccos(a

2+D2−1
2aD

)da.

ζ The advancement towards the destination.

n′ Number of hops until one-hop distance to the sink.

D The distance from the source to the sink node.

Di Avg. distance between relay and virtual nodes at

iterationi.

n′
i The number of hops to reach the virtual node at

iterationi.

imax Total number of iterations.

m′ Total number of hops for all packets to be one hop

distance to sinks.

m Total no. of hops for all packets to reach the sinks.

m = m′ +M .

89

It can be verified that
∑

PNR
(·|M) is equal to1. For a packet withMd destination

nodes, the average number of target regionsE[NR] is

E[NR|Md] =

4
∑

k=1

k ∗ PNR
(k|Md). (6.5)

Note thatMd might not be an integer when we consider the average number ofdestina-

tion nodes at a given iteration. We use (6.4) as an approximation in this case. It can be

verified that this approximation holds in the boundary conditions

lim
Md→0

E[NR|Md] = 0 (6.6)

lim
Md→∞

E[NR|Md] = 4. (6.7)

The average number of target multicast regions at iterationi is an iterative function

given by

E[NRi
] = E[NR|Mdi−1

]×E[NRi−1
], (6.8)

whereMdi is the number of destinations of a packet at iterationi, which is found by

Mdi =
M

E[NRi
]
. (6.9)

The initial conditions of the iterative function areE[NR0] = 1 andMd0 = M . The

iterations end when the average number of destination nodesat iterationi is less than

2, that is,Mdi < 2. In this case,1 out ofMdi packets is directly sent to the destination

node and the remaining packetsMdi −1 require one further iteration of packet splitting.

We do not count hopsE[n′
i] for iterations whereMdi < 2 to simplify the equations and

assume each of the destinations that are left can be reached in one additional packet

transmission.

Based on the limits ofDi ≤ 1 andMDi
≥ 2, the total number of iterationsimax is

the solution of the maximization problem

maximize i

subject to ⌈ log 1
R

logα
⌉ > i

M
E[NRi

]
≥ 2,

(6.10)

wherei ∈ N andE[NRi
] is the iterative function given in (6.8).

90

The bounds of the expected number of hopsE[n′] that first leads to a point within

one-hop distance to the destination node is given in [34], which is

D − 1

E[ζ]
≤ E[n′] <

D

E[ζ]
, (6.11)

whereE[ζ] is the average one-hop advancement in distance toward the sink andD the

distance from the source to the destination node. Thus,

E[ζ] =

1−
∫ 1

0
e−NA(D−a,D)/πda, D ≥ 1.

undefined, otherwise.
(6.12)

Here,A(r,D) is the forwarding zone area comprised of the intersection oftwo circles

with radii 1 andr with centers at distanceD ≥ 1, andN is the average number of

available relays.

We modify the upper bound of (6.11) for the case0 ≤ D < 1 and the lower bound

of (6.11) for the case1 ≤ D < 2 because hop count should always be larger than 1,

which means at least 1 additional hop is needed before reaching the multicast members.

The distanceD is also calculated from (6.2) for each iteration. Equation (6.11) is thus

expanded to include these boundary conditions as

max
{αiR− 1

E[ζ]
, 1
}

≤ E[n′
i] < max

{αiR

E[ζ]
, 1
}

(6.13)

The average number of hops is aggregated over the iterationsof packet splitting.

The average hops in each iteration is the average number of required multicast regions

E[NRi
] times the average number of hop advancementsE[n′

i] for each split packet.

The expected total number of hops such that all packets lead to points within one hop

distance of sink nodes is then

E[m′] =
∞
∑

i=1

E[NRi]E[n′
i]. (6.14)

Hence, the expected total number of hops is

E[m] = E[m′] +M. (6.15)

Finally, incorporating (6.12) and (6.13) into (6.14), the upper and lower bounds for the

expected total number of hopsE[m] can be calculated.

91

Figure 6.4: The region considered in the multiple unicast analysis.

6.3.2 Analysis for Using Multiple Unicast as Multicast

For comparing the performance gain of RBMulticast, this section investigates the ex-

pected total number of hops for the packet transmissions when using separate unicast

delivery to each multicast member instead of using RBMulticast. The idea behind

this analysis is that unicast can be regarded as a special case of RBMulticast, where

each destination node is in a different multicast region in the first iteration. That is,

E[NR1] = N andE[NRi
] = 0 for i ≥ 2.

To calculate the expected distance from the source to the uniformly distributed des-

tination nodes in the region, we need to calculate the probability density functionfD

for the distance from the source to the destination nodes. Because of the symmetry of

the regions, we only need to consider the shaded triangle region shown in Fig. 6.4. The

functionfD is the same for the remaining areas.

Let the two uniformly distributed random variableŝX and Ŷ represent the coor-

dinates of destination nodes in a region. The probability density functionfX̂,Ŷ of a

destination node to be located within the triangle shown in Fig. 6.4 is 4
R2 . In order to

calculate the expected location of the destination nodes, we use the Jacobian determi-

nantJ to transformX̂ and Ŷ into random variableŝR andΘ̂ in the polar coordinate

92

system as

R̂ =

√

X̂2 + Ŷ 2, Θ̂ = tan−1 Ŷ

X̂
. (6.16)

The joint probability distribution function is then

fR̂,Θ̂(r, θ) = |J | · fX̂,Ŷ = r
4

R2
. (6.17)

The marginal probability density functionfR̂(r) should be calculated separately for the

two intervals0 ≤ r < R√
2

and R√
2
≤ r ≤ R.

For0 ≤ r < R√
2
, r andθ are independent. Hence,

fR̂(r) =

∫ π
2

π
4

fR̂,Θ̂(r, θ)dθ =
πr

R2
, 0 ≤ r <

R√
2
. (6.18)

For R√
2
≤ r ≤ R, r andθ are dependent andπ

4
≤ θ ≤ sin−1 R√

2r
. Hence,

fR̂(r) =

∫ sin−1 R
√

2r

π
4

fR̂,Θ̂(r, θ)dθ (6.19)

=
4r

R2

[

sin−1 R√
2r

− π

4

]

,
R√
2
≤ r ≤ R. (6.20)

The expected number of hops to reach a point within one-hop distance of the sink node

is

E[n′] =

∫ R

0

fR̂(r) · E[n′]
∣

∣

D=r
dr. (6.21)

From the multicast equation (6.14) with splitting the packet toM regions (sinks) in the

first iteration and the distance distribution functionfR̂(r),

E[m′] =

∞
∑

i=1

E[NRi]E[n′
i] = E[NR1]E[n′]

= N ·
(
∫ R

0

fR̂(r) · E[n′]
∣

∣

D=r
dr

)

.

(6.22)

Replacing the upper bound
D

E[ζ]
and lower bound

D − 1

E[ζ]
with E[n′], we can find

E[m′]. Finally,

E[m] = E[m′] +M. (6.23)

93

Duty Cycle

T
ot

al
 H

op
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

R = 10
ρ = 30

M=60

M=30

M=20

M=10

(a) Analytical bounds and simulation results for to-

tal number of hops with different number of sink

nodesM .

Duty Cycle

T
ot

al
 H

op
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

M = 10
ρ = 30

R=30

R=20

R=10

(b) Analytical bounds and simulation results for

total number of hops with different network area

R.

Duty Cycle

T
ot

al
 H

op
s

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

R = 10
ρ = 30

M=30

M=20

M=10

(c) Analytical bounds and simulation results using

unicast for multicast with different number of sink

nodesM .

Figure 6.5: Performance comparisons for RBMulticast with perfect location informa-

tion and no packet collisions.

94

6.3.3 Validation of Hop Distance Analysis and Performance Com-

parisons

We conducted Matlab simulations of RBM-V to validate the analysis presented above.

For all experiments, node density isρ = 30 nodes/m2, where nodes are uniformly

randomly distributed in a square area with diagonal2R.

The upper bound and lower bound analytical results and the corresponding Matlab

simulations are shown in Fig. 6.5. Results for fixedR and variousM values are shown

in Fig. 6.5(a), and results for fixedM and variousR are shown in Fig. 6.5(b). All the

results show thatE[m] provides good lower and upper bounds estimates for the average

total number of hops required for RBM-V for allM andR value pairs.

The performance using unicast instead of multicast is shownin Fig. 6.5(c). The

result forM = 60 is not shown in this figure because the total hop count exceedsthe

boundary of the figure. The results, as seen from the comparison of Fig. 6.5(a) and

6.5(c), show that for the same network rangeR, RBM-V dramatically decreases the

total number of hops compared with using multiple unicast transmissions.

All analytical results overestimate the number of hops for very low duty cycle re-

gions. In the analysis, a packet can traverse an unlimited number of hops to reach the

destination, because each individual hop can advance infinitesimal distance according

to (6.12). In the simulations, however, node locations are discretely distributed, and

total hop count to the destination cannot exceed the number of relay nodes between the

source and the destination. Consequently, the bounds are skewed when the duty cycle

d (hence the number of available relaysN = dρπ) is very low, but they hold for mostd

values.

The simulation results for RBMulticast, where packets are split whenever target

destination nodes reside in different multicast regions are given in Fig. 6.6. We show

the standard deviation in this case. The results show that the delayed splitting version,

RBM-V, uses fewer hops whenM is large. This shows that on average RBM-V per-

formance is better in terms of total hops if sink nodes are uniformly distributed. When

RBMulticast is deployed in practice, the performance is determined by the actual net-

work topology and the underlying MAC protocol.

95

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

180

200

Duty Cycle

T
ot

al
 H

op
s

R = 10
ρ = 30

M = 10

M = 20

M = 30

M = 60

Figure 6.6: Matlab simulation results of total number of hops with different number of

sink nodesM for the original version of RBMulticast.

6.4 RBMulticast Performance Evaluation

We implemented RBMulticast in the OPNET Simulator [74] to investigate its network

performance with the underlying receiver-based MAC protocol in both static and mo-

bile scenarios. Results of detailed packet-level OPNET simulations with high densities

showed that RBMulticast suffers from packet collisions when packets are split. The

reason for these collisions and a proposed MAC-level improvement for reducing the

effect of collisions is described in this section, along with the simulation results for the

improved RBMulticast.

6.4.1 Outline of Implemented MAC Unicast Protocol

In our receiver-based routing, all receivers contend by sending CTS (clear to send)

packets to the transmitter to be the next-hop router when they hear an RTS (request

to send) from a transmitter. The CTS contention is decided bythe distance from the

receivers to the sink, that is, receivers send CTS packets back to the transmitter with a

backoff time proportional to their distance to the sink. Thefirst node that sends a CTS

96

Table 6.2: Packet Delivery Ratio in terms of SPTI.

SPTI (sec) 0 0.05 0.08 0.125 0.25

PDR 0.75 0.88 0.94 0.95 0.95

packet is selected as the next hop by the transmitter, and thetransmitter forwards the

DATA packet to that node. The communication ends with a final ACK packet from the

next hop node to the transmitter.

6.4.2 Split Packet Contention Problem in RBMulticast and the

Proposed Solution

RBMulticast requires splitting the packet at a node, if the locations of the multicast

members, which are listed in the header of the packet, residein different regions for

that node. The packet splitting creates replicas of a packet, updating the destination

node locations in each packet accordingly. After replication, all the packets generated

are immediately inserted to the node’s buffer to be transmitted. However, this creates

a burst of packet traffic and congestion within the transmission range of the splitting

node, since the relay nodes receiving the packets will contend with the splitting node

with the remaining split packets. The problem is more severefor large interference-to-

transmission range ratios, because of the higher number of relay nodes contending with

the splitting nodes and with each other.

To decrease the contentions and the possibility of collisions after packet replica-

tions, we first define a transmission order for the replicatedpackets based on the re-

gion. For example, the packets destined to the northeast region are transmitted first,

the ones destined for the northwest region are transmitted second, etc. Then, a certain

splitting packet time interval (SPTI) is used between transmissions destined to different

regions. One disadvantage of delaying the packet transmissions by the duration SPTI is

the increase in the end-to-end delay, i.e., the latency. To determine a reasonable value

for SPTI that achieves a high packet delivery ratio with an acceptable latency, we con-

ducted simulations with 5 sinks and 200 nodes with 100% duty cycle. The effect of

SPTI is shown in Table 6.2. It is clearly seen that the packet delivery ratio is increased

when SPTI is used compared to not using it. An SPTI value of80 ms can achieve al-

97

Figure 6.7: Adjustment oftimeoutCTS for MAC improvement.

most as high packet delivery ratio as that with high SPTI. That means a low latency can

still be achieved using SPTI without sacrificing the packet delivery ratio performance.

6.4.3 MAC Level Improvements

To achieve a high packet delivery ratio, at least one relay candidate should be awake and

listening to the channel during an RTS packet transmission or any of its retransmissions.

Each RTS transmission requires a preceding random backoff and, for the case of no

CTS reply, the CTS timeout duration. To guarantee reaching arelay candidate if one

exists, all retransmissions should be spread to a duration larger than the maximum sleep

duration of the nodes, i.e.,

tsleep ≤ Retxmax × (tbackoff + timeoutCTS) (6.24)

wheretsleep is the sleep duration,Retxmax is the maximum number of RTS retrans-

missions,tbackoff is the expected backoff time for contention, andtimeoutCTS is the

timeout duration a node will wait to receive a CTS.tbackoff can be calculated as

tbackoff = E[SlotNumber] × tslot (6.25)

whereSlotNumber is the selected backoff slot number, andtslot is the duration of

a slot. The idea of spreading RTS retransmissions to a duration larger thantsleep is

illustrated in Fig. 6.7.

The parametertimeoutCTS, which is enlarged by10 times compared with the de-

fault value of the implementation of the original XLM MAC, isused as the duration

between the end of an RTS transmission and its retransmission when no CTS reply is

received for the previous RTS. Thereby the backoff durationfor CTS contention of the

relay candidates is enlarged by10 times correspondingly, which allows relay candidates

98

to have more time listening to the channel and to have their schedule canceled if they

hear an ongoing CTS transmission.

6.4.4 Simulation Results

We define multiple scenarios for RBMulticast simulations toevaluate the three perfor-

mance metrics: packet delivery ratio, latency and the average traffic generated to trans-

mit one data packet to all multicast members. In all scenarios, the area is a150m×150m

square. The transmission range is30m and the interference range is approximately

80m. Based on the Tmote Sky sensor node specifications [73] and the observations

from experiments, we set the channel data rate to be220Kbps, the length of RTS, CTS,

and ACK packets to be78 bits and of raw data packets to be400 bits. The SPTI is set

to 0.1 s, and the maximum number of retransmissions is set to25. The source packet

generation rate is0.2 pkts/sec. Each parameter set is evaluated with10 simulation runs

whose averages are displayed in the figures. The standard deviation of the results are

observed to be small, ranging from1% to 7%.

It is difficult to compare RBMulticast with existing multicast routing protocols, as

any protocol that requires state maintenance will not be able to function in the dynamic

environments tested here, such as with node duty cycles as low as 20% and with high

mobility nodes as high as 30 m/s. Hence, we compared RBMulticast to using state-

less unicast protocols to send the packets individually to each multicast member. Two

unicast protocols are compared to illustrate the advantageof RBMulticast. The first

protocol is Unicast based on the original XLM MAC, which is denoted as UOX, and

the second protocol is Unicast based on the improved XLM MAC,denoted by UIX,

where the MAC-level improvements proposed in Section 6.4.3are applied. Both uni-

cast protocols are run with100% duty cycle and are compared to RBMulticast with

20%, 60% and100% duty cycle.

6.4.4.1 Static Nodes, Five Sinks

The first set of simulations are investigated to evaluate theperformance of RBMulticast

using static nodes with the source located at (0, 0) and 5 sinks located at the edge of the

target area, as shown by the rectangular nodes in Fig. 6.8. The average packet delivery

ratios observed for varying numbers of nodes are shown in Fig. 6.9(a). As seen in

99

138 140 142 144 146 148 150

138

140

142

144

146

148

150

5 Sink
Extra sinks
Intermediate nodes

Figure 6.8: Multicast member (sink) locations in the simulation. The additional mem-

bers align along the boundaries for different simulations.Note that this figure shows a

blow-up of the north-east quadrant of the simulation area.

the figure, the packet delivery ratio is very low for a small number of nodes, which is

due to the high probability of holes in the network. When there are no holes in the

area, which is achieved with high density, the packet delivery ratio is close to 100%

for RBMulticast, independent of the duty cycle value. This interesting result is due to

the improvements proposed for the MAC: SPTI efficiently reduces the contention of

multiple splitting packets, and the extended CTS timeout enables finding a relay node,

even when the nodes spend much time sleeping. It is also shownthat the packet delivery

ratio is not reduced as density increases, which is usually the case due to multiple CTS

replies causing congestion in the network.

From Fig. 6.9(a), we can see that UIX performs slightly better than RBMulticast

in terms of packet delivery ratios and both perform much better than UOX. For UIX,

packets are deferred before their transmission due to the timer on the buffer in XLM.

Therefore, before the transmitter node’s timer reaches itstimeout to send the next

packet to a different multicast member, it is quite possiblethat the previously trans-

mitted packet has reached the destination node and thus willnot create interference for

100

the new packet. With a reasonable node density such that no holes exist in the network,

the packet delivery ratio is expected to be high as shown in Fig. 6.9(a). Although the

same improved MAC guarantees the packet delivery ratio performance of RBMulticast

to be high, due to the fixed value of SPTI, multiple replicatedpackets still exist in the

network and successively contend for the channel within a short period of time. As a

result, more back-offs or collisions occur than that of UIX and contribute to the similar

but slightly worse performance. For UOX, once the burst of packets is inserted into

the buffer of the MAC layer with no time interval before the transmission attempts, the

relay nodes receiving packets would contend with the remaining packets in the buffer

of the source node and lead to a low packet delivery ratio.

Fig. 6.9(b) shows the latency as a function of the number of nodes. Under low duty

cycle and low node density of RBMulticast, since the sleeping times are not synchro-

nized, it is very possible that no relay node candidate can befound in the first attempt,

and multiple retransmissions are needed to find a relay node.As the duty cycle and the

density increase, more relay node candidates are availableand fewer retransmissions

are needed, which leads to a decrease in the latency. Fig. 6.9(b) also shows that for low

density values, the average latency is high for all three protocols. With an increase in

the density, the average latency becomes constant. Since RBMulticast reduces the total

number of transmissions to reach all multicast members, theaverage latency is lower

than the other two protocols. Having more time for retransmissions in the improved

MAC layer, UIX has a higher average latency than UOX.

The average traffic generated to transmit one data packet to all multicast members

is shown in Fig. 6.9(c). It is calculated by dividing the total number of traffic generated

to transmit one data packet (RTS/CTS/DATA/ACK) by the packet delivery ratio. Since

RBMulticast requires fewer packet transmissions, it generates the least traffic for the

delivery of a data packet among the three methods (under 100%duty cycle, UIX gen-

erates average traffic roughly 2.3 times compared with RBMulticast). By having fewer

retransmissions due to the advantage of the improved MAC, UIX generates less traffic

than UOX. In low densities, more retransmissions occur and more packets are dropped

because no relay node is found for forwarding. Hence, the average traffic for success-

fully transmitting one packet to all multicast members is higher than that of higher

densities. Also the fact that the average traffic for the three different duty cycles does

101

0 50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Nodes

P
ac

ke
t D

el
iv

er
y

R
at

io

RBMulticast 20%
RBMulticast 60%
RBMulticast 100%
UOX 100%
UIX 100%

(a) Packet delivery ratio vs. number of nodes.

(static nodes, 5 sinks)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

Number of Nodes

A
ve

ra
ge

 L
at

en
cy

 (
se

c)

RBMulticast 20%
RBMulticast 60%
RBMulticast 100%
UOX 100%
UIX 100%

(b) Average latency vs. number of nodes. (static

nodes, 5 sinks)

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3
x 10

5

Number of Nodes

A
ve

ra
ge

 T
ra

ffi
c

(b
its

)

RBMulticast 20%
RBMulticast 60%
RBMulticast 100%
UOX 100%
UIX 100%

(c) Average traffic for transmitting one data packet

vs. number of nodes. (static nodes, 5 sinks)

Figure 6.9: Performance comparisons for RBMulticast: static scenario, 5 sinks.

not differ significantly is due to the improved MAC where not many retransmissions

are needed to accomplish the delivery of a data packet, even with low duty cycle.

6.4.4.2 Mobile Nodes, Five Sinks

The second set of simulations are performed to investigate the performance of RB-

Multicast in mobile scenarios. All intermediate nodes moveaccording to the Random

Waypoint mobility model with a certain speed. The source andmulticast members are

moved inward 25m as compared to Fig. 6.8 to avoid the issues with the ”cluster into

the middle” effect of the Random Waypoint model [98, 99]. A duty cycle of 100% is

102

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Moving Speed (m/s)

P
ac

ke
t D

el
iv

er
y

R
at

io

RBMulticast 100 nodes
RBMulticast 200 nodes
RBMulticast 300 nodes
UOX 300 nodes
UIX 300 nodes

(a) Packet delivery ratio vs. mobile speed. (mobile

nodes, 5 sinks)

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Moving Speed (m/s)

A
ve

ra
ge

 L
at

en
cy

 (
se

c)

RBMulticast 100 nodes
RBMulticast 200 nodes
RBMulticast 300 nodes
UOX 300 nodes
UIX 300 nodes

(b) Average latency vs. mobile speed. (mobile

nodes, 5 sinks)

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3
x 10

5

Moving Speed (m/s)

A
ve

ra
ge

 T
ra

ffi
c

(b
its

)

RBMulticast 100 nodes
RBMulticast 200 nodes
RBMulticast 300 nodes
UOX 300 nodes
UIX 300 nodes

(c) Average traffic for transmitting one data packet

vs. mobile speed. (mobile nodes, 5 sinks)

Figure 6.10: Performance comparisons for RBMulticast: mobile scenario, 5 sinks.

investigated for three different numbers of nodes: 100, 200and 300.

Fig. 6.10(a) shows the packet delivery ratio as a function ofmobile speed. Note that

the data points corresponding to 0 m/s show the performance of static networks. All

three curves indicate that when the intermediate nodes are moving at low speeds and the

node density is low, the performance is slightly better thanthat when they are static. The

reason is that the ”empty holes” that exist in the static scenario when the density is low,

can be eased when the nodes move into the ”empty holes” and become relay candidates.

When nodes move fast, more link breaks can occur because a receiver moves out of the

transmission range of the transmitter. Fig. 6.10(a) shows that UIX performs the best

103

among the three protocols and RBMulticast performs better than UOX due to the same

reason as that of the static scenario.

Fig. 6.10(b) shows the average latency as a function of mobile speed. When density

is increased, less time is required to finish the transmission. As seen in the figure,

RBMulticast has the least latency among the three protocols, for the same reason as in

the static scenario.

Fig. 6.10(c) shows the average traffic generated to transmitone data packet as a

function of mobile speed. When the speed of mobile nodes increases, the average

traffic generated per transmission becomes higher due to theincrease in the number of

retransmissions caused by more link breaks. Note that RBMulticast has the least traffic

since it requires the smallest number of hops among the threeprotocols (under the same

number of nodes, UIX generates average traffic of 1.7 to 2.2 times that of RBMulticast).

6.4.4.3 Effect of Number of Sinks

To further test the robustness of RBMulticast, we develop the third simulation scenario

where performance is evaluated in terms of the number of sinks when under mobile sce-

narios. The source node is located at (25, 25). Sinks are located around the upper-right

corner of the inner100m × 100m area with the distance of1m between the adjacent

sinks as the rectangular and cross nodes seen in Fig.300 intermediate nodes move

with a speed of10 m/s inside the150m × 150m area. The Random Waypoint model

is applied. The duty cycle investigated is100%. The simulation results for the static

scenario are similar to that of the mobile scenario, and hence are omitted.

Fig. 6.11(a) shows the packet delivery ratio as a function ofthe number of sinks.

With an increase in the number of sinks, all three protocols have lower packet delivery

ratios. In RBMulticast, because more sinks require more replicas of packets, fiercer

contention occurs for the channel. Therefore it is expectedthat the packet delivery

ratio will decrease with an increase in the number of multicast members. As seen

in Fig. 6.11(a), RBMulticast is more robust to an increase inthe number of multicast

members. Above 20 members, RBMulticast gives better packetdelivery ratio compared

to UIX. It is expected that with an increase in the number of sinks, the advantage of

RBMulticast over UIX will be larger.

Fig. 6.11(b) shows the average latency as a function of the number of sinks. More

104

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Sinks

P
ac

ke
t D

el
iv

er
y

R
at

io

RBMutilcast
UIX
UOX

(a) Packet delivery ratio vs. number of sinks. (mo-

bile scenario, 300 nodes)

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Number of Sinks

A
ve

ra
ge

 L
at

en
cy

 (
se

c)

RBMutilcast
UIX
UOX

(b) Average latency vs. number of sinks. (mobile

scenario, 300 nodes)

5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 10

6

Number of Sinks

A
ve

ra
ge

 T
ra

ffi
c

(b
its

)

RBMutilcast
UIX
UOX

(c) Average traffic for transmitting one data packet

vs. number of sinks. (mobile scenario, 300 nodes)

Figure 6.11: Performance comparisons for RBMulticast: mobile scenario, varying

number of sinks.

105

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Generation Rate (pkts/s)

P
ac

ke
t D

el
iv

er
y

R
at

io

RBMulticast 100 nodes
RBMulticast 200 nodes
RBMulticast 300 nodes
UOX 300 nodes
UIX 300 nodes

Figure 6.12: Packet delivery ratio vs. data generate rate. (mobile scenario with speed

10 m/s, 5 sinks).

replicated packets lead to more contention and retransmissions, which results in higher

latency when the number of sinks increases in RBMulticast. However, since packets

in RBMulticast travel through fewer hops, RBMulticast latency is much lower than the

other two protocols. Note that when the number of sinks is small, UOX performs better

than UIX due to the smaller maximum retransmission count, while when the number

of sinks increases, the MAC improvement reveals its advantage by reducing the latency

through avoiding contentions.

Fig. 6.11(c) shows the average traffic generated to transmitone data packet as a

function of the number of sinks. Because unicast needs to send separate packets to

each sink, many paths are repeated and redundant. Hence, with the increase of the

number of sinks, RBMulticast has a greater advantage in terms of average traffic. Note

that due to the large number of retransmissions with the original XLM MAC, UOX

always has a much larger traffic generation than the other twoprotocols, which verifies

the necessity of the MAC improvements.

6.4.4.4 Effect of Packet Generation Rate

To evaluate the performances of the protocols under different data traffic rates, another

set of simulations is conducted, where the data generation rate is increased from 0.2

106

pkts/sec to 2 pkts/sec. All the other parameter values are kept the same as with the

mobile scenario investigated in Section 6.4.4.2, fixing thespeed of the mobile nodes to

10 m/s. The results, shown in Fig. 6.12, indicate that the packet delivery ratio of UIX

drops sharply as the packet generation rate is increased from 0.2 pkts/sec. UOX per-

forms very poorly for all of the packet generation rates investigated. However, as seen

in the figure, RBMulticast is much more resilient to changes in the packet generation

rate, and provides significant benefits under more saturatedtraffic conditions in terms

of packet delivery ratio.

6.4.4.5 Uniformly Distributed Sinks, Mobile Nodes

A new scenario is developed to further illustrate the performance of RBMulticast. 300

mobile intermediate nodes are randomly deployed in a150m × 150m scenario with a

moving speed of 10m/s. Sinks are uniformly distributed along the upper edge and

right edge (e.g., as in [100]) of the100m× 100m inner area with the source located in

(25, 25), i.e., at the lower-left corner of the inner area.

Fig. 6.13(a) shows that when the number of sinks are 10 and 15,RBMulticast per-

forms worse compared with the previous scenario, and UIX hasa larger advantage in

packet delivery ratio. This is because when multicast members are sparsely distributed,

RBMulticast requires splitting more packets, leading to more contentions.

Fig. 6.13(b) and 6.13(c) show that RBMulticast’s advantageover UIX in average

latency and average traffic is not that evident compared withthe previous scenario be-

cause more contention leads to a larger delay, and the decrease of the packet delivery

ratio directly increases the average traffic to successfully transmit one packet to all

multicast members.

These simulation results shows that the performance of RBMulticast is tightly con-

nected with the location of the sinks. Generally, RBMulticast has a larger advantage

compared with unicast when sinks cluster than when they are sparsely distributed.

6.4.4.6 Effect of Location Errors

The previous performance evaluations are based on the assumption that nodes can ob-

tain accurate information about their own location, which cannot be provided by many

existing locationing systems. In this section, we investigate the effect of location er-

107

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Sinks

P
ac

ke
t D

el
iv

er
y

R
at

io

RBMutilcast
UIX
UOX

(a) Packet delivery ratio vs. number of sinks. (mo-

bile scenario, 300 nodes).

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Number of Sinks

A
ve

ra
ge

 L
at

en
cy

 (
se

c)

RBMutilcast
UIX
UOX

(b) Average latency vs. number of sinks, mobile

scenario, 300 nodes.

5 10 15 20 25
0

5

10

15
x 10

5

Number of Sinks

A
ve

ra
ge

 T
ra

ffi
c

(b
its

)

RBMutilcast
UIX
UOX

(c) Average traffic vs. number of sinks, mobile

scenario, 300 nodes.

Figure 6.13: Performance comparisons for RBMulticast: mobile scenario, uniformly

distributed sinks.

108

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ2

P
ac

ke
t D

el
iv

er
y

R
at

io

200 fixed nodes
200 mobile nodes
300 fixed nodes
300 mobile nodes

Figure 6.14: Packet delivery ratio with location estimation error ofN (0, σ2): 5 uni-

formly distributed sinks.

rors on the performance of RBMulticast. We assume the drift between the actual node

location and the estimated node location follows a normal distributionN (0, σ2). Both

static and mobile scenarios are implemented, with the same parameter values defined

in Sections 6.4.2 and 6.4.4.5.

Fig. 6.14 shows that the packet delivery ratio remains high when varianceσ2 is low

(i.e., the estimated location is close to the actual location), and it decreases as variance

increases, as expected. Additionally, Fig. 6.14 shows thatRBMulticast is more robust

to location errors with 300 nodes than with 200 nodes. This isbecause the nodes in the

forwarding regions may misjudge their location as outside of the forwarding regions.

In this sense, the number of nodes participating in the contention for data forwarding

is less than that when the nodes have accurate location information. This results in

potentially longer hop distances and hence worse packet delivery ratio performance.

6.5 Tmote Sky Implementation

We show the realization of RBMulticast through a test-bed implementation using

Tmote Sky motes [73] and through simulation using TOSSIM [101].

109

(0,0)

(10,20)

(20,30)

(20,10)

(30,20)

(40,40)

0
1

2

4

3

5

Figure 6.15: The experimental network for comparing results in the Tmote Sky im-

plementation and the TOSSIM simulations. Node 0 is the source node and the shaded

nodes are multicast destination nodes.

We test the RBMulticast protocol in a highly dynamic scenario, where nodes have

a very short frame time of 100 ms. For example, a duty cycle of 0.2 (20%) means that

in every 100 ms, nodes will turn their radios on for 20 ms and then go to sleep for the

remaining 80 ms if not transmitting or receiving. We use thishighly dynamic scenario

to demonstrate the advantages of stateless multicast. Thatis, RBMulticast can achieve

high success rates and low latency in a highly dynamic scenario where structured (e.g.,

tree) approaches are difficult to employ.

For the experiment, we collect data from six Tmote Sky sensornodes arranged

in the topology shown in Fig. 6.15. The statistics shown in Fig. 6.16 compare the

results of TOSSIM simulations with the results of the Tmote Sky experiments. In

this figure, we see that the RBMulticast implementation results match closely with the

simulation results that assuming ideal conditions. The physical experimental results

show that RBMulticast is lightweight in computation even for low processing power

sensor devices. The success rate is slightly higher in the TOSSIM simulations than in

the Tmote Sky implementation. This is because the Tmote Sky mote (which contains

a CC2420 radio chip) requires 8 ms plus some CPU overhead to send/receive a packet,

and this is on the same order of the time it takes the radio to change its status in our

experiments (e.g., 20 ms for a duty cycle of 0.2). In this experiment, we set the MAC

layer retry limit to 4 times before a packet is dropped, and the increased number of

packets sent for the Tmote Sky implementation is hence due tothe extra resent RTS

packets.

110

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Duty Cycle

S
uc

ce
ss

 R
at

e

0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

700

800

900

1000

N
um

be
r

of
 P

ac
ke

ts

Tmote Sky: Success Rate
Tmote Sky: Total Packets Sent
Tossim: Success Rate
Tossim: Total Packets Sent

Figure 6.16: Comparison of Tmote Sky implementation to TOSSIM simulations.

6.6 Conclusions

Current multicast protocols generally rely on various treestructures and hence inter-

mediate nodes need to maintain tree states or routing statesfor packet delivery. In this

chapter, we presented a new stateless multicast protocol for ad-hoc networks called

Receiver-Based Multicast (RBMulticast). RBMulticast uses geographic location in-

formation to route multicast packets, where nodes divide the network into geographic

“multicast regions” and split off packets depending on the locations of the multicast

members. RBMulticast stores a destination list inside the packet header; this destina-

tion list provides information on all multicast members to which this packet is targeted.

Thus, there is no need for a multicast tree and therefore no tree state is stored at the

intermediate nodes.

RBMulticast also utilizes a receiver-based MAC layer to further reduce the com-

plexity of routing packets. Because we assume that the receiver-based MAC protocol

can determine the next hop node in a distributed manner, the sender node does not need

a routing table or a neighbor table to send packets but instead uses a “virtual node”

as the packet destination. Thus RBMulticast requires the least amount of state of any

existing multicast protocol.

Our simulations and implementation of RBMulticast showed that it can achieve

high success rates, low latency and low overhead in terms of the number of bits trans-

111

mitted in the network for both static and dynamic scenarios,making RBMulticast well

suited for both mobile and stationary ad-hoc network environments.

Chapter 7

Energy-Efficient Duty Cycle

Assignment for Receiver-Based

Convergecast

Wireless sensor networks (WSNs) are one type of emerging network that require new

protocols to support their unique features. In particular,sensor networks are extremely

resource limited, hence requiring protocols to make optimal use of this resource. Duty

cycling is often used to reduce the energy consumption caused by idle listening in

WSNs. Most studies on WSN protocols define a common duty cyclevalue throughout

the network to achieve synchronization among the nodes. On the other hand, a few

studies propose adaptation of the duty cycle according to uniform traffic conditions,

which is beneficial assuming one-to-one traffic patterns that result in evenly distributed

packet traffic.

In this work, we consider the convergecast communication pattern commonly ob-

served in WSNs. In convergecast communication, the packet traffic observed around

the sink node is much higher than the traffic observed far fromthe sink, i.e., nodes with

different distances to the sink node receive and must relay different amounts of traffic.

Additionally, we utilize receiver-based protocols, whichenable nodes to communicate

with no synchronization or neighbor information, and hencedo not require all nodes in

the network to have the same duty cycle.

In this chapter, we model the expected energy consumption ofnodes utilizing

112

113

receiver-based protocols as a function of their duty cycle and their distance to the sink

node. Using this analysis, we derive a closed-form formula for the duty cycle that min-

imizes the expected energy consumption at a given distance.Moreover, we propose an

adaptation method for the derived distance-based duty cycle, based on local observed

traffic. Performance evaluations of the two proposed duty cycle assignment methods

show that they greatly improve the energy efficiency withoutsacrificing packet delivery

ratio or delay significantly.

7.1 Introduction

Duty cycling, where a node is periodically placed into the sleep mode, is an effective

method of reducing energy dissipation in Wireless Sensor Networks (WSNs). The

lower the duty cycle, the nodes can sleep longer and the more energy they will save,

whereas the fewer nodes are available to participate in datarouting at any given time,

which will increase transmission latency and decrease the throughput. Thus, there is a

trade-off between energy efficiency, transmission latency, and throughput, determined

by the duty cycle used in the network.

Duty cycle is typically fixed throughout the network, with all nodes utilizing the

same duty cycle. However, this may not provide the best overall performance for

the network. Many sensor network applications require convergecast communication,

where data from sensors are transmitted to a sink in the network. In this type of commu-

nication pattern, nodes close to the sink must transmit muchmore data than nodes far

from the sink, and hence the duty cycles of the nodes should beadjusted appropriately

to ensure energy efficiency while meeting traffic demands andkeeping latency low.

Recently, a new class of protocols, called receiver-based routing, has been proposed

as a means of allowing communication when nodes are not awareof the exact duty cycle

of their neighbors. In receiver-based routing, receivers contend to be the next-hop router

of a packet, and the transmitter selects the “best” receiverunder a given optimality

criteria to become the next hop for transmission. For example, in the receiver-based

protocol Implicit Geographic Forwarding (IGF) [102], all receivers contend to be the

next-hop router when they hear a packet route request, and the transmitter selects the

receiver that is closest to the sink as the next hop. Specifically, the transmitter initiates

114

communication by sending an RTS packet that indicates the transmitter’s location and

the location of the sink. Nodes that hear the RTS packet first determine whether they

make forward progress to the sink, and, if so, they calculatetheir distance to the sink.

After a delay proportional to their distance to the sink, nodes send a CTS packet back

to the transmitter. The first node that sends a CTS packet is selected as the next hop by

the transmitter, and the transmitter forwards the data packet to that node.

Researchers have analyzed the performance of receiver-based routing through math-

ematical models [34] [35] and shown that receiver-based routing protocols perform well

in terms of hop distance, energy and latency. Unicast trafficis assumed in these works,

hence, for convergecast traffic further studies are required. Extensions to traditional

receiver-based routing have included providing information about link quality for mak-

ing routing decisions [15], and supporting multiple paths by strategically selecting relay

nodes and employing adaptive rate control [31]. Utilizing duty cycling with receiver-

based routing and convergecast data patterns, it is clear that a network-wide fixed duty

cycle will not provide the optimal trade-off between energyefficiency and latency.

Adapting the duty cycle to the local traffic was proposed in PMAC [58], where the

sleep-wakeup schedule is represented by a string of bits that are updated each period

using local traffic information available at the node. Theseschedules are exchanged at

the end of each period, so that neighboring nodes are aware ofeach others’ schedules.

Another adaptive duty cycle approach, ALPL, adjusts a node’s duty cycle according

to the node’s neighbors’ duty cycles in order to support the data flows it receives [59].

However, none of these approaches optimize the duty cycle for convergecast data pat-

terns and receiver-based routing.

In this chapter, we derive a mathematical model to determinethe energy dissipation

of a node as a function of its duty cycle and its distance to thesink for convergecast

data patterns and receiver-based routing. Using this model, we find the duty cycle as

a function of node distance to the sink to minimize the expected energy dissipation.

Additionally, in order to balance energy efficiency and latency, we develop a traffic-

adaptive duty cycle approach that begins with the distance-based duty cycle assignment

and adapts the duty cycle based on current local traffic patterns observed by the node.

In receiver-based protocols, the number of retransmitted RTS packets provides an in-

dication of the traffic. Under heavy traffic, nodes must generate many retransmitted

115

RTS packets. If the number of retransmitted RTS packets outnumbers the number of

original RTS packets, nodes should increase their duty cycle in order to alleviate the

traffic congestion; otherwise, they should decrease their duty cycle to save energy. This

approach allows the duty cycle to be tuned to trade-off energy and latency for observed

local traffic patterns.

Specifically, two duty cycle assignment methods are proposed in this chaper:

Distance-based Duty Cycle Assignment (DDCA), where the duty cycle is assigned to

each node based on the node to sink distance, and Traffic-Adaptive Distance-based

Duty Cycle Assignment (TDDCA), where the duty cycle is initialized to the one given

by the DDCA method and adapted to the traffic as explained above. Simulation re-

sults show that DDCA and TDDCA reduce energy consumption compared with the

commonly used, network-wide constant duty cycle method. Additionally, TDDCA

reduces latency at the expense of a small increase in energy consumption compared

with DDCA, which indicates that TDDCA is able to trade-off the lower latency of the

network-wide constant duty cycle method and the energy efficiency of the distant-based

duty cycle method (DDCA).

7.2 Distance-based Duty Cycle Assignment Methods

The traffic relayed at a node is related to its distance to the sink, the number of source

nodes in the network, the packet traffic generated by each source node, and the node

density. In this section, we present this relationship analytically, then, given the aver-

age traffic observed at a node, we derive the expected duty cycle for minimizing the

expected energy consumption of the node.

7.2.1 Traffic Rate Analysis

For the analysis, we assume a circle area with the sink located in the center and the

nodes including the sources uniformly randomly allocated as illustrated in Fig. 7.1,

whererT is the transmission range. We define thenth ring to be the ring whose inner

circle is (n − 1)rT away from the sink with widthrT . Hence, thenth ring contains

the nodes that aren-hops away from the sink. Let there beNn nodes in this ring. The

average traffic that must be relayed by all of the nodes located in thenth ring per unit

116

Figure 7.1: Sample network topology.

time,Γn, is the summation of the traffic generated by the source nodesin thenth ring

and within the rings outside of thenth ring per unit time, i.e.,

Γn = λgρsπ(R
2 − [(n− 1)rT]

2), (7.1)

whereλg is the average traffic generation rate of the source nodes,ρs is the density of

source nodes, andR is the radius of the network area.

SinceΓn is the average traffic relayed by all nodes per unit time in thenth ring, a

node within that ring relays a traffic with a meanλr = Γn/Nn packets per unit time. A

node with a distancer to the sink resides in then = ⌈ r
rT
⌉ ring and the number of nodes

in thenth ring is

Nn = ρrπ
{

(nrT)
2 − [(n− 1)rT]

2
}

, (7.2)

whereρr is the density of nodes. Hence, the average traffic rate of a node at distancer,

λr, is

λr =
λgρsπ

{

R2 − [(⌈ r
rT
⌉ − 1)rT]

2
}

ρrπ
{

[(⌈ r
rT
⌉)rT]2 − [(⌈ r

rT
⌉ − 1)rT]2

} . (7.3)

117

7.2.2 Duty Cycle for a Given Expected Traffic Rate

The time required for a transmission and the energy efficiency of the network is closely

related to the duty cycle values used. Higher duty cycle values provide more nodes

available for data routing, such that the possibility to have no relay nodes is decreased

and a lower latency is achieved, yet they consume more energy. In this section, we

derive the duty cycle that minimizes the energy consumptionfor a given traffic rate.

In [35], a similar derivation is done for unicast traffic, where every node can be a

source or a destination. We adapt the analysis presented in [35] for the following MAC

protocol modifications proposed. Although a receiver-based MAC protocol is analyzed

in [35], our simulation results showed a high number of collisions and high CTS traffic

load for the MAC protocol investigated therein. To reduce the number of collisions and

the CTS traffic load, the MAC protocol is modified as follows. In [35], the relay region

(locations with geographic advancement to the sink) is divided intoNp priority regions,

and each region is assigned a contention slot such that priority regioni is assigned the

ith slot in the contention window. We assign each priority region Nr CTS contention

slots, such that priority regioni is assigned the slots((Ni−1)×Nr, Ni×Nr−1). This

reduces CTS collisions, as all nodes in priority regioni can select one of theNr CTS

contention slots to send their CTS packet.

The following duty cycle analysis is based on the idea that the expected energy

consumption of a sensor node is proportional to the expectedtotal awake time,tl, of

the node. This is because, the radio idle listening power is approximately the same as

the transmission and reception power in WSNs [103]. Hence, aconstant power value

P is assumed for idle listening, transmission, and reception.

Let N denote the average number of nodes within a node’s transmission range,d

denote duty cycle, andλr denote the average traffic rate of a node located at distancer

to the sink node given in (7.3). Assuming a Poisson or uniformpacket generation rate,

the average traffic rate of a node follows the Poisson distribution. The probability that

a node detects no traffic can be calculated to bee−λrNTL whereTL is its listen period

at each cycle andλrN is the average packet arrival rate within its transmission range.

Thus, the probability that a node detects any ongoing trafficis p0 = 1 − e−λrNTL. If ξ

is the ratio of the relay region (i.e., the region in which nodes make forward progress

to the sink) to the transmission area,p0ξ is the probability of a node detecting ongoing

118

traffic and residing in the relay region of that traffic.

When a node has a packet to send, it sends an RTS packet and keeps retransmitting

the RTS packet until receiving a CTS packet. The expected number of RTS transmis-

sions needed before the first successful RTS/CTS handshake is

∑∞
i=1 i(1− p1)

ip1 = 1−p1
p1

= (eξdN − 1)−1
(7.4)

wherep1 = 1 − e−ξdN is the probability that at least one node replies to the RTS

packet, since the number of nodes residing in an area can be approximated by Poisson

distribution for uniformly random deployment [104]. For each retransmission, the node

sends out an RTS packet and waits forNp ×Nr CTS slot durations. The expected time

needed before the first successful RTS/CTS handshake,tH , is then

tH = (eξdN − 1)−1(TRTS +NpNrTCTS), (7.5)

whereTRTS andTCTS are the transmission delays for RTS and CTS packets, respec-

tively.

As illustrated in Fig. 7.2, the expected total time for a complete RTS, CTS, DATA

and ACK packet communication is

tC = TRTS + xTCTS + TDATA + TACK , (7.6)

wherex represents the number of CTS contention slots up to and including the first

successful CTS packet,TDATA andTACK are the required times for DATA and ACK

packets, respectively. The formula forx can be calculated from a standard CSMA

model, and we omit it here for the sake of brevity. Therefore,the expected total time

for a node to transmit a packet, including all the failed RTS packets and the successful

data exchange istt = tH + tC .

The expected time for a node to receive an RTS packet during a listening period is
TL

2
. An approximation for the probability that a node wins the contention and is selected

as the relay node is given in [35] as
1− e−ξdN

ξdN
. Then, the average active time of a node

that receives traffic and that resides in the relay region of the sender node is

t1 = TL

2
+

1− e−ξdN

ξdN
tC + (1− 1− e−ξdN

ξdN
)TL

2
. (7.7)

119

Figure 7.2: Representation of packet exchange durations.

Finally, the expected time a node is awake during one listen period is tl = (1 −
p0ξ)TL + p0ξt1, where(1 − p0ξ) represents the probability that either a node hears no

traffic or hears some traffic but is not in the relay region, in which case the node is

awake forTL time.

The expression for the expected energy consumptionP̄ , then, can be derived as

P̄ ≃ P × tl
TL/d

+ λrPtt

≃ P{d+ λr[(e
ξdN − 1)−1(TRTS +NpNrTCTS)

+(2− e−ξdN)(TRTS + xTCTS + TDATA + TACK)]}
≃ P

{

d+ λr{[(eξdN − 1)−1(1 +NpNr) + 2+

x]TCTS + 2TDATA}
}

≃ P{d+ λr[(e
ξdN − 1)−1NpNrTCTL + 2TDATA]},

(7.8)

whereTRTS ≃ TCTS ≃ TACK = TCTL, and1 − e−λrNTL ≃ λrNTL whenλrNTL <<

1. SincexTCTS is dominated by the other components in the formula, it is eliminated

as a simplification.

We take the derivative of the expected energy consumption function with respect

to d and set it to zero to find the duty cycle that minimizes the expected energy

consumption. The duty cycle resulting inEmin is dopt =
log[

α+2+
√

α(α+4)

2
]

ξN
where

α = λrξNNpNrTCTS. Finally, the mathematical relation between duty cycle and

average traffic rate is derived. The value ofλr for a node is found with the analysis

presented in Section 7.2.1.

120

7.2.3 Duty Cycle Assignment Methods Proposed

The Distance-based Duty Cycle Assignment (DDCA) method defines the duty cycle

of a node to be the duty cycle based on the analysis presented in Sections 7.2.1 and

7.2.2. Since analysis do not take packet contention and collision into consideration, we

round up the duty cycle found by DDCA to be⌈100d⌉
100

. Although the analysis presented

considers expected traffic observed by a node at a given distance, in practice the actual

traffic loads vary per node and over time. Moreover, the entire analysis focuses on

minimizing energy consumption while leaving the end-to-end delay performance as a

later concern. Aiming to solve these problems, we also propose a distance-based duty

cycle assignment scheme combined with the actual traffic pattern observed. In general,

the receiver-based protocols do not exchange any traffic information between nodes to

achieve stateless communication. However, RTS packets canbe used to observe the

traffic load. The number of retransmitted RTS packets increases either when a node’s

duty cycle is too low and no relay candidates can be found, or when the traffic load is

too high and the high contention of nodes causes collisions of the RTS packets from

different transmitters. For either case, increasing the duty cycle would increase the

probability of successful communication.

We introduce a piggyback flag to the original packet header ofthe RTS packet to

indicate whether this packet is being retransmitted or not.A counter is also set in every

node to record the numbers of the initial and retransmitted RTS packets. If the total

number of the received retransmitted RTS packets in the current cycle outweighs the

total number of the received initial RTS packets, it indicates severe contention in the

neighborhood, and the duty cycle of the node is increased to mitigate the traffic load.

Otherwise, the duty cycle is decreased every cycle down to a minimum of 1% to min-

imize the energy consumption. This method is called Traffic-Adaptive Distance-based

Duty Cycle Assignment (TDDCA). TDDCA is expected to improvethe latency perfor-

mance, since it takes into account not only the distance-based duty cycle assignment,

but also the spatiotemporal traffic information in a particular network deployment.

121

7.3 Performance Evaluation of Duty Cycle Assignment

Simulations are performed using the OPNET simulator to compare the two methods

proposed, namely DDCA and TDDCA, with the network-wide constant duty cycle as-

signment method. In the network-wide constant duty cycle method, the duty cycle is

set to the duty cycle found by the DDCA method for the nodes onehop away from the

sink, such that a high packet delivery ratio is guaranteed.

The performance metrics evaluated are packet delivery ratio, average energy con-

sumption, and average latency. The radius of the target areaR is set to be90m and

the transmission rangerT for all nodes is set to be30m. For simplicity, we assume the

relay region ratio is constant and set to 0.4 when determining the DDCA duty cycle,

and the power for transmission, reception and idle listening is set to1 unit. The sink is

located in the center of the area, where400 nodes are uniformly randomly deployed. In

TDDCA, the duty cycle is changed by1% every listening interval based on the observed

RTS retransmissions.

Two sets of simulations are performed to investigate the performance of the pre-

sented duty cycle assignment methods for a varying number ofsources and a varying

packet generation rate,λg. The effect of the number of sources is investigated for a

packet generation rate of0.5 packet/sec and the effect of the packet generation rate is

investigated for40 sources.

The packet delivery ratio (PDR) values achieved by the threemethods are presented

in Fig. 7.3(a) and Fig. 7.4(a). In all three methods, the PDR results are very close and

higher than97% for light traffic loads. With an increase in traffic load, theconstant

duty cycle method performs the best because its higher duty cycle can provide more

awake nodes to participate in data routing. The slightly worse performance of TDDCA

compared to the constant duty cycle method indicates that the fixed increments and

decrements in duty cycle is not efficient in terms of PDR. One alternative is to use

varying duty cycle increments and decrements as proposed in[105].

While PDRs are approximately the same using all three methods, Figs. 7.3(b) and

7.4(b) both show that TDDCA and DDCA are more energy-efficient than the constant

duty cycle method, and that DDCA performs better than TDDCA.DDCA reduces en-

ergy dissipation between21% and32% compared to the constant duty cycle method,

while TDDCA reduces energy dissipation between12% and19% compared to the con-

122

20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Sources

A
ve

ra
ge

 L
at

en
cy

 (
se

c)

Constant
TDDCA
DDCA

(a) Packet delivery ratio

20 40 60 80
0

10

20

30

40

50

60

70

80

90

Number of Sources

A
ve

ra
ge

 E
ne

rg
y

Constant
TDDCA
DDCA

(b) Average energy consumption

20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of Sources

A
ve

ra
ge

 L
at

en
cy

 (
se

c)

Constant
TDDCA
DDCA

(c) Average latency

Figure 7.3: Simulation results in terms of the number of sources.

stant duty cycle method. Because the entire network is likely to generate more re-

transmitted RTS packets than original RTS packets, TDDCA increases duty cycle more

often than decreasing it. The reason is as follows: in the area near the sink where traf-

fic is heavy, available nodes that receive the first RTS packetturn to a busy state until

they win the contention or receive a CTS packet from another node for the same RTS

packet. In this busy state, receivers do not reply RTS packets from other transmitters,

which results in retransmitted RTS packets even when there are awake nodes within

nodes’ transmission ranges. On the other hand, in the area far from the sink where

traffic is light, the duty cycles of nodes are low such that it is possible that there are

no awake nodes that can hear an RTS packet when it is broadcasted. Thus, retrans-

mitted RTS packets are generated in this case as well. Generally the fact that TDDCA

123

0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Generation Rate (packet/sec)

P
ac

ke
t D

el
iv

er
y

R
at

io

Constant
TDDCA
DDCA

(a) Packet delivery ratio

0.25 0.5 0.75 1
0

10

20

30

40

50

60

70

80

90

100

Packet Generation Rate (packet/sec)

A
ve

ra
ge

 E
ne

rg
y

Constant
TDDCA
DDCA

(b) Average energy consumption

0.25 0.5 0.75 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Packet Generation Rate (packet/sec)

A
ve

ra
ge

 L
at

en
cy

 (
se

c)

Constant
TDDCA
DDCA

(c) Average latency

Figure 7.4: Simulation results in terms of source packet generation rateλg.

increases the duty cycle more often than decreasing it leadsto its larger average energy

consumption than DDCA.

Figs. 7.3(c) and 7.4(c) show that TDDCA performs the best in terms of latency. In

light traffic, TDDCA achieves better latency values compared with DDCA, e.g., latency

using TDDCA is30% less than latency using DDCA when the number of sources is

20. Since nodes are likely to increase their duty cycle rather than to decrease it, in TD-

DCA there are more nodes available to contend for the channeland latency is reduced

compared with DDCA. It is also shown that in heavy traffic, TDDCA performs worse

in terms of latency compared with the constant duty cycle method. This is because un-

der the severe impact of packet collisions and contention, traffic patterns vary between

every listening interval such that a simple comparison between the number of original

124

RTS packets and retransmitted RTS packets cannot reflect thecurrent level of traffic

accurately enough. Hence, the method of changing duty cycles by1% in each listening

interval is not effective to achieve a low latency in high traffic conditions.

In summary, both DDCA and TDDCA are more energy-efficient than the constant

duty cycle method, while achieving similar packet deliveryratio performance. Com-

pared with DDCA, TDDCA has an advantage in terms of latency.

7.4 Conclusions

In this chapter, we derived the duty cycle for a node as a function of its distance to

the sink to minimize expected energy consumption for convergecast traffic patterns and

receiver-based routing. Based on our analysis, we developed two duty cycle assignment

algorithms. Simulation results show that both methods decrease energy consumption

compared with the constant duty cycle method by up to32% for the scenarios inves-

tigated. The traffic-adaptive distance-based duty cycle assignment method achieves

energy improvements without sacrificing the latency and throughput significantly. The

analysis can be extended as future work to improve the performance of distance-based

duty cycle assignment in heavy traffic scenarios, by taking the packet collisions and

contention into account.

Chapter 8

Conclusions and Future Work

8.1 Conclusions

This thesis addresses some of the fundamental problems in stack architectures and pro-

tocol design for emerging wireless networks. We are convinced by our preliminary

results that network dynamics can be supported. Through stacks that support multiple

protocols and information sharing, and through the use of stateless network protocols,

networks with multiple substrates can be efficiently implemented in our UPS frame-

work. The contributions of this thesis are summarized as follows.

• A single layer cross-layer protocol XLM [15] is implementedinto the X-Lisa

information-sharing protocol stack architecture. Simulation results shows that X-

Lisa can be successfully used as a flexible information sharing protocol stack, but

it lacks the ability to support multiple protocols in the same layer simultaneously,

and it does not provide a universal information-sharing interface.

• A new protocol stack architecture called UPS (Universal Protocol Stack) is pro-

posed. UPS standardizes a modular protocol stack that supports concurrent pro-

tocol operation and information sharing.

• Examples of implementing UPS are demonstrated through simulations. The re-

sults demonstrate that the UPS framework can be applied to existing protocols

with no interference between different protocol modules inthe same layer.

125

126

• A new virtual interface within the UPS framework to support multiple radio in-

terfaces is proposed. Results from simulations using this virtual interface show

that the use of a virtual interface can improve the network performance.

• A stateless receiver-based multicast protocol (RBMulticast) is developed, where

receivers decide the best way to forward the multicast traffic. RBMulticast re-

moves the need for costly state maintenance, which makes RBMulticast ideally

suited for multicasting in dynamic networks.

• An adaptation method for distance-based duty cycling is proposed for receiver-

based convergecast networks. Based on local observed traffic, a closed-form

energy formula for the duty cycle is derived.

8.2 Future Work

Possible future work includes designing approaches to select routers and interfaces

given the multiple choices available in a device and supported by the UPS architec-

ture. Specifically: 1) Layer 3/routing level decisions to choose the relays efficiently for

multihop networks with the use of multi-radio devices; and 2) cross-layer interactions

of the MAC and routing layers to best support application QoSgoals. The goal is to

explore the best network/interface combinations for networks that support multi-radio

devices.

8.2.1 Routing Layer Protocol Selection

The termsheterogeneous networksandhybrid networkshave been widely adopted in

the literature to represent the integration of cellular networks and WiFi. The related

studies target architectural support, or provide the throughput capacity of such integra-

tion.

The emerging IEEE 802.21 standard has the goal of supportinghandovers between

specific network types, specifically GSM, WiFi, Bluetooth, 802.11 and 802.16. This

standard will provide a tool for packets to seamlessly switch networks among the inves-

tigated networks. However, how to select the best network isstill an unsolved research

problem.

127

Chapter 4 defined a protocol architecture that enables us to run multiple protocols

in the same stack layer. Utilizing this architecture, we cansupport multi-radio devices

with a common routing protocol. An important area of future work is to look at the se-

lection of the route when links from different networks may be traversed by the packet.

This type of routing enables the nodes in the network to utilize all resources available

in any co-existing networks and bridge the different networks when beneficial.

8.2.2 Cross-Layer Protocol Selection

Once the layer 3 and layer 2 protocol selection method is decided, a generic solution

that integrates multi-layer information can be designed accordingly. The generic solu-

tion will track such information to predict the network performance. A protocol archi-

tecture can be developed that incorporates both layer 3 and layer 2 cross-layer decisions

for efficient resource utilization while supporting end-to-end application goals.

Chapter 9

Bibliography

[1] V. T. Raisinghani and S. Iyer, “Cross-layer design optimizations in wireless pro-

tocol stacks,”Computer Communications, vol. 27, no. 8, pp. 720–724, 2004.

[2] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,

J. Hill, M. Welsh, E. Brewer, and D. Culler, “TinyOS: An operating system for

sensor networks,”Ambient Intelligence, pp. 115–148, 2005.

[3] A. Boukerche, H. A. B. F. Oliveria, E. F. Nakamura, and A. A. F. Loureiro,

“Vehicular ad hoc networks: A new challenge for localization-based systems,”

Comput. Commun., vol. 31, no. 12, pp. 2838–2849, July 2008.

[4] K. Akkaya and M. F. Younis, “A survey on routing protocolsfor wireless sensor

networks,”Ad Hoc Networks, vol. 3, no. 3, pp. 325–349, 2005.

[5] I. F. Akyildiz, X. Wang, and W. Wang, “Wireless mesh networks: a survey,”

Comput. Netw. ISDN Syst., vol. 47, no. 4, pp. 445–487, 2005.

[6] B. Zhen, H.-B. Li, and R. Kohno, “IEEE body area networks and medical im-

plant communications,” ser. BodyNets ’08, 2008, pp. 26:1–26:4.

[7] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A multi-radio unification

protocol for IEEE 802.11 wireless networks,” ser. BroadNets ’04, 2004, pp. 344

– 354.

[8] E. Gustafsson and A. Jonsson, “Always best connected,”Wireless Communica-

tions, IEEE, vol. 10, no. 1, pp. 49 – 55, feb. 2003.

128

129

[9] C. Chereddi, P. Kyasanur, and N. H. Vaidya, “Net-X: a multichannel multi-

interface wireless mesh implementation,”SIGMOBILE Mob. Comput. Commun.

Rev., vol. 11, no. 3, pp. 84–95, 2007.

[10] A. Farago, A. Myers, V. Syrotiuk, and G. Zaruba, “Meta-MAC protocols: au-

tomatic combination of MAC protocols to optimize performance for unknown

conditions,”Selected Areas in Communications, IEEE Journal on, vol. 18, no. 9,

pp. 1670 –1681, sep. 2000.

[11] TinyOS, “http://www.tinyos.net/,” 2008. [Online]. Available:

http://www.tinyos.net/

[12] A. Balasubramanian, R. Mahajan, and A. Venkataramani,“Augmenting mobile

3G using WiFi,” ser. MobiSys ’10, 2010, pp. 209 – 222.

[13] E. H. Ong and J. Khan, “Dynamic access network selectionwith QoS parameters

estimation: A step closer to ABC,” may 2008, pp. 2671 –2676.

[14] C. J. Merlin, C.-H. Feng, and W. B. Heinzelman, “Information-sharing proto-

col architectures for sensor networks: The state of the art and a new solution,”

SIGMOBILE Mob. Comput. Commun. Rev., vol. 13, no. 4, pp. 26–38, 2009.

[15] I. Akyildiz, M. Vuran, and O. Akan, “A cross-layer protocol for wireless sensor

networks,” inProc. of CISS 2006, March 2006.

[16] C.-H. Feng, I. Demirkol, and W. B. Heinzelman, “UPS: Unified protocol stack

for wireless sensor networks,”MobiQuitous, 2009.

[17] C.-H. Feng and W. B. Heinzelman, “RBMulticast: Receiver based multicast

for wireless sensor networks,”IEEE Wireless Communications and Networking

Conference (WCNC ’09), April 2009.

[18] C.-H. Feng, Y. Zhang, I. Demirkol, and W. B. Heinzelman,“Stateless multi-

cast protocol for ad-hoc networks,”IEEE Transactions on Mobile Computing,

vol. 99, no. PrePrints, 2011.

130

[19] Y. Zhang, C.-H. Feng, I. Demirkol, and W. B. Heinzelman,“Energy-efficient

duty cycle assignment for receiver-based convergecast in wireless sensor net-

works,” ser. GLOBECOM, 2010.

[20] N. C. Hutchinson and L. L. Peterson, “The X-Kernel: An architecture for imple-

menting network protocols,”IEEE Trans. Softw. Eng., vol. 17, no. 1, pp. 64–76,

1991.

[21] S. W. O’Malley and L. L. Peterson, “A dynamic network architecture,” ACM

Trans. Comput. Syst., vol. 10, no. 2, pp. 110–143, 1992.

[22] J. Touch and V. Pingali, “The RNA metaprotocol,”Computer Communications

and Networks, 2008. ICCCN ’08. Proceedings of 17th International Conference

on, pp. 1–6, Aug. 2008.

[23] M. Conti, G. Maselli, G. Turi, and S. Giordano, “Cross-layering in mobile ad

hoc network design,”Computer, vol. 37, no. 2, pp. 48–51, Feb 2004.

[24] H. Füßler, M. Torrent-Moreno, M. Transier, A. Festag,and H. Hartenstein,

“Thoughts on a Protocol Architecture for Vehicular Ad-Hoc Networks,” inProc.

of 2nd International Workshop in Intelligent Transportation (WIT 2005), Ham-

burg, Germany, 03 2005, pp. 41–45.

[25] R. Kumar, S. PalChaudhuri, C. Reiss, and U. Ramachandran, “System support

for cross-layering in sensor network stack,”Proceedings of the International

Conference on Mobile Ad Hoc and Sensor Networks, Hong Kong, pp. 793–807,

2006.

[26] H. Zimmermann, “OSI reference model–the ISO model of architecture for open

systems interconnection,”Communications, IEEE Transactions, vol. 28, no. 4,

pp. 425–432, Apr 1980.

[27] M. Perillo and W. Heinzelman, “DAPR: A protocol for wireless sensor networks

utilizing an application-based routing cost,” inProceedings of the IEEE Wireless

Communications and Networking Conference (WCNC. IEEE, 2004, pp. 1528–

1533.

131

[28] A. Dunkels, F.Österlind, and Z. He, “An adaptive communication architecture

for wireless sensor networks,” inSenSys ’07: Proceedings of the 5th interna-

tional conference on Embedded networked sensor systems. New York, NY,

USA: ACM, 2007, pp. 335–349.

[29] P. Buonadonna, J. Hill, and D. Culler, “Active message communication for tiny

networked sensors,” inIEEE INFOCOM, 2001.

[30] S. Biswas and R. Morris, “Opportunistic routing in multi-hop wireless net-

works,” SIGCOMM Computer Communications Review, vol. 34, no. 1, pp. 69–

74, 2004.

[31] E. Rozner, J. Seshadri, Y. A. Mehta, and L. Qiu, “SOAR: Simple opportunistic

adaptive routing protocol for wireless mesh networks,”IEEE Transactions on

Mobile Computing, vol. 8, no. 12, pp. 1622–1635, 2009.

[32] M. Gerla, Y.-Z. Lee, J.-S. Park, and Y. Yi, “On demand multicast routing with

unidirectional links,” inWireless Communications and Networking Conference,

2005 IEEE, vol. 4, March 2005, pp. 2162–2167 Vol. 4.

[33] C. Perkins and E. Royer, “Ad-hoc on-demand distance vector routing,” Feb 1999,

pp. 90–100.

[34] M. Zorzi and R. Rao, “Geographic random forwarding (GeRaF) for ad hoc and

sensor networks: multihop performance,”IEEE Transactions on Mobile Com-

puting, vol. 2, no. 4, pp. 337–348, Oct.-Dec. 2003.

[35] M. Zorzi and R. R. Rao, “Geographic random forwarding (GeRaF) for ad hoc

and sensor networks: Energy and latency performance,”IEEE Transactions on

Mobile Computing, vol. 2, no. 4, pp. 349–365, 2003.

[36] S.-J. Lee, M. Gerla, and C.-C. Chiang, “On-demand multicast routing protocol,”

in Wireless Communications and Networking Conference, 1999.WCNC. 1999

IEEE, 1999, pp. 1298–1302 vol.3.

[37] J. Garcia-Luna-Aceves and E. Madruga, “A multicast routing protocol for ad-hoc

networks,” inINFOCOM ’99. Eighteenth Annual Joint Conference of the IEEE

132

Computer and Communications Societies. Proceedings. IEEE, vol. 2, Mar 1999,

pp. 784–792 vol.2.

[38] R. Vaishampayan and J. Garcia-Luna-Aceves, “Efficientand robust multicast

routing in mobile ad hoc networks,” inMobile Ad-hoc and Sensor Systems, 2004

IEEE International Conference on, Oct. 2004, pp. 304–313.

[39] E. M. Royer and C. E. Perkins, “Multicast operation of the ad-hoc on-demand

distance vector routing protocol,” inMobiCom ’99: Proceedings of the 5th an-

nual ACM/IEEE international conference on Mobile computing and networking.

New York, NY, USA: ACM, 1999, pp. 207–218.

[40] J. G. Jetcheva and D. B. Johnson, “Adaptive demand-driven multicast routing

in multi-hop wireless ad hoc networks,” inMobiHoc ’01: Proceedings of the

2nd ACM international symposium on Mobile ad hoc networking& computing.

New York, NY, USA: ACM, 2001, pp. 33–44.

[41] C. Wu and Y. Tay, “AMRIS: a multicast protocol for ad hoc wireless networks,”

in Military Communications Conference Proceedings, 1999. MILCOM 1999.

IEEE, vol. 1, 1999, pp. 25–29 vol.1.

[42] K. Chen and K. Nahrstedt, “Effective location-guided tree construction algo-

rithms for small group multicast in manet,”INFOCOM. Twenty-First Annual

Joint Conference of the IEEE Computer and Communications Societies. Pro-

ceedings. IEEE, vol. 3, pp. 1180–1189, 2002.

[43] W. Wang, X.-Y. Li, and Y. Wang, “Truthful multicast routing in selfish wireless

networks,” inMobiCom ’04: Proceedings of the 10th annual international con-

ference on Mobile computing and networking. New York, NY, USA: ACM,

2004, pp. 245–259.

[44] A. Okura, T. Ihara, and A. Miura, “Bam: branch aggregation multicast for wire-

less sensor networks,”Mobile Adhoc and Sensor Systems Conference, 2005.

IEEE International Conference on, pp. 10 pp.–, Nov. 2005.

133

[45] C.-C. Chiang, M. Gerla, and L. Zhang, “Shared tree wireless network multicast,”

in Computer Communications and Networks, 1997. Proceedings., Sixth Interna-

tional Conference on, Sep 1997, pp. 28–33.

[46] D. Koutsonikolas, S. Das, H. Charlie, and I. Stojmenovic, “Hierarchical geo-

graphic multicast routing for wireless sensor networks,” in Sensor Technologies

and Applications, 2007. SensorComm 2007. International Conference on, Oct.

2007, pp. 347–354.

[47] S. Das, H. Pucha, and Y. Hu, “Distributed hashing for scalable multicast in wire-

less ad hoc networks,”Parallel and Distributed Systems, IEEE Transactions on,

vol. 19, no. 3, pp. 347–362, March 2008.

[48] S. Basagni, I. Chlamtac, and V. R. Syrotiuk, “Location aware, dependable mul-

ticast for mobile ad hoc networks,”Computer Networks, vol. 36, no. 5/6, pp.

659–670, 2001.

[49] M. M. andand Holger Fuler, J. Widmer, and T. Lang, “Position-based multi-

cast routing for mobile ad-hoc networks,”SIGMOBILE Mob. Comput. Commun.

Rev., vol. 7, no. 3, pp. 53–55, 2003.

[50] P. Bose, P. Morin, and J. Urrutia, “Routing with guaranteed delivery in ad hoc

wireless networks,” inWireless Networks, 1999, pp. 48–55.

[51] J. Sanchez, P. Ruiz, and I. Stojmnenovic, “GMR: Geographic multicast routing

for wireless sensor networks,” inSensor and Ad Hoc Communications and Net-

works, 2006. SECON ’06. 2006 3rd Annual IEEE CommunicationsSociety on,

vol. 1, Sept. 2006, pp. 20–29.

[52] Y.-B. Ko and N. H. Vaidya, “Geocasting in mobile ad hoc networks: Location-

based multicast algorithms,”wmcsa, vol. 0, p. 101, 1999.

[53] W. Ye, J. Heidemann, and D. Estrin, “Medium access control with coordinated

adaptive sleeping for wireless sensor networks,”Networking, IEEE/ACM Trans-

actions on, vol. 12, no. 3, pp. 493–506, June 2004.

134

[54] T. van Dam and K. Langendoen, “An adaptive energy-efcient MAC protocol for

wireless sensor networks,”Proceedings of the First ACM Conference on Embed-

ded Networked Sensor Systems (SenSys), 2003.

[55] K.-J. Wong and D. K. Arvind, “SpeckMAC: low-power decentralised MAC pro-

tocols for low data rate transmissions in specknets,” pp. 71–78, 2006.

[56] M. Buettner, G. V. Yee, E. Anderson, and R. Han, “X-MAC: ashort preamble

MAC protocol for duty-cycled wireless sensor networks,” pp. 307–320, 2006.

[Online]. Available: http://dx.doi.org/10.1145/1182807.1182838

[57] A. El-Hoiydi and J. Decotignie, “WiseMAC: An ultra low power MAC proto-

col for multi-hop wireless sensor networks,”Proceedings of the First Interna-

tional Workshop on Algorithmic Aspects of Wireless Sensor Networks (ALGO-

SENSORS), July 2004.

[58] T. Zheng, S. Radhakrishnan, and V. Sarangan, “PMAC: An adaptive energy-

efficient MAC protocol for wireless sensor networks,” inIPDPS ’05: Proceed-

ings of the 19th IEEE International Parallel and Distributed Processing Sym-

posium (IPDPS’05) - Workshop 12. Washington, DC, USA: IEEE Computer

Society, 2005, p. 237.1.

[59] R. Jurdak, P. Baldi, and C. Videira Lopes, “Adaptive lowpower listening for

wireless sensor networks,”IEEE Transactions on Mobile Computing, vol. 6,

no. 8, pp. 988–1004, 2007.

[60] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “MACAW: A media ac-

cess protocol for wireless lans,”ACM SIGCOMM, September 1994.

[61] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A multi-radio unification

protocol for IEEE 802.11 wireless networks,” oct. 2004, pp.344 – 354.

[62] C. Doerr, M. Neufeld, J. Fifield, T. Weingart, D. Sicker,and D. Grunwald, “Mul-

tiMAC - an adaptive MAC framework for dynamic radio networking,” nov. 2005,

pp. 548 –555.

135

[63] K.-C. Huang, X. Jing, and D. Raychaudhuri, “MAC protocol adaptation in cog-

nitive radio networks: An experimental study,” aug. 2009, pp. 1 –6.

[64] J. Postel, “Internet Protocol,” RFC 791 (Standard), Sep. 1981, updated by RFC

1349. [Online]. Available: http://www.ietf.org/rfc/rfc791.txt

[65] J. Arkko and S. Bradner, “IANA Allocation Guidelines for the Protocol

Field,” RFC 5237 (Best Current Practice), Feb. 2008. [Online]. Available:

http://www.ietf.org/rfc/rfc5237.txt

[66] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, “Transmission of IPv6

Packets over IEEE 802.15.4 Networks,” RFC 4944 (Proposed Standard), Sep.

2007. [Online]. Available: http://www.ietf.org/rfc/rfc4944.txt

[67] “IP mobility support for IPv4, RFC3344,” United States, 2002.

[68] M. Kassar, B. Kervella, and G. Pujolle, “An overview of vertical handover deci-

sion strategies in heterogeneous wireless networks,”Comput. Commun., vol. 31,

no. 10, pp. 2607–2620, 2008.

[69] W. R. Stevens and G. R. Wright,TCP/IP illustrated (vol. 2): The implementa-

tion. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[70] M. Sichitiu, “Cross-layer scheduling for power efficiency in wireless sensor net-

works,” INFOCOM 2004. Twenty-third AnnualJoint Conference of the IEEE

Computer and Communications Societies, vol. 3, pp. 1740–1750 vol.3, March.

[71] J. Polastre, J. Hui, P. Levis, J. Zhao, D. Culler, S. Shenker, and I. Stoica, “A

unifying link abstraction for wireless sensor networks,” pp. 76–89, 2005.

[72] R. M. Jurdak, “Modeling and optimization of ad hoc and sensor networks,” Ph.D.

dissertation, Irvine, CA, USA, 2005, co-Chair-Cristina Videira Lopes and Co-

Chair-Pierre Baldi.

[73] Sentilla Corporation, “http://www.sentilla.com/.” [Online]. Available:

http://www.sentilla.com/

[74] OPNET, “http://www.opnet.com/.” [Online]. Available: http://www.opnet.com/

136

[75] “Wireless LAN Medium Access Control (MAC) and PhysicalLayer (PHY)

Specifications,” IEEE Standard 802.11, June 1999.

[76] “Single-chip 2.4 ghz IEEE 802.15.4 compliant and Zig-

Bee(TM) ready RF transceiver - CC2420.” [Online]. Available:

http://focus.ti.com/docs/prod/folders/print/cc2420.html

[77] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Di-

rected diffusion for wireless sensor networking,”IEEE/ACM Transactions on

Networking, vol. 11, pp. 2–16, 2003.

[78] W. Si, S. Selvakennedy, and A. Y. Zomaya, “An overview ofchannel assignment

methods for multi-radio multi-channel wireless mesh networks,” J. Parallel Dis-

trib. Comput., vol. 70, no. 5, pp. 505–524, 2010.

[79] R. Draves, J. Padhye, and B. Zill, “Routing in multi-radio, multi-hop wireless

mesh networks,” inMobiCom ’04: Proceedings of the 10th annual international

conference on Mobile computing and networking. New York, NY, USA: ACM,

2004, pp. 114–128.

[80] M. Wang, L. Ci, P. Zhan, and Y. Xu, “Multi-channel MAC protocols in wireless

ad hoc and sensor networks,” inCCCM ’08: Proceedings of the 2008 ISECS

International Colloquium on Computing, Communication, Control, and Man-

agement. Washington, DC, USA: IEEE Computer Society, 2008, pp. 562–566.

[81] J. Mo, H.-S. W. So, and J. Walrand, “Comparison of multi-channel MAC proto-

cols,” in MSWiM ’05: Proceedings of the 8th ACM international symposium on

Modeling, analysis and simulation of wireless and mobile systems. New York,

NY, USA: ACM, 2005, pp. 209–218.

[82] C. Doerr, M. Neufeld, J. Fifield, T. Weingart, D. Sicker,and D. Grunwald, “Mul-

tiMAC - an adaptive MAC framework for dynamic radio networking,” New Fron-

tiers in Dynamic Spectrum Access Networks, 2005. DySPAN 2005. 2005 First

IEEE International Symposium on, pp. 548 –555, nov. 2005.

[83] X. Qin and R. Berry, “Exploiting multiuser diversity for medium access control

in wireless networks,” inINFOCOM 2003. Twenty-Second Annual Joint Con-

137

ference of the IEEE Computer and Communications. IEEE Societies, vol. 2, 30

2003, pp. 1084 – 1094 vol.2.

[84] V. Ramasubramanian, Z. J. Haas, and E. G. Sirer, “SHARP:a hybrid adaptive

routing protocol for mobile ad hoc networks,” inMobiHoc ’03: Proceedings of

the 4th ACM international symposium on Mobile ad hoc networking & comput-

ing. New York, NY, USA: ACM, 2003, pp. 303–314.

[85] “The Network Simulator NS-3,” http://www.nsnam.org/.

[86] C.-H. Feng, I. Demirkol, and W. B. Heinzelman, “UPS: Universal protocol

stack for emerging wireless networks,”Ad Hoc Networks, Aug. 2011. [Online].

Available: http://dx.doi.org/10.1016/j.adhoc.2011.07.013

[87] “Long Term Evolution Protocol Overview,” freescale semiconductor, Tech.

Rep., 2008. [Online]. Available: http://www.freescale.com/

[88] Shweta Sinha, “A TCP tutorial.” [Online]. Available:

http://www.ssfnet.org/Exchange/tcp/tcpTutorialNotes.html

[89] J. L. Hennessy and D. A. Patterson,Computer architecture: a quantitative ap-

proach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2002.

[90] Y. Song, Y. Fang, and Y. Zhang, “Stochastic channel selection in cognitive ra-

dio networks,”Global Telecommunications Conference, 2007. GLOBECOM ’07.

IEEE, pp. 4878 –4882, nov. 2007.

[91] V. Kanodia, A. Sabharwal, and E. Knightly, “MOAR: a multi-channel oppor-

tunistic auto-rate media access protocol for ad hoc networks,” Broadband Net-

works, 2004. BroadNets 2004. Proceedings. First International Conference on,

pp. 600 – 610, oct. 2004.

[92] A. Motamedi and A. Bahai, “MAC protocol design for spectrum-agile wireless

networks: Stochastic control approach,”New Frontiers in Dynamic Spectrum

Access Networks, 2007. DySPAN 2007. 2nd IEEE InternationalSymposium on,

pp. 448 –451, april 2007.

138

[93] P. Varaiya, J. Walrand, and C. Buyukkoc, “Extensions ofthe multiarmed ban-

dit problem: The discounted case,”Automatic Control, IEEE Transactions on,

vol. 30, no. 5, pp. 426 – 439, may 1985.

[94] S. M. Kay, Fundamentals of statistical signal processing: estimation theory.

Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1993.

[95] K. Huber and S. Haykin, “Improved bayesian MIMO channeltracking for wire-

less communications: incorporating a dynamical model,”Wireless Communica-

tions, IEEE Transactions on, vol. 5, no. 9, pp. 2458 –2466, september 2006.

[96] B. Karp and H. T. Kung, “GPSR: greedy perimeter stateless routing for wireless

networks,” inMobiCom ’00: Proceedings of the 6th annual international con-

ference on Mobile computing and networking. New York, NY, USA: ACM,

2000, pp. 243–254.

[97] H. Chen and Y. Li, “Performance model of ieee 802.11 dcf with variable packet

length,”Communications Letters, IEEE, vol. 8, no. 3, pp. 186–188, March 2004.

[98] C.-f. Hsin and M. Liu, “Hitting time analysis for a classof random packet for-

warding schemes in ad hoc networks,”Ad Hoc Netw., vol. 7, no. 3, pp. 500–513,

2009.

[99] D. W. Gage, “Many-Robot MCM search systems,” inProceedings of Au-

tonomous Vehicles in Mine Countermeasures Symposium, 1995, pp. 9–55.

[100] Q. Cao, T. He, and T. Abdelzaher, “uCast: Unified connectionless multicast

for energy efficient content distribution in sensor networks,” Parallel and Dis-

tributed Systems, IEEE Transactions on, vol. 18, no. 2, pp. 240–250, Feb. 2007.

[101] P. Levis and N. Lee, “TOSSIM: A simulator for TinyOS networks,” Tech. Rep.,

2003.

[102] B. Blum, T. He, S. Son, and J. Stankovic, “IGF: A state-free robust communi-

cation protocol for wireless sensor networks,” In: Proceedings of the 3rd IEEE

Workshop on Applications and Services in Wireless Networks, Tech. Rep., 2003.

139

[103] Crossbow Technology, “http://www.xbow.com/.” [Online]. Available:

http://www.xbow.com/

[104] I. Demirkol, C. Ersoy, F. Alagoz, and H. Delic, “The impact of a realistic packet

traffic model on the performance of surveillance wireless sensor networks,”

Computer Networks, vol. 53, no. 3, pp. 382 – 399, 2009.

[105] C. J. Merlin and W. B. Heinzelman, “Duty cycle control for low power listening

MAC protocols,” inIn Proc. MASS08, 2008.

