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Abstract

Short-range wireless networks, such as wireless senssoriest, have become an inte-
gral part of our modern lives and have been broadly appliedany fields such as in-
dustry, military and research to facilitate the gathering distribution of information.
Compared with traditional wireless networks, such as t@llnetworks, short-range
wireless networks have the following unique charactexsst{i) Dense deployment: the
network devices are often densely deployed to achieverbmetiritoring of the environ-
ment. (ii) Circuit power consumption: due to the short communication distances, the
network devices communicate with each other using low traingower that is com-
parable to the devices’ circuit power consumption. Thusuii power consumption is
a major contributor to the energy drain of the network devidgi) Battery powered:
the network devices are usually battery powered and may fpleyk in remote areas.
Thus, it is difficult or even impossible to replace the enesgpplies of many of the
network devices in a short-range wireless network. Theeeimaximizing the energy

efficiency of short-range wireless networks is of paramampiortance.

In this dissertation, | explore the cross-layer designgpie to improve the energy
efficiency of energy constrained short-range wireless aidsy while fully considering
their unique characteristics as outlined above. In ordendaimize energy efficiency,
my research focuses on the cross-layer optimization of lysipal layer, the data link
layer, the multiple access layer, the network layer, andath@ication layer. In this
dissertation, | (i) develop an energy efficient cross-lalesign of the physical layer and

the data link layer in a typical narrowband system over ait@édvhite Gaussian noise



Vi

(AWGN) channel and a Rayleigh fading channel, as well as ypecél Impulse Radio
Ultra Wideband (IR-UWB) system over a frequency selectikiarmel; (ii) optimize
the energy efficiency of a clustered wireless network by simgpthe optimal transmit
power, selecting the optimal cluster head, and decidingthgneor not to use multi-
hop routing within a cluster; and (iii) optimize the enerdfiacgency of a short-range
wireless network with distributed source coding (DSC) addpdive transmission, as

well as with DSC over Gaussian multiple access channels.

Compared with existing work in the literature, | make uniguoatributions in this
dissertation in the following aspects. First, the uniquarabteristics of short-range
wireless networks, such as dense deployment and circugipognsumption, are con-
sidered in all of my cross-layer optimizations. Secondcuoon achieving a balance
between cost and performance during the development ofrtiss-¢ayer optimization
schemes, due to the limited computational capacity of theer& devices in short-
range wireless networks. Third, throughout this dissiemat develop universal opti-
mal solutions that are highly parameterized and directpliegble in general scenarios.
My research results in a large improvement in the energyiefioy of devices for short-

range wireless networks.
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1 Introduction

Recently, densely deployed short-range wireless netw&mR8VNSs), in particular wire-
less sensor networks (WSNs), have attracted attentionarstientific community.
These types of wireless networks have been broadly appliedany environments,
providing support for applications ranging from securibdasurveillance to monitor-

ing and health care.

The popularity of densely deployed wireless networks has lpgopelled by their
unique features. First, the network devices of short-ramigeless networks, namely
nodes, are of very low cost. This makes it possible to densely defih@ network
devices to greatly improve the network robustness. Searalto the self organization
feature that is often available in modern short-range eg®Inetworks, the nodes can
be deployed in inhospitable environments for the collectd data of interest. For
instance, sensors in WSNs can be used to detect survivordigaster site where it is
too dangerous to send in a search team. There are many otigditbef the application
of SRWNSs, such as the ability to provide full monitoring coage of an area. While
the value of SRWNs has been fully realized, the research aoniynis still addressing
the design challenges of SRWNs to facilitate the design emgleémentation of new

applications for SRWNs.

The network devices used in densely deployed SRWNs arelysmaéll in size



and close in distance. Compared with the devices used initnaal wireless networks,
the SRWN nodes are usually much more limited in power, coatprtal ability, and
energy. This imposes great challenges on the design anahi@ation of short-range
wireless networks. Due to the nodes’ limited energy storage the difficulties in
replacing batteries, the efficient expenditure of energth@nodes is of particular in-

terest.

One of the major design issues for a SRWN is the considerafi@ircuit power
consumption. Unlike with long range wireless networks vehidse circuit power con-
sumption is negligible compared with the transmit powerSRWNSs it is crucial to
consider the circuit power consumption in the design of hramunication protocols.
Therefore, the balance between the transmit power and ttigitqgpower must be care-
fully evaluated. The objective of my dissertation resedscto improve the energy
efficiency of short-range energy constrained wireless oektsvthrough cross-layer op-

timization techniques that consider these unique charatits of SRWNSs.

1.1 Wireless Sensor Networks

One particular type of SRWN is a wireless sensor network. reless sensor network
(WSN) consists of spatially distributed autonomous senswt cooperatively monitor
physical or environmental conditions, such as temperatmend, vibration, pressure,
motion or pollutants. In the past ten years, there has begeasing interest in wireless
sensor networks. This interest has been fueled, in parhdogvailability of small, low

cost sensor nodes (motes), enabling the deployment of tax@e networks for a vari-
ety of sensing applications [1]. The following are just a fexamples of applications

that can benefit from wireless sensor networks.

e Agricultural monitoring - evaluation of soil nutrients antbisture.

e Home automation - temperature or movement detection.



Industrial monitoring - sensing faults in machinery or iltance of property.

Wildlife/environmental survey - cataloging animal movarteeand the status of

forested areas.

Battlefield surveillance - rapidly deployable systems todseituational aware-

ness data to a virtual command center.

Medical monitoring - monitoring the condition of a patient.

The broad applications of wireless sensor networks ha\aglgracilitated science ex-
ploration. For instance, battery powered sensor netwahkse deployed in the Ama-
zon rainforest, the north pole, and even the bottom of thammte obtain data that has
been inaccessible by traditional means. On the other ham$os networks are be-
coming a part of people’s daily lives. Wireless home seguayistems and temperature

control systems make life safe and more comfortable.

Energy efficiency is a paramount design issue for wireless@enetworks. Wire-
less sensor networks are extremely resource-limited cedfyein terms of their energy
supply. Sensor nodes are usually powered by batterieshwiigose strict constraints
on not only the available energy but also the output powemamy wireless sensor
networks, the number and location of nodes make rechargirgptacing the batteries
infeasible at worst and inconvenient at best. For this reasoergy consumption is a

universal design issue for wireless sensor networks.

1.2 Motivation

The energy efficiency of short-range energy constraineel@gs networks is of paramount
importance and has attracted many research efforts [2] r@ssarch has shown the
benefit of cross-layer optimization to reduce the energysoomption of wireless de-

vices [3—7]. In my thesis, | extend this idea of cross-laygtimization to improve the



design and performance of short-range wireless networgscifically, in my thesis,
| develop several techniques to improve the energy effigi@fichort-range wireless
networks while taking account of their unique charactmsst.e., low transmit power,
limited energy supply, significant circuit power consuroptiand low computational

ability.

1.3 Thesis Statement

| focus my research on improving the energy efficiency of shamge wireless net-
works through cross-layer optimization. The optimizasiamthis thesis are conducted
jointly at the physical layer, the data link layer, the mpik access layer, the network
layer, and the application layer. The main contributionshis dissertation are high-

lighted as follows.

e The introduction of a metric, i.e., energy consumption pgormation bit, to
evaluate the energy efficiency of a communication link inrshange wireless
networks. This metric incorporates the influences of theutipower consump-
tion of the nodes, the transmit power consumption, packitiz overhead, cod-

ing overhead, and possible retransmissions.

e The analysis of the energy-optimal relay distance thatmizes the energy con-

sumption per information bit.

e The analysis of the optimum constellation size, packettlengnd duty cycle
that minimize the energy consumption per information bércan additive white

Gaussian noise (AWGN) channel.

e The analysis of the optimum packet length, the optimum nurob&AKE fin-
gers, the optimum modulation and coding schemes that nueirtlie energy
consumption per information bit in a typical Impulse Raditr&/Wideband (IR-

UWB) system over a frequency selective channel.



e A comprehensive analysis of improving the energy efficiavicy clustered wire-
less network by choosing the optimal transmit power, selgdhe optimal clus-

ter head, and deciding whether or not to use multi-hop rguiiithin a cluster.

e An energy efficient design of wireless networks jointly dolesing distributed
source coding, adaptive transmission, and clusteringlogyo By applying the
philosophy of cross-layer optimization over the physicad application layers,
| propose a joint optimization of transmit time durationgnsmit powers, and
Slepian-Wolf (SW) coding rates of the source nodes. | coimgmsively evaluate
the impacts of the communication environment and the residoergy of the
nodes on the Slepian-Wolf coding rates, and | derive cloged solutions of the
optimal transmit time durations, transmit powers, and i@lepVolf coding rates

that maximize the samples gathered at the fusion center.

e Derivation of a low complexity joint optimal rate allocatioof the SW cod-
ing rates and the information rates when using a multiplesschannel in an
average-power constrained short-range wireless netwexamine the optimal-
ity of three orthogonal multiple access channel schemeasghacode division
multiple access (CDMA), frequency division multiple ace¢sDMA), and time
division multiple access (TDMA), from an information thetical perspective,
and | propose an algorithm to determine how to choose thé ggptimal SW
coding rates and the information rates that maximize thepanate of the net-

work.

1.4 Thesis Organization

In this thesis, different aspects of the design and optitiumaf energy efficient short-

range wireless networks are discussed. Chapter 2 summagizted work in the area



of cross-layer optimization of wireless networks and idtroes the background of the

concepts and techniques used in this dissertation.

Chapter 3 describes an optimization approach to reduciagygrdissipation at the
physical layer, by finding the optimal transmit (relay) diste and transmit power for
a given modulation scheme and a given channel model, in todeaximize network

lifetime.

Chapter 4 describes a cross-layer optimization schemehéolirtk layer and the
physical layer for a narrowband communication link in SRWNorrespondingly, a
cross-layer optimization at the link layer and physicaklafpr a typical impulse radio

ultra wideband (IR-UWB) radio is developed in Chapter 5.

Clustering network topologies are taken into account ingjpgémization model in
Chapter 6. A joint optimization at the physical layer, i.adaptive transmit power,
and network layer, i.e., cluster head selection and muolti-belection, is proposed to

maximize the data gathering capacity of a clustered wisateswork.

Distributed source coding is added into the optimizatiordelan Chapter 7 to
improve the information gathering capacity of a short-engreless network, which is
measured in the number of samples gathered at the fusioarc@ttapter 8 proposes a
joint optimal rate allocation of Slepian-Wolf coding rat@ger multiple access channels
in a SRWN with the consideration of circuit power and averpge/er constraints.

Chapter 9 concludes this dissertation.



2 Related Work

In the past decades, there has been much research aimedratimgghe energy ef-
ficiency of wireless networks. Thus, it is essential to hatkaough understanding
of current enabling technologies in the energy efficienigiesf wireless networks,
upon which further developments and contribution can bk.duaithis chapter, | sum-
marize some important concepts and techniques from thratlitee on the principle of

cross-layer optimization and energy efficient design faeleiss networks.

2.1 Cross-Layer Optimization

Optimization techniques, including linear programmingnwex programming, geo-
metric programming, and dynamic programming, have beeansitely used in the
field of wireless networks to improve the network performan®efore performing
any optimization, a clear understanding of a typical comication system is neces-
sary. A traditional 7-layer Open System Interconnectio8Ij@rotocol stack is shown
in Fig. 2.1 [8]. The physical layer (PHY) addresses the isduestablishing a phys-
ical link between communication ends, including transioissreception, modulation
and demodulation. The data link layer ensures the reltglofi the established phys-
ical link and coordinates the resources between differentrounication links. The

network layer is in charge of establishing, maintainingl ssrminating end-to-end net-
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Figure 2.1: The seven layers of the OSI model.

work communication. Its functions include routing and yatg. The above three lay-
ers are sometimes referred to as the media layer, and trgnd#dsshort-range wireless

networks is mainly concerned with these three layers.

The transport layer ensures robust end-to-end commuaiatihe session layer
establishes system-to-system communication betweendsis;ithe presentation layer
reformats data, including data compression and encrypénd the application layer
serves as an interface to the users. These four layers aretisten called the host
layers. In short-range wireless networks, due to the litioites of the computational
capacity of the nodes, the functionalities of these fouetaymay be reduced into one

or two layers.

A typical protocol stack for a short-range wireless netwsrkh as a sensor network
is shown in Fig. 2.2 [1]. Compared with the standard OSI maithel sensor network
protocol stack combines the application layer, the predgemt layer and the session

layer into one application layer. This is because the dateqssing tasks in sensor
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Figure 2.2: The sensor network protocol stack model [1].

networks are usually very simple compared with the tasksattitional networks, such
as the Internet. The remaining four layers remain the sanwe Mhat the transport

layer may not be required by sensor networks.

The most significant difference between the sensor netwatopol stack and the
OSI model is the introduction of the concept oplane. As shown in Fig. 2.2, there
are three planes in a sensor network protocol stack, narhelpdwer management
plane, the mobility management plane, and the task manageiame. These planes
are a result of the collaborative nature of wireless senstwarks and the philosophy
of cross-layer design. In WSNs, aided by these managemanéeg| cooperation is
embodied not only between different stack layers but alsoreydifferent sensor nodes.
For instance, when the sensor battery is low, the power neamegt plane can inform
the physical layer to lower its transmit power, the data laker to sleep longer, and
the network layer to avoid participating in a route. As amrottxample, sensors may be
deployed in the field to monitor a common phenomenon. Thertemkagement plane
can schedule some of the nodes to sleep while guaranteahththactive nodes can

still cover the area of interest.

Cross-layer, even cross-node, design principles are afiderable importance in
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short-range wireless networks. Cross-layer design ischasehe cooperation of dif-
ferent protocol layers. For instance, in [9] the authorgpee joint optimization over
transmit powers, rates, and link schedules of a wirelessasaretwork to maximize
lifetime. Flow conservation, maximum rate, energy conagown and transmission
range are considered as constraints. Convex optimizatiased to solve for the op-
timal rates and powers for a given incidence matrix of thevoet graph, link gain
matrix, and initial energy. However, the computational pberity of the algorithm
grows as a double exponential function of the size of the adtwAlso, the input of
the algorithm is difficult to obtain in real-time applicati® In the following section,
we will introduce some state-of-the-art design and optatian techniques that focus

on different layers.

2.2 Energy Efficient Designs for Short-Range Wireless

Networks

Wireless sensor networks (WSNs) are the most common typkarf-eange wireless
networks, and researchers have studied these networkedadds [10]. Numerous
strategies have been investigated to promote the energieatfy of short-range wire-
less networks in general and WSNs in particular. Theseesfied include, but are not
limited to, transmit power control, mobile data sink depfmnt, multiple data sink
deployment, non-uniform initial energy assignment, aridlilgent node/relay deploy-
ment [11, 12]. Moreover, much work has been done to minimmnezgy dissipation at
all levels of system design, from the hardware to the prdsotmothe algorithms [13—
15].

In this section, we highlight some important issues in thagteof energy efficient
wireless networks Adaptive communication is an optimization technique often used

at the physical layetiimpulse radio ultrawideband andbursty transmission scheme are
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also introduced.Multiple access techniques address the design issue at the data link
layer. Clustered network topology and multi-hop topology can be used to improve the
network performance at the network layBistributed source coding provides lossless
compression of the observed random variables and feedsndatie network, which

can be viewed as a technique adopted at the application layer

2.2.1 Adaptive Communication

Adaptive communication enables the transmitter to adisstansmission approach, in-
cluding transmit power, modulation, and coding schemegralieg to the link condition

between the transmitter and the receiver. A feedback cha@nequired between the
transmitter and the receiver so that the transmitter canieethe channel conditions.
An illustrative system model using adaptive communicatgshown in Fig. 2.3. As

shown in this figure, the transmitted signal is demodulatetidecoded at the receiver,
meanwhile the receiver estimates the channel conditiasigih the received signal.
The estimated channel condition is then sent back to thesrrdter via a feedback

channel. According to the channel condition, the trangmnitill choose an appropriate
transmission scheme, including modulation, coding, aadsimit power, to achieve a
certain quality of service (Qo0S). For instance, the QoS @addjined as the data rate

given a fixed average transmit power, or as outage probafulita fixed data rate [7].

Adaptive communication can be used in a SRWN. However, thexe number of
differences between the adaptive communication techsigsed in SRWNs and in tra-
ditional communication systems. First, traditionallyaptive communication is used
to achieve the maximum data rate given a time varying chamimhever, in SRWNSs,
maximizing the data rate is usually not the priority. Inskethe target of adaptive com-
munication in SRWNs is to minimize the energy consumptioor. iRstance, adaptive
communication can be used to find the most energy efficienttowdyansmit a data

packet, given a certain transceiver power model and charomalition. Second, the
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Figure 2.3: A system model with adaptive communication.

adaptive communication scheme in SRWNSs is adaptive bas#tegrath loss between
a transmitter and different receivers. Traditional adegpiommunication is adaptive
based on the time varying channel between a transmitter eexkaver. This is caused
by the limited computational capacity of SRWN nodes, whioh asually small and
equipped with simple circuits. Moreover, one node may comicaie with different

nodes simultaneously. Maintaining a time varying adaptatdo multiple links is very

demanding for a SRWN node. Thus, time invariant adaptivercamcation based on

path loss are considered in our work.

To facilitate the adoption of the adaptive communicatiahteque based on path
loss, the power consumption model of the transceivers neels studied, and the
energy consumption as a function of transmission distapedsto be established. In
[14], the concept of an energy per useful bit metric is preposThis metric sought
to define a way of comparing energy consumption, specifitatiiking at the impact
of the preamble on the effectiveness of the system. The euttedine the energy per

useful bit (EPUB) metric as:

EPUB = (Preamble Overhead (Total Energy (2.1)

B, + B
(%) (Prx + 0Ppx)T (2.2)
D
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whereBp is the average number of data bits aBd is the average number of pream-
ble bits. The terms’ry and Prx are transmit and receive power, respectively. The
parameter is determined by the multi-access protocol and represhatprioportion
of time spent in receive mode compared to the proportionroétspent in transmit
mode. Finally,T" is the time to transmit a bit. By looking at this metric, we e
that in finding the minimum EPUB, there is a relationship keswthe complexity of
the MAC (i.e., the size of the preamble) and the reductiomialtenergy. The authors
claim that a more complex MAC can reduce the total energyjthhequires a longer
preamble, and the energy consumption of this longer preao@i outweigh the gains
of the improved energy from the more complex MAC. The papengares six phys-
ical layers to find the EPUB. The conclusion drawn from thelysis is that simpler
non-coherent modulations such as OOK and FSK-NC have theslosPUB.

In [3], the authors provide detailed analysis about the pawasumptions of the
components at both the transmitter and the receiver endsedver, the authors differ-
entiate the power consumptions of different modulatioresobs (linear or nonlinear).
Both circuit power consumption and transmit power consumom@re considered in [3].
A peak-power constrained optimization over the consiellasizes, linear/nonlinear
modulations, and coded/uncoded transmission schemesdiffeeent transmission dis-
tances are provided. The authors concluded that at shogniasion distances, band-
width efficient schemes (uncoded linear modulations withdaconstellation sizes) are
energy efficient; on the other hand, at large transmissistadces, energy efficient
schemes (coded nonlinear modulations with small consitatigizes) are energy effi-
cient. The authors in [3] assume a fixed target bit error drdiaand no retransmis-
sions. This assumption may not meet some quality of ser@Qo&j requirements, such

as reliable communications.

In [15], the authors show how startup time, i.e., the timeation a device needs
to prepare its circuits for communication, correlates wiite energy efficiency of the

system. This work is based on the idea that the energy corsumstartup is a sig-
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nificant part of the energy consumed in a transmission.\eary modulations, ag/

increases the maximum transmit energy must increase foed BER, but the number
of transmissions decreases. With higher order modulatimm$ransmitter is on for a
shorter time, and therefore even with the higher maximunicas shown that higher
order modulation schemes are more energy-efficient. Howwe result does not hold
when there is a large startup time. This work demonstratesriportance of evaluating
the startup time of a physical layer, and it shows that fotaterstartup times, certain

modulation schemes are preferable to others.

The idea of finding an energy-efficient optimal hop distanae lheen evaluated in
previous work. In [16], the authors propose a distributesitm-based network proto-
col optimized for minimum energy consumption in wirelesswvaeks. In this protocol a
node determines the potential relay nodes around it basteeaptimum energy dissi-
pation of the combined transmit/receive power of the soantkrelay nodes. Similarly,
in [17] the optimum one-hop transmission distance thatmvilimize the total system
energy is investigated. The main conclusion of this studizas the optimum one-hop
transmission distance depends only on the propagatioroemaent and the transceiver
characteristics and is independent of other factors (ghysical network topology, the
number of transmission sources and the total transmissstenae). In [18] it is shown
that given a route bit error rate (BER) and node spatial dgntfiere exists a global
optimal data rate at which the transmit power can be globailyimized. The authors
also report that there exists a critical node spatial dgmsivhich the optimal transmit
power is the minimum possible for a given data rate and a gigate BER. In this
study the optimal common transmit power is defined as thermim transmit power

used by all nodes necessary to guarantee network conrgctivi

The authors in [13] analytically derive the optimal hop diste given a particular
radio energy dissipation model. The goal of the derivat®moi minimize the total

energy consumed by the network to transmit data a distaBnce

D
ETotal = EEHop (23)
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where D is the total distance between the source and the destinatiathe hop

distance andvy,, is the total energy to transmit the data over one hop.

EHop = ETX + EHop,Fi:ced
mn
= allpxd" + Erx Fized + ERrX Fized

~ OzERxdn + 2EFi:ved (24)

The valueEy,, is made up of 2 component8ry and Ex,p pized- Erop, Fizea 1S the

fixed energy cost expended during the hop. This energy igl@asaunning the circuits
to perform the modulation and any other processing, andnbtsdependant on the
distance between the nodes or the amount of energy radisi@dhie channel by the
radio. E,p rizea 2N be divided into two partsrx pized aNd Epx pizeq. These are the
fixed energy costs of the transmitter and receiver, resgagtiWhile these two values
are not necessarily equal, it is common practice to set thepmaleand thus the fixed

energy i FErizeq-

The valueEry is the energy consumed to appropriately amplify the sigoraténs-
mission. It can also be broken into multiple components. ensn (2.4),Ery is the
product of the received energkiz x, the hop distancé raised to the path loss factor
n, and a scalatv. Fryx is the energy accumulated at the receiver, or more spedjfical
the desired received energy. The constaistthe attenuation of the channel that comes
from the wavelength of the signal and antenna gains. Thistaeahalso includes the

amplifier efficiency.

Combining (2.3) and (2.4) yields the following result.
ETotal - D(aERan_l + 2EFixedd_1) (25)

The optimal hop distancd;, is

2EJFZ'med
d- = Tt 2.6
a(n - 1>ERX ( )

Equation (2.6) is the expression for the energy-efficietinogl hop distance.
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In [19] the authors provide an analytical model for detelimgnthe transmission
range that achieves the most economical use of energy ihesgr@aetworks under the
assumption of a homogeneous node distribution. Given nociibns, the authors
propose a transmission strategy to ensure the progressagbaekets toward their final
destinations. By using the average packet progress forgéestommon transmission

range metric, they determine the transmission range thahizes this metric.

Optimizing the packet size in wireless networks as an adaptmmunication tech-
nique has also found considerable attention in the liteedd+6, 20-22]. In [6] tech-
niques for adapting radio parameters (e.g., frame lengthr, eontrol, processing gain,
and equalization) to channel variations is studied to im@rink performance while
minimizing battery energy consumption. In [20] an algamitfor estimating the chan-
nel BER using the acknowledgement history is presentedmistéd channel BER is
used to optimize the packet size. It is reported that thisralgn can achieve close to

optimal performance using a history of just 10,000 bits.

In [21] the effect of error control on packet size optimipatand energy efficiency
is examined. Itis shown that forward error correction capriove the energy efficiency,
while retransmission schemes are found to be energy irefficFurthermore, binary
BCH codes are found to be more energy efficient than the bestrpgng convolutional
codes. In [4] an analytical model characterizing the depang between packet length
and delay characteristics observed at the applicatiorr ligypresented. It is shown
that careful design of packetization schemes in the agmicdayer may significantly
improve radio link resource utilization in delay sensitmedia streaming under harsh

propagation environments.

In [22] link adaption techniques at the MAC layer, which usjtive frame size,
are used to enhance the energy efficiency of wireless sendesnTo obtain accurate
estimates and to reduce computational complexity, extbkd@man filtering is uti-
lized for predicting the optimal packet size. In [23], thetaar considers the dynamic

sizing of the MAC layer frame to improve wireless link thrdymit, range and energy
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efficiency. The philosophy is to obtain the balance of paoketrhead and packet error
probability.

In [24], the author utilizes optimum packet size and errontoml techniques to
improve the energy efficiency of wireless sensor networksweéver, neither of them
considered the energy consumptions of the retransmissame@ure, adaptive power

control, and power consumption of different componentsangceivers.

In [25], the authors proposed the energy-per-useful-dt{B) metric to measure
the PHY efficiency of wireless networks. The authors conegltitht, to minimize
EPUB, high data rates, low carrier frequencies, and simpl@utation schemes are pre-
ferred. However, the energy minimization procedure in [@5¢s not consider higher
order modulation or retransmissions. For example, theaasithssume that the data
rate changes only through changing the width of the symbiskpwrithout considering
coding rate and/or high-order modulations. On the othedhte investigation of the
impact of synchronization preambles in [25] is inspiringpeTauthors point out that the

packet header plays an important role in evaluating EPUBs&ndld be fully studied.

The authors investigated the joint optimization of the $rait power and the frame
length to improve the energy efficiency of a communicatiark lin wireless sensor
networks [26]. The authors concluded that transmit powettrobis only beneficial
within a certain distance range, while at large transmisdistances, full power trans-
mission is preferred. The investigation of this paper iseexpental and thus specific

to a particular device type.

Besides the work mentioned above, other considerableibatioms have been
made to improve the energy efficiency of wireless networksr éxample, Wanggt
al. investigated the energy efficient modulation and MAC forssemetworks with the
consideration of the power consumptions of detailed trairec components as well as
the start-up energy consumption [27]. Degical. studied the optimum transmission
range minimizing energy efficiency in Ad Hoc networks basednode density and

node coverage area [28]. In [29], the authors derive a simtigkeibuted optimization
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scheme, which is an abstracted model without the considarat detailed channel

models, packet structure, and link/MAC layer protocols.ie@tet al. designed an

adaptive radio to minimize energy consumption by adjustiregframe length, error
control schemes, processing gain, and equalization basetdannel conditions [30].

Cuiet al. studied the energy per information bif,, minimization problem considering
the dependency of circuit power consumption on modulatrmh@ding schemes and
the time duration of a packet containifignformation bits for different coding coding
schemes [31]. The fundamental model is

I Powerx Time to transmit a packet
b — .
L

2.7)

Based on this model, the authors conducted an energy matiimizconsidering both

transmit power and circuit power.

While this is the first important step towards the analytioadeling and analysis
of energy consumption at the PHY layer, there are some nedaators that are not
considered in [31]. First, the authors did not consideraretmissions after a packet
loss, which is essential for a reliable link. Second, headat preamble overhead
is not considered. Finally, the target bit error probapilg assumed to be fixed in
[31]. Removal of this restriction allows for further rediaet in energy consumption.
While all of this previous work has limitations, as descdlabove, it has laid a solid

foundation for our study.

2.2.2 Impulse Radio Ultra Widedband

Impulse radio ultra wideband (IR-UWB) communications igamled as an attractive
solution to provide high data rate and low radiated poweseeslly for short-range
wireless network applications [32]-[35]. As describedvivesly, WSNs have been
used for applications ranging from environmental monitgrand health monitoring to
security and surveillance [2][36]. These different apgticns for WSNs have vastly

different date rate requirements. Take, for example, Viserasor networks (VSNSs) for
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Figure 2.4: The transmitter and receiver structure in alVUi&B system.

surveillance or health monitoring. These networks reqairelatively large date rate to
transmit and receive images or video in a timely manner, dogvaadiated power to
avoid interference with coexisting wireless systems. NRH®Jtechnology, in this case,

has a great potential to facilitate the application of VSNs.

Compared with traditional wideband systems, IR-UWB systésature low com-
plexity transceiver structures and low emission power. édger, the main complexity
of an IR-UWB system is in the design of the receiver. Fig. 2dves the structure
of a typical IR-UWB transmitter and receiver. As shown in flgure, an IR-UWB
transmitter consists of only a pulse generator, a pulse tatmua digital amplifier
(DA), a clock generator, and a synchronizer. However, abklRB receiver is equipped
with several correlator branches (mixer and integratar)aalog-to-digital converter
(ADC), a low noise amplifier (LNA), a variable gain amplifia/fGA), a pulse genera-

tor, a synchronizer, and a channel estimator.

Evidently, the complexity and, correspondingly, the poa@nsumption of an IR-
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UWB receiver is more than an IR-UWB transmitter. Moreover,IR-UWB system

is designed as a secondary system that co-exists and slzar@width with primary

systems. The United States Federal Communications Conomi@SCC) has a strict
regulation on the transmit power of an IR-UWB system so thdbes not cause no-
ticeable degradation to the performance of existing wa®lgevices [32]. As a result,
the power control is not feasible in an IR-UWB transmittenefefore, compared with
adaptive modulation where the optimization is conductetherdesign of the transmit-
ter, the focus of energy efficient IR-UWB system design ish@receiver. In our work,

we investigate how to adapt an IR-UWB receiver accordingpédink conditions.

The performance of IR-UWB has been extensively studied-[39]. Some work
on the optimization of IR-UWB systems considering antenesigh, synchronization,
and channel capacity are also present in the literature[f8)] However, none of
these optimizations is aimed at minimizing the energy consion in IR-UWB sys-
tems. The energy capture effect of a RAKE receiver in IR-UW8ems is first studied
by Win et al. in [44]. The authors analyze the relationship between therdity level
and captured energy. Although no power model is assumedin fde authors have
concluded that there exists a threshold number of RAKE fsgetR-UWB systems
such that adding more RAKE fingers does not significantly oupmperformance. De-
spite the fact that much research has been conducted on IR-&jstems, a detailed

study on link energy minimization in IR-UWB based networksacking.

An effective channel model is critical in evaluating thefpemance of any com-
munication system. Numerous research efforts have beer madrds establishing
an effective IR-UWB channel model [45]-[47]. In particulabmprehensive IR-UWB
channel models for both frequency ranges frdm 10 GHz and below 1 GHz are pro-
vided in [46]. A single-slope power decay law is adopted tectide the path loss fea-
ture of the IR-UWB channel, and Nakagami-distributed atadk is used to describe
the small-scale fading of the IR-UWB channel [46]. This midues been accepted by
the IEEE 802.15.4a Task Group as a standard model to evai® &ystems, and is
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also used in this work to evaluate the energy consumptiofiffefeint schemes.

2.2.3 Bursty Transmission Scheme

Given an average transmit power, it can be shown that makigthe transmission en-
ergy efficiency is equivalent to maximizing the channel catyaThis can be illustrated

as follows.

Transmission energy efficiency is measured by cost (eneyggumption) per in-

formation bit. That is
P

c(p)’
where Ey;; represents the transmission energy consumption per iatosmbit mea-

By = (2.8)

sured in J/bit.P is the average power consumption (J/seco@d)?) denotes the chan-
nel capacity as a function of the average transmit powersaored in bits/second for
a given bandwidth. Clearly minimizing,;, is equivalent to maximizing’'(P) for a

givenP.

With the consideration of circuit power consumption, it bagn shown that bursty
transmission schemes achieve capacity and therefore nzaxihe transmission en-
ergy efficiency [48]. This conclusion is contrary to the coombelief that low power,
constant transmission, namely lazy scheduling, maxintlzesransmission energy ef-
ficiency [49]. In fact, both schedules are optimal underedéht assumptions. Bursty
transmission is energy efficient when circuit power is ndliggble, while lazy trans-

mission is energy efficient when circuit power is negligible

In [50, 51], the authors investigate energy-efficient patkesmission scheduling
in wireless networks. In [50], it is shown that the transnaissenergy consumption
of a packet is a non-negative, monotonically decreasingtion of the transmission
duration. That is, the longer it takes to transmit a packet,|¢ss transmission energy
will be consumed. However, this is not true when the energysomed takes into

account the circuit power consumption [52] [53]. In SRWNSss iobvious that circuit
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power consumption is an important factor that influencegttexgy efficiency of nodes.
Therefore, bursty transmission schemes should be coesid&his coincides with our
intuition that a node should sleep as often as possible ® sagrgy. Comprehensive
results on improving energy efficiency that can provide sengmlutions yet consider

circuit power and energy constraints are desired.

2.2.4 Multiple Access Techniques

Multiple access techniques can be categorized into fixedsscand random access
techniques. Fixed access techniques include fixed-adoesslivision multiple access
(TDMA), code division multiple access (CDMA), frequencyigion multiple access
(FDMA), and space division multiple access (SDMA). Randauess protocols for
sensor networks include Sensor MAC (S-MAC), SpeckMAC, anseMAC [54, 55].
Note that the above random access techniques share timgges@among different
nodes and thereby can also be viewed as TDMA. The tradedffgebea fixed access
and random access are clear. Fixed access requires cemtial@nd can only be used
in heterogeneous wireless networks. Also the overheadagfsacscheduling for fixed
access techniques is high. However, fixed access can geamnbllision free multiple
access channel for nodes, even under heavy traffic loads.h®nantrary, random
access techniques do not require central control, have ad¢beduling overhead, and
incur high collision probability in a heavy traffic scenaribhe choice of multi-access

technique depends on the features of the SRWN of interestsaagdplications.

In [56] an optimal variable-length TDMA scheme is obtainedai star-topology
wireless network. The authors assumed a specific transgeoveer model, finite-
length transmitting queues, as well as a fixed deadline fibeatong all data from all
transmitters. Iterative convex relaxation methods arel tisesolve the constrained op-
timization problem. A similar convex modeling method iscalssed in [31], where

the optimal constellation size and modulation method avedo Energy storage con-
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straints at the nodes are not considered in both [56] and [31]

2.2.5 Clustered Network Topology

The clustering of nodes consists of grouping nodes togé&bHferm a local subnetwork.
Using clustering, a flat homogeneous wireless network besarhierarchical hetero-
geneous network. Clustering is an effective method foriefiiclocal scheduling, and

it greatly improves the network scalability.

As another option to improve the energy efficiency of SRWNsstering proto-
cols have been broadly adopted due to their effectivenegsiamplicity. In clustered
SRWNSs, neighboring nodes are grouped as clusters. One pbtles in a cluster is se-
lected as the cluster head (CH), and the remaining nodekeotuster members (CM).
The cluster head is usually in charge of certain local coatitbns, such as collecting
data from the cluster members and communicating with otlasters and the data sink,
while cluster members simply transmit data to the clustedh&he cluster head may
be selected in a randomized manner, such as in HEED [57] olQHE/S8]. Such a
randomized selection of the cluster head, combined withtirgg the cluster head posi-
tion, can effectively avoid the early drain of the energy giaaticular node. However,
it cannot guarantee the optimality of the selection. On themohand, the cluster head
can be selected by a centralized algorithm through an opdition scheme. This type
of cluster head selection scheme requires a powerful docgrder and does not scale
well. The advantage of centralized algorithms is that theay guarantee the optimality
of the cluster head selection. More effective distributiggbathms or highly efficient

low complexity centralized algorithms for cluster headeséibn are still desired.

2.2.6 Multi-hop Topology

In SRWNSs, nodes are usually densely deployed [1]. Thus,i8tarttes between nodes

can be very small. Correspondingly, compared with singlg, lthe transmit power
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Figure 2.5: An illustration of a multi-hop scheme versusrak hop scheme.

of nodes can be kept low when communicating using multi-hbipis can be shown
by the example in Fig. 2.5, where the node distance @&d is assumed to be the
same for all nodes. Suppose node 1 wants to communicate okl 5. Node 1 has
two choices : single hop (solid line) and multi-hop (dashed)l Assume the nodes
require the received power to be at le&stfor correct communication, and the path
loss exponent is 2. Then if node 1 chooses single hop, theniapower has to be
at leastP, = P,(4d)*> = 16P,d*. However, if node 1 chooses a multi-hop route, the
transmit power only needs to li¢ = P.d?. The multi-hop scheme significantly lower

the transmit power compared with the single hop scheme.

However, in terms of energy efficiency, we cannot guarartaenulti-hop is supe-
rior to single hop, especially when the circuit power conption is taken into account.
Still considering the example in Fig. 2.5, if node 1 choosegle hop, the energy con-

sumption of the communication link is
Elink, singlehop — (16P7«d2 + 2Pc>T7 (2-9)

where P, is the circuit power consumption, which is the same for aleoand is the
same for transmission and for receptidf.is the time duration of the transmission.
To simplify the analysis, we assume that a node only consumeden working as a

receiver. Similarly, when using multi-hop, the communigattonsumes

Elink, muti-hop = (4P, d* + 5P,)T. (2.10)



27

Therefore,
Elink, singlehop — Elink, multi-hop = (12Prd2 - 3Pc)T- (2-11)

The above equation is greater than or equal to ze?gcﬁfz i otherwise it is less than
zero. That is, if the nodes are close to each other, or thaitpower consumption is
large, the multi-hop scheme can be less energy efficient tkary single hop, for it
involves more nodes in the route than single hop. Theretbeemulti-hop and single
hop schemes must be carefully evaluated in short-ranggemenstrained wireless

networks.

The performance of multi-hop techniques has been broadbjiesd in the litera-
ture. In [59] the performance of multiple multi-hop routisghemes are evaluated in
terms of packet delivery ratio and routing overhead. Alttothe simulation-based
performance evaluation in [59] is quite comprehensive,ehergy efficiency of dif-
ferent multi-hop routing schemes is not considered. Theggnefficiency of a multi-
hop link is investigated in [60], where the authors studieslénergy expenditure of a
path with a large number of short-distance hops and anotiteraxsmaller number of
large-distance hops. To guarantee reliable communicatioro operating models are
compared: end-to-end retransmissions and hop-by-hognsatrissions. The optimal

routes are found for both models.

The energy efficiency of multi-hop schemes is evaluated facdifferent perspec-
tive in [61], where the optimal load distribution among nedie a multi-hop scenario
has been found. The work is based on the observation thapamea with the nodes
that are far away from the sink, those near the sink tend tdadieer due to a high
local traffic load, since the traffic load accumulates alongudti-hop route to the sink.
The authors proposed varying the node’s transmission raogerding to the distance
between the node and the sink to evenly distribute the enssggumption over the
entire SRWN of interest. There are many more works concgrtia performance of
multi-hop schemes in the literature. In our work, we seekahgwer to the question

of whether and how a multi-hop scheme should be used in aecltsimaximize the
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amount of data that the cluster head collects from the dlustenbers.

2.2.7 Distributed Source Coding

Distributed source coding (DSC) exploits the spatial datien of the observed random
variables [62, 63]. DSC techniques are especially usefwiieless sensor networks
where sensors are densely deployed and the observed rarat@bles are closely

correlated among neighboring nodes.

The key feature of DSC is that the sum source coding rate ceadoeed to the joint
entropy without the nodes communicating with each othere attvantages of using
DSC can be better illustrated by an example. In the two saurde case, two observed
random variables are denoted Ry and X,. If the nodes do not use distributed source

coding, the source coding rates at the nodes are
Ry = H(X1), Ry = H(X,), (2.12)

where H(-) denotes the entropy of a discrete random variable. The tvadeswvill

generate data at a total rate®f + R, = H(X;) + H(X>) bits per samples.
If DSC, in particular Slepian Wolf coding [62], is used, theusce coding rates

at the nodes fall into a rate region shown in Fig. 2.6. The rmpdate region can be

expressed as

H
Ry > H(X,|X)), (2.13)
R+ R, >H(X,, Xy).
In this case, the two nodes can generate data at a total réte-ofR, = H (X, X5)

bits per samples. We have
H(Xy, Xs) = H(Xy|X2) + H(X,) < H(Xy) + H(X2), (2.14)

with equality only if X; and X, are independent. Therefore, as long as the observed

random variables are correlated( X, |X,) < H(X;), and DSC generates fewer total
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Figure 2.6: An illustration of Slepian-Wolf source codiregion (2 sources).

bits per sample than individual compression. The more taige the random variables
are (smallerH (X;| X)), the more data bits can be saved by using DSC techniques.
Fewer data bits will reduce the communication burden of thaees and thereby improve

the energy efficiency of the wireless network.

DSC deals with the compression of several correlated datces, sensed by re-
motely located nodes, without communication among the siqence distributed)
such that a destination that knows the spatial correlatmrrecover all the data [63][64].
Consider two discrete correlated sourégsand.X,. Slepian and Wolf showed that cod-
ing at a combined rate d® = H (X, X») is sufficient even for distributed encoding of
correlated sources [62]. Specifically, the Slepian-Wodfditem states that the achiev-
able rate region of lossless DSC for discrete souf¢eand X, is given by (2.13). The
achievability of Slepian-Wolf coding is generalized to ahiary number of discrete
correlated sources [63]. For lossless distributed consppef N correlated discrete
sourcesX;, Xo, ..., Xn the combined raté/ (X, Xs, ..., X) is sufficient for perfect
reconstruction of all the sources. In other words, ther@isate penalty due to lack of

explicit side information at the encoders.



30

By relying on the duality between source coding and chanoding, distributed
source codes have been constructed that achieve diffevaris pn the boundaries of
the Slepian-Wolf rate-region [65][66]. Powerful channeldes such as low-density
parity-check (LDPC) codes [67], Trellis codes [68], andwaational and Turbo codes
[69] are employed to construct lossless DSC codes for twreladed binary sources.
Some of these codes are generalized to includegbary or N > 2 binary correlated

sources [70].

Theoretical lossless DSC results have been recentlyedilia address energy effi-
cient gathering of correlated data in wireless networks wiathematical optimization
techniques [71]-[79]. These works address the problem wétrocting correlated data
gathering tree on a graph, which is different from classiedvork flow theory. Since
the data are correlated, standard solutions (e.g., shpd#s spanning tree, minimum
cost flow) are not optimal, leading to new original rate alican problems and orig-
inal tree building problems, depending on the source codingel. The prominent
approach is to formulate a flow-based linear programmingdplpro to minimize the
energy consumption, taking into account the capacity caimés associated with the
wireless shared media, flow conservation constraints, aedconstraints enforced by
the lossless DSC rate region. In these works, the authoesjbitly optimized the data
gathering tree and the rate allocation across the sourasnadd obtain these solutions,
the wireless media is abstracted as a graph with fixed coshfagmation bit, which
is often not the case in practice. Rather, different comeation parameters such as
node distances and available energy in each node eschewttheaballocation of the

communication burden.

An important question is how to assign the coding rates anmonigs. In the above
two source case, we want to seldtt and R, so thatR; and R, are within the cod-
ing region shown in Fig. 2.6 and the nodes can send the higiuesber of samples
during their limited lifetime. The optimal coding rates sitbbe related with the con-

dition of the node (e.g., how much energy it has, its circoiver consumption), the
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network topology (e.g., the distance from the source nodbdodata sink), and the
observed random variables (e.g., how much entropy they)h8wueh detailed analysis

and evaluations are conducted in our research.
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3 Optimizing Physical Layer

Parameters for Wireless Networks

In this chapter, we investigate the problem of energy-efficiransmission of data over
a noisy channel, focusing on the setting of physical layeampaters. We derive a met-
ric called the energy per successfully received bit, whjpéctfies the expected energy
required to transmit a bit successfully over a particulatatice given a channel noise
model. By minimizing this metric, we can find, for differenbufulation schemes, the
energy-optimal relay distance and the optimal transmitggnas a function of channel

noise level and path loss exponent. These results enabi®nketlesigners to select
the hop distance, transmit power and/or modulation schéraenhaximize network

lifetime.

3.1 Introduction

In short-range wireless networks (SRWNSs), the energy oftites is usually very lim-
ited. To make the best use of the limited energy availablegémbdes, and hence to the
network, it is important to appropriately set parameterthefprotocols in the network
stack. Here, we specifically look at the physical layer, ehée parameters available
for optimization include: modulation scheme, transmit pow&nd hop distance. The

optimal values of these parameters will depend on the cthamogel. In this chapter,
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we consider both an additive white Gaussian noise (AWGNhobBbmodel as well as
a block Rayleigh fading channel model. Moreover, we exarttiegelationship among

these physical layer parameters as the channel model parsraee varied.

When a wireless transmission is received, it can be decodbdwertain probabil-
ity of error, based on the ratio of the signal power to the@p@wer of the channel (i.e.,
the SNR). As the energy used in transmission increases rtwalpility of error goes
down, and thus the number of retransmissions goes down., Tiere exists an opti-
mal tradeoff between the expected number of retransmissiod the transmit power

to minimize the total energy dissipated to receive the data.

At the physical layer, there are two main components thatritre to energy con-
sumption in a wireless transmission, the energy consumgaioretransmission caused
by channel loss and the fixed energy cost to run the transmissid reception cir-
cuitry [80]. The loss in the channel increases as a powerehthp distance, while
the fixed circuitry energy cost increases linearly with thenber of hops. This im-
plies that there is an optimal hop distance where the minimmumunt of energy is
expended to send a packet across a multi-hop network. Siynilaere is a tradeoff
between the transmit power and the probability of errorhia tradeoff, there are two
parameters that a network designer can change to optineangrgy consumed: trans-
mit power and hop distance. The third option for physicaklgyarameter selection is
much broader than the other two. The coding/modulation®&ifstem determines the
probability of success of the transmission. Changes in thbgbility of a successful
transmission lead to changes in the optimal values for thergghysical layer param-
eters [15]. Here we look at the case where the probabilitymafrés a function of the
basic modulation scheme in an AWGN channel and a block Rglyl@iding channel,
and it depends on the noise level of the channel and the estenergy of the signal
(i.e., it depends on the SNR). However, this work can be edérno incorporate any

packet error or symbol error model (e.g., models that inm@i@ channel coding).

To illustrate these physical layer tradeoffs, considerlitear network shown in
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Figure 3.1: Three examples of a linear wireless networkwigk 1 has a short hop dis-

tance, Network 2 has a long hop distance, and Network 3 hasptif@al hop distance.

Fig. 3.1. In this network, a node must send data back to the S&@dion. The first
physical layer consideration is hop distance. In the firsecd@Network 1), the hop
distance is very small, which translates to low per-hop gnelissipation. Because
the transmit energy must be proportionaldd wheren > 2 andd is the distance
between the transmitter and receiver, the total transreiiggno get the data to the base
station will be much less using the multi-hop approach thdimect transmission [80].
However, in this network, the main factor in the energy giiason of the transmission
is the large number of hops. The fixed energy cost to routaitir@ach intermediate

hop will cause the total energy dissipation to be high.

In the second case (Network 2), the hop distance is very.lafgéh so few hops
there is little drain of energy on the network due to the fixadrgy cost. However,
there is a large energy drain on the nodes due to the highyenesg to transmit data
over the long individual hop distances. With a large patks fastor, the total energy in
this case will far exceed the total energy in the case of diaps. Thus it is clear that
a balance must be struck, as shown in Network 3, so that takaioérgy consumed in

the network is at a minimum.

The contribution of this chapter is a method of finding tharopim physical layer

parameters to minimize energy dissipation in a multi-hoeless network. To achieve
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this goal, first we define a metric that specifies the energyspecessfully received
bit (£.SB). This metric is a function of three physical layer paramstéop distance,
d, transmit energyF; rx, and the modulation scheme. In additidn$ B depends on
the channel model. Given a specific channel model and a @amistm any two of the
three physical layer parameters, this formula allows a agtwlesigner to determine
the remaining physical layer parameter that will miniminemgy dissipation and hence

optimize the performance of the network.

This chapter is organized as follows. In 3.2, we explain th@hoel and physical
layer models that are used in this work, and we describe takytacal framework used
to optimize the physical layer parameters. In 3.3, we sh@wvdisults of experiments
to analyze the relationship between the three physicat jsgameters as a function of
different channel models. Section 3.4 provides analysisdiscussion of the experi-

ments as well as thoughts on future work that can be donesratea.

3.2 Channel and Physical Layer Model

In this section, we derive the model for the energy per swsfultg received bit (ESB)
for a given transmitter/receiver structure and packetttnes. The ESB model is es-
tablished for AWGN channels and for block Rayleigh fadingrahels.

3.2.1 ESB Over ANGN Channels
3.2.1.1 Packet structure

In communications systems, packets must be sent with artgasequence in order
to estimate the channel conditions and facilitate the syorghation of the transmitter
and receiver. The length of the training sequence depentiseagstimation algorithm,
synchronization algorithm, RF technology, oversampleigrand the required system

performance [81]. Usually, the longer the training seqeescthe more accurate the
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Figure 3.2: The packet structure used in AWGN channels.

channel estimate and synchronization are. Also, using natwest modulation schemes
and operating at high SNRs will shorten the required trgisiequence length [82]. In
[83], the authors state that in a slowly changing Rayleighrnig channel, a training

sequence 050 symbols can completely remove any phase offset. Thus, weresa

training sequence length 66 symbols for our work.

Additionally, in adaptive communications systems, a heawlest be included to
inform the receiver of the modulation scheme used for thermétion bits (packet
payload). We assume a header lengtih4$ymbols. The training sequence and header
must be transmitted using a predetermined modulation seherhich will be fixed
regardless of the modulation scheme used for the informdtits. The modulation
used for the training sequence/header should be robustteyegh it may be bandwidth
inefficient. In this work, we assume that the training segeeconsists of a binary
signal {1, -1}), and the header is always modulated using BPSK, regardfetse

modulation scheme used in the packet body.

We assume that a packet of lengtltontainsk, information-bearing bits anél,
bits of training sequence and header. Further, we assurhéhth&raining sequence
and header bits are always error-free. The packet strustae for AWGN channels is

shown in Fig. 3.2.
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3.2.1.2 Energy for a single packet transmission.
We use the model from [13] for the total energy for a singlekeatransmission:

d
EConsumed = aERX<d_)n + EFi:vedu (31)
0

whered, = 1 meter is the reference distance. Some fixed energy is regboth in
the transmitter and in the receiver to run the circuitty:;,..q represents the total fixed

energy in both the transmitter and receiver to transmeivecone packet, anfzx is

the received energy per packet.

The relationship between the transmit and circuit powersaorption and energy
consumption per symbol can also be determined. Assume gadioscontaing bits
and the signal bandwidth B Hz, then the time duration to transmit a packet:dfits
(with £ information bits and:, overhead bits) is

kv ko

(3.2)

Also, we assume that the transmit power at the transmitt&é end the total circuit
power of the transmitter and receiveris. Thus, the energy to transmit and receive a
packet ofk bits is
Econsumed = (P + Pe)Tk,
=P+ P.)(3% +%).

Since each packet contaihg/b+ ky symbols, then the energy consumption per symbol

(3.3)

is
B _EConsumed_Pt+Pc
*“ /bt k B

where £, rx = P,/B is the transmitted energy per symbol aAdz;,. = P./B is

= LsTX + Es,Fimed7 (34)

the fixed energy consumption per symbol. Therefore, for alfba@ndwidth £, x can
be adjusted by changing the transmit pov#er E; ;... is determined by the circuitry
power consumptior,. The circuitry power consumption can be found according to

the transceiver structure, modulation schemes, codirionigues, etc. In this work, we
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Figure 3.3: A typical transmitter structure using lineardulation.
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Figure 3.4: A typical receiver structure using linear deoiaton.

only consider linear modulation schemes (elg-QAM), which have typical transmit-

ter and receiver structures as shown in Figs. 3.3 and 3.4.

As shown in Fig. 3.3, the major energy consuming compondritsearansmitter
are the digital-to-analog converter (DAC), the low paseffi(LPF), the bandpass filter
(BPF), the mixer, the frequency synthesizer and the powetiten (PA). In this work,
the power consumption of the LPF, BPF, mixer, and frequegoyhesizer are viewed
as constants, while the power consumption of the DAC folltvesmodel in [3]. Also,
the power amplifier does not have perfect efficiency (seei@et3.7). The circuit
power consumption here excludes the power consumed by thergomplifier. The

energy consumption from the power amplifier is considereal get of Es 1 x.

Fig. 3.4 shows the major energy consuming components aet®eéver, which are
the analog-to-digital converter (ADC), the low pass filtePF), the low noise amplifier
(LNA), the mixer, the frequency synthesizer, and decodethis work, the power con-
sumption of the LPF, LNA, mixer, and frequency synthesizenaewed as constants.

The power consumptions of the ADC and the Viterbi decodéofothe models in [3].
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Table 3.1: Power Consumption Values

Pfilter Pmimer PLNA Psyn
TransmitterP,; | 2.5 mW | 30.3 mW - 50mWwW
ReceiverP., 2.5mwW | 30.3 mW| 20 mW | 50mw

The power consumption of the circuit components of the tratter (excluding the

power amplifier) and the receiver is defined as
Pc:2Pmia:er+2Psyn+Pfilter+PDAC+PLNA+PADC+PU7

where P, izers Psyny Priner and Py 4 are the power consumptions of the mixers, fre-
guency synthesizers, filters, and LNA, respectively. Thevalpower consumptions
are assumed to be constant. The values for these paramet@tsosen based on typ-
ical implementations, as shown in Table 4.3 [B},4c and P,pc represent the power
consumption of the DAC and the ADC, respectiveR. is the power consumption of

the Viterbi decoderP, = 0 when uncoded modulation schemes are used. These power
consumptions can be determined using the formulas in [3)mAhe value ofP. and

the signal bandwidttB, we can calculaté’; p;,... For example, whe®, = 286 mW

andB = 100 kHz, E, pigea = 2 = 2.86 pJ.

3.2.1.3 ESB model

We model the probability of error in data reception using &@N channel with noise
variancelN, to find the energy required to successfully receive a datkgpadVe as-
sume that an error in the reception of the packet impliestti@fpacket needs to be
retransmitted. Thus there is a tradeoff that can be balalocedluce energy dissipation

through appropriate selection of physical layer paramseter

First, we need to find the relationship between the energyrgmived symbol
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E, rx and the transmitted energy, rx.

E,
Esrx = X (3.5)

ad™

The parametet: is the reciprocal of the product of the amplifier efficienéy &nd the
loss in the channel. For instance, in the free space model:

B (47)?
a = 7GTGR)\2L (3.6)

where in general is a constant. Section 3.3.7 investigates the case wheagea
function of E rx. The termE; gy is used to determine the SNR of the received signal,

which is important for determining the probability of error

The probability of a successful packet transmission is bows:

bl

P, = (1-=P.)°" 3.7)
where P, ,, the probability of a symbol error, is dependent on the SNEhefsignal.
Note that the above calculation of the probability assurhasthek-bit training se-
quence bits are error free. The formulas fr, are given in Table 3.2 for a selection
of modulation techniques. The valéeg is the number of information bits per packet,
andb = loga M is the number of bits per symbol. Thus the vafge’s the number of

symbols needed for kbit packet containing, information bits.

The product of the probability of packet success and the murobdata bits per

packet gives the expected amount of data received per packet
T = kP, (3.8)

The ratio of the total energy to send a packet and the expestexlint of data per
packet gives the metrienergy per successfully received bit (£S5 B). This is the value

that should be minimized by appropriate setting of the ptatdayer parameters.

(k_bl + kO)(Es,TX + Es,Fia:ed)
T

b k Es Es ire
_ (3 + ko) (Esrx + Es pigead) (3.9)

k1

ki(l1—P.5)%

ESB =
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Figure 3.5: The energy per successfully receivedibl B) as a function of the transmit
energyEs rx. This plot shows a clear minimum and thus the optimal trahsmergy.
These results assume a fixed distatice 10m, BPSK modulation and fixed channel

noise.

So, for BPSK modulation, the equation f61SB (see Table 3.2 foP. ; ppsk) is:

k Es Es iTe
ESBppsx = —Lorx ¥ Borisca) (3.10)

k1
)

Equation (3.9), the energy per successfully receivedsihe primary metric for deter-

mining the energy efficiency values. As shown in Fig. 35,8 has a minimum with

respect to the transmit energy, rx.

To find the minimum ofESB, we can take the derivative with respectfg x
and set it equal to zero. However, the equa%ESB = 0 has no closed-form

solution and thus the values that minimizé& B must be calculated numerically.

3.2.2 ESB Over Block Fading Channels
3.2.2.1 Packet structure

In narrowband communication networks, the transmittedaighost often encounters

block fading. In block fading environments, the trainingjgsence at the beginning
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Table 3.2: Table of symbol error formulas from [84].

Modulation P,
BPSK Q ( QE;fX)
QPSK 2Q ( E;ng) <

M-PSK 2Q ( EIX gin %>

M-QAM | 1 [1-2(1 - )0 (/g E;-rva)T

k, symbols k, symbols k, symbols

— S
Payload Training Payload Training | @ e @ @ Payload Header|Training
> > >
K pits K pits K pits
N n N n N n

Figure 3.6: The packet structure with header amef|leaved training sequence in block

Rayleigh fading channels.

of a packet cannot provide an effective estimation of thennkg especially when the
packet length is large. Therefolieterleaved training sequences can be used to update
the channel estimation periodically according to the cehee time of the block fading

channel. The packet structure for this case of block fadsrghown in Fig. 3.6.

Assume that there ar®), inserted training sequences, each of lengthand the
coherence time of the Rayleigh fading channei.isTo have the maximum efficiency
and maintain estimation accuracy, we should have

b Nyko
BB

~ N,T, (3.11)

wherek; is the total number of information bits in a packet. Thus,tthtal number of

bits in a packet i$ = k; + N,ko.
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The number of required training sequences is therefore

ki

Ny=—"2
» = b(Br. — ko)

(3.12)

3.2.2.2 Energy for a single packet transmission

For the sake of conciseness, we assume the same energy wrotdhel fransmitter and
receiver in block Rayleigh fading channels as for AWGN cledsinAlthough there are
additional components in the transceiver when considdiiock fading channels, such
as automatic gain controller (AGC) to fight Rayleigh faditiggir power consumptions
are constant and can be viewed as a small amount of incrementhe circuit power,

P.,in AWGN channels. For example, the AGC will increa’eby about?7 mw [85].

3.2.2.3 ESB model

From equation 3.3, we have
EConsumed = (Pt + Pc) (% + Np%)
= (ES,TX + Es,Fi:ved) (%1 + NpkO) (313)

k1Bt
= (ES,TX + Es,Fixed) b(Bi'CIko) :

Thus, the ESB is now

_ Econsumed
ESB = Eco

k1BTe 1
= (ES,TX + E57Fiq:ed) b(Bi'cIko)
kl(l_Pe,s)

- (ES,TX + Es,Fixed) Bre
b(Bte—ko)(1—Pe s)

9] (3.14)

-
b
3.2.2.4 ESB model with average system outage probabilities

In fading channels, the system outage probabilities musiobsidered in system de-
sign. Assume that the SNR thresholdyis then the system outage probability can be

defined as
T o] _
Pr(y <vr) =/ —e Mdy, (3.15)
o 7
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wherey = Ejﬁvfgx is the average SNR at a given distance, which is determinguhtby

loss. Then, the ESB considering average system outagelpliiba becomes

ESB = (ES,TX + Es,Fixed) Bre . (316)

b(BTc—l»cO)(l—PE,S)kT1 (1=Pr(y<vyr))

The selection of SNR thresholg- is very important, especially considering multi-
hop transmission, sincer reflects the configuration of the transmission range of a
node. A highyr will increase the outage-probability-scaled ESB in equra8.16 and
require the designer to choose more nodes to cover a giviamdes On the other hand,

a low vy will decrease the outage-probability-scaled ESB and miggessible to use
fewer nodes to cover a given distance. However, in this wask,do not focus on
the selection of SNR threshold. Instead, we vigwas a predetermined system-level

parameter.

3.3 Optimizing Physical Layer Parameters

We performed several numerical calculations to minimize5, the energy per suc-
cessfully received bit, and hence find the optimum transmérgy and the energy-
optimal hop distances for different modulation schemesré&lare considerable simi-
larities in the analysis for AWGN and block Rayleigh fadirttaanels. Therefore, for
the sake of brevity, we focus on the analysis in AWGN chanfgsstions 3.3.2 - 3.3.8),
with Section 4.9 providing an illustration of the perfornecarin block Rayleigh fading

channels.

3.3.1 Numerical Calculations

All numerical optimizations are performed in MATLAB. Theiprary optimization
metric is £S B, the energy per successfully received bit. The goal is tamae this

value to reduce the energy required to transmit data suctlgsim the presence of
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Table 3.3: Parameters Used in the Models.

Description Parameter Value
Fixed radio cost Es pizea | 2.86uJd/symbol
Packet size k 360 bits
Overhead bits per packet kg 64 bits
Path loss exponent n 3.5
Amplifier efficiency L 0.02
Carrier frequency f 2.4 GHz
Signal bandwidth B 100 kHz
Channel coherence time Te 1ms
Outage threshold Y7 0.1(-10dB)

channel noise. Because there is no closed-form solutiorfIMMB is used to numeri-
cally solve the optimization of/ S B with respect to transmit energy. All that is needed
to find the minimum transmit energy at an arbitrary distarsc®isearch® S B for a
minima through different; ;x values. Finding optimum distances is more difficult

and is described in Section 3.3.3.

As a basis, the reference noise valgis chosen such that the bit error rate (BER)
of a BPSK symbol iS0~° for an energy per received i, zx = 50 nJ. In simulations
where a range of noise values are considered, the valuesmgarthmically spaced from
Ny to 128 Ny. Unless otherwise specified, we used the parameters shovabla 3.3

for determiningk’' S B.

3.3.2 Optimum Transmit Energy in ANGN Channels

In this section we evaluate the case where hop distance & fixading the optimum

transmit energy is a simple matter of finding the minimum @& #5 B function with
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Figure 3.7:E} + and ES B* for a fixed distance] = 15m and a range of noise values

for different modulations.

respect to energy, rx for a particular channelN,, andn» and at a particular hop
distance, and modulation. It was shown in Fig. 3.5 thab B has a minimum with
respect taF; rx. This value cannot be solved analytically because of theiphelQ-
functions in the derivative of th&SB formula. However, the optimal; rx can be
solved numerically. Fig. 3.7 shows the optimum valuedpf-x and ESB over a
range of channel noise values and at different modulatidhe. figures were created
by fixing the hop distancé to 15 m and iteratively changing the noise vahig and
modulation. For each iteration, the valuelof,x that minimizestSB is found. The
optimal ESB (ESB*) and the optimaF, rx (E7 1) values were stored and plotted

against the noise value in Fig. 3.7.

Fig. 3.7(a) shows that’; ;. increases with channel noise. This result is expected
to maintain the optimakl S B, as increased channel noise must be offset with increased
transmission power to maintain a certain SNR. Fig. 3.7(lmwshthat as the noise

increases, the optimal S B also increases.



a7

6.651

7 6.65

6.649

6.648

(ESBM)"

6.647

6.646
78 13

7.6 -

11 x 10 6.645 . . . . . .

Distance (m) 74 1 E__ Q) 745 75 755 76 765 77 7795 78
s, TX Distance (m)

(a) £SBM with respect to hop distanekand (b) ESBM™ with respecttal at E; 1y

Esrx

Figure 3.8: Determining optimal hop distance.
3.3.3 Optimum Distance in ANGN Channels

In addition to finding the optimum transmit energy, we alsatia find the optimal hop
distance. In this section we evaluate the case where traaaergy and modulation are
fixed, and we want to find the optimum relay distance. The ammenergy-efficient
hop distancel* can be found by minimizing th& S B divided by the hop distancé
(e.g.,ESB/d). This gives the value of energy per successfully receivedds meter,
ESBM. This metric is important, because if a packet needs tolteermite of distance
D,thenESBM x D gives theE'S B of the entire route. Thus, by minimizingS B M,

thenES B is minimized for the entire route.

The optimal distance can be seen by looking at a plab 8B M versus transmit
energy and hop distance, shown in Fig. 3.8(a). The line ofrmim values occur at
each distances’ optimum transmit energy value. It may appesF< S BM has a range
of values that are minimum, but as seen in Fig. 3.8(b), a dlithevalues along the

trench,£/SBM has a clear minimum value and, thus, an optimum hop distance.

Fig. 3.9 shows the optimal distandé and ESBM*. Both plots were generated

with £, rx = 5 nJ. Fig. 3.9(a) shows that the optimum distance decreagbsirwi
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Figure 3.9: Energy optimal hop distance as a function ofendis rx = 5 nJ.

creasing channel noise. Similarly, Fig. 3.9(b) shows tedha channel noise increases,
ESBM* increases. This is as expected, since as the channel gets,wioore energy
on average to transmit the data is needed due to the incrpesteability of retransmis-

sion.

3.3.4 ESB atthe Optimum Distance and Transmit Energy in AWGN

Channels

In Sections 3.3.2 and 3.3.3, the metki¢ B was evaluated with one degree of freedom,
namely,E, rx or d, respectively. In this section we look at the case whgyex and

d are both allowed to be set to their optimum values. For théyaisain this section,
all the desired modulations and channel noise values weratiitely evaluated. In
each iteration, the optimum hop distance was found, buéatsbf using one transmit
power, the optimal transmit power (as described in SectiBr2Bwas found for each

hop distance considered.

Fig. 3.10 shows the results when both parameters are seg¢itooghtimal values.
Fig. 3.10(a) shows the optimal hop distance. As expecteaptienal hop distance
decreases with an increase in channel noise. Unexpeckegdsy, 3.10(b) and 3.10(c)

show that the optimallSB and E; rx are independent of channel noise. This means
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Figure 3.10: Parameters calculated uskg.,, andd* at each point considered.

that nodes can be set with the predetermined optimal traqmwier, and that the op-
timal energy-efficient solution can be obtained by simplsirading the hop distance as

channel noise varies. This can be seen by rewriting equégij as follows:

(k_l + kO)(Es,TX + Es,Fimed)
ESB = * —.

k1
b (1 . Pe,s(fj,ﬁéz)) '

In this equation we can see that the only places that the st@rie and the noise term

appear are as a product of one another. Thus the two can bdedges one term. Once
the desired ESB is found, any change in the environment thegesV, — ¢N,, then

the same minimunk'S B can be achieved by scaling the hop distaiice %d

3.3.5 Selecting the Optimal Modulation Scheme

In Section 3.3.2 we showed how to find, for different modaatchemes, the optimal
transmit energy for a given hop distance, and in Sectior83v&. showed how to find
the energy optimal hop distance. If these two parametergpiistance and transmit
energy were the constraints on the network and it was up to¢hwork designer to
decide what type of modulation and coding to use, then it nreayrsthat the proper so-
lution is to find which modulation scheme has its optimalatise and transmit energy
parameters nearest to the desired values provided by therketlesigner. However,

this will not provide the best (minimum total energy) soduti As can be seen in Fig.
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Figure 3.11: Selection of the modulation scheme for eaclséndistance) value based
on (a) which modulation scheme’s optimal is closest to thatgnd (b) which modu-
lation scheme obtains the optimum ESB at that point. Sul#i¢eirshows the ratio of

E'S B using thenth best modulation and the best modulation scheme.

3.11(a), for each hop distance, there is an optimal modulatheme that minimizes

energy dissipation.

Fig. 3.11(b) shows that using a particular modulation’sraptn hop distance does
not guarantee that it is the most efficient means of modulafitie vertical lines show
where the optimal relay distances are for each modulatidre tdp bar shows which
modulation is closest to its optimal for each distance. Tdwel bar shows which
modulation scheme has a minimulS B for each relay distance. We can see that
these two bars are not the same, and thus we need to selecothdation scheme
based on which scheme has a minim#ifi B for the particular hop distance in order

to minimize energy.

Fig. 3.11(c) is an evaluation of the effects of using a suibmgdtmodulation scheme.
In this figure, the ratio between the best andntiebest modulation scheme are com-
pared. This figure shows that the penalty for using a moduidtiat is only one off
from the optimal scheme does not have a great impadt 8@, but using a modu-
lation that is much different from the optimal one will pemfo quite poorly. Thus it

is important to use either the optimal or the next-optimaboiation scheme to save
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energy.

3.3.6 Effect of Packet Size

Packet size has a significant effect on the efficiency of tistesy. The model we are
using gives the probability of packet success as the proafuali symbol successes,
as shown in (3.7). Then, for a given modulation scheme, thbalility of a success-
fully received packet decreases as the packet size incredbes there is an increase
in energy efficiency with small packets. However, this isyamlie if we do not con-
sider the per-packet overhead. Equation (3.8) shows teahtibughput of the system
approaches zero as the bits per packespproaches the number of overhead Higs,

Thus there is some optimal packet size to obtain the higmestg efficiency.

This tradeoff in packet size can be seen in Fig. 3.12, whidwshthe optimal
energy per successfully received &S B, as packet size is varied for different amounts
of per-packet overhead. The case where packets have zeteadeshows the minimal
energy tending to zero. However, when packet overhead sidered, there is a non-
zero minimum energy packet size. As expected, as the sizeealvterhead increases

the optimal packet size also increases.

3.3.7 Amplifier Efficiency

In our model, parameterthat is used to encapsulate both the loss in the channel and th
amplification efficiency. In all the previous experimentgstterm was constant. The
amplification efficiency term is due to the loss in energy friv@ loss in amplification

of the signal before it is sent to the antenna. In a traditior@del for a radio, there is
some fixed cost for operating the radio. That is, for every 1 piinto the amplifier,

there will bed mW radiated out of the antenna, wheére: 1.

However, this is not the most important term in the analy$ithis work, as this

term has only a relational impact on the equations. Rewrif819) to be in terms of
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transmitted energy shows that the only impactiaé as a scalar to the nois&}. As

described in Section 3.3.1, the reference noise level wirsediefor a BPSK system to
have a BER ofl0~® and anE;, rx = 50 nJ. This means that using anthat depends
on the amplifier efficiency is equivalent to scaling the ndesen, as shown in this

equation:

ky k Es Es ixe
gsp — o R (Eurx + ,de). (3.17)

kq
E,, b
kl [1 - Pe,s <adnq;\)[i)):|

Using a constant: is not the most accurate model, because in actual hardware th

amplifier is more efficient at higher power levels. For exampthe Tmote Sky motes
developed by Sentilla Corporation (formerly MotelV Coration [86]) have a table
that specifies the current draw of the system, which providesith the energy values

shown in Table 3.4.

Fig. 3.13 shows the optima& S B at different noise levels, for various valuescof
This plot shows how the optimdl.S B changes when changes. The solid line shows

an example of how a non-constantthanges the optimal'SB. This figure shows a
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Table 3.4: Table of power consumed based on transmit powehéMotelV Tmote

Sky. Based on information from [86].

Transmit Consumed

Power (mW)| Power (mW)
1.00 52
0.79 49
0.50 45
0.31 41
0.20 37
0.10 33
0.03 29
0.003 25

slight change in the shape of the curve as the valuedianges. The exact shape and
degree of the distortion depend on the range and degree nbthimearity in amplifier
efficiency as a function of transmit power. As seen in thisngpie, the distortion is
not very severe and does not significantly affect the resdtained in the previous

sections.

3.3.8 Gain Achieved By Optimizing Physical Layer Parametes in
AWGN Channels

In actual wireless networks it would not be possible to plak@&odes in such a way
as to guarantee that nodes could always use the optimal Btande, nor would it be
possible to set transmit powers to the exact optimum levehokh cases, the physical
constraints of the system in terms of topology of the SRWN thedimitations on the

hardware’s precision will prevent the system from achigwims theoretical optimum



54

10

6

No 2No 4No 8No 16No 32No 64No 128No
Noise

10

Figure 3.13:F£'SB* as a function of channel noisé&, for different amplifier efficiency

values.

behavior. Thus, the overall benefit of finding an optimum ningstonsidered.

The two ways that a node could be used sub-optimally are imojpsdistance and
in its transmit energy precision. If the nodes’ transmitrggas calibrated to transmit
a particular distance, and the actual distance coveredfesaht from this calibrated
distance, then there will be a waste of energy. If the digtanemaller, the transmitter
could have used less power to send the message with a simolaaplity of success.
If the distance is longer, the probability of error will damate and the number of re-
transmissions will negatively affect the efficiency. Sianly, if the transmit power is

non-optimal, there will be energy waste.

Figs. 3.14(a) and 3.14(b) show the impact of deviation froendptimum transmit
energy and hop distance values, respectively. Fig. 3.5h@ys how error inf rx
affects the performance of the system. The figure shows tleeaE'S B* at an arbi-
trary distance and’SB with different £, rx used for that same arbitrary distance of
20 m. The range of/, rx used are shown in percent 6f ;.. The figure shows that

underestimating’; rx requires more energy overall than overestimating thisrpara
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Figure 3.14: Gain of finding optimal transmit energy and imatii distance.

ter.

Fig. 3.14(b) shows the effect of using hop distances otlaer the one used to find
the optimal transmit power. In this figure, the optimal traitspower was found for
a distance of 20 m. Th&'SB was then found for that transmit power over the given
range of distances. This was divided by the valu& 61B if the optimal transmit power
had been recalculated for each distance. This shows thatibtgmces that are greater
than expected will cost much more energy than distancesHassxpected. Distances
greater than expected would be equivalent to underestigétie transmit power, so
both figures in Fig. 3.14 show that it is better to use moregniertransmission when

there is uncertainty or an inability to get exact value€0f-x andd.

Table 3.5 shows the effects diiS BM of using suboptimal modulation schemes.
This data tells us that the penalty for using a suboptimal utadtbn scheme can be
quite high, and thus it is important to match the modulaticimesne with the expected

hop distance and channel model to reduce energy to senchdaRAWNS.
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Table 3.5: Percent increase it BM by using suboptimal modulation schemes. Data

used in figure 3.11(c).

Optimum Modulation
Maximum difference | 4-QAM | 16-QAM | 56-QAM | 256-QAM
Modulation| 4-QAM 0% 43% 7% 110%
16-QAM | 203% 0% 17% 37%
56-QAM | 893% 82% 0% 12%
256-QAM | 3323% | 393% 41% 0%
Average difference | 4-QAM | 16-QAM | 56-QAM | 256-QAM
Modulation| 4-QAM 0% 24% 63% 100%
16-QAM | 150% 0% 10% 31%
56-QAM | 683% 37% 0% 8%
256-QAM | 2566% | 201% 19% 0%

3.3.9 The Performance in Block Rayleigh Fading Channels wit
Outage Probability

The performance of different modulations is also evaluateolock Rayleigh fading

channels. The ESB model in this case is from (3.16). By olasg1(3.9) and (3.16), we
find that the ESB models in AWGN channels and block Rayleiglnfa channels are
similar. Compared with the ESB model in AWGN channels, th8 Efblock Rayleigh

fading channels is scaled by the outage probability andiptelsequences of training
symbols. Some illustrative results for block Rayleigh fapichannels are shown in
Fig. 3.15. Fig. 3.15(a) shows that, for each hop distanaretis an optimal mod-
ulation scheme that minimizes energy dissipation in bloekl&gh fading channels.
Fig. 3.15(b) shows that using a particular modulation’smaptm hop distance does not

guarantee the most energy efficiency. Fig. 3.15(c) showsrthertance of using either
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Figure 3.15: Selection of the modulation scheme for eaclséndistance) value based
on (a) which modulation scheme’s optimal is closest to thatgnd (b) which modu-
lation scheme obtains the optimum ESB at that point. Sul#i@tirshows the ratio of

ES B using thenth best modulation and the best modulation scheme.

the optimal or the next-optimal modulation scheme to saweg@n These results are
similar to the results for AWGN channels, and similar cos@as about optimal selec-
tion of transmit power, hop distance and modulation scheamebe made. The most
significant differences in the results using AWGN and bloelyRigh fading channels
are due to the increased energy consumption caused by thgeopitobability and the
multiple sequences of training symbols. For example, themped ESB for 4-QAM

is aboutl0~7 J atd = 50 m in AWGN channels; while the optimized ESB for 4-QAM

increases td.1 x 107° J atd = 50 m in block Rayleigh fading channels.

3.4 Summary

In this chapter we investigated the impact of physical |gygameter selection on the
energy efficiency of short-range wireless networks. Thdyaisis conducted mostly
in AWGN channels, while we show that a similar procedure candadily adopted for
the analysis in block Rayleigh fading channels. The reguksented in this chapter

can be of great help to adaptive network designs. For examapthe simulation results
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show, once the channel and modulation scheme are known,ameasily find the
optimum distance that the node should hop to get its dateetdekstination, as well as

the optimum transmit energy. The contributions of this gtak itemized as follows:

e The main conclusion of this study is that using optimal tralh€nergy and opti-

mal relay distance are crucial in achieving energy effiogjdoca SRWN.

e Optimizing only the transmit energy without optimizing tfegay distance is not

enough to achieve the best possible ESB.

e Over-estimating the transmit energy is preferable oveewedtimating the trans-

mit energy.

¢ If the system is operating at the optimum distance, thenrdresinit energy and
ESB become independent of channel noise. This means thatitoaim the same
ESB, as the noise floor of the channel increases, the hopwdestaan be scaled

without requiring a change in the transmit energy.

e It is important to match the modulation scheme with the etgubbop distance
and channel noise model in order to efficiently use the licdhitede energy. Aver-
age increases in ESBM from using a suboptimal modulatioersetrange from

8% up to greater tha2b00%.

e The results presented for AWGN channels can be extendedtix Btayleigh

fading channels.

¢ As all networks will not be operating under the same condgjat is important
for future short-range wireless network standards to aftovedaptation in order

to achieve long network lifetimes.
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4 Joint Optimization of Physical
Layer and Link Layer Iin
Narrowband Communication

Systems

In the previous chapter, we proposed a metric called enezggyccessfully received
bit to evaluate the energy efficiency of a communication.linkhis chapter, we look at
cross-layer optimization of the physical and link layertifier detailing the energy per
successfully received bit with the consideration of cit@awer consumption, packeti-
zation and retransmission overhead, bit and packet erotaility, and the duty cycle

of the transceiver.

We formalize the problem of minimizing the energy dissipatesuccessfully trans-
mit a single information bit over a link. In our model, we opize the packet length
and transmit power as a function of distance between therrdter and the receiver
for different modulation schemes. We propose a generalnsined energy con-
sumption model that provides a lower bound on the energypditesd per information
bit. A practical unconstrained physical layer optimizatgcheme is also provided to
illustrate the utilization of the model. Furthermore, mimzed energy consumptions

of different modulation schemes are compared over an addithite Gaussian noise
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(AWGN) channel.

We extend this general energy consumption minimizatiomlera by considering
two particular constraints: fixed average power and fixedageerate. The impacts
of the average power and the information rate constraintsnamgy consumption are
explored. We determine the optimum constellation sizek@idength, and duty cycle.
While only numerical optimization is used in the previousgter, here we provide

analytical expression for the optimal packet length.

4.1 Introduction

In the design of communication systems, often the goal is itimize the transmit
power [87, 88]. In recent years, with the advent of battergraped wireless communi-
cation nodes operating over small distances, much monetiatteis being paid to the
overall energy consumption. In this work, we investigatefihoblem of joint optimiza-
tion of PHY-layer and data link layer parameters to maxintieenergy efficiency of

a communication link.

Although an effective energy efficiency metric and a soligpbal layer optimiza-
tion scheme are proposed in the previous chapter, thereaticeable limitations to
this work. First, in the reliable transmission scheme, #teansmission cost, both of
time and energy, is not considered. Second, the optimasimarenergy per symbol
and the optimal hop distance are derived for a given noisespoowever, the noise
power is usually fixed for a given bandwidth and noise powecspl density while
the transmission distances are often unknown and varidlblerefore, to better facili-
tate the wireless network optimization, the optimal confagions should be provided
with respect to a given transmission distance instead of@ngnoise power. Third,
although the potential impacts of a variable packet lengtithe energy minimization
are briefly described in the previous chapter, the packeftheis not considered as an

optimization parameter. Furthermore, the work in the mresichapter relies only on
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numerical calculations and did not exploit the possibitifyanalytical solutions. Last
but not least, only unconstrained optimizations are cansidlin the previous chapter,
while in practice communication links are often bounded angnconstraints, such as

transmission rate requirements and average power congumtptitations.

In this chapter, we extend our work from the previous chajat@ddress these lim-
itations. First, we derive a detailed model of an automatpeat request (ARQ) based
retransmission scheme by including the different energysctsom different stages of

retransmissions.

Second, we thoroughly investigate the joint influence ofgrait power, packet
length, modulation and coding schemes on the energy peafcenof a wireless link,
and we provide the optimal configurations with respect tognaission distances. This
allows a direct adoption of the optimal configuration in tlepldyment of a practical
wireless network. To further facilitate the real time cadtion of the optimal commu-
nication scheme, we derive closed form solutions for battotptimal packet length and
the optimal target bit error probabilities for a given tramssion distance andl/-QAM

modulation scheme.

Third, we derive an analytical solution for the lower boumdtiee energy consump-
tion per information bit and the optimal transmit power framinformation-theoretical
point of view, with the consideration of circuit power congption and retransmission

overhead.

Fourth, we study the link energy minimization problem gia@rage power and
average rate constraints by further including the optitiozaover duty cycles. The
fixed average power constraint is particularly importantireless networks that re-
quire a predictable lifetime, while the fixed average ratest@int is useful in wireless
networks that must provide a certain quality of service (Q@8ch as guaranteeing
the continuity of a video stream. For both constrained ogtiion problems, we pro-
vide in-depth analyses of the impact of the constraints eretiergy cost. Moreover,

we derive analytical solutions of the optimal transmit powed duty cycle from an
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information theoretical perspective in the fixed averagegraase.

In summary, the contribution of this work is three fold: fjrete derive a com-
prehensive link-level energy consumption model that idekitransmit power, circuit
power, retransmission overhead, packetization, and dytiec Second, the energy
minimization procedure is highly parameterized. Thattigs straightforward to adapt
the proposed energy consumption model and the energy nziaiioin procedure to
transceivers with different circuitries and different ohal models, such as Rayleigh
and Ricean fading channels. Third, some analytical salatare derived to allow real

time calculations of the optimal configurations.

4.2 System and Signal Model

This section introduces the packet structure, transmigiegiver structure, and auto-
matic repeat request (ARQ) scheme that lay the foundatiparialyzing the impacts
of packetization, circuit power, and retransmissions agrgyconsumption. The nota-

tion used in this chapter is summarized in Table 4.1.

4.2.1 Packet Structure

The packet structure considered in this work is shown in Bid.. It consists of four
components: payload, upper layer header, PHY/MAC-heautet,preamble. We as-
sume that there aré; bits in the payload of each packet. The upper layer header
contains the control information added by the upper laysush as routing informa-
tion, packet ID, etc. We assume there &fg; bits in the upper layer header. From the
view of the PHY and MAC layers, the payload and the upper lagader are indistin-
guishable. Therefore, the payload and the upper layer haaelenodulated and coded

similarly.



Table 4.1: Notations

Notation| Meaning
B Signal bandwidth
d Transmission distance
P, Bit error probability
Ny Noise power spectral density
n Bandwidth efficiency
y Signal-to-noise ratio
G Path loss
G, Coding gain
R. Coding rate
P, Received signal power
P, Transmit signal power
P, Circuit power (including both transmitter and receiv
A Retransmission overhead
) Duty cycle
Ly, Number of information bits per packet
E, Energy consumption per information bit

63
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Figure 4.1: Packet structure.

Table 4.2: Packet Structure Parameters
Component Length (bits)| Duration (s) Modulation

Payload Ly 17, Adaptive
Upper layer header Lyy Tow Adaptive
PHY/MAC header Ly Ty BPSK/coded BPSK

Preamble - Tp -

Conversely, PHY and MAC headers are modulated using a pnediefhodulation
scheme, such as BPSK for an uncoded system and coded BPSKdded system.
This is because the PHY and MAC headers carry important abiniormation, such
as information regarding modulation and coding for the pagiland the upper layer
header. Therefore, the modulation scheme of the PHY/MA&3Behas to be robust
and known to the receivea priori, so that the receiver can always demodulate the
received PHY/MAC-header, no matter what modulation schéra@ayload and upper
layer header use. Finally, the preamble is a predefined seqtat serves the purpose
of synchronization, automatic gain control (AGC), etc. Eaver, we assume that the
transmit power is constant during the entire packet. A sumgméthe length and

duration parameters for these components are providecie %22.

4.2.2 Transceiver Model

In anode, energy is consumed for sensing, data procesgirgpammunications [36][89].
In this work, only the energy consumption involved in the coamications is consid-

ered, since the energy consumption of sensing and datagsiagedoes not affect our
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Figure 4.3: A typical receiver structure using linear deoiaton.

optimization scheme. At the transmitter, energy consuonptonsists of the transmit-
ted energy and the energy consumed in the circuits. At theive; the only energy

consumption is that of the circuitry. To facilitate the aysa$ of the energy consump-
tion, we assume generic transmitter and receiver modeld@srsin Figs. 4.2 and

4.3.

4.2.2.1 Transmitter

As shownin Fig. 4.2, the major energy consuming componétiedransmitter are the
digital-to-analog converter (DAC), low pass filter (LPFgnupass filter (BPF), mixer,
frequency synthesizer and power amplifier (PA). In this wdinke power consumption
of the LPF, BPF, mixer, and frequency synthesizer are vieagedonstants, while the
power consumption of the DAC follows the model in [31]. Theyao consumption of

the power amplifier can be expressed as
Pamp :5Pt7 (41)

where P, is the transmission power ad= /% — 1, e is the peak-to-average ratio, and
p is the drain efficiency of the power amplifier. Note thandp are both determined

by the modulation scheme.
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Table 4.3: Power Consumption Values

Pfilter Pmi:per Pamp PLNA Psyn
TransmitterP,; | 2.5 mW | 30.3 mW| SP - 50mW
ReceiverP., 2.5mw| 30.3mW,| - 20 mW | 50mwW

4.2.2.2 Receiver

As shown in Fig. 4.3, the major energy consuming compondriteeareceiver are the
analog-to-digital converter (ADC), low pass filter (LPF)W noise amplifier (LNA),

mixer, frequency synthesizer, and decoder. In this work, gbwer consumption of
the LPF, LNA, mixer, and frequency synthesizer are viewedamstants. The power

consumptions of the ADC and Viterbi decoder follow the maedel[31].

The power consumption of the circuit components of the tratter (excluding the

power amplifier) and the receiver is defined as
Pc:2Pmia:er+2Psyn+Pfilter+PDAC+PLNA+PADC+PU7

where P, izers Psyn, Prier and Py 4 are the power consumptions of the mixers, fre-
guency synthesizer, filters, and LNA, respectively. Thevalqmower consumptions are
assumed to be constant. The values for these parameterscm@ncbased on typical
implementations, as shown in Table 4.3 [31}p ¢ and P4pc represent the power
consumption of the DAC and the ADC, respectiveR. is the power consumption of
the Viterbi decoder. These power consumptions can be digtednusing the formulas
in [31].

4.2.3 Automatic Repeat Request Sessions

In this work, ARQ is used as the link-layer protocol, that éransmissions are re-

quired when any bit error is detected. Considering retrasson, the procedure for
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Figure 4.4: The transmission and reception of one packagusitotal transmissions.

successfully transmitting/receiving one packet is shawkig. 4.4. We assume that
before transmission or reception of a packet, the traneméitd receiver will spend
T, seconds to go from the off (sleep) state to an on (activeg statso, for a given
implementation, the time period to start up the frequencyttsssizer,l;,., is assumed
to be fixed.T;ps denotes the inter packet space (IPB), is the time duration for the
transmission of one packet,,, = (7, + Tyy + Tu)/R. + T,, whereR, is the chan-
nel code rate and is set to 1 for the uncoded cdsg:x is the time period when the

transmitter listens for an acknowledgement. WEISgt, = % + Tp.

Assume that to successfully deliver one packet, the totallbar of transmissions is
m. In the firstm — 1 transmissions, the energy consumption duringlthey period at
the transmitter is denoted Wy, . In the last delivery, the energy consumption during
the Ty period at the transmitter i8 40 x. E°K is the energy consumption of trans-
mitting the acknowledgement after receiving th&" packet. We assume that during
the inter-frame spacéd,;pg, only the frequency synthesizer contributes to the energy
consumption denoted by, ps. Also, we assume that in the fifgt. — 1) Tk periods,
the energy consumption at the receiveris-s as well, since no ACK is transmitted.
E,, is the energy consumption during the transient mdde,is the energy consump-
tion at the transmitter to transmit one packet, &hgis the energy consumption at the
receiver to receive one packet. The detailed expressiotiseoénergy consumptions

above will be defined in the following section.
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4.3 Unconstrained Energy Minimization

4.3.1 Lower Bound on Energy Consumption per Information Bit

A classic model of the energy consumption per informatidnattien communicating
at rateR is [90]

B, =% (4.2)

whereP, is the transmit power an& is the information rate. However, to obtain a more

refined model, we need to at least consider the followingpfact

¢ the circuit power consumption;
¢ the reduction in information rate by packetization, dutgleynode, and ARQ;

e the increase in power consumption caused by overhead.

We now provide a revised energy consumption per informatibomodel considering

the above factors.

Firstly, considering the impact of circuit power consuroptithe lower bound on
energy consumption per information bit can be modeled as
Ey > Lt ;(6; 62?;2%), (4.3)
whereP, /G is the received signal power after path légsand2B N, is the total noise
power within bandwidthB. SinceBlog(1 + P,/2GBN,) is the channel capacity, it
represents the maximum possible information rate and h@h8@ provides a lower

bound on the energy consumption per information bit.

If we assume thab, / P. = «, a minimum value of (4.3) can be found for any given

distance with respect t@. The corresponding optimum value @fis denoted as

(1+a+aB)P.
b .
B log<1+72G]°3§0 )

o = argmin

(4.4)
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(1+a+ap)Pe
Blog(1+P.a/2GBNy)

The function is a strict convex function ofv in « > 0, which

impliesa* = arg{% = 0}. Thus, a closed-form expression®@f can be found:

(L — 1) log, 10 1
o = | P 1l = (4.5)

W <[L _ 1]log2 10) K

1+8 10072

wherex = P./(2BNyG), andW (.) is the Lambert W function [91]. Equation (4.5)
shows thatv* is also a monotonically decreasing functionfoffor any given path loss,

which is a function of distance between the transmitter aedeceiver.
The corresponding optimum information rate and transmitgrowill be
Py = P.ao*

) w0

Based on the given parametérs B, Ny, the optimum parameters’, P, and R*

can be calculated for any given path loss.

Furthermore we modify the initial model in (4.3) accordigtlhe reduction in in-
formation rate that comes from overhead in a real systemekample, packetization
overhead, retransmission overhead, and duty cycle mustdhaeded. To incorporate
the ARQ scheme and packet structure considered in this wekpwer bound orE,

in (4.3) must be modified as

> (1+a+ ap)P.
b

> 7 (4.7)
ABlog (1 + 255%@)

whereA represents the overhead induced by the link-layer promudthe frame struc-

ture. For instance, inheriting previous assumptidnsan be defined as

Ly/Blog (1+ 585)

- Lo+l :
2Tips + Tack +Tp + ——F =0
Blog (1+26555; )

(4.8)

It is straightforward to extend the model in (4.7) to include duty cycle of wireless

transceivers, since the duty cycling can be viewed as atdedaction in the informa-
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tion rate. If the transmitter/receiver only worksdafraction of the total time (we refer

to ¢ as the duty cycle), the information rate then becomes

aP,
R =®ABlog (1+2GBNO)' (4.9)

The duty cycle does not affeét, in the unconstrained case we consider here, since

P((1+pB)P,+ P.) (14+a+aB)P.
Eb 2 = )
oABlog (1+ 555 ) ABlog (1+ 725

(4.10)

which is the same as the model expressed in equation (4.7yevéw, the duty cycle
mode will have a major influence in some constrained sitaatisuch as fixed average

power transmission, as discussed in Section 4.4.

4.3.2 Minimization of Energy Consumption with Practical Modu-

lation and Coding Schemes

The information rate in practice is much lower than the bopirmvided by the capacity
Blog(1 + P,/2GBN,), since the information rate is reduced by the imperfectimins
coding, packetization overheads, etc. Therefore, to wesgeéheralF, model in (4.3) in
practice, we need to obtain the realistic information raig @se this as the denominator
in (4.3). Therefore, we modify the model &f from (4.3) to adopt practical information
rates as follows

1+ p)P, + P. N (14 B)P, + P.T,,

Eb:( R LL ;

(4.11)

whereT,, is the time duration to transmit one packgt, is the number of information
bits in one packet, andy is the total number of retransmissions needed to succssful
deliver one packet. That is, the energy consumption pernmdtion bit can be equiva-
lently expressed as the energy consumption per transgiiiceiving one packet mul-
tiplied by the average number of retransmissions requiseslitcessfully deliver the

packet divided by the number of information bits containethie packet.
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4.3.2.1 Total number of retransmissions

We assume that there are no errors in the PHY/MAC-heades.aBsumption is reason-
able for two reasons. The robust modulation schemes useuebyHY/MAC-header

ensure that errors rarely occur in the PHY/MAC-header. Alg® assume that when-
ever there is a bit error in the received packet, a retrarssomss required. For a packet

containingL;, information bits, the probability of a packet error is
Py =1— (1 — p)tettlon, (4.12)

The expected total number of retransmissions to succésdtliver one packet is

1
N= o pymme (4.13)

4.3.2.2 Average energy consumption per packet

Since the circuit powePF., is fixed, we only need to find the transmit pow@r The
transmit power can be determined from the SRt the receiver and the desired bit
error probability?,. The SNR per symbol is defined as= P,/(2BN,), whereP,

is the received power3 is the signal bandwidth, andi, is the spectral power density
of the white Gaussian noise. TheP, function of M/-QAM modulations over AWGN

channel is well defined as [87]

SEEE (4.14)

(e

log, M

Then, the SNR-BER relation if/-QAM modulation is

2 2

v=fy) = §(2b —1)In VB, (4.15)

whereb = log, M.

Also, based on the signal propagation model, we have- G P, ,whereG repre-

sents the path loss, whose decibel value is determined by

G(as) = Gie) + 10k1og o d + Lys(as), (4.16)
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whereGG; = 30 dB is the reference path loss at 1 in= 3.5 is the path loss constant,

andL,; = 40 dB is the link margin [31].

Therefore, the transmit power can be eventually denoted as
P, = 2BN,Gv/G. = 2BN,Gf(P,) /G, (4.17)

whereG .. denotes the coding gain, atf = 1 for uncoded modulation.

The ARQ procedure has been shown in Fig. 4.4. The energy ogtsan during

each session is summerized as follows:

Ey = PsynThy,
EIPS = PsynTIPS>
Ery = (Po — P))Tack,
Eack = PoTack,
By = [2(1+ B)BNoGY/Ge + Pet|Ton,
ELCK = [2(1+ B)BNyGY/Ge 4 Pu]Tack,
E.. = Poy'lon.
In the above equationd,.; and P., represent the power consumption of the circuits
components of the transmitter and the receiver, respégtiie is the power consump-
tion of the Viterbi decoder, the value of which can be caltedgrom [92]. Moreover,

we have
Ton =T+ Tyg+Th)/R.+ T,

That is,T,, is a function of packet length.

(4.18)

The total transmit and receive energy consumptions okliveries are

Ey(m) = 2Eps+ B + Epn)(m — 1) + 25,
+2E1ps + Bt + Eack-
E, (m) = (3E[ps + Em)m + 2F,, + E{?ECK.
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Consequently, to successfully deliver a packet, the ageeagrgy consumption is

E = Y2 E(0) + B(i)Prim = i}, (4.19)

wherem is the number of transmissions aftt{m = i} denotes the probability that
the number of transmissions equaglsvhich is given byPr{m=i} = P/7'(1 — P,).

After simplification, we have

E = (2Eps+ Ey+ ELny)N + 2By, + P, Tack

(4.20)
+(3E;ps + Eyp)N + 2E,, + EACK,

From previous analysigy is a function of target bit error probabilit$, and packet

length L. Thus, the minimization of’, can be conducted ovér;, andpP,.

4.3.2.3 Minimization of energy consumption per information bit

Each packet contains;, information bits. Therefore, the average energy consuwmnpti

per information bit is

E
By = — 4.21
"= (4.21)

To minimize Ey,;; with respect ta. ., we set%bzt = 0, which gives us

AlL% + BlLL + Cl = 07 (422)
where
Al — Pan:b )
B, =Ph <5E1ps + Ern + BT, + P%nlch + P(glnngcH) ’
Ci =— (5Eips + Epy +4Ey, + B2 + P,Tack

+ P T, + Lot 4 Tonlts H) :
P,, =21+ 8)BNyGv/G.+ P..

Solving (4.22) yields the optimum number of informatiorslper packetl,,

B+ /B 1A
[ = ZBt VB ZAAG (4.23)

B
24,
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Correspondingly, the optimum targé} can be found by solvin@a%“ r: = 0.
When the)M-QAM family is used, the corresponding closed-form solutid the opti-

mum targetP, can be found approximately as

* s 1
1+(LL+LUH) ln(5)+10+

PcTon+5Erps+Ep N ’
Z(2b-1)A,

(4.24)

whereA, = %.

When transmission distandds large,A, — oo, and equation (4.24) becomes

1
P =~ . 4.25
T4 (L + Lyg)[In(3) + 10] 4.23)

Therefore, the target bit error probability will eventyationverge to a value solely
determined by the packet length and the modulation scherne.optimum target bit
error probabilities of other modulation schemes and thairesponding convergence
values can be obtained similarly. Furthermore, equatioB3jdreveals a one-to-one
relation betweerP’; andL; at any given distance. Thus, & converges/; will also
converge for higher transmission distances. The analgsisalculation results for this
model will be shown and discussed in detail in Section 4.6.

So far, we have discussed the minimization of the energyuwraption per informa-
tion bit in an unconstrained framework. However, in pragtidifferent constraints may
apply, among which the most common ones are an average pon&raint and an av-
erage rate constraint. In the following sections, we wiltsthow these two constraints

affect the minimization of energy consumption.

4.4 Energy Minimization with a Fixed Average Power

Constraint

In this section, we consider bursty transmissions withiatsiwerage power constraint.

A bursty transmission in this work means that the transcewy transmits/receives
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for a fraction of time (duty cycle). Assume that the averagegr constraint is

®[(1+ B)P,+ P = P. (4.26)

Then,E, in (4.7) can be expressed as

1+ 8)P, + P, P
E, > (1+5)P < = TSR (4.27)
ABlog (14 5 )  @ABlog (1+ 72422 )

For a givenP, the minimization ofE, is equivalent to the maximization @t =
dABlog(1+ %. Using the expression of given in (4.8), we have the follow-
ing optimization model

OLL

max R = SRR T )

2TrpstTack TP+ 1o, (F/3-Pe) /214 8)GENg)

(4.28)

subject to ®[(1+ )P, + P.| = P,
0<P <1

whereL, represents the number of information bits contained in &gtadt is obvious
that to achieve the maximum information ratewe should havd.; — oco. However,
in practice, the packet length is always finite and overhe@aesnevitable. Equation
(4.28) implies that overheads of both packetization and ARQrease the maximum

possible information rate from the ideal information rate.

For a given modulation scheme with bandwidth efficiencyhe channel capacity
of a wireless channel with bandwidiB is limited to Bn. Moreover, if we consider
the influence of finite packet length and channel distortibe information rate can be
further specified as

max R = g(®, Ly, )Py

. ®L;, (1 . Pb)LL-i-LUH7

= TLFL
2Trps+Tack+Tp+~L E,]UH

(4.29)

subject to ®[(1+ B)P+ P, = P,
0<d <1,
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whereg(®, Ly, n) = La8 which is an increasing function of both

T
2Trps+Tack+Tp+ %NUH

L; and ® for a givenn, and P,. is the packet-correctly-received probability. For a

given distanceP and P,, P, is a monotonically increasing function @, since large
® implies smallP,. This makesP,. = (1 — B,)ltTlvs a decreasing function cb.

In addition, ,. is also a decreasing function &f,, since the larger the packet is, the
greater the possibility of an error in the packet. Thereftinere exists an optimum
combination of(L} , ®*) that balanceg(®, L, n) and P,. and thereby maximizeg.

This idea can be further explained by the following example.

Take M-QAM using fixed average power as an example. The express$iéh io

this case is
2 3(P/®—Pc)/2(1+8)GBNy
~ - 2(M-1) ) 4.30
b log, M€ ( )
Also, we have bandwidth efficienay= log, M in this case. Consequently, (4.29)

becomes

— PLy _ Li+Lyn

max [ 2T1ps+Tack+Tp+ L,fligLQUﬁ (1 Pb)

(4.31)
subject to 0 < ¢ <1,

_ 2
by = logs €

3(P/®—Pc)/2(1+B8)GBNy
- 2(M—1)

The above minimization problem is readily solvable throngimerical methods. The

results are presented in Section 4.6 and explained in detalil

4.4.1 The Influence of Average Power

The imposed average power constraint plays an importaataiolthe resulting mini-
mum energy consumption per bit. That is, the given averagepoonstraint deter-
mines how close the resulting; is to the unconstrained global minimum valuefof

In this subsection, we investigate the influence of the ayeepower constraint and find
the condition under which the fixed average power constdamedel could give the

same global minimunk, as in the unconstrained case.
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The minimization model can be rewritten as

Lp+tLlung

5 2T1ps+Tack+TpP+

minEy, :g Bloi(Ill+(P/<I>7Pc)/2(1+B)GBN0)7
Lp+L

. U%O+5HJ%XZDP5+TACK+Tb+gﬂgaﬁgfﬁ%ﬁqs)

= " 7

(4.32)

subject to ®[P(1+ )+ P = P,
0<d <1

This model can be used to describe any modulation schememifiiaum possible
E, should be achieved over all possibke > 0. However, the constraints in (4.32)

indicate that

P14+ ) +P]=P=P=(L—-P)/(1+p),

) (4.33)
0<®<1 = (P-P)/(1+p) <P <.

Thus,P; € [(P — P.)/(1+ 8), ). To ensure thaP’, is a nonnegative value, we have
that P — P, < 0. That is, whenP < P,, the fixed-power transmission can achieve the
same minimun¥, as that of the non-constrained transmission presentectiro§et. 3.

This is because wheR < P., P, can be any nonnegative value be betwgeno).

4.4.2 The Equivalence ofb, «, and P,

In this subsection, we assume tl#ais properly set so that (4.32) could achieve a global

minimum value. That is® < P..
From the following relations

(b[Pt(l_'—ﬁ)_'_Pc] :P,
Pt :O{Pc,

(4.34)

we havex = (q% —1)/(1 + B). That is, for a given pair of P, P,), if we can freely
adjust® and «, we can achieve an optimum pdib*, o*), wherea* is achieved by

solely solving model (4.3) andl* is achieved by solely solving model (4.28).
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On the other hand, if we are given a fix@dand a relaxed average power consump-
tion constraint as
P[P (1+B)+ P) <P, (4.35)

then we haver < (q% — 1) /(1 + B). For a givend, the resultant optimized may

not be overall optimum. In fact, we have

o = i (4.36)
(qf;c —1)/(1+p), if & > ¢t
wherex = P./(2BNyG), andV(.) is the Lambert W function, and
(g5 - D1 R
p - —1)log, 10
P = g ( [ aa %2 — - 1+5, 1) . (4.37)
A\l (& -osse) ] -

That is, when the duty cycle is larger than a critical va®i&, the resultingy* is
the overall optimal. Otherwise, the resulting will be suboptimal. In summery, for
minimizing energy consumption, the assigned duty cyclaukhbe sufficiently large
(@ > oth),

We have discussed the energy minimization problem with faxeatage power con-
straint. Additionally, we have investigated the impactshaf average power constraint

and duty cycle on the energy performance.

4.5 Energy Minimization with a Fixed Average Rate Con-

straint

In some cases, such as a sustainable video stream, a stalel¢oanode throughput
is desired so that a certain quality-of-service (Qo0S) caml&ranteed. The above

analysis can be readily adapted to fixed average rate siigatiThe minimization of
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energy consumption per information bit under the fixed ayenate constraint for a

given modulation scheme can be modeled as

min E, = 7[3(1*?“30]‘1’
(4.38)
subject to |R — Reonst| < Arg,
whereR = ®Ly (1—P,)lrt+tun as defined previousyg, .. is the

;7L
2Trps+tTack+Tp+ LT]UH

desired information rate ami is the allowed information rate deviation, since the de-
viation is unavoidable in practice due to unpredictablewsinstancesgg., processing

delays from upper layers).

Moreover, since an average power constraint no longersxis¢ one-to-one re-
lationship betwee®, o and P, disappears. This minimization problem thus must be
conducted over all possible;, @, M, and P,. The resulting average power and mini-
mum £, will be

By = lEasirler

Rconst ’

) (4.39)
P* =[P (1+B)+ FP.|®*.

As with the fixed average power constraint, the minimizabdenergy consump-
tion per information bit with the fixed average rate constira not the overall minimum
E; unless the target information rate is the overall optimtd that minimizes energy

consumption in the unconstrained case.

4.6 Numerical Results

In this section, we present numerical results that verig/ghevious analysis and pro-
vide insight into the performance of the different optintiaa frameworks. We assume
a bandwidth ofB = 10KHz, L5 = 160 bits, Ly = 32 bits,Tp = 20 ms, coding rate
R. = 1/2, and coding gairtz. = 6.47. The transient period for the transceiver is set

to 7. = 5 ps. The inter packet spadgprs = 5 ms. The power consumption values
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Figure 4.5: The minimunt;, of different modulation schemes vs. distance compared

with the theoretical lower bound df,.

are shown in Table 4.3, which gives us the total circuit pogggrsumption at the trans-
mitter and receiver a®. = P, + P.. = 0.2884 W. The power amplifier coefficient
£ = 0.35. The optimization is implemented using a simple search dlyaor This ap-

proach is sufficient in practice, as the optimization can érégomed and the optimum
configurations determined off-line before network depleym Then a simple look-up

table can provide the optimal parameters depending on is8rexconditions.

4.6.1 Unconstrained Energy Minimization

In this subsection, we compare the unconstrained energguogption per information
bit lower bound in (4.3) with the practically minimized eggrconsumption per infor-
mation bit (4.21). In the practical scheme, the modulatimnssidered are confined to
coded and uncoded BPSK, QPSK, 16-QAM and 64-QAM.

Fig. 4.5 shows a comparison of the practical minimggof different modulation

schemes and the theoretical lower boundgfwhich is given by (4.3). As transmission
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Figure 4.6: Optimized target bit error probability vs. tsamission distancel, = L}).

distance increases, the total energy consumption pemiafbon bit increases. This is
mainly caused by the increasing transmitted energy. As showig. 4.5, uncoded
64-QAM, uncoded 16-QAM, uncoded QPSK, and coded QPSK afernpee for ultra
short, short, medium and long distances, respectivelys ®hservation is justified by
noting the fact that at short distances, the energy consampg dominated by that
of the circuitry. Consequently, bandwidth efficient modigla schemes that lead to
shorter on time will have an advantage. On the other handyragfel distances, the
energy consumption is dominated by the transmitted endfigyice, modulation and
coding schemes that require lower SNR will have an advantdde curve labeled
‘Theoretical lower bound” in Fig. 4.5 is obtained by dirgdthsertinga* in (4.4) into
E, from (4.3).

Fig. 4.6 present$’’ at different transmission distances. As the transmissien d
tance increasedy’ will increase as well. This is because, as transmissioraniist
increases, a higher targgj is preferred lest the transmission energy increase dramati
cally to mitigate the path loss. Moreover, as transmissistadce increases, a flattening

of P} can be observed, which is consistent with (4.25).
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Figure 4.7: Optimized packet length vs. transmission diste?, = F;’).

Fig. 4.7 depictd.; at different transmission distances] decreases as transmis-
sion distance increases and converges to a certain valaggatttansmission distances.
Recall thatP; increases ag increases, which gives rise to a higher retransmission
probability. Therefore, to reduce the retransmission,casthorter packet length is
preferred. Also, the convergence bf occurs at large transmission distances s

flattens.

Fig. 4.8 shows the optimum transmit powgy,, that minimizes~,. The theoretical
and practicalP; ‘s have the same trend. However, the theoreti¢aturve is smooth,
while the practicalP; curve exhibits a saw-toothed shape. This irregularity issed
by the limitations of using a discrete modulation and thekptization parameters used

in the calculations for the practical model.

Fig. 4.9 compares the optimum rafe;, obtained through (4.31) and the optimum
information rate from (4.9). We can tell that the framewortn (4.31) provides an
upper bound for the optimum information rate. Also, therstse type curve of the
calculated optimum information rate is caused by the discnature of modulation

used in the numerical calculations.
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Figure 4.9: The optimized information rate vs. transmisslstance.

4.6.2 Energy Minimization with Fixed Average Power Constrant

This subsection presents the optimization results of tleeggmminimization with fixed

average power constraint. The average power constPaiat).2894 W, and the circuit
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Figure 4.10: The information rate at distante- 1 m.

power consumptio®, = 0.2884 W.

Figs. 4.10 to 4.12 show the achievable information ratesstaimces 1 m, 40 m
and 70 m, respectively. Note that the packet lengthand target bit error raté,
have been optimized for any specific The boundR is achieved using (4.9). The
packetized/ARQ information bound is obtained using (4.28¥ the information rates
are achieved using (4.31). The maximihis achieved through (4.31) by searching the

constellation sizé// up to10'2. Here we have allowed non-integer M.

As shown in Fig. 4.10, at very short distances, a latgeand a larged will
maximize the information rate and thereby minimize the gyeqyer bit under fixed
average power constraint. Moreover, Figs. 4.11 and 4.1% shat, as distance in-
creases, the parametérg ™, ®*, L} ) will decrease. For example, the gét*, ®* L)
is (8,0.58,3 x 10%) at d = 40 m, while the seth*, ®*, L) is (4,0.32,1 x 10*) atd
=70 m. This trend is caused by the fact that the reliable ¢(gnefficient) modulation
and coding schemes gradually outweighs the high-speed\{pdih efficient) modula-
tion and coding schemes as the communication environmeerioi@tes. The cost we

pay to save energy is the information rate. As shown in Fig3A4to achieve energy



85

PRELS
—R(eq. (9)
—— R’ (Packetized, eq. (26))
—— Maximum R’ (MQAM) R
35H . --M=2
M=4
—M=8
|| —mM-=16
3 M =32
—M=64
—M=128
% 25 ——M=256
a
=2
2
[
§ 7
]
£ : ,
S Maximum R
=15
M = 256 M=2
1k
o5t [P e
B nS :
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.11: The information rate at distante- 40 m.
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Figure 4.12: The information rate at distante- 70 m.
efficiency, the information rate will drop rapidly. At d = 120, the R* is only about 1
Kbps over a bandwidth aB = 10 KHz.

For a given distance and a given family of modulation schemissstraightforward

to find the optimum®* with respect to a fixed constellation sizé, or the optimum
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Figure 4.13: The information ratd/*, P;, and®* of M/-QAM at different transmis-

sion distances.

constellation sizé\/* with respect to a fixe® by taking partial derivatives of (4.31)
and setting them to zero. For instance,feandM* of M-QAM at different distances
are shown in Fig. 4.13. From Fig. 4.13, we can see that, undeich average power
constraint, the transceiver has to sacrifice its maximunsiptesinformation rate by
slashing its duty cycle to satisfy this constraint. For eglanas shown in Fig. 4.13, at
d = 100 m, the duty cycle should be as low2&6% to provide an appropriate amount
of transmit power?, to guarantee a reasonably |ldd even when the constellation size
M = 2. This limits the maximum possible information rale < Blog, M® = 2.46
Kbps.

4.6.2.1 The influence of average power

Fig. 4.14 illustrates the impact of average power on theaghoif duty cycle, min-
imum energy consumption per information bit, and transroiver, where the cir-

cuit power consumption ig>. = 0.288WW. The average power configurations are
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Figure 4.14: The influence of the average powet®h P/, E;) from (4.32).

P =0.28,0.4,0.7, and1 W. Fig. 4.14 shows that, for a given distandg, is larger
for a higherP. That is, whenP, is fixed asP;(d) (the unconstrained optimal trans-
mit power), the transmitter has to be on for a longer periotiré to meet a higher
P. However, whenP increases beyond a point whén= 1, the transmit power,
has to start increasing to maintain the average power cgotsamrequirement. In
this case P, > P;(d) and the resulting minimuni, becomes suboptimal. The suffi-
cient average power constraint at any given distand&‘{g) = P;(d)(1 + 3) + P..
That is, for a given transmission distanéeany P aboveP* is unnecessary and not
energy efficient. In fact, Fig. 4.14 shows that, under an ayempower constraint
where®[P(1 + 3) + P.] = P, the transmit power sometimes has to be higher than
the unconstrained optimum value just to maintain an unrsaci high average power

constraint.

Although a low average power constraifit < P(1 + ) + P. benefits energy
efficiency, it lowers the information rate correspondingkn example is shown in
Fig. 4.15 where a higher average power obviously providgkériinformation rate.

This is because a loW requires the transmitter to sleep for a larger portion of the
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Figure 4.16: Range of efficient vs. inefficient zones for agerpower versus distance
from (4.32).

duty cycle (smalkb). On the other hand, the information rafeis proportional tod.
Therefore, the information rate will drop with decreasiRgThus, the average power

P reflects the trade-off between the energy-efficiency (fwand the information rate
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Figure 4.17: Information rate as a function of average pdveen (4.32).

(high P). However, the tradeoff of energy-efficiency and the infation rate caused by

P should always be evaluated in the rarigeP; (1 + 3) + F.], since beyond this range
the transmitter will operate in a classic inefficient traxfebetweenkF, (linear increase
with respect taP) and R (logarithmic increase with respect ). The efficient versus
inefficient zone ofP is shown in Fig. 4.16 where the boundanyis(1 + 3) + P.. Fig.

4.17 gives some examples to show the trend of informatienvertsus average power.
There clearly exists a point d? where the slope of the curve changes. For instance, at
d = 95 m, this point is abouP = 1 W, below which theR P curve increases linearly
(operating in efficient zone) and above which fRe” curve increases logarithmically

(operating in inefficient zone) .

4.6.3 Energy Minimization with Fixed Average Rate Constrant

In the case of energy minimization with fixed average ratestramt, some illustrative
results are presented in Figs. 4.18 through 4.21, wherentbemation rate constraint

Reonst = 20 Kbps with the rate deviatiol ; = 100 bps.
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Figure 4.18:M*, P, and®* for M-QAM at different transmission distances?( —
20Kbpg < 100bps).

Fig. 4.18 shows the optimui\/*, P, ®*) of M-QAM at different transmission
distances under this average rate constraint. As the tiasgm distance increase¥,*
decreases due to the fact that a robust modulation scheroembs@nergy efficient as
the communication environment worsens. In contrast to #tezlfaverage power case,
®* also increases in the fixed average rate scenario. This@be®* is only used to
control the information rate in the fixed average rate trassion. Therefore, at short
distances, when larg&/* is energy efficient, a smafb* needs to be chosen to meet
the information rate requirement. A¥* decreasesp* has to increase to maintain
information rate requirement. Therefore, for fixed average transmissions, at short
distances wher®. is comparable withP;, a time sharing use of the channel is energy

efficient; at large distances whefe > P., a continuous use of the channel is energy
efficient.

Fig. 4.19 shows the information rate aftt of A/-QAM at different transmis-
sion distances, under average power constrained and aveatgyconstrained cases,

respectively. It is easy to see why* does not change with distance in the average-
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Figure 4.19: The information rate arfet of M/-QAM at different transmission dis-

tances (fixed average power compared with fixed average rate)

power-constrained transmission case (hete= P = 0.2894 W). In the fixed average
rate transmission casg; will increase with distance. This is directly caused by tie i
crease in the duty cycle and the transmit power as shown iMdEL@. In this particular
example, average rate constrained transmission achiémesaP* than average power
constrained transmission whérn< 35 m. That is, for fixed average rate transmission,
a high average power budget is not necessarily beneficiahing of energy efficiency
when transmission distance is below a certain valyewhered,, is a relative value
determined byR,,..; and P. For example, wheR,...; — 0, the fixed average rate
transmission always achieves a lowert than the fixed average power transmission
with P = 0.2894 W for anyd > d,, = 0. On the other hand, although the fixed
average power constrained transmission provides a low poaresumption at longer

distances, the provided information rate drops dramdyical

Fig. 4.20 shows thdy; of M-QAM at different transmission distances for the
unconstrained, fixed average rate transmission, and fixexg® power transmission,

respectively. The; of fixed average rate constrained transmissions is alwageenhi
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Figure 4.20: Thet; of M-QAM at different transmission distances.

than or equal to the unconstrained optingl. From Fig. 4.20,R...s: = 20 Kbps
approaches the global energy efficientinformation rathérttansmission range< 55
m. Compare this with Fig. 4.18, this is the range whétdncreases linearly. In this
distance range, the transceiver can achieve the desir@chaftion rate yet obtain the
overall minimum energy consumption by increasiig Beyond this range, since*
cannot be further increased, extra energy has to be wasteditain this information
rate. Therefore, a reasonable target information rateldhmel set according to the
transmission distance, or in general, the communicatismn@mment. In this case, the
target information rate?,..,.; = 20 Kbps is suitable in terms of energy efficiency for
a wireless network with average distante< 55 meters. Whenl is larger than this
range, the target information rate should be reduced toesasgyy. On the other hand,
for a given target information rate, this algorithm givesausrget node density that is

energy efficient.

A fixed average power constrained case is also shown in F&f) wWith P = 0.5
W. At short distances, the minimizdd, is suboptimal due to the superfluous average

power. However, ag increases, the minimizefl, becomes the global minimum value
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Figure 4.21: TheL; of M-QAM at different transmission distances for the uncon-

strained, fixed-rate-constrained and fixed-power-comsdacases.

since there is no more wastddl Fig. 4.20 indicates that, in general, fixed average
rate transmissions and duty cycle are energy efficient at sfamsmission distances,
while fixed average power transmissions and duty cycle aeeggrefficient at large

transmission distances.

Fig. 4.21 presents the optimufj of M-QAM at different transmission distances
for unconstrained and fixed average rate constrained tiaagms, respectively. The
calculated results of the optimal packet length in Secti@(dnconstrained) are also
provided as a comparison. Note that the calculated res@tsl#ained when the mod-
ulation schemes are restricted within coded/uncoded BRBRSK, 16-QAM, and 64-
QAM.

We can see that the theoretidgl in the unconstrained transmissions is almost the
same as the optimum packet lengths given by the calculatidresdifferences between
the calculated and theoretical results are mainly causethéyimited resolutions of

constellation sizes in the calculation. However, in theecathe fixed average rate
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(Reonst = 20 Kbps) transmission, the optimum packet length (denoteﬂ@js smaller
than the overall optimum packet lengthi at short distances, while larger than at
large distances. This is caused by the requirement of main¢gthroughput. At short
distancesd < 15 m in this case), nodes should use larger constellation sizsave
energy. However, a larger constellation size will incretisethroughput beyond the
acceptable range. Thus, other parameters must be adjossédink the information
rate. These parameters include: adopting lower duty cyudeusing shorter packet.
Therefore, the transmitter adopts a low duty cycle at veprtstlistances as shown in
Fig. 4.18 and a packet Iengfbg < Lj. On the other hand, as distance increases, the
effect of increasingb* to maintain the information rate starts to fade’ (~ 1), the
L then needs to be larger than thé to increase the effective information rate by

amortizing the overhead over a larger number of informabits

4.7 Summary

In this chapter, we investigated the energy consumptionmimation problem for a

single link in a wireless network. Specifically, we propossgeneric model for energy
consumption per information bit, considering circuit pewgacketization, overhead
and duty cycle. We have considered the unconstrained, fixa@dge power, and fixed

average rate cases.

For the unconstrained case, the results reveal that whaantiasion distance is
short, a system adopting large packet length, small targetrior probability, and
high bandwidth-efficient modulation schemes (e.g., higleouncoded QAM) is more
energy efficient. On the other hand, when transmission mistas large, a system
using small packet length, large target bit error probghiind high energy efficient
modulation schemes (e.g., coded BPSK) is energy efficientebler, as transmission
distance increases, a flattening of the optimum values d{gtdength and target bit

error probability is observed.
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In the fixed average power case, we conclude that the miniioizaf energy con-
sumption per information bit is equivalent to the maximiaatof information rate.
At short distances, large constellation sizes and largg dytle are energy efficient,
while the optimum constellation size and duty cycle bothréase with distance. This
indicates that, within the limits of average power consisddandwidth efficient mod-
ulations and continuous use of channels are energy effiatesttort distances, while
robust modulations and duty cycling are energy efficienbegd distances. The cost
associated with maintaining a fixed average power is theedserof information rate

with distance.

In the fixed average rate case, at short distances, largéetiatien sizes and small
duty cycle are energy efficient. As transmission distanceeises, the optimum con-
stellation size decreases and optimum duty cycle incretasgst data through while
minimizing the energy consumption. That is, under a stnerage rate constraint,
bandwidth efficient modulations and duty cycling are en&ifjgient at short distances,
while robust modulations and continuous use of the charamelsnergy efficient at long

distances.



96

5 Joint Optimization of Physical
Layer and Link Layer in Impulse
Radio Ultra-Wideband (IR-UWB)

Communication Systems

In this chapter, we extend the work of the previous chapterdmsidering an Impulse
Radio Ultra Wideband (IR-UWB) based wireless network. gsiletailed models of
typical IR-UWB transmitter and receiver structures, we gldde energy consumption
per information bit in a single link of an IR-UWB system, catexing packet overhead,

retransmissions, and a Nakagamifading channel.

Using this model, we minimize the energy consumption perimttion bit by find-
ing the optimum packet length and the optimum number of RAKEdrs at the receiver
for different transmission distances, using DifferenRalase-Shift Keying (DBPSK),
Differential Pulse-Position Modulation (DPPM) and On-®#ying (OOK), with co-
herent and non-coherent detection. Symbol repetitionrsekevith hard decision (HD)

combining and soft decision (SD) combining are also congpar¢his chapter.

Our results show that at very short distances, it is optimamse large packets,
OOK with non-coherent detection, and HD combining, whiléoaiger distances, it is

optimum to use small packets, DBPSK with coherent detecto SD combining.
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The optimum number of RAKE fingers are also found for givengraission schemes.

5.1 Introduction

Energy consumption is a very important design consideraticany IR-UWB based
system. Unlike in traditional communications systems, igheansmit power can be
flexibly adjusted to minimize the energy consumption [32][Shere is a strict limit
on the effective isotropic radiated power (EIRP) in IR-UWB&ms due to their over-
lay nature. Regulations mandate that the spectrum of tmalskge limited to—41.25
dBm/MHz [32]. Since the IR-UWB system needs to operate atear ithis limit to
achieve a reasonable range, the traditional optimizagohrtiques, which mainly op-
erate by adjusting the transmit power, cannot be used faJ\WB systems. However,
there are other parameters of the IR-UWB system that canjbstad, such as the num-
ber of RAKE fingers, the packet length, the modulation schehedetection scheme,

and the coding or spreading scheme.

In IR-UWB communications, the channel delays are oftenlvadte due to the
narrow width of the IR-UWB pulse. Therefore, a RAKE receig&ucture can achieve
considerable diversity gain [93][94]. Another importaiity of the RAKE receiver
structure is that it can increase the collection of the tratied power through multi-
ple paths. The diversity gain and collected power will be@ased by adding more
RAKE fingers (correlator taps), which in turn will increase tpower consumption of
the receiver. Therefore, the tradeoff between the diwermin as well as the power

collection and the power consumption at the receiver mustbiated.

Packet length is another important factor that influence®ttergy consumption of
a communication link. A long packet will increase the paakebr probability; thereby
increasing the average number of transmissions in an atineaeat-request (ARQ)
system. On the other hand, a short packet will lower the systiciency due to the

packet overhead. Thus, an optimum packet length should doedfto minimize the
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energy consumption.

Binary modulation schemes, such as DBPSK, OOK, and DPPMysuelly used
in IR-UWB systems due to their simplicity and good perforrm@nAmong the three
modulation schemes considered in this chapter (DBPSK, Cib,DPPM), DBPSK
is the most robust, but also the most energy consuming. Cadpéth DBPSK, OOK
requires less energy to transmit each bit, but has a lowénpeance. The performance
of DPPM is between DBPSK and OOK. The comparison and evaluafithese mod-

ulation schemes are important for the design of energyiefiidR-UWB systems.

In our previous work, we proposed an energy consumption hafden IR-UWB
based communication link, and we compared the energy cqrisumieatures of DBPSK
and OOK modulations with coherent/noncoherent detecsshemes [53]. Although
this work builds a solid background for the work in this ctepthe studies in [53]
need to be improved. First, in the channel model in [53], Bigyl distribution is used
to depict the small-scale fading feature of an IR-UWB ch&nii@is channel model,
however, is outdated. Second, comprehensive analysi®@ngrgy consumption char-
acteristics of an IR-UWB communication link is missing. fichian extensive compar-
ison of practical schemes is still desired. In this chapteaddress the above issues in

detail.

We provide detailed power consumption models of a typicaUNRB transmitter
and both coherent and noncoherent receivers. The optionizaiodel considers these
detailed power consumption models as well as the packeattsteuand the ARQ pro-
cedure. Using this model we optimize packet length and timebeu of RAKE fingers
at different transmission distances for DBPSK, OOK, and MPWRith both coherent
(CO) and noncoherent (NC) detection. Moreover, in IR-UWBLtelns, to increase the
effective energy per bit, repetition coding schemes arensonty used. At the receiver,
hard decision (HD) based combining or soft decision (SDedasombining may be
used. HD combining provides relatively low performance ibwtan be operated us-

ing a low-power, one bit analog-to-digital converter (AD©On the other hand, SD
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combining provides good performance while demanding a-héglolution ADC and
memory units. The tradeoffs between these combining methoel also evaluated in

this chapter.

The remainder of this chapter is organized as follows. 8edi2 introduces the
packet structure, transceiver power model, and channeemad in this work. In
Section 5.3, after deriving a lower bound on the energy caosion per information
bit in IR-UWB systems, we minimize the energy consumptionip®rmation bit over
packet length and number of RAKE fingers. Numerical resuigpaesented in Section

5.4. Section 5.5 concludes this chapter.

5.2 System and Channel Models

We consider an IR-UWB system with a symbol repetition scheifiee coding rate
R. = 1/N,, whereN,, which is an odd number, is the coding parameter. Moreower, i
order to avoid inter symbol interference (ISlI), the maximpuise rate is limited. Also,

perfect knowledge of the channel is assumed at the receiver.

5.2.1 IR-UWB Transceiver Power Consumption Model

A typical IR-UWB transmitter and a typical IR-UWB receiveittvfour RAKE fingers
and maximal ratio combining (MRC) are shown in Fig. 5.1. WIDBPSK, DPPM,
and OOK are used at the transmitter, the power consumptitmedfansmitter can be
modeled as

P, = Psyn+ E,R,, (5.1)

whereE, is the fixed energy per pulse ai), is the pulse rate. The pulse rafg =
iRy, wherep, = 1 for DBPSK and DPPMp; = 0.5 for OOK, andR, is the bit rate.
We have assumed that an information bit may be 0 or 1 with gupodlability. Further-
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Figure 5.1: The transmitter and receiver structure in alJ\RB system.

more, Psyn represents the power consumption of the transmitter coemerthat are

independent from the data transmission, namely the clookrgéor and synchronizer.

In our model, the power consumption of an IR-UWB transmitéer described by
equation (5.1), is grouped into two parts: the power congiomfirom the circuit com-
ponents that are not related to pulse generatigy), and the power consumption
from the ones that are related to pulse generatingz(,). That is, £, R, includes the
power consumptions of the pulse generator, pulse modwdatbdigital amplifier (DA),

while Psyy is simply the power consumption of the clock generator amatisgonizer.

As shown in Fig. 5.1, the power consumption of an IR-UWB reeetan be mod-

eled as

P, = MPcor+ pePapc + Pina + Pica + pr(Poen + Psyn + Pest), (5.2)

wherePcor, Paoc, Pina, Puea, Poens Psyn, and Pestrespectively represent: the power
consumptions of one correlator branch (mixer and integyatee analog-to-digital con-
verter (ADC), the low noise amplifier (LNA), the variable gamplifier (VGA), the
pulse generator, the synchronizer, and the channel estinddtrepresents the number

of RAKE fingers at the receiverp, is determined by the receiver structure. That is,
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p» = 1 for coherent demodulation ang = 0 for noncoherent demodulation. This is
because for a noncoherent UWB receiver, the pulse gengehitok generator, synchro-
nizer, and channel estimator are not necessary. Morepyet, 1 for SD combining
andp. = 0 for HD combining. For SD combining, a 5-bit ADC is assumed][®hile
for HD combining, the power consumption of the ADC (one-b2@) is assumed to

be negligible.

At the receiver, we consider an IR-UWB receiver that is abletioose the coherent
or noncoherent demodulation after the signal passed thrB4d<E fingers and MRC.
When the IR-UWB receiver uses the coherent detection, tteiwved signal will pass
through a matched filter and a template pulse needs to beajeddo configure the
matched filter. When the IR-UWB receiver adopts the nonaaftedetection, neither
a matched filter nor a template pulse is needed. The receigedlswill be either
correlated with the previously received signal, or simmyntltiplied by itself (envelop
detection). A differential modulation scheme can cooperdth either the coherent
detection or noncoherent detection. For example, a DBPSHuhated signal can be
noncoherently detected by a correlation with the previptesteived signal so that only
the difference between the two signals will be at output ef ADC, or each DBPSK
modulated signal can be coherently detected individubHigugh a matched filter and
the difference between two adjacent bits can be measurdteidigital domain. In
general, the coherent detection provides a better perfiwentghan the noncoherent
detection in terms of bit error probability. However, thehecent detection requires
more circuit components (template pulse generator, spmiter, and etc.) and thereby

consumes more power than the noncoherent detection.

As with the transmitter, we also group the power consumpaioan IR-UWB re-
ceiver into two parts: the power consumption of the circoinponents that are not
related to the detection schemé$Pcor+ p.Panc + Pona + Puca, and the power con-
sumption of the circuit components that are related to tieatien schemes,. ( Pcen+

Psyn+ Pest). That is,M Pcor+ p.Papc + Pina + Puca represents the power consump-
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Figure 5.2: Data packet structure.

tion of M correlator branches, the ADC, the LNA, and the VGA. These maments
need to be active whether coherent or noncoherent detestiosed at the receiver.
However, the pulse generator, the synchronizer, and theneghastimator are only ac-
tive during coherent detection, where a template pulsedbe generated to correlate
with the received pulse and the channel information is megui During noncoher-
ent detection, the pulse generator, the synchronizer andhthnnel estimator are not
necessary because no template pulse is needed and theedesigjmal pulse is only
correlated with the previously received pulse. The powasomption of the MRC is

not considered, since a MRC is simply an adder.

5.2.2 Packet Structure

The packet structure consists of three components: synidation preamble (SP),
PHY-header (PHR), and payload. We assume that therd atats in the payload,
Lpyr bits in the PHR, and.sp symbols in the SP. Correspondingly, the time durations
to deliver the payload, the PHR, and the SP are denotef,hy Trnr, andTsp, re-
spectively. The energy consumption to transmit a packet @the summation of two
parts: Fo, the energy consumed on delivering the SP and PHR,Fandhe energy

consumed on the payload.

We assume that the synchronization preamble has vdghled}. Moreover, the
PHR is modulated using DBPSK and always received cohereérttig is to ensure that
the PHR is transmitted using the modulation and detectiberses with the highest

performance, since the PHR carries important informatisiso for the sake of sim-
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plicity, we assume that the PHR is coded in the same mannkegayload. Therefore,
the overhead energy consumption is
Eo =ESY +ESY
= (Lsp+ Lpur/R.)E), + PsynTo + P10,

(5.3)

where Lsp is the number of SP symbolé&pyr is the number of PHR bits, arf, =

Tsp+ Tpur = (Lsp+ LE'ZR) / Rpase WhereRyqseis the fixed base data rate. In this work, a

frequency selective slow fading channel is assumed. Thexethe channel estimation

block consume$:st amount of power only during the reception of the overhead.
The energy consumption for the payload can be modeled as
E, =E™ 4+ R, (5.4)

where E{™ and ERY represent the energy consumption to transmit/receive aie p

load containingl.; information bits, respectively. F(E(LTX), we have
(TX) _
By = piEyLr/ Re + PsyNTonL, (5.5)

whereTon. = L1 /Ry R., is the time duration to transmit the payload containing
bits, andR.. is the coding rate.
The energy consumption to receilg information bits is given by

E(LRX) = pe(M Pcor + pePapc + Pina + Puea) Tont
—|-pr(PGEN + PSYN)TonL'

(5.6)

The receiver does not consume power on channel estimatiomgdilne reception of
information bits when using either coherent or noncohedetection, since the channel

information has been estimated during the reception of vieen@ad bits.

5.2.3 Channel Model

The channel model consists of a path loss model and a fregussiective fading

model. In this work, we focus our research on the frequencgedrom 3-10 GHz.
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5.2.3.1 Path Loss Model

The UWB path loss model is both distance and frequency degméraohd can be mod-
eled as [46]

Gq = Gy —20(k + 1) logy, (%) — 10nlog,,d — 3, (5.7)
whered is the transmission distand@, is the path gain at the reference distante-(1
m), n is the path loss exponent,is the UWB transmission center frequengyis the
reference frequency, andis the frequency dependency decaying factor. Bgthand

Gq are expressed in dB.

5.2.3.2 Frequency Selective Fading

In an IR-UWB system, the transmitted signal inevitably anters frequency selective
fading. The baseband channel impulse response of a fregjgelective fading channel

in UWB systems consists of clusters and rays and can be espiegbas [46]

L K
C(t) = E Z ()éhle_ek*lé[t -1, — Tk,l], (58)

=0 k=0
whered),, ; follows a uniform distribution (ovej0, 27]) anday; is the amplitude gain of

thekth ray in thelth cluster.L. and K represent the number of clusters and rays, respec-
tively. 7; is the arrival time of thdth cluster, andy,; is the arrival time of theth ray
in thelth cluster.7; andr;; follow the following independent interarrival exponeftia

probability density functions, the details of which can barid in [46].

The average power gain of tikéh ray in thelth cluster is modeled as
Elo} ] = Elaggle”/Temm/7, (5.9)

wherel and~ are power-delay time constraints for the clusters and ragpectively.
E[agﬁo] is the average power gain of the first ray of the first clustéictvis expressed

as

=3 (5.10)
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The parametes,, ; follows a Nakagami distribution described as

s (N e
= n “k, 5.11
p(ak,l) F(m) (E[a]al]) ak,l € ) ( )

wherem > 0.5 is the Nakagami m-factor arid(m) is the gamma function.

5.3 Link Energy Minimization

5.3.1 Lower Bound on Average Energy Consumption per Informa

tion Bit
5.3.1.1 Lower bound based on channel capacity

The transmit power is strictly limited in IR-UWB systems tma interfering with pre-
existing communication systems. In the following analysise assume the transmit
power is a constant denoted I54. Considering the power consumption at the trans-
mitter and receiver and the channel capacity, the lower daifrenergy consumption

per information bit is modeled as

P +P, Psvn+ EpRy + MPoop+ P
By, > ! NI = = L M TO?ER CNST) (512)
Blog (1 + Zslf) Blog (1+ 2l )

wherePenst = pePapc + Pina + Puca+ p-(Peen+ Psyn) represents the receiver power
consumption that is independent of the number of RAKE fingansl|a;|* represents
the average power gain of thih selected path. Note that the power consumption of
the channel estimator is not considered, since the chastigiaor is not involved in
the actual data communication. We assume that the posigasfithe RAKE fingers

is ideal and thereforgy;|? are the largesd/ values of E[|ay|?] from (5.9). M is the
number of RAKE fingers, and is the signal bandwidth. Correspondinglylog(1 +

S M. w2 Py /G 40?) represents the channel capacity [96].
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Equation (5.12) can be minimized through proper selectfdgheonumber of RAKE
fingers,M. As transmission distance increases, the optimum numtRAKSE fingers
increases and eventually converges to a certain value.hkr @tords, when received
SNR approaches zero, there exists an optimum number of RAKE™S that minimizes
the energy consumption in IR-UWB systems. This optimum nemmdonly a function
of the power delay profile of the channel and the power consompalues of the

components of the transceiver.

Removing the integer constraint ari, we can determine this convergence by find-
ing the discrete derivative of the right hand side of (5.1Rhwespect tal/ and setting

the resulting equation to zero, i.e.,

S fal? (1 ¥l \aim> _ Penstt Pow + By

(log, €) + M*, (5.13)

Ak Gq0? Pcor
wheree is the natural number. As distance increasés,will eventually converge to a
particular value a§ " |a;|* Px/Gq40? — 0. The convergence value 6f* , which is

denoted byM/ oy, Can be found from:

ME
Zi:%ONV o] _ Penst+Psyn+Rppi Ep
‘2 Pcor

(logy e) = M¢ony- (5.14)

‘aMéor\Jv
In general, there is no closed form solution for (5.14), sitiee distribution ofa;|* di-
rectly determines the solvability of this equation avichas to be chosen in the positive
discrete domain. For the doubly exponential decaf v ;|%], MEony €Xists and can

always be easily found through an exhaustive search.

5.3.1.2 Lower bound based on data rate

During the modeling in (5.12), the data rate is bounded bycHannel capacity, which
implies a linear channel (such as an AWGN channel), infipitehg codewords, and
arbitrarily low bit error rates (i.e., no retransmissianglpst of the above assumptions
do not hold in practical communication systems. Thus, thetoral data rate is usually

much lower than the channel capacity. The lower bound fra@®(5s, therefore, a very
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loose lower bound. In the following analysis, instead ohgsthannel capacity, we de-
rive the lower bound energy consumption per informatiorbitising achievable data
rates. In particular, the data rate needs to consider thatyeraused by retransmission

and packetization.

In this work, we only consider binary modulation schemessoAto avoid ISI, the
maximum pulse rate is limited by the maximum excess delafi@fhtultipath channel,
D,. That is, the maximum pulse rateligD,. In addition, considering the impacts of
packetization, retransmission and overheads, the lowandof the energy consump-

tion per information bit can be further tightened as

(5.15)

Pr+Psyn+ptEp Ry Ton+2Tips+Tack
Eb > < 1/Ds N TonL ’

whereN is the total number of transmissiondon+27\ps+7ack )/ Ton denotes the rate
penalty caused by packetization, whéfgs denotes inter packet space ahgy repre-
sents the time duration the transmitter listens for ackedg&ment from the receiver.
The detailed formulas of\ps and Txck can be found in the following section. The
above parameters are determined by the detailed packetwst&uchannel conditions,
and modulation schemes. Although (5.15) implies an idedelvand channel with no
multipath and omits the possible energy losses due to tstat-up, this model tight-
ens the bound from (5.12) and better represents practieabsios since botv and

(Ton + 2Tips + Tack ) /TonL are greater than or equal to 1.

5.3.2 Practical Average Energy Consumption Per Informatio Bit

Although (5.15) provides a lower bound on the energy congiomgper information
bit, it does not consider many practical issues. For exaniiptkoes not consider the
energy spent on the packet overhead and listening. In peaetie need to consider the

detailed procedure of transmitting one packet instead eftiin[52].
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Figure 5.3: The transmission and reception of one packagusitotal transmissions.
5.3.2.1 Energy Consumption per Packet with Retransmissian

To guarantee the successful reception of one packet, amatitorepeat request (ARQ)
protocol is used. A delivery procedure involviig — 1 retransmissions is shown in
Fig. 5.3. The inter packet space (IPS) is denoted’py. The power consumption
duringTipsis mainly due to the clock generator and synchronizer. Thegethe corre-
sponding energy consumption at the transmittéiq(gé() = PsynTips, While the receiver

consumegflpS = pr PsynTips.

We assume that before transmission or reception of a pattietransmitter and
receiver spend; amount of time to go from the off (sleep) state to an on (aystate.
We refer to this time duration as the “transient session’rifuthe transient session,
the transmitter consumeE{TX) PsynTy amount of energy to start the front end clock

generator and synchronizer. Similarly, the receiver cmesE(RX) = pr PsynT.

Ton is the time duration for the transmission of one packet. That

L Ly,
Ton = Tsp+ Tpur + TonL = <LSP+ E:R) /Rbase R R (5-16)
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The energy consumptions at the transmitter and receivangiiliy, are

_ (TX) (TX)
EM™) = 7Y 4+ By,

(5.17)
ERY = g0 4 pE0),

where E{™, G RO and ER are given in (5.3), (5.4), (5.5) and (5.6), respec-

tively.

Tack Is the time period when the transmitter listens for an ackedgement. We
setTack = Tp. Overall, the definitions of the energy consumptions withiie drans-
mission are summarized as follows

Eips = 2Epg +2E,
En = prPsyNTack,
Brran = 2B + 2B,
ERY — P.Tack, (5.18)
EZ) = (Lsp+ L/ Re) By + PoynTack,
BT E(LTX) + E(OT X)7
ERY) E(LRX) + E(ORX),

where Ejps is the total energy consumed by the receiver and the traresnnit IPSs
within one transmissionErray IS the total energy consumption of the receiver and the
transmitter during the transient sessions. In both IPSgramdient sessions, only the

frequency synthesizers consume energy.

En denotes the energy consumption of the transmitter on liggen the media for
the ACK from the receiver in the firs¥ — 1 unsuccessful transmissions. Therefore,
E\ is the energy consumption of idle listening durifig. E&RY, E(2) are the energy
consumption of the transmitter for receiving the ACK and ¢nergy consumption of
the receiver for transmitting the ACK. In this work, we assthe ACK message is
simply a packet containing only the PHR and the SP. Since e &d the SP always
consist of{ —1, 1} symbols and only coherent detection with SD combining isluse

ERY and EZY are constant for a given repetition coding scheme.
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The decomposition of the energy consumption during eackgp@@nsmission ses-
sion has been shown in Section 5.3.2.1. Therefore, thegeer@ergy consumption for

successful delivery of a packet can be expressed as

E = (E™ + E®) + By + Eps)N (5.19)
—Ein + Erran + ESQR + Ef.
where N is the average number of transmissions/receptions refjtorsuccessfully
deliver one packet. The average number of transmisstonrs 1/(1 — P,)kt, where
P, is the average BEP. Note th@t— P,)~ is the probability that a packet is received
correctly. As shown in the following subsection, the aver8§P P, is closely related
to the modulation type, detection schemes, repetitionrgddombing schemes, and

number of Rake fingers.

5.3.2.2 Average BEP over Independent Nakagami Fading Chams

The average BEP can be obtained utilizing the charactefistiction of the pdf of the
output SNR after the MRC [87][97][98]. The instantaneoudSM theith finger is

_ oi]*Px
= Gd0'2 ’

whereP, is the transmit power;,; denotes the path loss at distadgando? represents

(5.20)

the noise power at the receiver. Algg,represents the attenuation of the selected path
preserving theth largest power. The instantaneous SNR at the output of tRE€ 4
= Zz]\il Vi

The average bit error probability of DBPSK-CO can be foun@wsraging the BEP
of DBPSK-CO over an AWGN channel, with the pdfefwhich is indicated by ().
By using an alternate representation of the Q-function, avehhe BEP of DBPSK-CO
over an AWGN channel as [7][99]

P, DBPSK-COAWGN =~ 2Q(v27)[1 — Q(v/27)].
~ 2Q(v/27), (5.21)
=2 fog 6_Siii%d¢'
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The average BEP can be expressed as

P,DBPSK-CO = Jo P, DBPSK-COAWGNP(1)d7,

0o T2y (522)
= fo [% f02 € S“‘2¢d¢} p(v)d,

=27 [fooo 6_mp(v)dv] do,
On the other hand, the moment generating function (MGF)eptif of is defined
as¥.(v) = [;° ¢”"p(7)dy. Therefore,

2 [32
%, DBPSK-CO= /0 Uy @)]y—_z_do. (5.23)

sin“ ¢

Sinceqy,; follows a Nakagami-m distribution from the channel mode¢ MGF of

the pdf ofy has been established as [87]

1
U, (v) = 11 T )™ (5.24)

wherey; = E||a;|*] PxG./Gq0? is the average received SNR at fhtefinger. E[|a;|?]
represents the average power ofitieselected path, that 15[|«;|?] = E[|ax,|?], where
|a.1|? has thdth largest expectation among all paths. is the Nakagami m-factor for
theith selected path. As shown in [46], for the first ray of eaclstdym; is assumed
to be deterministic and independent of delay; while for #raaining pathsy; follows

a delay-dependence lognormal distribution.

Moreover, if we consider repetition coding with parametgrand SD combining,
the average SNR will increast, times compared with the corresponding uncoded
modulations. That is, the eventual average BEP for DBPSK watherent detection
and SD combining (DBPSK-CO-SD) is

P, DBPSK-CO-SD= = Jo© U, (V)],__ 2v, do. (5.25)

sin2 ]
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Instead, if HD combining is used, the average BEP for DBPSH woherent de-

tection and HD combining (DBPSK-CO-HD), hgpsk-cO-HDCan be expressed as

k= Npt1 k

Nyp Np
P, DBPSK-CO-HD= 2 ( ) Poepsk-cd! — F,pBPSK-cO™" ™"
(5.26)
Wherepb,DBPSK-COiS given in (5.22). A similar procedure can be directly apglio

OOK with coherent detection and DPPM with coherent detaectising either HD or
SD combining.

In the case of DBPSK-NC, the average bit error probabilityp&PSK-CO can
be found by directly utilizing the MGF of the pdf of. First, we have the BEP of
DBPSK-NC over an AWGN channel as [7]

P, DBPSK-NCAWGN =~ 3¢ (5.27)

The average BEP can then be expressed as

P, DBPSK-NC = Jo P, DBPSK-NCAWGNP(Y)d7;

= Jo 3¢ p(v)d, (5.28)
= %‘II’Y(V”V:—M
1 M 1
Correspondingly, we have
144 1
P - - _ 5.29
soepskne-sp — 3 1 s (5.29)
> () p 1= F,pBPsk-NO"" "
DBPSK-N b ; :
P,DBPSK-NC-HD = %t \ Kk | "PBPS (5.30)

The average bit error probabilities of DPPM and OOK with momerent detec-

tion, using either HD or SD combing, can be obtained follay@nsimilar procedure.
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Moreover, to avoid excessive requirements of memory upitdy HD combining is

considered for noncoherent detections.

5.3.2.3 Energy per Information Bit Minimization
From (5.19), the energy consumption per information bit is

b

ET™ + E®) 4 By + Eps | Erran + B + Bk — Ein

5.31
LL(l — Pb)LL LL ( )

Our goal is to find an optimum combination of the modulatiohesoe, the detec-
tion scheme, the repetition coding parametgr the combining scheme, the packet
length, L, and the number of RAKE fingers at the receivér, over a slow frequency-
selective channel for a given transmission distance, tl@nmees the effective energy
consumption per information bit denoted by (5.31). Remg\ime integer constraint
on Ly, it is straight forward to find the closed form optimum padlegtgth by solving
0E,/OLy, = 0. At high SNR, the result is

__ —Py(A+B)+\/PZ(A+B)*+4(A+B)CP, (5.32)

*
Ly 2CP, '

where

A = Erran + EQ3% + ERY — B,
B = Eps+ Ew + ESY + E§O + ER9,
C = (pE, + Psyn/Rp)/ R
+[pt(M Pcor + pePapc + Pina + Pyea) + pr(Peen + Psyn)|/(RyRe).

As indicated by (5.32)L} will decrease as BEP increases. In a real application of this
model, the packet length can always be selected as the hedegger of the resulting
L.

In this work, we have assumed that the data rate is fixed at thennum allow-
able data rate that avoids ISI. Correspondingly, the trénsower, as shown in (5.1),

is also fixed. Therefore, the average BEP at a given trangmisiéstance for a given
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modulation scheme is only determined by the modulation &telation schemes, repe-
tition coding and combining schemes, and the number of RAKgsiis at the receiver.
For a given combination of the modulation/detection schame the repetition cod-
ing/combining scheme, the BEP follows a non-increasingtion of the number of
RAKE fingers. ThusL; follows a non-decreasing function of the number of RAKE

fingers.

The optimum number of RAKE fingers reflects the tradeoff betwine power con-
sumption cost)M Pcor and the received power gaifi]|«;|?| Px/Gq4. The optimum se-
lection of modulation/detection schemes and repetitiadiragfcombining schemes re-
flects the tradeoff between the performance and the powsuooption at the transceiver,
since higher performance is often accompanied by higheepoansumption. Unlike
the optimum packet length, there are no closed form expmes$or the optimum mod-
ulation/detection schemes, repetition coding/combisicigemes and number of RAKE
fingers. However, numerical optimizations can be performeetr these parameters,

and the optimization results will be given in the followingcsion.

5.4 Numerical Results

In this section, we demonstrate the results of minimiziregdfiective energy consump-
tion per information bit modeled by equation (5.31). We assuhatB = 500MHz,

Lsp = 1024 symbols,Lpur = 16 symbols [32], coding raté:. = 1/N,, andN, =
1,3,5,...,15. The maximum excess delay i35 = 40 ns, which limits the maximum
pulse rate tak, ~ 1/D, = 25 Mbps to avoid inter symbol interference. The power
consumptions of the transmitter and receiver componertsasarfollows [95],[100]-
[103]: Psyn = 30.6mW, Papc = 2.2mW, Pgeny = 2.8mW, Pyga = 22mW, P ya =
9.4mW, Pcor = 10.08mW. To the best of our knowledge, there is no existing literature
providing specific power consumption evaluations of thencleh estimation block in

an IR-UWB receiver. Therefore, in this work we assume th&NRB receiver uses the
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Figure 5.4: The optimum target BEP versus distané¢e 3).

data-aided estimation method from [104], which can esaliytie implemented as a

correlator. Thus, we assuniest = Pcor = 10.08mW.

The fixed emitted energy per pulsefi§ = 4.5 pJ/pulse. Therefore, the maximum
amount of transmit power i, = E,R, = 0.113 mW. Also, we assumgjps = 200
us andTy = 400 us. Moreover,Rpase = 1 Mbps, whereRp se denotes the data rate
to transmit the header and preamble symbols, and the pathplrameter is set to
L, =0.7dB/m.

The parameters of the channel model for an office environm#htno line of sight
(NLOS) are used [46]. That is, the path loss exponent 3.07, the frequency de-
pendency decaying factar= 0.71, reference path gai@, = —59.9 dB, transmission
center frequency = 3.1 GHz, the reference frequengy = 5 GHz. The distance
range of interest ig € [3,27] meters. We used exhaustive search to solve the opti-
mization model. The quality of service (QoS) is assumed terber free. That is, the

expected number of total transmissions i§l — P,).
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Figure 5.7: The minimum energy consumption per informatitnversus distance

(N, = 3).
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Figure 5.8: The overall minimum energy consumption perrimfation bit and corre-

sponding modulation/decoding/detection schemés= 3).
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5.4.1 Optimization With Fixed N,

To better understand the influence of the packet length, tiheoer of RAKE fingers,
the modulation, the combining schemes, and the detectlenses, first, we consider a

fixed N, = 3 to isolate the impact of repetition coding from the rest & parameters.

The optimum BEPs and optimum packet lengths of differentutettbn/combining/detection
schemes withV,, = 3 are shown in Figs. 5.4 and 5.5, respectively. As shown in Fig.
5.4, as the transmission distance increases, the optimuPnvBIEincrease since it will
require increasingly more power at the receiver to mainadiow BEP asi increases.
Therefore, the optimum choice is to lower the target BEP~tidsa dramatic increase
in the number of RAKE fingers. Correspondingly, as shown gn B.5, the optimum
packet length will decrease @sincreases to avoid costly retransmissions caused by

higher BEP, since a short packet length results in a lowetgiaaror probability.

Note that, at short transmission distances, there are fEghtions of P and L; .
This is because at short distances whifes very low, P is very sensitive to a change
in the number of RAKE fingers. That is, at short distancesjtanhdl RAKE fingers
will provide a considerable amount of collected power gélorrespondingly/; will
change significantly as the number of RAKE fingers changesat distances. On the
other hand, at large distances, additional RAKE fingers prityide a small amount of
collected power gain. Therefor&,” and L} are not sensitive to a change in the num-
ber of RAKE fingers. The curves df; and L} thereby become smooth as distances

increase.

Fig. 5.6 shows the optimum number of RAKE fingers at the rezeiersus dis-
tance. As the transmission distance increases, the optinwmber of RAKE fingers
will increase and converge to a certain value. This is dué¢ochange of balance
between the diversity gain and the power cost induced by addhional RAKE fin-
ger. The absolute value of the increase in collected eneyggnbadditional RAKE

finger decreases with distance. This diminishing gain imeuixed cost, namelfcor.
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Consequently, as distance increases, to avoid excestiaasmissions, the number of
RAKE fingers should increase to collect more received powtowever, when dis-
tance increases beyond a certain level, path loss becomelsikge, and increasing the
number of RAKE fingers does not lead to the collection of cdesibly more received
power. However, more RAKE fingers will incur more power camgtion at the re-
ceiver. Thus, at large transmission distances, increabmgumber of RAKE fingers
does not improve the energy efficiency. The optimum receiegrer consumptions of
different modulation schemes at different transmissiastedices follow the trend of the
optimum number of RAKE fingers shown in Fig. 5.6. The optimwmiber of RAKE
fingers from (5.12) is also shown in Fig. 5.6. Since (5.12)sdoet include the im-
perfection of repetition coding/modulation and the ovaxheaused by packetization
and retransmissions, the received power that is collecyethd RAKE fingers at the

receiver reaches the theoretical maximum efficiency (ndevas overhead).

The overall minimized energy consumption per informatidnis shown in Fig.
5.7. OOK-NC-HD consumes the least amount of energy wherom, while DBPSK-
NC-HD offers the lowest energy consumption per informatitnwhen6tm < d <
11m. DBPSK-CO-HD is the most energy efficient scheme whem < d < 16m.
DBPSK-CO-SD is the most energy efficient scheme when thamtistis greater than
16 meters. This trend reflects the balance between the t@senergy consumption
and the receiver energy consumption. At a short transnrmstigiance, the less robust
schemes (OOK-NC-HD) require less power consumption atémesinitter/receiver and
provide a BEP low enough to avoid excessive retransmissidhgrefore, the OOK
scheme, noncoherent detection, and HD combining have admigltgy efficiency at
short transmission distances. However, as transmisssiardie increases, the above
schemes require a large number of RAKE fingers to maintainvaBEP, thereby the
receiver power consumption will increase dramaticallysiiig schemes like OOK-NC-
HD. On the other hand, the more robust schemes (such as DERSKD, DBPSK-

CO-SD) consume much less power at the receiver since theyfeaer RAKE fingers
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to achieve a low BEP. Thus, as transmission distance inesgdlsese schemes will
become the energy efficient schemes. The lower boundoftom (5.12) and the
packetized lower bound ofy, from (5.15) are also shown in Fig. 5.7. The packetized
bound from (5.15) is larger than (5.12), especially for éadiistances. This is caused by
the decrease af; as distance increases, as shown in Fig. 5.5, which in tureases

the packetization overhead.

The overall minimum#, and corresponding modulation, repetition coding and de-
tection schemes are shown in Fig. 5.8. This figure, togethir kig. 5.6, reveals
that, at short distances (high SNRs), low complexity and pmsformance modula-
tion/repetition coding/detection schemes, such as OOKHNICwith a small number
of RAKE fingers, are energy efficient; while at large distan@ew SNRs), higher com-
plexity and higher performance modulation/repetitioningétietection schemes, such

as DBPSK-CO-SD with a large number of RAKE fingers, becomegsnefficient.

5.4.2 Optimization With Variable N,

Besides the optimization on packet length, number of RAKEdis and modula-
tion/combining/ detection schemes, the repetition cogiagameterV,, in repetition
coding should also be adjusted to minimiZge Now we assume thav, takes the val-

uesl, 3,5, ..., 15.

Fig. 5.9 shows the overall minimum energy consumption ptrmation bit for
different repetition coding parameters. To show the infageof V,, the E;f shown in
Fig. 5.9 have been optimized ovey,, M and modulation/repetition coding/detection
schemes. Fig. 5.9 shows that the optimipincreases agincreases (SNR decreases).
This observation further confirms that, to guarantee linkleeliable communication,
high-complexity and high-performance transceiver strieg are energy efficient at low
SNRs; while low-complexity and low-performance transeeistructures are energy

efficient at high SNRs.
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Fig. 5.10 shows the optimum number of RAKE fingers and paekejths for differ-
ent repetition coding parametet§,, with optimized modulation/combining/detection
schemes. The curves with differei}, display the same trend: dsncreases (SNR de-
creases))M* increases and converges to the same level, wijildecreases. Fig. 5.10
also reveals that the effect of a larfyg on the packet error probability on the expected
number of retransmissions is equivalent to that of a smalbr a largeM, and vice
versa. Therefore, it is possible to use a long repetitioredodminimize energy un-
der some circumstances where a large number of RAKE fingera@justable packet

lengths are not feasible.

5.4.3 Optimum Configuration Table

The results of these optimizations can enable the trarscwvadapt by selecting the
overall optimum configurations (including the modulataetection scheme, the repe-
tition coding/combining scheme, the packet length and tirabver of RAKE fingers)
according to the expected transmission distance througblkaup table. Table 8.1 is an
example of such a look-up table obtained with the particptawer consumption and

channel models assumed in this work.

5.4.4 The Effects of Power Consumption Values on the Optimum

Configurations

Implementation technologies have a paramount impact orchibece of the optimal
communication schemes. For example, shdtgd, become smaller, the distance range
in which coherent detection is energy efficient becomeselary fact, considering an
extreme case where the transceiver does not consume any, pgavehall always use
the communication scheme with the highest performancd) asdDBPSK with co-

herent detection, soft decoding and an all-RAKE receiver.relal applications, the
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overall optimum configurations should be carefully evaddatising the generic en-
ergy consumption model provided in this work as summaring®.i31) and the power
consumption values of the actual circuit components basdtie@adopted production
technologies. For instance, suppose we choose anothdrgatver consumption val-
ues wherePsyy = 2.2mW, with the rest of the power consumption values stay the
same. The resulting overall optimum configurations are sariz@d in Table 5.2. By
comparing Tables 8.1 and 5.2, we find that since the differ@mpower consumption of
coherent and noncoherent schemes becomes smaller, tecgisange in which coher-
ent detection is energy efficient becomes larger. Howekiergéeneral trend of the op-
timal configurations versus transmission distance stagysame: high-complexity and
high-performance transceiver structures are energy e&ftiat large distances; while
low-complexity and low-performance transceiver struesaire energy efficient at short

distances.

5.5 Summary

In this chapter, we provided the power consumption modetgmtal transmitter and

receiver structures of IR-UWB systems. Then, under therapan of a frequency

selective time-invariant channel, a minimization of elyecgnsumption per informa-
tion bit considering packet overhead, retransmissioretigpn coding and number of
RAKE fingers is performed. An optimum number of RAKE fingerssex under the

assumption of a frequency selective time-invariant chiwitk a double exponentially
decaying power delay profile. The results show that low-dexity, low-performance

transmission schemes are energy efficient at high SNRse wigh-complexity, high-

performance schemes are energy efficient at low SNRs. Pdtagtimum transmission
schemes, including packet length, modulations, detectepetition coding, combin-
ing, and number of RAKE fingers, are also provided for givams$mission distances
for a typical IR-UWB link.



Table 5.1: Overall Optimum Configurations

Distance (m)| Modulation| Detection| N,, | Combining| M* | L; (Kbit)
3 7
OOK
4 10
5 NC 6
6 7
~ 1500
7 8
8 7
HD
9 1 8
10 10
11 11
12 14
13 16
14 DBPSK 21
15 23
16 12
~ 500
17 14
(6{0)
18 16
19 3 18
20 21
21 23
22 SD 16
23 5 17
24 19 ~ 50
25 16
26 7 17
27 19
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Table 5.2: Overall Optimum Configurations

Distance (m)| Modulation| Detection| N,, | Combining| M* | L; (Kbit)
3 NC 7 ~ 3000
OOK
4 9
5 4
6 5
~ 1500
7 6
8 7
HD
9 1 8
10 9
11 11 ~ 500
12 13
13 15
14 DBPSK 18
15 22
16 10
~ 100
17 CcO 11
18 12
3
19 14
20 16
21 18
22 SD 13
23 14
5
24 16 ~ 50
25 18
26 14
7
27 16
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6 Maximizing Data Gathering In
Clustered Short-Range Wireless

Networks

In this chapter, we extend our cross-layer optimizatiomtdude the network layer. In
particular, we investigate the maximization of the amodigtadthered data in a clustered
short-range wireless network (SRWN). The amount of gathdega is maximized by
(i) choosing the optimal transmit power, (ii) selecting thaimal cluster head, and
(iif) deciding whether or not to use multi-hop within a clest For problem (i), we
find closed-form solutions for the optimal or near optimalngmit power of cluster
members (CM). For problem (ii), we propose a near optimasteluhead selection
(CHS) algorithm. The communication burden and computaticomplexity of CHS
only grow linearly with the size of the cluster. Finally, foroblem (iii), we propose an
algorithm to decide whether or not to use multi-hop withirwster to further increase

the amount of data gathered by a cluster.

In the proposed algorithms, iterations have been avoidemtder to significantly
lower the complexity of the algorithms compared with trewtital iteration-based nu-
merical optimization algorithms, making these approachatable for use in energy-

constrained wireless networks. The optimization gain ashto be significant.
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6.1 Introduction

In the domain of short-range wireless networks, there has Ibeuch research effort
aimed at efficiently utilizing the limited energy at the ned2][10]. Numerous strate-
gies have been investigated to improve the energy efficieicgRWNSs, including

power control, mobile data sink deployment, multiple datk sleployment, nonuni-

form initial energy assignment, and intelligent node anayréeployment [11].

Another option to improve the energy efficiency of SRWNs stduing protocols
have been broadly adopted due to their effectiveness amalisitp. In clustered net-
works, neighboring nodes are grouped as clusters. One afdtles in a cluster is
selected as the cluster head, and the remaining nodes actugter members. The
cluster head is usually in charge of certain local coordomat such as collecting data
from the cluster members and communicating with other ehlgsand the data sink,
while cluster members simply transmit data to the clustedh&he cluster head may
be selected in a randomized manner, such as in HEED [57] orQHE[S8]. Such a
randomized selection of the cluster head, combined withtirgg the cluster head posi-
tion, can effectively avoid the early drain of the energy @iaaticular node. However,

it cannot guarantee the optimality of the selection.

Transmit power is a very important factor that influencesehergy efficiency of
SRWNSs from the physical layer (PHY) [12]. Power control teicjues can be easily
adopted in clustering topologies [56]. In this chapter, @&uk our attention on a clus-
tered wireless network with power control capability at thester members. The goal
is to maximize the energy efficiency of a cluster by optimaltermining the cluster

head and obtaining the optimal transmit power of the clusiembers.

Multi-hop can be used to further improve the energy efficeeata SRWN. By
utilizing multi-hop routing, the transmitting nodes ardeato use less transmit power
and thereby save energy spent on transmitting informatidowever, in multi-hop

routing, there are more nodes involved in delivering infation from the source node
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to the sink. Therefore, the energy efficiency needs to bdubrevaluated considering
the extra energy consumption at the relay nodes. In thistehape analyze the use of
multi-hop within the scope of a cluster to further improve #nergy efficiency of a
cluster. That is, we propose a criterion to determine if agnaitting cluster member
should choose multi-hop routing to reach the cluster head véhich of its neighbor

should be chosen as the relay node, so that the energy effiaidénhe cluster can be

improved.

The energy efficiency of wireless networks is usually evi@day network life-
time. Network lifetime can be defined as the time elapsed th#ifirst node in the
network depletes its energy. This definition of lifetime caroid the situation that
certain nodes have very high power consumption, such asothenon relay nodes of
many routes, during network optimization. However, in astdning-based network,
due to the uneven importance of cluster members and clustafsh the definition of

network lifetime needs to be modified.

In this chapter, we define the lifetime of a cluster as the tionation for a cluster to
function properly, i.e., the time elapsed until the clustead dies or all cluster members
die, whichever comes first. In data-centric applicationsyéver, lifetime itself is not as
meaningful a criterion as the amount of data gathered dtin@gfetime to evaluate the
performance of a cluster. Thus, the goal of our proposedragdition is to maximize
the amount of data gathered during the lifetime of a clustaer the energy constraints
and fairness constraints. The optimization parameterthargansmit power of cluster
members, the selection of the cluster head, and the dee@bimut whether or not to use

multi-hop routing within the cluster.

The rest of the chapter is organized as follows: In secti@) Wwe formulate the
optimization problem for selecting the cluster membershsmit power to maximize
the amount of data gathered during the lifetime of a clugfiggn energy and fairness
constraints. Moreover, we derive an iteration-free soluto this optimization prob-

lem. The complexity of the solution is significantly loweathconventional iterative
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Figure 6.1: A typical cluster topology\; = 5).

numerical solutions. In section 6.3, we model the clustadhselection problem, and
from this model we formulate an optimization problem to det@e the near optimal
cluster head. In section 6.4, an algorithm is proposed taddeghether or not to use
a multi-hop within a cluster to further increase the amoudrtaia gathered during the
lifetime of the cluster. The performance of the proposeailgms is evaluated in

section 6.5. Finally, section 6.6 concludes this chapter.

6.2 Transmit Power Optimization

6.2.1 Optimization Model

Fig. 6.1 shows a typical cluster topology with 5 cluster mersi{CMs) and 1 cluster
head (CH). In this work, cluster members operate undiiraess constraint. The
fairness constraint of a CM is defined as the constraint thatctuster head should

collect an equal number of information bits from each CM.flibaf every CMi works
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for time durationT;, then duringl;, each CM transmit®) bits of data to the cluster
head. This fairness constraint is due to the fact that thesoda cluster are usually
geographically adjacent, and thus they observe the sam®ptenon and generate
the same amount of samples and, consequently, generatenigeasnount of data for

transmission given every node has the same source codag rat

Given this fairness constraint and Shannon’s channel d@ggheorem, we have

BT;log (1 + ) > D, Vie{l,2, .., Ny}, (6.1)

P;
drP,.;
where B is the bandwidth,P; is the transmit power of cluster membgrd; is the
transmission distance from cluster membdo the cluster heady is the path loss
exponent,P, ; is the additive white gaussian noise (AWGN) power on the fiokn

node: to the cluster head, andl; denotes the number of cluster members.

Rearranging Eq. (6.1), the transmit power of Chg
D
P> <2BTZ- - 1) &' P, .. (6.2)
That is, the transmit power of CiMis determined by its operation time duratidnand

the total transmitted data.

Moreover, the energy constraints at the CMs are
E(R+PCT) SEHVZ € {17277Nd}7 (63)
whereP-r denotes the circuit power consumption at the CMs, and tinsiiné powers

are constrained by Eq. (6.2).

At the cluster head, the energy consumption comes fromvieceihe data from
cluster members. Therefore, the energy constraint at trsterlhead is
Ny
Per ), T; < Ey, (6.4)
i=1

where Py is the circuit power consumption to receive data.
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6.2.2 Problem Formulation

The resulting maximization of the total gathered data givenenergy constraints and

the fairness constraint can be formulated as

min —D
st. Ci:T;, >0,
Ng
Cy: Pery Ty < Ey (6.5)

i=1

Cs : T;|P;, + Por) < Ej,
Cy: P> (255 —1)d'P,,

where: € {1,2, ..., Ng}. In this model, constraintS; andC; are the energy constraints
at the cluster head and cluster members, respectiv@lyresults from the fairness
constraint. Our goal is, for given residual energies androanication environments, to
find the optimal cluster member operation time duratignsTs, ..., Ty,] and transmit

powersP; that maximize the total data gathered at the cluster head.

Problem (6.5) is a minimum feasible set test problem withadesT;, P, and D
[105]. Assume that the optimal solution I3*, 7;* and P}, where P} = (2%? -
1)d?P,; + €;, ¢ > 0. Itis obvious thatD*, T and P, whereP; = (QBD—T} —1)d'P,; +
5,6 > 0, is also an optimal solution, as*, T} and P, satisfy the constraints. There-
fore, we can always have the optimal transmit power— (2% —1)d? P, ; from the
right hand side. Thus, we can replace the inequality in camgiC'; with equality. The

resulting problem model is

min —D
st. Cp:T; > 0,
Ny
Cy: Pep) . T; < Ey (6.6)

=1

Cs : T;[P, + Per) < B,
Cy: P, = (255 — 1)d'P,..

The optimal solutions of the above problem are arbitralibge to the optimal solutions
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Figure 6.2: Averagé* as the CH energy increases.
of problem (6.5). We determine an iteration-free solutiontis problem in the next

subsection.

6.2.3 Transmit Power Optimization Algorithm

Problem (6.6) is a typical minimum feasible set test of a quasvex optimization
problem, which can be readily solved through iterative nicaémethods [105]. How-
ever, performing hundreds of iterations is prohibitivebynplex in energy-limited SR-
WNSs, and a simple solution with few or no iterations is ddsa In this section, we
propose a simple iteration free solution to find the neamo@itiransmission time du-

rations and transmit powers of each CM in a cluster.

Consider a cluster with 5 cluster members where the ininargy of the cluster
members and the transmission distances are randomly getieFag. 6.2 presents the
average maximum information bits gathered by the clustadhe*, obtained from the
numerical solution of (6.6). We observe thatfasincreases, the maximum data gath-
ered at the CH increases until it reaches a saturation [irhat is, there are two regions

of maximum data gathered)*, as E, increases, namely th@H-constrained region
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and theCM-constrained region. In the CH-constrained region, the cluster head energy
is the limiting factor in the total amount of data collectadhile in the CM-constrained
region, the residual energy at the CMs becomes the limitwstpf. Our goal is to find
an iteration-free solution faf; that maximizesD in both the CH-constrained and the
CM-constrained regions. After obtaining the optinia) the corresponding optimal

transmit poweltP’; of the CMs can be easily determined.

6.2.3.1 CH-constrained region

In the CH-constrained region, the limiting factor on the amtoof data collected is the
cluster head energy. In this case, the cluster head uses eipeitgy. The total available

operation time for all cluster members can thus be expressed

Ny
E
> T=— (6.7)
i=1 Fer

Through linear approximations, an IFS for problem (6.6) whee cluster operates in

the CH-constrained region can be achieved.

In the CH-constrained region, since the cluster head igitinérg factor, the clus-
ter head and all cluster members should use up their enerthertiise, any cluster
member having energy left indicates that at least one ofltheter members limits the
increase of the collected data and the cluster is operatitigeiCM-constrained region.
Therefore, both the cluster head and the cluster membegyenenstraints are active.
That is

Ny
E
S T=2", (6.8)
i=1 Fer

T [(23% _ 1) di P, + PCT] ~-E, (6.9)
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From (6.9), we have

%_PCT D
3 —
log, TP +1) =35,

== T;log, (7Td§P> ~ D,
(6.10)

:zﬁiﬂiogQ(d;%V> ~ Tilog, T, ~ 2,

b D/B
—— il ~ E{ P
10g2(dﬂpz,“-> In2

70,

where steq follows by assuming that the signal-to-noise ratio is muatger than 1
and% > Por. Stepb follows from Borchardt’s algorithm [106], which providese

following approximation which is the linearization of tHisnction around zero:

6
Tilog, Ti = —Ti—. 6.11
082 In2 ( )
Therefore, we have
D/B
1, o () o
Ng = Ny
> T D/BY. +ﬁ
i=1 =110 ) 5 _
o () o (6.12)
- N .
g)l 1/(logy(E; /d} Py ;)+6/ In2)
Thus, from (6.8) and (6.12), we have
T* ~ Eo 1/(logy (E;/d? Py, ;)+6/ In2)
¢ Pen T ' (6.13)

> 1/(logy(Eq/d} Py ;)+6/ In2)

i=1

The above approximation is accurate around zero. The optiamsmit power for node
1 in the CH-constrained region can be easily calculated by

E,
Pf ="~ Por.
R

2

(6.14)
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The maximum collected data from each node in the CH-com&tdaiegion is then

P
D* ~ BT*log (1 i), 1
; og( +d?Pn,z-) (6.15)

6.2.3.2 CM-constrained region

In the CM-constrained region, the maximum possible totéh dgthered from each
cluster member ag, — oo is determined by the minimum value of the following
sequence

D = min{Dl,DQ,...,DNd}, (616)

where the operator m{n} returns the minimum element of a sequence, Bndre the

values of the following unconstrained maximization probge

n,i

E; _
D, = max {BTi log (1 + T;@PPCT) } : (6.17)

The above unconstrained maximization problems are coaduster7;, and their ana-

lytical solutions can be found as

TiT = 1n2(PCT7d’.’LPn€)i )
L y +PCT_d:£LP7L,i (6'18)
w( g Fer—ap P
whereW (-) is Lambert W function [107]. Although the Lambert W functioan be
calculated efficiently using numerical methods, it is ggiibhibitively complicated to
calculate in nodes. However, it is possible to further sipd6.18) when Por >

d} P, ;. In this case,

TZ.Jr ~ Por hgi T Por)
w QdSWHF?nJ Por
(6.19)
~ E;
~ PCT In2 +PCT .

In 2 e
In WPCT 3

. ; %—PCT
D* =min< BTlog | 1+ o , (6.20)

Then
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where exact, (6.18) or approximate, (6.19) value%“ibtan be used.

Without loss of generality, assuni&y < D;, Vi € {2, 3, ..., N4}. Then we have

D :D17

(6.21)
T =T

Moreover,T* Vi € {2, ..., Ny} can be any values that satisfy the following constraints:

r >0,

Nd ' B
;T < p, (6.22)

_D*
T [(2 BT 1) AP, + PCT} < E;.

Another important observation is that in the CM-constrdinggion, an increase in
the cluster head energy cannot increase the total numbésailiected from the CMs.
Thus, once the cluster enters the CM-constrained regiahighwhen the energy at the
CH, E,, is greater than a critical valu&j, an increase in the receiver energy becomes
redundant. The value df, can be determined by the following equation

N,

Ey = Por. T, (6.23)
=1
whereT = T) as defined by (6.21), and
. L — Por
T =min< arg|BT;log | 1+ W =D ;, (6.24)

Vi € {2,..., Ns}, whereD* is from (6.20). Clearly the resulting Vi € {2,..., N;}

also satisfy the constraint set (6.22).

6.2.3.3 Transmit power optimization algorithm

Based on the previous analysis, the transmit power opttioizalgorithm that finds
the near optimal solution to model (6.6) is summarized in Bg. As shown in Fig.

6.3, the first step is to determine the condition of the clustenterest (CH-constrained
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Given configurations

EnanCPPCR
b
Calculate £,
using (6.23)
No (CH-constrained) Yes (CM-constrained)
Calculate T/ Calculate T, ,D"
using (6.13) using (6.24), (6.20)
Calculate P Calculate P,
using (6.14) using (6.14)

Figure 6.3: The transmit power optimization algorithm fldact.

region or CM-constrained region); once the operating domdis determined, the re-
sults from sections 6.2.3.1 and 6.2.3.2 can be directly.uSéds algorithm does not
require prohibitive numbers of iterations as in converdglarumerical algorithms. The

performance of the proposed algorithm will be evaluatectitien 6.5.

6.3 Cluster Head Selection

The transmit power optimization algorithm proposed in the/pus selection can also
be used to identify the optimal cluster head that can protnddargest amount of total

data gathered. An obvious approach is to repeat the trapsmvigr optimization algo-
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rithm N, + 1 times and determine which is the optimal cluster head. Hewedkere
are redundancies in this method. For example, some infwmgénerated by the pro-
posed algorithm, such as the optimal transmit power, are@odssary in determining

the optimal cluster head.

In this section, we propose a simplified method to identig/dptimal cluster head,
which only involves the calculation of (6.16) and (6.23) athk iteration. The simplified

algorithm is based on a linear approximation around zerbefallowing functions:

By
T

L —Por
P, ) : (6.25)

n,i

D; = BT;log (1 +

First, we have the following observatio?* has a near-linear relationship with the
cluster head energy E, in the CH-constrained region. The linearity is strengthened
when Pep > d'P,; and T; — 0.

Proof: From (6.13), the optimadl’;s and the energy of the cluster helglhas an
approximately linear relationship in the CH-constrainegion. Therefore, to show that
D* has a near-linear relationship witfy in the CH-constrained region, we only need
to show the linearity oD; andT;, fori € {1,2,..., Ny}:

E
. PCT

é?Pn,i ’
Por—dl' Py ; i
= Di = BT, [log ("5 ) + log (1 + mgrm Pimr )|
N D, ~ BT, [log (%W) + log <P€‘ZT> — log T} + log (1 _ PcETLTz)] )

b D, ~ BT, [log (7P02;g§{)”’i> + 1og( L ) + &] )

Por

D; = BT;log (1 +

The approximatiom becomes accurate whér > dI' P, ;, and the approximatioh
becomes accurate whé&ih — 0. As shown by the above derivatioP), and7; have a

near-linear relationship whef-, > d' P, ; and7; — 0.0

The assumptio®or > d}' P, ; is usually true in small-scale narrowband systems
where the noise power is low and transmission distances enieral short. However,
T; — 0is not usually the case when the cluster operates in the Qidti@aned region.

In fact,7; — 0 is true only when the cluster head has very limited energgrdfore, in
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most cases, the linear approximation is a coarse approximigt D* as a function of
Ey. Although the linear approximation cannot describevery accurately, it provides
good performance in the cluster head selection and greadiyces the computation
complexity.

Let D'(i) denote the linear approximation of the maximum data cador the
cluster with node as the cluster head. The procedure for the proposed clusaer h
selection algorithm is straightforward: for each négdealculateD’ (i); then choose the

node with the largesb’ (i) as the cluster head.

In the proposed cluster head selection (CHS) algoriting;) can be expressed as

(6.26)

, { D E; > Ey

IUER S A
D* — o (EO — El) E; < Ey

whereD* can be obtained from (6.16) att) can be calculated from (6.23).

The CHS algorithm can be distributed as follows (assumirol eende knows the
distances to its neighbors): first, each node uses one s&ddnform the other nodes
of its residual energy, and each node can then find its Biwthrough (6.26). The node
with the most residual energy (assume it is negdbroadcasts to the other nodes to
declare itsD'(i). The rest of the nodes will compare the receivgd:) with their own
D'(j),j #1i. If D'(§) > D'(i), then nodej will notify node i of its D(j). Otherwise,
node; does not take any action. At last, nodeill compare the received information
and use one broadcast to inform the rest of the nodes aboseléeted cluster head
which provides the largedd’. The performance of the proposed CHS algorithm will

be evaluated in section 6.5.

6.4 To Hop or Not to Hop

So far, we have obtained the optimal transmit power and thienapselection of the

cluster head in a single-hop cluster. To further improvepgédormance of a cluster,
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Figure 6.4: A 3-node cluster with a potential multi-hop @ut

we investigate the use of multi-hop relaying within a cluskering the CM-constrained

region.

We assume that the nodes have the ability to choose eithest diommunication
or one-hop relaying to send information to the cluster hddd. 6.4 shows a 3-node
cluster with multi-hop relaying. Node 1 can communicatehi® ¢luster head (node 0)
directly, or by relaying its data through node 2. As shownim 6.4, a multi-hop link
may imply shorter transmission distance for node 1thanextliink. However, a multi-
hop link also incurs additional energy cost at the relay ndde energy consumption

tradeoff is an important issue that deserves to be invdstiga

Itis also obvious that the multi-hop technique can only cedine energy dissipation
at the source node. Thus, multi-hop does not help when theyers¢orage at the
CMs does not affect the cluster’s performance, such as imsterl operating in the
CH-constrained region. In the CM-constrained region, #stdual energy at the CMs
determines the performance of the cluster and needs to berpesl to the maximum
extent, and thus multi-hop relaying has enormous potetdianprove the cluster’'s

performance.

Let us start the analysis by considering the simple case ef@d@ cluster as de-

picted in Fig. 6.4. Assume that the cluster is operating en@-constrained region,
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and the unconstrained maximum amount of data directly inéted from node 1 and
node 2 to the cluster head abg and D; defined by (6.17), and; < D;.

Under a strict fairness constraint as defined in sectior2 ga2simple rule of thumb
is that if DT > %, then a single-hop cluster must be better than a multi-hdq If
Dy < %, a multi-hop link has the potential to outperform a singlg-tfetuster. This
is because, in the multi-hop link, the relay node (node 2)tbasansmit both the data
received from node 1 and its own data. According to the dlintess constraint, these
two transmissions need to be of equal amount. That is, thennuemx amount of data
collected from each node cannot exce’édn a multi-hop link. On the other hand, the
maximum amount of data collected from each nod®jsin a single-hop cluster. By

comparing these two values, we have the above simple rule.

However,22 is simply an upper bound on the maximum amount of data celtect
from each node in a multi-hop link. The detailed evaluatidlastering and multi-
hop requires the knowledge of the exact value of the maxinmaouat of data collected

from each node in a multi-hop link.

In the multi-hop link depicted in Fig. 6.4, it is observedtihahen the energy at
node 1 is smaller than a certain value, denotedby .iicai, the data collected through
this multi-hop link is determined by node 1. That is, nodeah&mits the unconstrained
maximum amount of data it could send to nod@2,, = max{TlBlog2 [1 + %} } :
whereP, ; » represents the noise power on the link between node 1 andhdtléen
the energy at node 1 is greater tha, ciical, the data collected through this multi-hop
route is determined by the relay node, node 2. That is, theygrstorage at the relay
node becomes the threshold for maximizing the data cotlette®ugh the multi-hop

route.

The exact expression of the transmitted data of the muhi-ﬂuxmte[)m can be

found through the following rule: £, > Ej 5 citical, then DLQ = DLQ; If £, <

E1727critica|, thenDLQ = Di2, WhereDi2 = maX{TlBlogz |:1 + M} } R ELQ =

dy 2 Pn1,2
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D

E1,2,critical = 5 L2 P s (6.28)

P +Pcr 10g2 [1 + d’f’2P1n71,2:|

where
1 P
Pf = argmaxq =———1log, |14+ —+—| ¢,
! g {Pl + Per 52 { d’igpn,m] }
( Por 1) In?2

_ d1,2Pn.,1,2 1 d’ian,LQ. (629)

P
W (i )]

Once the exact value of the maximum transmitted data of tH&-hmp routeDl,Q
has been found, we can compare it with the maximum data usigteshop linksD7.
That is, iff)l,g > D7, then a multi-hop route is better than a single hop link, arme vi

versa.

This algorithm can be easily extended to a general clugtéoipology with/N,; + 1
nodes. Without loss of generality, we assume that= min{D;} , then the algorithm

can be stated as:

Stepl Compute the maximum amount of data that can be transmittatbdg 1

though all possible relaying nod’es[)l,i
Step 2 Use node with the highes@l,i as the relay node of node 1,

Step 3 Determine the analytical solution of the optimal transnotver P from
(6.27).
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Step 4 Utilize the transmit power optimization algorithm to fincetbptimal transmit

powers for the new topology.

Step5 Assume if the current maximum amount of gathered daf‘ighen if D* <
Dy, the original single-hop topology should be kept; otheeyithe multi-hop
topology should be used.

The proposed algorithm to decide whether or not multi-haquihbe used within a
cluster can be applied together with the previously progassnsmit power optimiza-
tion algorithm and CHS algorithm to further increase the am®f data collected by
a cluster, when the cluster of interest is working in the Cdtstrained region. The

performance of this algorithm will be evaluated in the nedton.

6.5 Results

6.5.1 Transmit Power Optimization Algorithm

In the transmit power optimization algorithm, the main tesithe approximation made
on the optimal operation time assignmé&htthrough (6.13) in the CH-constrained re-
gion. Compared with the solutions 6fin the CM-constrained region (which are exact
optimal solutions), (6.13) provides a near optimal appration. Therefore, the ef-
fectiveness of the approximation needs to be evaluated. Salenze that 5 nodes are
uniformly placed within a disk with a radius of 100m, centket the cluster head. The
path loss exponent is = 4. The circuit powers arécr = 30 mW, andPor = 10
mW. The signal bandwidth i8 = 100 KHz. The AWGN power is-116.5 dBmW and

is equal on all links.

Fig. 6.5 shows the maximum data gathered when all CMs haworamresidual
energyFE; chosen from a uniform distribution between 1 J and 25 J. Tastet head

has energy, varying from0.01 to 0.5 J. This setup guarantees that the cluster works
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region.

in the CH-constrained region. We compare four scenafigsthe optimal solution to
problem (6.6) through numerical methods;) the proposed analytical approximation
(iteration free solution)(iii) each node has an equal transmission time duration con-
straint, with numerically optimized transmit power and ¢imhuration;(iv) each node
has an equal transmit power constraint, with numericaltynoged transmit power and

time duration.

The maximum amount of data collected is shown in Fig. 6.5nHFg. 6.5, we can
see that the proposed transmit power optimization algoripnovides a close approx-
imation to the numerical optimization maximizing the ambahdata collected in a
CH-constrained cluster. The proposed transmit power opdition algorithm achieves
a significant gain compared to the cluster with equal powdremyual transmission time
duration constraints. For instance, whep = 0.3 J, the cluster using the proposed
transmit power optimization algorithm gathers an averdage Dtimes the maximum

gathered data bits in the equal time duration caseg8dhiimes the number of the max-
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imum gathered data bits in the equal transmit power caseo giswn in the figure
is that the analytical approximation becomes more accastbe cluster head energy

decreases, which agrees with the analysis in section 6.2.

6.5.2 CHS Algorithm

The performance of the proposed CHS algorithm is evaluateatithe results are shown
in Fig. 6.6. The residual energy of the nodes is generatedwsrandom variable,

which is uniformly distributed between 0 and 1, through
E; =2s,¥ie{0,1,...,Ng}, (6.30)

whereN,; € {4,9, 14,19}, and the nodes are placed within a disk with a radius 100 m
following a uniform distribution.

In Fig. 6.6, the ternlinear approximation means that the proposed CHS algorithm

by (6.26) is used to select the cluster head; while the t@mahytical approximation
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refers to a brute force cluster head selection approaclthaldses the proposed trans-
mit power optimization algorithm in each iteration, to slthe optimal cluster head.
The termOptimal refers to a brute force cluster head selection approactgchages
a numerical solution of model (6.6) through an interiorsganethod in each itera-
tion. Moreover, the performance of a random selection andm@stwase selection of
the cluster head is provided. After cluster head selectfmproposed transmit power

optimization algorithm is used to configure the transmit psrof the CMs in all cases.

Fig. 6.6 shows that the proposed CHS algorithm (linear appration) provides
a sound approximation to the optimal cluster head seleati@@rms of performance.
That is, the maximum amount of data collected by the clugtegrguthe CHS algorithm
is almost as much as that of a cluster using the numericatlyngred cluster selection,
while the CHS algorithm avoids the iterations in the nunmedraptimization. Therefore,
the proposed CHS algorithm has great potential in SRWN egipdins. Also shown
in Fig. 6.6, the analytical approximation method also piegi a sound performance,
although compared with the proposed CHS algorithm, it Hghty worse performance
and higher complexity. The proposed CHS algorithm has aifgignt performance
gain over the random selection and worst case selectioneXample, when there are
ten nodes in the clustenV = 9), the cluster using the proposed CHS algorithm with
linear approximation can colledt9 times the average number of maximum data bits
collected by the clusters with the random selection, aAdimes the average number

of maximum data bits collected by the clusters with the woaske selection.

6.5.3 To Hop or Not to Hop

We assume that two nodes are placed within a disk with a rddiQsn, according to a
uniform distribution, centered at the cluster head. Theteluhead has a large amount
of energy. The cluster members have energy uniformly disted over[l, E; 4./,

whereFE, ... € {5,10,15,20}. We compare the maximum amounts of data gathered
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at the cluster head in a cluster with and without the possibke of multi-hop. The

results are shown in Fig. 6.7.

As shown in Fig. 6.7, the possible use of multi-hop alwaywvigkes a performance
gain. Moreover, the gain of the possible use of multi-hopeases a%; ,,,,, increases.
For instance, the clusters with the possible use of multi-ten collectl.09 times the
average number of maximum data bits collected by the clistéhout using multi-
hop whenE, ,,.., = 5 J, and1.21 times the average number of maximum data bits
collected by the clusters without using multi-hop when,.... = 20 J. This is because
a largeFE; ..., introduces a large variance in the energy distribution &edaby a large
variance on the nodes’ ability to transmit information batshe cluster head. Therefore,
as E; 4 INCreases, it becomes more likely that multi-hop improvesgerformance

(whenD? < DT;, for somei andj).
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6.5.4 Overall Performance Gain

The optimal transmit power, CHS algorithm, and the possilsle of multi-hop can
be naturally combined together to increase the maximum atmafucollected data in
a cluster. That is, for a given group of nodes, we can consamptimal cluster
with the optimal cluster head, the optimal transmit powethatcluster members, and
the possible use of multi-hop. In comparison, we refer to moptimized cluster as a
cluster with randomly selected cluster head, equal traintsme duration at the cluster
members, and no multi-hop. We compare the amount of dataatetl by an optimal
cluster and an unoptimized cluster and show the resultsgr6R. In Fig. 6.8, we
also show the performance of clusters with the optimal elusead and the optimal
transmit power at the cluster members, as well as the peafocenof clusters with only

the optimal transmit power at the cluster members.

The residual energy of the nodes is generated from a randdabies uniformly

distributed between 0 and 1, through
E; :m(s+1), Vi € {O,l,...,Nd}, (631)

andm € {5,10,15,20,25}. The nodes are placed within a disk with a radius 100 m

following a uniform distribution, and there are 5 nodes ia tetwork (i.e.N; = 4).

As shown in Fig. 6.8, the performance gain of the optimizaftbe optimal cluster
head, the optimal transmit power at the cluster membersthanpossible use of multi-
hop) is significant, especially when the residual energiatian between the nodes is
large. For instance, when = 25, the optimal cluster can collected an average amount
of bits of data throughout its lifetime that2s6 times the average number of maximum
data bits collected by the unoptimized cluster. The clgstéth the optimal transmit
power at the CMs, the optimal CH, and no multi-hop can coltedte the average
number of maximum data bits collected by the unoptimizedtely while the clusters
with only the optimal transmit power at the CMs can collé@3 times the average

number of maximum data bits collected by the unoptimizedtelu The clusters with
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the optimal transmit power at the CMs, the optimal CH, and ndtifnop can collect
1.51 times the average number of maximum data bits colldutélae clusters with only
the optimal transmit power at the CMs. Therefore, the optsebection of the cluster
head is very important in improving the cluster’s performgnas the cooperation of
the optimal cluster head selection and the optimal tranpowter at CMs provides a

significant additional gain over the use of optimal trangpoiver at CMs alone.

This performance gain increases with an increase in thatiami of the residual
energy of the nodes. This is because, first, the possiblefuselt-hop will provide
more performance gain when there is large energy variatsatond, when there are
large differences between nodes’ conditions (distancésesidual energy), the impor-
tance of the optimization of transmit power and cluster healdction becomes more
significant, as a random choice of clustering in this case Ioegyoor, e.g., by random
selection, a node with little energy left and long distartodhle rest of the nodes may be
chosen as a cluster head. Since usually there is a wide réwegeditions for different

nodes, the optimization of the clustering can be highly berad
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6.6 Summary

In this chapter, for the transmit power optimization, wegwsed an iteration-free algo-
rithm for maximizing the amount of data gathered by a clutesughout its lifetime,
considering energy constraints and a strict data fairnesstint. This framework
can be easily adapted to a fixed-rate constraint case. Merege developed a cluster
head selection (CHS) algorithm to determine the optimateluhead that provides the
largest amount of collected data for a cluster. Furthermeespresent an algorithm to
decide whether or not multi-hop should be used within a elust further improve the
performance of a cluster. The performance gain by using phienal transmit power,
the optimal cluster head selection, and the possible useitbfhop has been shown to

be significant.
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/7 Maximizing Gathered Samples in
Wireless Networks with

Slepian-Wolf Coding

In this chapter, we look at the cross-layer design of the lilakaand application lay-
ers, considering an energy constrained data-gatherirgjess network. We consider
an energy constrained wireless sensor network, with arlgimumber of nodes, where
source nodes utilize Slepian-Wolf (SW) coding before tnaigsion to a joint decoder.
We investigate optimal and near-optimal SW coding ratesisimit powers, and trans-
mit durations that maximize the number of collected samgilesg the network life-
time, subject to channel capacity, SW rate region, and wasiehergy constraints. We
find optimal (near-optimal) closed-form solutions in thesahce (presence) of an en-
ergy constraint at the joint decoder. We take into accoumtetiergy consumption of
SW encoding and decoding and communication circuitry. Nusakresults demon-
strate the effectiveness of the proposed optimizatiore@afy when the joint decoder

is not energy constrained.
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7.1 Introduction

Exploiting the spatial correlation of sensed data, oftegspnt in wireless sensor net-
works (WSNSs), is crucial for the energy efficient operatida dattery powered WSN.
Distributed Source Coding (DSC) is a promising compresapproach that can reduce
the energy consumption in WSNs by extracting the spatiaimddncy in the sensed
data at the nodes, without requiring the nodes to share rtinesurements with each
other [62]-[65]. The Slepian-Wolf (SW) rate region detemes the minimum DSC
sum-rate required for lossless recovery of the discreteetaied sources. In general
there are infinitely many sets of DSC rates that achieve tlignmum sum-rate. In
practice, sensors have different conditions (i.e., detdn the destination and residual
energy). Moreover, the cost of transmitting one bit fromhesensor is affected by the
communication parameters chosen (i.e., transmissionpameduration). Therefore,
the utility of the network can be significantly improved ietBSC rates and communi-

cation parameters are jointly optimized.

Researchers have considered the use of theoretical DS@Esresyarticular SW
coding, to enable energy efficient gathering of correlaiad th WSNs [78]-[73]. The
utility metric considered in these existing studies vari€ftentimes, the goal is to
minimize the total energy consumption, subject to certainstraints. Several works
use abit-hop utility metric to measure the energy expenditure [108][%@hile others
use the sum of the number of bits transmitted over a link, lateid by a function of the
distance between two sensors on that link [72]-[109][74jtal energy consumption,
however, is not the best utility metric to consider sinceos not take into account the
fact that different sensors cannot share their energy. dRdtiey likely have different

energy reserves (residual energy) and energy costs (desteom the destination).

Alternatively, one can assume some residual energy in eadé and consider the
total utility of the network in terms of lifetime [110][111dr the number of collected

samples [73]. The total number of collected samples is aredse utility metric since
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it reflects the performance of a data-gathering wirelessarét However, in using this
utility metric, the existing literature generally assurhattthe cost of transmitting one
bit over a link is independent of transmit power or transimissate, thus assuming a
linear relationship between transmission rate and poweswoption. In reality, the
logarithmic nature of channel capacity tells us that as thesmission rate over one

link increases, the cost of transmitting one bit increasesell.

The existing literature also vary in terms of the network eloahd optimization
variables. The majority of the existing works consider atirubp setting and seek
to jointly optimize the DSC rates and the routing paths [[#8}74] or the flow rates
[109]-[73] at the network layer. Among these, only [110] kassidered physical layer
parameters for optimization. The results, however, arearigal. In contrast, [108]
focuses on a single hop setting, and studies the tradeoffeleet sum-rate and loss
factor, and does not seek to optimize the system param¥tisa more practical point
of view, [112] and [113] study the joint optimization of DS@&tes and communication
parameters in a lossy setting. Other works [114]-[117] aimetluce the computational
complexity of the optimal DSC rate and power allocation ol generally by further

constraining the optimization problem and enforcing pése DSC among nodes.

Another important issue, arising in practice, is the en@gysumption in the cir-
cuitry for compression and transmission. None of the exgstiterature use energy

consumption models that take these energy costs into accoun

In this work, we consider this problem with an analytical eggzh, while consid-
ering a more detailed and realistic optimization problene. ddnsider a data-gathering
WSN, where each sensor (source node) generates a fixed nahsaenples and trans-
mits the encoded samples to a joint decoder. We assume thatedium is shared
by the sources through an interference-free multi-acagssnge. This maximizes the
sum-rate when considering circuit power consumption [1¥83} choose the total num-
ber of collected samples as the utility metric. Our optimi@aproblem takes as input

the distances of the sensors from the joint decoder, thdualsenergy of each node,
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the circuit power consumption, the cost of SW encoding arcbdieg, the channel
model (AWGN or Rayleigh fading), and the SW coding rate ragionstraints We
employ the Shannon channel capacity to establish a realedtitionship between the
cost of transmitting each bit, transmit power and rate. Viéa thaximize the utility and
provide jointly optimal SW coding rates, transmit powersl aransmit durations that
achieve this maximum value, all in closed-form expressi@gdsr optimization incurs
little communication overhead. For the scenarios wherentites have fixed commu-
nication distances and the sources have fixed correlatibagroposed optimization
requires the nodes to initially communicate with the joiatdder about their residual
energy and distances to the joint decoder. The joint dedmaedcasts the jointly op-
timal solutions to the nodes. Therefore, only one round afrmainication is needed to

implement our solution.

Major contributions of this work are (i) considering a mowgalled optimization
problem by including circuit power consumption, energystoaint at the joint decoder,
SW encoding and decoding costs, channel capacity constraimd different commu-
nication channel models, (ii) extending the optimizati@mgmeter space beyond SW
coding rates (via enabling adaptive transmit powers antstnét durations), thus fur-
ther enhancing the network energy efficiency, and (iii) jtong closed-form solutions
to the optimization problem, with low computational comqite. To do this, we as-
sume that a cluster consisting of a number of sensors andtadg@coder (cluster head)
has already been formed. To form the cluster, any existingteting technique, such as
linked cluster algorithm (LCA) and random competition lhskistering (RCC) [122],

may be used.

Yn this work, as generally assumed in the literature [7ZJ91{73][74], we assume that the joint
entropy of the sources are known. The problems of estimatiadield entropy and joint probability

have been previously addressed in the literature [119]][12
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Figure 7.1: A data-gathering WSN witki source nodes where each node employs SW

coding for distributed compression and the joint decodeomstructs all the collected

samples losslessly.

7.2 Problem Formulation

Consider a network wittV sensors. Each sensor colleStsample$ during the net-
work lifetime and transmits the encoded samples over oghalgchannels to a joint
decoder (Fig. 7.1). LeX; and R; (bits/sample) denote the random sample and the SW
coding rate at nodg respectively. The SW theorem [63] states tKatan be perfectly
reconstructed at the joint decoder, if and onhyRifG) > H(X(G)|X(G°)),VG C
{1,2,..,N},G # 0, whereH(:) is the entropy functionR(G) = > R;, X(G) =
{X;|j € G}, andG* is the complement of;. =

Assume that the transmit duration of nade7;, during which it transmit§ R; data

bits to the joint decoder. Invoking the AWGN channel capacitnstraint we obtain

BT;log, (1 + d,ﬁ\,{)) > SR;, where B is the channel bandwidth; is the transmit
power of node, d; is the distance from nodeto the joint decoden, is the path loss

exponent, andV, is the noise power. Therefore, we can find a lower bouné&,on
&
P, > (287 — 1)d} Ny.

The energy constraints at sengand at the joint decoder af€&(P; + Por) < E;,

2DSC exploits the correlation between samples generateiffbyesht sources [64][65], and therefore,

it requires the same number of samples generated by eaatesmae.
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and Pcp ZLTi < Ey, whereE, and E;,7 = 1, ..., N, denote the residual energy
at the joint decoder and at noderespectivelyPo+ and Por denote the circuit power
consumption during transmission and reception, respaygtiMaximization of the total

gathered samples can be formulated as

(P7.1) min —S
st. Cy: T;>0,8>0, C,: PordN,T; < Ey,
Cy: Ty(P; + Por) < E;,
Cy: B> (250 — 1IN,
Cy: R(G) > H(X(G)|X(GY)),
VG C{1,2,..,N},G # 0.

Here,C| andC, are the energy constraints at the nodés.is the channel capacity
constraint, and”; is the SW coding rate region constraint. Note tfas allowed to be
non-integer. ProbleniP7.1) is a minimum feasible set test problem with variab$es
R;, P;, andT; [105].

Let (S*, R*, P, T*) be an optimal solution ofP7.1), whereP, = (25" Ri/BT; _
1)d? Ny + ¢; for ¢; > 0. Then(S*, R, P, T7), whereP; = (25" F/BTE _ 1)d»N,, is

)

also an optimal solution ofP7.1). Thus, we can replac€; with an equality, which

yields
S*R; = BT log, (1+ )

d"No

N N P
= S*> Rf=> BT’log, (1+ﬁ)

=1 =1

N P*
= = = "
T R;

We observe that, giveR* andT?, S* is a decreasing function oF Y, R:. Moreover,

the SW rate region dictateEfil R > H(Xy, Xy, ..., Xn). Hence, givenP; and T},

S* attains its maximum if and only F‘Eﬁil Ry = H(X1,Xs,..., Xn). Consequently
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(P7.1) reduces to

(P7.2) min —S
N
s.t. Col E>O,S>O, Ci: PCRZ,TZ'SE(),

i=1

Cy: T[(277 —1)d"Ny + Por] < Ei,
Cs . R(G) > H(X(G)[X(GY)),
VG {12, N}, G£{1,2,...N},G #0,
N
04 : E Rz = H(Xl,Xg, ...,XN)

=1
where variable$’; have been eliminated from the optimization problem.

Here we assume that the orthogonal channels between sansidtree joint decoder

are modeled as AWGN. Our formulation can be easily extendedRayleigh fading

case, by changing the channel capacity expression figm = log, <1 + d,fjvo) to

Chrayeign =~ 1085 (1 + 23;}}',0), whereo; is the mean of the channel amplitude, assuming
that channel state information is available at the jointodiec [123]. This approxima-

tion is accurate at high SNR (f, P, > 8d}' N).

7.3 maximizing collected samples without joint decoder

energy constraint

Let us first assume that the joint decoder is not energy cainstl, e.g. when it has
a plugged-in power supply (See Section 7.4 for the energgtcained joint decoder).
ThenC; in (P7.2) can be omitted. Proposition 1 provides closed-form sohstifor
the optimalR} andT}* that produces™.

Proposition 1: Let us defineD] = mTaX{BTi log, (1 + %CNTOTZ')} as the max-

imum number of information bits that nodecan send, in the absence of an energy

constraint at the joint decoder, and Bt(G) = >~ D!. The optimalR: andT;* are
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as follows.

" H(X(G)|X(G°)D}
Rlzmgx{ ( (5|T<(§> ) 1}7

—1
Ti = B In 2(Pcr—df No) + Pop — d'N, .
w( )

In2
QdiL;NO(PCT—d{LNO)

N
R} for j > 2 can be any feasible solution that satisf@st = H(Xy, Xy, ..., Xy) —
J:

R;. GivenRj, T; must satisfy( P; + Por)T; < E;, whereP; = d;.LNO(QDIR;*/(BTJRﬂ —
1). In particular, if(P; + Por)T; = Ej, thenT’ is

d -1
, W(=4p227%)
I = <_ aln?2 b ’ (7.1)

whereWV(-) is the Lambert function; = DIBR—}%, b= d;]{,o, andd =1 — j;CNTO.

Before proving Proposition 1 we need the following lemma.

Lemma 1: DefineD; = S*R; as the optimal number of information bits that node

i can send. For at least one node we h&ye= D!.

Proof of Lemma 1: Considering P7.2) we note thatC; is independent of5*.
Hence,5* is only constrained b¢'s. FromC, we haveS* < (BT;/R})log,(1+ (E; —
PorT;)/(T:d} Ny)). Therefore,S* can be expressed as

(A

) {DT}
= min | =+

i Ry Jo

implying that at least one adP; is equal toDj.D

R , Bi—PerT
S —mln{R; o [BTZI% <1+ T No >]} (7.2)

Without loss of generality we assume that 1 satisfies the minimization in (7.2),
i.e. Df = DI.

Proof of Proposition 1: Assume that nodesendsD; = S*R? bits andD* = D].
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Then
N N
Y. Di =5 R}
z:ll z:l1 N
= 5" = H(X1,. XN) ;Dz’ (7.3)
I o D} N
S — H(X1,..X )(14’%);1%)

Step | results frome\i1 Ry = H(Xy,...,Xy), and step Il follows from% = S*.
Examining (7.3), we see that attains its maximum i} assumes its smallest feasible
value ande.V:2 R; assumes its largest feasible value, subjedttdaking its smallest

feasible value. First, we find the smallest feasible valugpfWe have

* T *
p) _ pre) < plG) = r(6) < O
R; D}
where R*(G) = > Rf andD*(G) = > D}. Combining with the SW coding rate
€@ e

region constraink*(G) > H(X(G)| X (G¢)) we have

DY (G)R? c « - H(X(G)|X(G°))D]
o 2 HX(G)X(GY) = Ri = TG,

implying that the smallest feasible value®f is R} = max {(H(X(G) |X(GC))DI)/DT(G)} :
Furthermore7}’ = argmax {BT1 log, (1 + %ﬁ@oﬂ)} leading to thel expression
given in the proposition statement. Knowify and D! we can findS* = D} /Rz. The
largest feasible value Qf:j.v:Q R, subject toR] taking its smallest feasible value given
above ist.V:2 R = H(X1, Xs, ..., Xn) — Rj. We note that optimaR; are not unique

for N > 2 and any non-negative values that satisfy

R = max { H(X(G)\X(GC))DI}
G )

DI (G)
SR =H(Xy, Xs,...Xy) - B

(7.4)
R*(G) = H(X(G)|X(G)),
VGC{1,2,..,N}, G#{1,2,...N},G #0,
are optimal. In particular, if
. H(X () X(G*) D]
i {2 (75)

H(X(9)|X(¢°)) D]

D7) , Whereg € G,
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thenR: = DIR:/D! fori € gandR*(¢°) = > R = H(Xy, Xy, ., Xy) = R (g).

For N > 2, the optimall’; for j > 2 are ;gso not unique, as long ‘As guarantees
node;j can transmitD; = DIR;/R’{ information bits to the joint decoder and the
energy constrain€’, in (P7.2) is met. One optimal solution can be obtained from
solving

" E: — PorTY R*
Bleog2<1+¥)— [

T‘J*dgLNQ N IR_T.
assuming that all nodes use up their entire energy, whesotbgons are givenin (7.1).
O

We note that the complexity of obtaining the optimal B¢tandT* (through Propo-
sition 1) is low for the following reasons: First, as long bhe system parameters are
fixed, this calculation is performed only once. All the SW wprates, transmit pow-
ers and durations are calculated and sent to the sensorseohrtoughout the network
lifetime. Second, the Lambert function can be efficientligakated [124]. Third, while
the complexity of findingR; in (7.5) grows exponentially witiV, in practice N will
not be large. This is due to the fact that (i) the number of @enwith highly corre-
lated measurements (where DSC is effective) is not expeatied large (ii) often local

clustering techniques divide the nodes into groups withllemaumbers of nodes.

7.4 maximizing collected samples with joint decoder en-

ergy constraint

In general the energy storage at the joint decoder may be,fieding to one of two
scenarios: (i) the joint decoder’s energy is sufficientlythsuch that it does not impose
any constraint, and (ii) the joint decoder’s energy is atiing factor. We refer to such a
network as goint decoder limited network. Scenario (i) is equivalent to the case where

there is no energy constraint at the joint decoder, whichadasessed in Section 7.3.
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In this section we consider scenario (ii) and in Section 75wl study the delineation

of these two scenarios.

In a joint decoder limited network, the total transmit dioatis limited by the
energy storage at the joint decoder, igf;l T = Ey/Pcr. The optimal transmit
power of sensoi can be upper bounded &% < E;/T; — Pcr. TO maximize the
number of transmit information bits in a given duration, seasors will spend all their
energy, i.e.P’ = E;/T; — Pcr. This means that both the joint decoder and the sensors
use up their energy. Based on this observation and a lingao@mation of problem
(P7.2), Propositions 2 and 3 provide closed-form solutions for riear-optimalR;

and7; that produce near-optimat*, respectively.

Proposition 2. In a joint decoder limited network, the near-optinfgi are R} =
H(Xl), R; — H(X2|X1), R:r; - H(Xg‘Xl, Xg), ceey R}kv — H(XN|X1,X2, ceey XN—1)>
where we have?, /d} > E,/d} > Es/dy > ... > Ex/d};.

Proof: Both the joint decoder and the sensors’ residual energyticnts are active
N STRY
PCRZT: = Eo, 17 ((2 H = 1)di No + PCT) =L (7.6)
=1

From (7.6), we have

E;/TF — P, S*R*
log, (—/ L or 1) = !

di No BTy
| E, S*R*
— T ~ 2 Ll
P82 N, T B
E S*R*
T*log, —— — T*log, T* ~v 2
# A ng d;’LNO 1 ng 1 B )
S*R*/B
L s i/ (7.7)

~ E; 6
logy 7w T Tz

where step | assumes thd;/7; — Por)/(d?Ny) > 1 andE;T; > Pcr. The first ap-

proximation is equivalent to assuming a high SNR. The seapmpioximation means

that much more energy is consumed by transmission, ratherttie circuit compo-

nents. This approximation is reasonable in the joint decbdeted network, where
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the transmission durations are mostly determined by thigddhenergy of the joint de-
coder and are reasonably short. In this scenario, shosgrtrasion durations and large

power need to be used.

Step Il employs the linear approximati®}ilog,(7) ~ —67}*/ In 2, which is accu-
rate for smalll’*, a reasonable assumptiorfif is small. Defining/; = [log,(E;/d?Ny)+
6/In2]"! and using (7.7) we find* ~ S*U;R:/B and consequently "~ T ~
%iéRjUi. On the other hand, we haye " | T = E,/Pcr. Combining these and

solving for S* we obtain

-1
BE, [ &

S RU, | 7.8
Fom (Z ; ) (7.8)

i=1
Examining (7.8) we see th&t* attains its maximum value EiNzl R:U; assumes its
minimum feasible value. Hence, the near-optinkil can be found by solving the
following inequality form linear programming (we refer toet solutionsR?; of (P7.3)
asnear-optimal, since the linear approximation we used to fqi¥.3) is accurate for
smallT;")
N

i=1

st. R(G) > H(X(G)|X(GY)),
VG C {1,2,...,N},
This problem has been solved in [76] by invoking the conwismatroid feature of
the SW coding rate region. We thus directly conclude tRat= H(X,),R; =
H(X,|Xy), Ry = H(X5| X1, Xa), ..., Ry = H(Xn| X1, Xo, ..., Xy_1) IS near-optimal,
ifand only if U; < U, < ... < Uy, or equivalentlyE, /d} > Es/dy > ... > En/dY.
U

Proposition 3: In joint decoder limited networks, the near-optirizl are

R*U;
Tx — Lo LuYi 7.
i Pcr zyle;Uj (7.9)
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Proof: RecallT; ~ S*U;R}/B. Hence1;/T; = (R;U;)/(R;U;). We have

N I T: T _ E
Zz‘:lTi_WOR:>T1 <1+T_?+"'+T_T)_PCOR’
=T <1+R2U2+“._'_RNUN> — Lo

R1U1 RlUl PCR
_1 NV opor B
=T RiUL Ei:l RiUi = Pcr

_ _FEo R1Uy
= Thh= Por YL, RU;

Therefore, given near-optimal rat&$, the near-optimal transmit duration of node 1 is
Ty = EoRiUy /(Per Y., R:U;). Repeating this procedure yields (7.9).
The following remark highlights the differences betweer tiptimal and near-

optimal R} provided in Propositions 1 and 2 and the literature.

Remark: Neglecting energy constraints at the joint decoder andntides, the
authors in [72][76][74] assigned rates to the nodes acogrth R; = H(X;), R =
H(X5|X1), Ry = H(X3| X1, Xa), ..., Ry = H(Xn|X1, Xs, ..., Xy_1), wherel /d >
1/dy > 1/dy > ... > 1/d%. This solution can lead to early energy drain of nodes that
are closer to the joint decoder, since it assigns highesegt) rate to the node that is
closest to (farthest from) the joint decoder. In contrasppBsition 2 considers both
distance and residual energy for rate assignment and adsgmest (lowest) rate to the

node that has the largest (smallest) ratio of residual grterthenth power of distance.

The rate assignment in [72][76][74] is also significantlifelient from the one pro-
vided in Proposition 1. The solutions provided in Propositil indicate that there
always exists at least one limiting source node whose jooytimal transmit duration
and SW coding rate are the ones that enable the limiting sptie§end as much data as
possible under the SW coding rate region constraints. Maadewhe remaining nodes
have the freedom to choose any feasible transmit duratiot S8 coding rates. The
jointly optimal transmit durations and SW coding rates dahepen the residual energy,

the distances, the circuit power consumption, and the alam@pacity constraints.
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7.5 The critical energy of the joint decoder

We define the critical energy of the joint decoder as the mimmenergy storage at the
joint decoder such that constraifit in (P7.2) remains inactive. Whe, is greater
than or equal to (less than) the critical ener@y,n (P7.2) is inactive (active) and we
can use Proposition 1 (Propositions 2 and 3). In this segt®mvestigate this critical

energy.

Suppose thé! andT;* are solutions provided by Proposition 1. We have

* T
Ty Blog, (1+ nr ) = 2

T ox
DlRi

= T*—= _ BR
[ P*
log2 (1+Wldn>
K
DiR?
BR}

E;/Tf —Pcr
log <1+ Nodf )

|

M s f(RY)

a;d;
%

wheref;(R}) = < _W(_%:QT «)/(a;In2) — dz’/ci)_l ,a; = DR /(BR}), ¢c; =
E;/(d?Ny),andd; = 1— Pop/(d}Ny). Step | results fronP* < E; /T — Por and step

Il is due to the Lambert function being monotonically ineg overR. Therefore, if

for an optimal setk! the joint decoder energy stora@g® = FPcor Ef\il T is greater
than or equal to the critical energy-r S~ | fi(R?) thenC, in (P7.2) is inactive.
Since the optimal sef’ is not unique (in fact, based on Proposition 1 there is an
infinite number of optimal sets), we can formulate the follogvlinear constrained

optimization problem to find the critical energy

(P7.4) E, =minPor SN, filRY),

" H(X(G)|X(G))D}
St Co: R = max { AXQXEIDY

Cyp: SN, R = H(Xy, Xy, ..., Xy) — R,
C.: R*(G) > H(X(G)|X(GY)),
VGC{1,2,.,N}, G#{1,2,...N},G #0.
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Solving (P7.4) gives us the exact value for the critical energy. Howevés,ithrather
complicated. A simple suboptimal approach is to minimizeapproximation of the

lower bound onPor SN, fi(R?). Examiningf;(R;) we find
2, — %% -1
. W(=4 222wy
fi(R}) = ( B %)

4. —1
_agm2 =t
~l e - di
a; In2 c;

Cj Ei

T F—

whereV; = D!(Por — Nod?)/(E;BR?). The approximation above is based on the
linear approximation of the Lambert functioW(—xz) ~ —x, whenz — 07, and it
becomes accurate whe¥yd! < Pcor. This is equivalent to assuming a high SNR

when the circuit and transmit power consumptions are coaiypar Consequently, we

have
N N E;
i filRY) =3l Nodp2"i% 4+ Por—Nodp
_ 210g2 <Z{V—1 Nod?2ViR:?PcTNOd?>
> QL(RZ‘)7
where

L(R!) = Zf\il % log, E; + logy N
- ZZN:1 + logy (Nod 2V 5 + Por — Nody),

and the inequality results from the concavity of the lodmmtfunction and Jensen’s

(7.10)

inequality. Thus,L(R}) = Por2"%) is a lower bound on the critical energy and
minimization of this bound is equivalent to minimizing thert term in (7.10). We can

rewrite this term as

LS {log, (202 1y | o (Pog — Nod?
N; 082 (For=mear T 1) +10gs(Por — Nody')
N

Q

Nod2i% 1 SNy p N 7.11
« N(Por—Nod}) tN ; ogy(Por — Nody) (7.11)

-
Il

Q
M=

@
Il
,_.

N
Nod? DiR? i log, (Pop—Nod™)
NE;BR; Z N )
1=
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The first approximation in (7.11) is based on the linear apiprationlog,(1 + =) ~ =,
whenz — 0. The second approximation in (7.11) results from the Maataexpan-
sion and discarding higher-order components. These appations become accurate
whenNyd! < Pcr. We note that minimizing the critical energy lower bound isiieg
alent to maximizingy_ Y , (R: NodyD!) /(N E;BRy). Therefore, the minimization of

the critical energy lower bound can be approximated by
N Nod'Dl o4
(P7.5) max).; , N%iBREI RY,

/ c .l.
s.t. C,: R; = maxg {H(X(CB\T)((Cg? ))D] }7

Cy: SN R = H(Xy, Xy, ..., Xy) — R,
C.: R (G) > H(X(G)|X(G9)),

C

VG C{1,2,.. N}, G#£{1,2,...,N},G % 0.

Let R+ denote the SW coding rate allocation obtained by soly@.5). Using similar

DT(G)
H(Xy, X5|Xs, ..., Xy) — R RS = H(Xy, Xy, X3| Xy, ..., Xn) — R} — R;, ..., and

Ry = H(X1, Xy, .., Xy) — S0 " R, where we havely/E, > dj/Fs > ... >

~ c T ~
techniques we used to prove Proposition 2, we fitid= max { HX (G)IX(G)) Dy } , Ry =

d% /Ex. Thus, the critical energy must satisfy
N ~ A ~
PCRZfz‘(Rf) > Ey > L(R]).
i=1

When the joint decoder’s residual energy satisfigs> Por S~ | fi(R?), the con-
straintC, in (P7.2) is inactive. WhenE, < L(R}) this constraint is active. When
Por SN fi(RY) > Ey > L(R?), we cannot determine whether or not the network
is joint decoder limited. In this case, we assume constr@inis active and find a

suboptimal solution using Propositions 2 and 3.

7.6 Impactof SW Encoding and Decoding Energy Costs

So far we have assumed that the SW encoding and decodinyestg are negligible.

In the following, we investigate how we can incorporate éhesergy costs int@7.2)
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and how the results of Propositions 1, 2, and 3 can be useditthi@noptimal resource
allocation when these costs are incorporated. We modifteaimtsC; and C5 in

(P7.2) as follows

Ch: PCRZiNz T; < Ey — EpeSN,
i (7.12)
Cg . n[(2BT’i — 1)d?N() + PCT] S Ei — EEN,isa
where Epe and Egy,;, measured both in Joules/sample, denote the energy cosVof S

decoding at the joint decoder and encoding at nodespectively.

Let (P7.6) denote the new optimization problem with modified constsairy and
Cy giveniin (7.12). Also, let5g, Rg; andTg ,, respectively, denote the optimal param-
eters obtained from solvin@7.6). Unfortunately, solving P7.6) in closed-form is
intractable. However, in the following we describe an itm@anumerical method to
solve(P7.6).

Let Sy, R}, andT}, , represent the solution ¢P7.2) and¢;,, and&,,, respec-
tively, indicate the residual energy of sensand the joint decoder, in theth iteration.
We seté;y = E; and&, = Ey. In themth iteration, we first update the residual en-
ergy as€; ., = & m-1 — EenSi,_, andé,, = &,,—1 — NEpeS;,_,, then solvegP7.2)
using these updated residual energies and ottginR;,, and7;, . Clearly, S; is
an upper bound obg. It is easy to show that in general the resultisi) is either a
new upper bound or a new lower bound $if, depending on whether. is even or
odd. Asm increases, these upper and lower bounds approadii.toThe conver-
gence of the algorithm will be demonstrated in Section 7t8ubh simulations. The
iterations will be stopped when the average decreases ¢dwer and upper bounds
0.5 (1S, — Sk_al + S5y — Sk,_5]) / Sk, is less than a small value Note that at least
4 iterations are required to use this stopping criterionedcth iteration as we update the
residual energies, we need to apply the results in Sectband re-evaluate whether
or not the network is joint decoder limited and hence use pipeapriate proposition to
find the optimal or near-optimal set for that specific itevati The iterative procedure

to solve(P7.6) is summarized in the pseudocode shown in Table. 7.1.
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Table 7.1: The proposed optimal rate allocation with codingrgy cost

Algorithm 7.6.1: OPTIMAL RATE ALLOCATION (Egn;, EpE)

Initialize &, o = £, & = Ey
calculate{ Sg, R}, 17 } based or€; o, &

m <+ 1;whilem <4

;

m+m+1

update residual enerdy ,,, =&; -1 — Sp_1 Eeny,
do

Em: m—1 — NS;;,_lEDE
calculatd S, R}

i,

1}, tbased off; ., &,

m < 4; € + a small positive number

while 0.5 (|S:n = Spal + 1551 — S:n—fi‘) /S 2 €
update residual enerdy ,,, =& -1 — 51 Een,
Em=En-1— NS _|Epe

do
calculatd S, ;. 7, tbased OfF; ., &y,

m+m+1

x Qe * % x ik
let SE - Sm? E: — Ri,m? TE,’i - Crz’,m

7.7 Extensions to Multi-hop Scenarios

So far we have assumed that the sensors are a single hop amaghi joint decoder.

This is a reasonable assumption assuming that the netwollksitered, and the cluster
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heads are the joint decoders. Many algorithms for cluggeaimd cluster head selection

have been proposed and well studied in the literature [128]F[127].

Figure 7.2: Application of the proposed algorithms in a eigdéhering wireless network

with multi-hop routes.

In the case that the network is not clustered, or that theerlireads cannot act as
joint decoders, it is desirable to perform the optimizatiom multi-hop setting. The
proposed methodology in the single hop scenario can be dedeto a specific multi-
hop scenario, where all of the multi-hop routes are dist{ncin-overlapping). An
example of such a multi-hop network is shown in Fig. 7.2, whéiree source nodes

send data through a 3-hop, a 2-hop, and a 2-hop route to thersgpectively.

Assume that we hav® sources and correspondingWydistinct routes. The source
on theith route is labeled ag, 1). Furthermore, assume that there &ferelay nodes
on each route, and the relay nodes are denoted, by, wherek = 2, ..., K; + 1. Let
d; . be the distance of nodg, k) to the next node on the routg, k + 1), andE; ;. be

the energy of nodéi, k). When there is no joint decoder energy constraint, the gnerg



170

constraints of the source and relay nodes are

SRy

T | (2770 = 1)d} No + Por| < Ei,

SR,

Tik-1Por + Tig | (2770 = 1)d} No + Por| < Eiy,
Vk=2 .. Ki+1i=12 . N,

whereT; ;. is the transmit duration of node, k). Note that the above energy constraints
correspond to constraints, of (P7.2) in the single-hop scenario. The SW coding
region constraints stay the same in the multi-hop scendgiguivalently, the above

constraints can be written as
SR; < BT;log, <% + 1) ’

SR < BT log, (a-tusyfon/Tusten 4 ),

Therefore, maximizing the number of samples is equivatefintling the optimal trans-
mit durations; , that maximize the tightest constraint in the above constsat. That
is S*R; < D!, where
T . E;1/T;1—P
D! = r%ix min {BTM log, (W + 1) ,

Bj—;;’k; 10g2 ((Ei,k_Ti,k—dlzicj\l;{o)/Ti,k—PCT + 1) } ‘

(7.13)

Assume that the solutions to the above max-min problemTé,geBased on Proposi-
tion 1 and Lemma 1, without loss of generality, we assuitje= Di’. Correspond-
ingly, the optimal transmit durations for route on€lis, = Tik,wc =1,.., K +1,
and the optimal SW coding rate of node (1,1) is the same aseirsitigle hop case,
e, R = max {H(X(G)|X(GC))DI/DT(G)} . The maximum number of samples is
S* = D}/R;. R} for j > 2, can be any feasible solution that satisf}€3’, R; =
H(Xy,...,Xn) — R}. The optimal transmit durations for roujeare the ones that en-
able routej to deliverS* 7 amount of data to the joint decoder. Unfortunately, unlike

the single-hop case, there are no analytical solution$optimal; .
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In the presence of an energy constraint at the joint decadgmilar linearization
method as in Section 7.4 can be applied to the last hop to ttewdlde i.e.k = K, + 1.
That is,

SR,
Ei x,+1—Ti x,Pcr)/Ts,k;+1—Per
=BT, .11 (Bix; L i 1
BKi+1 1082 7 ;41 N0 +
(Bi,k;+1—Ti,x,Pcr)/Ti,x;+1—Por
~ BT, x..11o i - ot
i,K;+1 1089 & e 1 No
_ Ei rk;+1 6
~ B |:10g2(d7iL,Ki+1No) + n2 Ti7Ki+1’

where we assumgr; k.11 — T k., Por) /Ti.k,+1 — Por]/(d} i, 1 No) > 1, 1.e. a high

SNR, andE; x, > T, k,—1Pcr + T; x,Por. Thus, we have a similar problem that
provides the near-optimdt; andT; . by using Propositions 2 and 3. The remaining
near-optimal transmit duratio§’,, Vk # K; can be any feasible solutions that satisfy

the constraints.

Slightly more complicated multi-hop topologies may be tieeleas above with some

further detail. However, not much can be said for an arhyitraulti-hop topology.

7.8 Numerical Results

In this section, we numerically verify the analytical opéihand near-optimal solutions
provided in Propositions 1, 2, and 3, and we quantify theaase in the number of
collected samples due to our optimization. We consider @maes withV = 2 and10
source nodes and assume that the nodes are uniformly plaitea axdisk with a radius
of 200 m, centered at the joint decoder. In our simulatioms,gath loss exponent is
n = 3.5, the bandwidth i3 = 50 kHz, the circuit power consumption at the transmitter
and receiver, respectively, afe.r = 84.8 mW andPcr = 107.8 mW, and the power
spectral density of noise is174 dBm/Hz [112].
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7.8.1 Network with N = 2 source nodes

We compare the average of the maximum number of collecteglsai* as the spa-
tial correlation varies for six different approaches. Tiierage is calculated over 1000
random network deployments. The six approaches are: (i Bade codes its infor-
mation with a rate equal to its unconditioned entrdpy= H (X;) and uses optimized
T;. We refer to this approach as “No DSC”. (ii) The SW rate alt@mraamong nodes
is specified by a corner of the SW coding rate region and nose®ptimizedl;. We
refer to this approach as “Corngy”. (iii) Nodes use equal SW coding rates of the joint
entropy divided byV and optimized!;, which we refer to as “Equak;”. (iv) Nodes
determine their transmit powers according to a target SNBR)dB and numerically
optimize the SW coding rates, which we refer to as “Fixetl (v) The SW coding
rates and transmit durations are obtained from PropositinhenC, in (P7.2) is
inactive) or Propositions 2 and 3 (when it is active), whiok sefer to as “Analytical
Results”, and (vi) The SW coding rates and transmit durateme found via numeri-
cally solving(P7.2) without any approximations or simplifications, which weeneto

as “Numerical Optimization.”

We letH(X,) = H(X») = 1 andH (X;|Xs) = H(X»|X;) = h, 0 < h < 1. Note
that a larger: indicates a lower spatial correlation betwe¥nand X,, and vice versa.
For the “CornerR;” approach we choose the cornBr = H(X1|X3), Ry = H(X5).
For the case when constraifit in (P7.2) is inactive we assume the joint decoder and
the sensors’s residual energies are= 11880 J (approximately the energy capacity of
a AA battery [128]) andE; = E, = 118.8 J, (selected to be 1% d,), respectively.
For the case when constrai@t in (P7.2) is active we assumé&, = 118.8 J and
E, = FEy = 11880 J.
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Figure 7.3: Performance comparison when the network isaint gecoder limited:

averageS* versush for N = 2.
7.8.1.1 ConstraintC, in (P7.2) is inactive

Fig. 7.3 shows that the “Analytical Results” and “NumeriCgdtimization” approaches
have similar performance. Also, the “Analytical Resultppeoach offers a significant
performance gain over the “Fixefl”, “No DSC”, “Corner R;”, and “Equal R;” ap-
proaches. For instance, far= 0.3 , the average of™* in the “Analytical Results”
approach i2.1 times that of the “No DSC” approach,8 times that of the “Fixed?”
approach].6 times that of the “CorneR;” approach, and .3 times that of the “Equal
R;” approach. The relative importance of the optimizationrdv@nsmit durations and
the SW coding rates differs according to the conditionatagyt This is evident by
comparing the “Fixed’,” and the “No DSC” approaches. The “Fixél’ approach op-
timizes only over the SW coding rates, while the “No DSC” aygmh optimizes only
over the transmit durations. Wheris small, the “FixedP,” approach outperforms the
“No DSC” approach, since the optimization over the SW codatgs is relatively more

important than the optimization over the transmit duragiowhent is large, the “No



174

10
1% : :
—O—No DSC
104 —— Corner R,
d'-{ —B— Equal R,
- - - Fixed Pi
8l —&— Numerical optimization| |
—>— Analytical results
w 1T
)
g 6
)
>
< p—o—6—6—06—6—06—6—=

~ -
-~

Figure 7.4: Performance comparison when the network i gi@ooder limited: aver-

agesS™* versush for N = 2.

DSC” approach outperforms the “Fixdd”, approach since in this case the optimiza-
tion over the transmit durations is the dominating factoe tluthe SW coding being

less effective in absence of high spatial correlation betwsources.

7.8.1.2 ConstraintC, in (P7.2) is active

Fig. 7.4 shows that the performance of the “Analytical ResSudnd the “Numerical
Optimization” approaches are close, although the comijomi@tcomplexity of the for-
mer approach is almost negligible, compared with that ofiétter. Comparing Figs.
7.3 and 7.4, we observe that joint optimization in networkh wactive joint decoder
energy constraints is more important than that of netwoilkis active joint decoder en-
ergy constraints. Considering Fig. 7.3, we observe tharvihe 0.1, the “Analytical

Results” approach provides a gain as large as 171% over tr@écR;” and the “Equal

R;” approaches, while considering Fig. 7.4, we see that this igaonly about 22%.

This is because when constra(it is inactive, the total transmission duratidon-+ 7,
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is determined by, and E5, and a non-optimal SW coding rate allocation accelerates
the drain of energy at the nodes and redutes 7,. However, when constrairdt; is
active, T} + T5 is mainly determined by, and it is less affected by the adopted SW
coding rate allocation (compared with the case whigrés inactive). Thus, when the
nodes’ residual energy is limited and the joint decoderggnstorage is abundant, SW
coding rate optimization becomes more crucial. This is alddent by the fact that
the performance of the “No DSC” approach is always better that of the “FixedP;”
approach. We also note that the performance gap betweeanmeatiffapproaches, ex-
cluding the “FixedP;” approach, diminishes dsincreases since SW coding becomes

less effective.

7.8.2 Network with N = 10 source nodes

Our joint entropy model for the 10-source node case is basdteentropy approx-
imation proposed in [79] where théh source contributes an amount of uncorrelated
data equal toc_’;—iriH(Xl), wherer; is the minimum distance of th&h source to the
1,...,i — 1 sources and is a constant representing the extent of the spatial coioela
of the data and varies with respect to the data of interestil&ito [79] we letc = 25
andr; < r;,Vj > 4. For the sake of simplicity, a complete symmetry of the gmtns

assumed.

We assume the joint decoder and sensors’ residual enengegngormly dis-
tributed within(0, £,,..|, with E,,.., = 1000J,2000J, and3000J. For each¥,,,,., 1000
trials are simulated. We let be 10, 20, ..., 90, andH (X;) = 1, Vi. For the “CornerR;”
approach we randomly choose one corner of the SW codingrrencaddition to the
previously described six approaches, we include two mopecgehes: the “Proposi-
tion 1” approach and “Propositions 2 and 3” approach. In #r@position 1” approach,
we assume the network is never joint-decoder-limited arlg ose Proposition 1 to
determine the optimal transmit durations and the SW coditegr while in the “Propo-

sitions 2 and 3” approach we assume the network is always g@ooder-limited and
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Figure 7.5: Performance comparison: averdgeersuskt,,., for N = 10.

only use Propositions 2 and 3 to determine the optimal trérdumations and the SW
coding rates. These two additional approaches illustregermportance of the choice
of appropriate solutions according to the calculatedaaitenergy. In the “Analytical

Results” approach, for each realization, we apply our tesnlSection 7.5 to find the

critical energy and hence determine whether constrains inactive or active.

Fig. 7.5 shows that the performance of the “Analytical ResSw@pproach (provided
by either Proposition 1 or Propositions 2 and 3, depending/logtherCs is inactive
or active) and the “Numerical Optimization” approaches\agy close, although the
computational complexity of the former approach is almesgligible, compared with
that of the latter approach. For instance, for,, = 3000 J the average&™ for the
“Analytical Results” and the “Numerical Optimization” am@aches has onli/% differ-
ence. Furthermore, the “"Analytical Results” approachrsfeesignificant performance
gain over the “No DSC”, “CorneR;”, “Equal R;”, and “Fixed P,” approaches. For in-
stance, fol®,,,,, = 3000 J the average of* in the “Analytical Results” approach &5

times that of the “No DSC” approach,0 times that of the “CorneR;” approach,1.9
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times that of the “Equak;” approach, and77.8 times that of the “Fixed’;” approach.

In our calculations, the percentage of using Propositionel, C is inactive ac-
cording to the calculated critical energy, is approximat&l’% (2093 out of 3000 tri-
als). The percentage of using Proposition 2 and 3, @'g.is active according to the
calculated critical energy, is abod% (907 out of 3000 trials). Thus, as shown in Fig.
7.5, the performance of the “Analytical Results” approadtich is based on critical
energy, is better than either “Proposition 1” or “Propasis 2 and 3” approaches, and
the “Proposition 1” approach outperforms the “Proposgi@and 3” approach, since
oftentimes constraint’; is inactive. The results show the importance of choosing the

appropriate proposition(s) based on the critical enerdgutation.

7.8.3 Impact of SW Encoding and Decoding Energy Costs

To demonstrate the effectiveness of the proposed algoiiilection 7.6, we apply it
to a 10-source node network with residual energig®)J for all nodes and transmission

distancesl; = 100m for all sources. The remaining parameters remain uncliange

It has been shown in the literature that low-density pachigck (LDPC) coding
is a promising implementation technique for DSC [129][13Thus, we assume the
energy consumption of the DSC decoder is the same as thatateads-the-art LDPC
decoder [131]. In [131], the author states that the norradlienergy consumption
efficiency of the LDPC decoder implementation is 243 pJtbitdtion, and the number
of iterations is 10. Therefore, the normalized energy consion of the decoder is 2.43
nJ/bit. Since there atd (X1, .., X ) bits/sample to be decoded, we let the DSC decoder
energy consumption b243H (X4, .., Xy) nJ/sample. On the other hand, the DSC
encoder is similar to the LDPC encoder, which consists opmatrix multiplications
and is much simpler than the LDPC decoder. We assume thahérgyeconsumption
of the encoder is 5% of that of the decoder, 0d2H (X, Xs, ..., Xx) nJ/sample.

Fig. 7.6 showsSg, S, and S*. We observe that the addition of SW encoding and

decoding energy costs decreases the total collected saimpkbout3%. The impact
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Figure 7.6: Performance of the proposed iterative algaritly’ approachest asn

increases fo’V = 10.

of encoding and decoding energy consumption is thus not signjificant. We also
note that the proposed algorithm converges in only 4 ienatiwithe = 1073, Of
course, the number of iterations required for the the allgorito converge depends
on the choice ot. Table 7.2 illustrates the average number of iterationsired for
convergence in terms ef These are the results of averaging ouM&rrandom network
deployments and random initial residual energies. Our ksitimn results indicate that
the proposed algorithm converges in every trial, and thaired number of iterations

for convergence decreasescascreases.

7.9 Conclusions and Discussion

In this chapter, we considered a cluster in an energy cansttaVVSN, where each
source node utilizes SW source coding to transmit its erccodermation bits to a joint

decoder. To maximize the collected samples during the r&tifetime, we formulated
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Table 7.2: The average number of iterationg.r.t.

€ n
10710 | 8.7
107% | 8.1
1078 | 7.7
1077 | 7.0
1075 | 6.7
107° | 6.0
107* | 5.7
1073 | 5.0
1072 | 4.7
107 | 4.0

a detailed optimization problem, that takes into accourdud power consumption,
energy constraints at the joint decoder and the nodes, thed&l\¥g rate region, and
the capacity constraints imposed by different commurecathannel models. The
optimization parameters are the SW coding rates, the triapsmvers, and the transmit

durations.

For the case where the joint decoder is not energy constraiveefound low com-
plexity optimal closed-form solutions. For the case whéeejbint decoder is energy
constrained, we approximated the original nonlinear og@ton problem with an in-
equality form linear program, and we found near-optimakelb-form solutions. Our
proposed optimal and near-optimal rate assignments adafmentally different from
the ones in literature, which assume the communication mestnformation bit de-

pends only on distances. We also provided a simple critddodetermining whether
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or not the joint decoder is energy constrained. Our numlerésallts validated our an-
alytical solutions and also demonstrated the effectivenéthe proposed optimization
to increase the number of collected samples, especiallywhejoint decoder is not
energy constrained. Lastly, we proposed an iterative algorthat employs our ana-
lytical results to solve the problem when the SW encodingdewbding energy costs
are also taken into account. Numerical results indicatettiia algorithm has a fast

convergence rate.

In this work we have considered a single, pre-determinesstet. We note that the
clustering algorithm can have a significant impact on théoperance of the algorithm.
Consequently, further gains are potentially possiblegusnoss layer optimization that

includes our approach described in this work and the clungtegorithm.
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8 Optimal Rate Allocation for
Distributed Source Coding over

Gaussian Multiple Access Channels

In this chapter, we continue the work of Chapter 7 by studstmegproblem of joint op-

timization of Slepian-Wolf (SW) source coding and transsiaa rates over a Gaussian
multiple access channel with the considerations of cingower consumption and av-
erage transmit power constraint. The goal is to maximizesétmeple rate at the source
nodes. We first derive a criterion to determine the optimalftdifferent multiple ac-

cess schemes such that the highest sample rate can be dchidghe source nodes
when SW coding is used. Based on the derived optimalityrasite we propose a rate
allocation procedure to determine the jointly optimal SWiog and transmission rates
corresponding to code division multiple access (CDMA)gtrency division multiple

access (FDMA) and time division multiple access (TDMA) soles. Several demon-
strative numerical examples are provided to show the pmdoce gain of the proposed

joint rate allocation scheme.
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8.1 Introduction

Studies suggest that most of the observations made in medesing systems are spa-
tially correlated due to the fact that the sensing deviceslansely deployed [132][133].
An efficient exploitation of this spatial correlation is keel to meet the stringent con-
straints on these systems, in terms of bandwidth usage argyeconsumption. The
exploitation of spatial correlation has been investigatetthe research community for
the past decades and different approaches have been plppudading: distributed
source coding (DSC) [64][134], data-correlation-awargirgy [135], minimum-energy
data gathering [136], and cross-layer optimization [1B3§]. Among these tech-
niques, DSC is particularly attractive due to its uniquédess. DSC enables compres-
sion of correlated sources without requiring any commuioocabetween the sources,
given the joint distribution of the sources at the encodacdsthe decoder [62]. More-
over, DSC can be seamlessly incorporated with many othlentgaes to further exploit
the spatial correlation of the sources, such as the aforeonex data-correlation-aware

routing [136] and cross-layer optimization [137][138].

Although the theoretical results of DSC do not require cowtion between the
distributed encoders at the sources and the joint decodbe atestination, the infor-
mation delivery between different sensing devices anddhe fecoder does require
some degree of coordination [36]. For example, in clustarieeless sensor networks
(WSNSs) where a cluster consisting of several sensors andtadgcoder (cluster head)
has already been formed, the data sensed by sensors shaddtlie the cluster head
through multiple direct links. Therefore, the multiple ass channel problem arises
naturally in a typical distributed sensing system sincecthrmunication of the sens-

ing devices must be coordinated to prevent possible daga los

The performance of orthogonal multiple access (MA) schemsigsh as code divi-
sion multiple access (CDMA), time division multiple acc€$®MA) and frequency

division multiple access (FDMA), have been extensivelylgd within the context of
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multiple access channel problems, where an average powstramt is imposed at
the transmitting nodes, albeit without the consideratimingrcuit power consumption
and SW coding [63][139]. A recent study shows that, consigethe circuit power

consumption can significantly alter the rate region of a MAesne [118]. This sug-
gests that the performance analysis and evaluation ofreliffeV/A schemes needs to

be carefully revised when circuit power consumption is regligible.

The impact of the circuit power consumption on the rate negjiof different MA
schemes is illustrated in Fig. 8.1, which shows the rateoregof CDMA, FDMA and
TDMA over a Gaussian multiple access channel with two tratiers. When circuit
power consumption is not considered (Fig. 8.1(a)), it hamnbghown that CDMA
is optimal in terms of providing the highest sum rate, whileMA and FDMA are
equivalent [63]. When the circuit power consumption is ¢deed, however, the rate

region of TDMA is no longer contained in that of CDMA [118].

CDMA

TDMA and \
FDMA \

Figure 8.1: The rate regions of TDMA, CDMA, and FDMA fof = 2 without (a) and

with (b) the consideration of circuit power consumption.

The performance analysis of different MA schemes is cliititdistributed sensing
systems, since the transmission rates provided by a plarti®lA scheme directly de-
termine the sample rate that can be supported at the seresiged The optimization

of MA schemes to improve the energy efficiency of sensingesysthas been studied in



184

the literature [140]-[142]. Most of these works do not take®into the consideration.
In the context of DSC, and in particular, Slepian-Wolf (SVdding, the performance
of the MA technique needs to be carefully evaluated, sineattoption of SW coding

imposes additional constraints on the transmission ratbat is, we need to consider

not only the rate regions of the MA schemes but also the S\Whepdite region [62].

The source-channel separation theorem has been shown @ithdor the trans-
mission of correlated sources over a Gaussian multiplesaccieannel under certain
conditions [143][144], e.g., side information is availalait the decoder. However, this
theorem does not hold for general multiple access channéisoarrelated sources.
The optimization problem of multiple access channels wathiedated sources has been
extensively studied from the joint source-channel codiegpective since the pioneer
work in [145]. Over the past decade, substantial reseafoht®have been made in the
information theoretical study of multiple access chaniaét regions with correlated
sources and joint source-channel coding [146][147]. Altiojoint source-channel
coding has been proven to be capacity achieving, a jointgeciannel coding scheme
is still not immediately available for real world implematibns. On the other hand,
cross-layer design has proven to possess practical inmoerta resource allocation

problems in WSNs due to its merits, such as simplicity antbbdéy [148][149].

Maximizing the sample rate with an average power constiaimitsignificant prac-
tical importance. Moreover, in WSNs the circuit power cangtion of the sensing
devices must be taken into account as the transmit poweuvalysery low and com-
parable to the circuit power consumption. Thus the maxitionaof the sample rate
results from an understanding of the requirements impogeddractical sensing sys-

tem.

In [150], we provided some preliminary results on maximigithe sample rate for
SW coding of two correlated source nodes over Gaussian pfeiticcess channels.
We showed that the optimal MA scheme maximizing the sampisathe one that

provides the highest sum rate within a certain region ddtexdisolely by the source
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entropies. Moreover, we proved that either CDMA or TDMA may the optimal
MA scheme under certain conditions governed by the sourtrepgas, average power
and circuit power consumption constraints, noise powed, tesmsmission distances.
Although the work in [150] laid the foundation for our subseqt research, it provides
neither a detailed criterion to test the optimality of CDMAdaTDMA nor a concrete

algorithm to generate the jointly optimal rate allocation €DMA and TDMA.

In this work, we study the problem of joint optimization ofetlsW coding rates
and the MA transmission rates to maximize the sample ratéseasensing devices,
when circuit power consumption and an average power conséig considered. First,
we provide a criterion to determine the optimality of CDOMADKA and TDMA, and
also find the optimal transmission rate allocation for the Bbheme with an arbitrary
number of sources. We will show that FDMA cannot be the opti& scheme and
neither CDMA nor TDMA can guarantee optimality. Based ondpgmal transmission
rates of the MA scheme, we also find the corresponding op@8Watoding rates at the
sources. In our work, we adopt the cross-layer optimizatiethodology. That is, the
channel coding and source coding are implemented sepanatele optimized jointly.
Our proposed algorithm is easy to implement and providemthiy optimal allocation

of MA transmission rates and SW coding rates.

8.2 Problem Formulation

Consider a group ofV source nodes that gather information about the environment
of interest and send their information to the destinatioodé 0) through a multiple
access channel (Fig. 8.2). We denote the common sample fréte modes byS
(samples/second). The observed samples at Hatbnoted byX;, are discrete-valued
random variables. At the nodes, SW coding is used, and tmesmonding source code
rate at node is represented by; (bits/sample). After source coding, the nodes apply

channel coding to the resulting bit streams and send thedcoitie to the destination.



186

|
. |
X| S I Channel |
Encoder 4 Encoder |
Lncoder
S R, n= SRI: |
|
Node 1 : [
| |
| |
iz |
SW | Gaussian . SW ,
X2 Brcod | { Channel Multiple Channel | | Joint (XI,XZ,...,XN)
e | 1Encoder = Access Decoder [T - ,
S R 7, =SR : St | Decoder
2 2 2 Channel |
Node 2 | | Node 0
. L. |
L] L] I
° | °
| |
| |
SW |
‘X\ | | Channel |
Encoder ™ )
‘ncoder
S R, Iy =S8Ry | :
L e e e e
Node N

Information delivery

Figure 8.2: An illustration of a WSN with SW coding and a Gaassnultiple access

channel.

The transmission rate of the link between nednd the destination is denoted by

(bits/second).

Our goal is to maximize the sample rate, We formulate this sample rate maxi-
mization problem with the following considerations. Firsbdei has an average power
of P;, a circuit power consumption @f.;, and a transmission distanégfrom the des-
tination. These constraints are typical of energy cons#idishort-range WSNs where
the circuit power consumption is not negligible. Second,dtgnal is transmitted over
an additive white Gaussian noise (AWGN) multiple accessiobh The signal band-

width and the noise power are denotedzand Py, respectively.

To maximize the sample rate, we must jointly consider the ragjions of the mul-
tiple access channel and the SW coding. The transmissies oAthe communication
links are bounded by the achievable rate region of the meltipcess channel, which

can be expressed as follows
r(G) <C(G), VG C{1,2,..,N},G#10), (8.1)

wherer(G) = Y r; andC(G) represents the maximum achievable sum rate of the
1eG
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communication links inz. In other words,C(G) for all G define the boundary of
the multiple access channel capacity region. For exampeni = 2, the above
region is described by, < C({1}),r2 < C({2}), andr; + ro < C({1,2}), where

C({1}),C({2}),andC({1,2}) depend on the particular MA scheme.

According to the Slepian-Wolf theorem [62][63], the aclable rate region of SW
coding is
R(G) = H(X(G)[X(G)), VG € {1,2,...N},G # 0, (8.2)

where? (-) represents the entropy functioR(G) = >_ R;, andX (G) = {X;|j € G}.
i€G
For instance, wheV = 2, the SW coding rate region is describedi®y> H (X |Xs), Ry >

H(X2|X1), andR1 + Ry > H(Xl,Xg).

For each source node, there is a flow constraint, i.e., the spd output informa-
tion rates should be equal. Together with the equal samptecanstraint, this flow
constraint can be expressedras- SR;. Thus, considering the SW coding rate region,
we have

r(G) > SH(X(G)|X(GY)),VG C{1,2,..,N},G # 0. (8.3)

Therefore, the sample rate maximization problem underdhstcaints imposed by the

achievable multiple access channel and SW coding ratenggso

(P8.1) min —5
st. Cy:r(G) <C(G), VG C{1,2,..,.N},G#0 (8.4)
Cy:1(G) > SH(X(G)|X(G°)), VG C{1,2,...N},G #0.

The optimization parameters are the transmission ngtesom which we can deter-
mine the optimal SW coding ratég = r*/S*. Problem(P8.1) is in fact a rate alloca-
tion problem which provides the jointly optima} and R} that support the maximum
sample rate5* at the nodes. Note th&(G) in (P8.1) depends on the particular MA
scheme we employ. Probleff?8.1) enables us to answer the following questions: For
a given set of candidate MA schemes, i.e., CDMA, FDMA, and T&Mhich one can

produce the maximum sample rate? (We refer to this as themapA scheme.) How
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is the optimal MA scheme related to the system design pasas®iWVhat are the cor-
responding optimal transmission and SW coding rates? Tbtéée answering these
questions, we first provide an equivalent optimization feobto (P8.1) in Section
8.3.

8.3 Performance Evaluation for MA Schemes with SW

coding

In the following, we show thatP8.1) is equivalent to maximizing the sum of achiev-
able transmission rates within a polyhedral cone rate redeiermined by the source

entropies.

Proposition 1: Problem(P8.1) is equivalent to probleniP8.2) where

(P8.2)  min—Y 1, 7,
st. Cy:r(G) <C(G), YGC{1,2,..,N},G#0 (8.5)
Cg :Mr S 0,

where the column vectar= [r; r, ... ry]? and the matriM is uniquely defined by

the source entropies.

Proof:. To prove proposition 1, we first note that given any feassialmple rate5

in (P8.1), there exists a set of feasible transmission ratasich that
N
> ri=SH(X1, Xa, .., Xn). (8.6)
i=1

The proof of this statement follows the proof of Propositbbim [150] and is there-
fore omitted here for the sake of conciseness. This statemmgties that(P8.1) is

equivalent to maximizing the sum of transmission rates iwithe rate region of a
MA scheme, ands always reside in a region of the hyperplaneriti determined

by (8.6). This region is bounded by the half-spaces definatiéygonstraints*(G) >
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S*H(X(G)|X(G)),forall G C {1,2,...,N},G # . Thatis,r}s satisfy the following
relations
r(G) = STH(X(G)|X(G)), r(G°) = S"H(X(G)|X(G)),
T*(G>+T*(Gc) = S*H(Xl,Xg,...,XN).

(8.7)

Since H(X (G| X (G)) + H(X(G)) = H(Xy, Xs, ..., Xy), we have the following
inequalities
S*H(X(G)|X(GY)) <r(Q) < S"H(X(G)). (8.8)

Using the fact tha} ~ | 7 = S*H(X1, X, ..., Xn), equivalently we have

HX(G)|X(G)) _ m(G) o H(X(G))
H(Xl,---,XN) B év:fr’* B H(Xl,...,XN).

%
i=1

(8.9)

The above expressions describe multiple half-spacéimpassing through the ori-
gin. In other words, they define a polyhedral cone. For examphenN = 2, the

polyhedral cone is described by

H(Xl‘Xg) < T1 < H(Xl) H(XQ‘Xl) < D) < H(Xg)

H(Xl,Xg) r1+ 7o - H(Xl,Xg)’ H(Xl,Xg) T+ 79 - H(Xl,Xg).
(8.10)
The polyhedral cone in (8.9) can be represented in a more @cinhgrm
Mr <0, (8.11)

where the column vectar = [r; r, ... ry]T. Matrix M has2" — 2 rows andN
columns, and its entries are determined by the source easidpor example, folV =

2, and3, we find
H(Xo|X1) —H(Xy)

—H(Xs)  H(X1[Xo)

(8.12)
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Figure 8.3: A visualization of Proposition 1 fof = 2.
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H(X| X, X3)
—H(X2)

(8.13)

| H(X2| X0, X) H(X| X1, X5)

Fig. 8.3 illustrates Proposition 1 fa¥ = 2. The bottom left and upper right
regions in Fig. 8.3, respectively, are defined by the achievaultiple access channel
and SW coding rate regions. For a sample t&t® be feasible, the two rate regions
must intersect. For a given MA scheme,&aBicreases, the SW coding rate region will
shift to the upper right. Thus, for a sample raté be optimal, these two regions must
be tangent as shown in Fig. 8.3, arjdon the tangent point must satisfy + r; =
S*H(X;, Xs) according to (8.6). Moreover, Fig. 8.3 shows thati.e., the tangent
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point, falls in the shaded polyhedral cone (which is simplyiangular region in the
case ofN = 2) described byMr < 0.

Based on Proposition 1, for a given set of candidate MA sclseme can find the
optimal MA scheme by (i) solving the optimization problem (B8.2) and finding
the maximum of the sum of achievable transmission ratesmitie polyhedral cone
rate region characterized by (8.9), that each MA scheme mande, and (ii) letting
the optimal MA scheme be the MA that provides the largest marn of the sum of
transmission rates. Note that at the end of step (i) we canledb the maximum sample
rate S* that can be supported by each candidate MA schem§*via L’”N and

the corresponding optimal SW coding rates kia= g—

8.4 Optimal Rate Allocation for MA Schemes with SW

coding

Considering CDMA, FDMA, and TDMA as the MA scheme candidateshe follow-

ing we solve the optimization problem {#8.2) for each scheme.

8.4.0.1 Optimal rate allocation for CDMA

We need to solvéP8.2)whereC(G) is substituted witlCcpy. (G), where [63]

Coomn(G) = Blog, (1 > 13?—;1?) .

1eG
We realize tha{P8.2) becomes a linear optimization problem, which can be easily
solved. We observe that there exists at least onérsetenoted byG*, for which
the optimal transmission rates satisfy(G*) = Ceoun(G*). This is becaus¢P8.2)
becomes equivalent to finding a supporting hyperplane ofitiear region defined by
constraints”; andC, in RY. The gradient of the supporting hyperplane is the vector

[1,1,...,1]. This supporting hyperplane is tangent with the multipleess channel rate
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region defined by, since the polyhedral cone defined 6Y is unbounded in the

direction determined by the vectfr, 1, ..., 1]. In the following we show

* = arg min Cooun (G)
0" = | o | (819

For any set of transmission rates, the achievable sample rate is upper bounded

by

r(G) : r(G)

. .. AT r(G)
We can always increase the set of transmission rates withitiienal value of—H( S OS]

within the boundary defined b§..,.(G). One can repeat this process until no further

(G)
H(X(G)|X(G))

with the minimum value o "@ ___ reaches the boundary defined @yy.(G).
(X(@)NX(G))

The resulting maximum sample rate is

CCDMA(G*)
H(X(GH)[X(G*))

increase irmgn { } is possible, in which case the set of transmission rates

S* = ,3G* C{1,2,..,N},G* £ 0. (8.16)

Consider two given sets, G’ C {1,2, ..., N}, such that

CCDMA (G) CCDMA (G/)

HX Q)X (G~ HX(CX(G) (8.17)
If we assume>* = G, we have
MG > SHX(E)|X (@),
— H(X(C) X (G)) @) (8.18)

> CCDMA(G/)7
which violates constraint,. Therefore, we reacf* in (8.14)]
We conclude that’s are any feasible points of the following linear region

(8.19)

* * _ * a— 1 G (G)
r(G") = Coomn(G), Where G —argm(;n{%}-



193

8.4.0.2 Optimal rate allocation for TDMA

We need to solveéP8.2) whereC(G) is substituted bpy, (G). By definitionCroy (G)

is the solution of the following optimization problem

i jea % PN
(8.20)
1€G

(P8.3)  Crown(G) = max 3 B, log, (1+ Dzl

We recognize that to solV@8.2) we first need to solvéP8.3).

Let ¢ denote the optimal; obtained from solvingP8.3). For any given set,
introducing Lagrange multipliers; for the inequality constraint > 0,V:i € G, and
a multiplier i* for the inequality constraind 6, < 1, we obtain the Karush-Kuhn-

i€G
Tucker (KKT) conditions [105]

07 >0,A\f >0,pu* >0

STOE<1, NOr =0
ied (8.21)
pr( 0 —=1) =0
1€G
R(G,05) — N +p* =0

whereR(G, 6;) = 3 Bb: log, <1 + %ﬁ) andR'(G, 0?) represents the first or-
i€G ‘

der derivative ofR (G, 6;) with respect t@;.

Clearlyg; > 0 implies\; = 0,Vi € G. Thus
R(G,0}) = —p*. (8.22)

Solving (8.22) ford}, we find
P
0 = —— , (8.23)
ea;dP Py [W(a;2=#/B)]"" + Py — d? Py

wherea; = (Ps;/(d?Py) — 1) /e, e is the base of natural logarithm anti(-) is the
Lambert function. Equation (8.23) shows that to calcultiteve need to first fing.*.

Considering the KKT conditiop*(>_._, 07 — 1) = 0, two cases are possible: either

1€G Vi
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1 = 0 and the resulting;s must satisfy> )~  §; < 1, or z* > 0 and the resulting
0*s must satisfﬁjfil 0 = 1. Thus, the main complexity in calculatir®j is to find

w* > 0 such that the resultingj's satisfyz 0¥ = 1. If such a solution does not exist,
theny* = 0. Unfortunately, this is not aé%cl;ytically tractable. Toifaate the numerical
search fop.* > 0, we derive the following lower and upper bounds for denoted by

w' andy’, respectively

-1
uw, = —Blog, |ve” <Plf§:71;1ax — 1) — %,
. (8.24)
i = —DBlog, |ve” (szfi%m — 1) — %.

-1
wherer = (ZiNzl P;/(Per — Pyd}) — 1) . AlS0, dmax anddm;n are the maximum and
the minimum ofd;, respectively. The detailed derivations of these boundgmen as

follows.

Suppose there exists > 0 such that the resultingf satisfy > 6 = 1. Therefore,
ieG
using (8.23) we have

1 = i

G eaid! Py [W(aizw*/B)]*1+pCT_d;LPN

<> B
ieG eaid] Py min{[W(aQ*“ /B 1}+PCT—d?PN (825)

- mz_in{ W(az2 w /B } 12§;P/ dz PN)

= > P;/(Per—d'Py)—12>min { [W(aiQ—u*/B)]—l} .
i€d i
Similarly, we have
> P (Per = dPy) = 1 < max { (a2 /)] 7} (8.26)

i€G

_ n _ * -1 . . .
Since[W(a;27#/8)] " = [W(MT“ /B)} is @ monotonic function of;,

there exists @ € [dmin, dmax] Wheredmin = min; d; anddmax = max; d;, such that

S PP — diPy) — 1 = {w(P ex/ (d"Pr) = 12‘“*”9)] T @2

€
i€G
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—1
Definer = (Z P;/(Per — Pyd}) — 1) , solving (8.27) foru* we find

i€Q
* v P -
u" = —Blog, [Ve (PNC;ZH — 1)

which is a monotonically decreasing functiondofUsing the fact thad i, < d < dmax

B
- — 8.28

we reach the lower and upper bounds presented in (8.24).e 8jnis a monotonic

function of i, 1* can be found numerically through a binary search betweendheds.

Oncey* andd; are found, Fron{P8.3) we have

/07 — Puy
Croma (G) = Z Bo; log, (1 + ;7) . (8.29)
i€G di Py

Having solved P8.3), now we return to solvingP8.2) whenC(G) is substituted
with Croua (G) in (8.29). Unfortunately, an analytical solution to thigiamization prob-
lem in general remains elusive. For the special case whergdhsmission rates ob-
tained from (8.29) lie within the polyhedral cone defined\by < 0, these rates are in
fact the optimal transmission rates However, when the transmission rates obtained
from (8.29) do not lie within the polyhedral cone, we resartekhaustive search to

solve(P8.2) .

8.4.0.3 Optimal rate allocation for FDMA

We need to solvéP8.2) whereC(G) is substituted withCepus (G). By definition,

Croma (G) Is the solution of the following optimization problem

(P8.4) Crow(G) = max 3 Bb; log, (1 + %)
P iEG Z (8.30)
1€G

We recognize that to solv@8.2) we first need to solvéP8.4). To solve(P8.4),
we take a similar approach as we did for solv{i®8.3). By invoking the KKT condi-
tions, we find the optimal; as follows

P — Per

07 = — : (8.31)
ea;d Py [W(a;2=#/B)]"" — d"Py
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wherea; = —1/e, such that)_ 67 < 1 wheny* = 0or ) 0 = 1 for someu* > 0.
ieG ieG
Similar to the TDMA case, once* andd; are found, fromP8.4) we have

" b — P
Cmmqﬁ::E:B@hg2<1+9nﬁP§>. (8.32)
ge v

For the special case where the transmission rates obtaioed(8.32) lie within the
polyhedral cone defined bir < 0, these rates are in fact the optimal transmission
ratesr;. However, when the transmission rates obtained from (&82)ot lie within
the polyhedral cone, we resort to exhaustive search to $Bi18e2) .

One important result is that, considering the circuit pos@nsumption, the rate

region of CDMA contains that of FDMA. This can be easily shaaafollows

Ceomn(G) = Blog <1+ %)

iG
= Blog (Z 0; + > 92-5;;;11:%:) = Blog (Z 0; (1 + %))
i€G ieG " i€G !
> 3 6:Blog (1+ 535 ) VG € {1,2., N}, G £ 0.

1eG

(8.33)
where the inequality in (8.33) is based on Jensen’s inegU@B]. This inequality holds
for any set ofg; whered; > 0 and>_6; < 1, including the set which maximizes the
right side of the inequality. Hen@&,u. (G) > Ceoua (G), implying that the rate region
of CDMA contains that of FDMA, i.e., comparing CDMA and FDMAhe former
always provides a larger sum of the achievable transmisaies. Combined this with
Proposition 1, we find that CDMA can always support a highensda rate than FDMA.

Thus, in the subsequent analysis we only consider CDMA anblAD

8.5 Optimal MA and Rate Allocation: Two-Source Node

Case

In this section, we show that, unlike the general case, o 2 the optimality of
TDMA and CDMA can be directly evaluated without the need tlvya¢P8.2) for both
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(r‘(“)?rzl“))

Figure 8.4: Region selection of TDMA and CDMA fof = 2.

TDMA and CDMA.

Fig. 8.4 depicts the rate regions of COMA and TDMA with the swleration of
circuit power consumption. We observe that the CDMA and TDM#e region bound-
aries intersect in at most four poihtsienoted by[rf%ré”] fori = 1,2,3,4. Con-
sequently, the non-negative quadrant is divided into figgores denoted byA,;, for
i = 1,2,3,4,5. Each region can be described.ds = {(r1,72)|pi-1 < :—j < pit
wherep, = 0, p; = :%—; fori = 1,2,3,4, andps = co. The expressions for.”, r{’
are derived in Apperlldix A. Itis clear that TDMA is optimal i, A3 and A5, and
CDMA is optimal in A, and A,.

As suggested by Proposition 1, the MA scheme that providekitthest sum rate in

H(X1)
H(X2|X1)

H(X1|X2)
H(X2)

the polyhedral con& = {(h,?“z)

<E< } is optimal. Therefore,
if B overlaps with4;, TDMA is optimal and the optimal point denoted by, 73] is in
Ajs. If B does not overlap wittds, but it overlaps with4, (or A,), CDMA is optimal

and the optimal point is imd, (or A,). And if B does not overlap wittd; and A,

LAlthough it is possible that the two boundaries intersedeimer points, in the following we focus
on the more general case where there are four intersectiatsp®ther cases, can be treated similarly,

and with less complexity.
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Figure 8.5: Rate allocation of CDMA fa¥ = 2.

(or A,), TDMA is optimal and the optimal point is il (or As). These observations

are summarized in Table 8.1. In the following, for each casefindr},rs. Having

these, one can calculate the maximized sampleSate (r1 + r3)/H (X1, X5) and the
optimal SW coding rate®; = r{/S* andRj = r}/S*.

Table 8.1: The optimal MA scheme fof = 2

Optimal MA | [rf,r3] € The polyhedral cone The rate ratio
TDMA A, BcC A s < 1
CDMA Ay | BNA;=0,BNAy #0 P < st < P2
TDMA As BN A; £ 0 P2 < srresy and ZEEE < o
CDMA Ay | BNA;=0.BNA #0 ps < RS < py
TDMA As BC As p1 < %
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8.5.1 CDMA

Let us denote the corners of the CDMA rate regiodinand. A, by

[ P —P Py — P\
Cy = Blog2(1 Lo ),Blog2(1+ 2 °T) , (8.34)

_|_ - @@ -
and
[ Pl_PCT PZ_PCT ]
= |BlI 1+———],BlI 1 8.35
C4 I 0g2 ( + d?PN ) ) 0g2 ( + ngN + Pl . PCT)_ ) ( )

respectively. Similarly, denote the corners of the SW raggan byS; = [SH(X1|X3), SH(X5)]
andS, = [SH(X;), SH(Xs|X7)] (see Fig. 8.5). Furthermore, denote the slopes of

lines passing though the origin and these corners by

Py —Pct P1—Pct
) B log, (1+W> e = log, (1+d71L7PN>
G2 — Py—P, v PG — Py—P, )
2—Pet 2—Pct
10g2(1+ ngN> 10g2(1+m> (836)
— H(Xi|X>) __H(Xy)
PS1 = THXy) 1 PS: T HXa X))

respectively. Now, suppose the optimal pdirt r;] € A,. Itis clear thatC, is the
unconstrained optimal point (without the constraint ingubdy the polyhedral cone
B). Thus, ifC, € B, or ps, < pc, < ps,,» then any point on the line piece connecting
C, and Sy, including the cornef,, is optimal (case 1 in Fig. 8.5). Otherwise,(if
falls bellow B, or pc, < ps,, then any point on the line piece connectifigandS,,
including the corners;, is optimal (case 2 in Fig. 8.5). Finally, @, falls aboveB,

or ps, < pe,, then the optimal point i, (case 3 in Fig. 8.5). To summarize, when
77, 73] € Az, we have

( min {Blog2 (1 + %) ,

H(X4[X P —P, Py—P,
BHEXi‘,Xz; log, (1+ C}?PIST + ;QPJST)} P, < Ps,

’I“l —
Blog, (1 * ﬁ) ps, < pe; < ps,
H(X Py—P,
| By o, (14 557 ps, < e,
([« H(X
rl H()§1|§22) pCQ < pSl

r; = { Blog, (1 + }Eg,ff) ps, < pe, < Ps, (8.37)

Py-P
1+ﬁ) Psy < pe
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Figure 8.6: Rate allocation of TDMA fav = 2.

Similarly, when[r}, r3] € A4, we have

;

BlOgZ (1 + dn}fCT) Pcy < P

ry = Blog, (1 + Pjnlfﬂ> ps, < pe, < Ps, (8.38)

x H(X
L 27{()§2|;21) Psy < pPey

BH( 2 log2 (1 + %n}f;T) pe, < Ps,
Blog, (1 T d"PN-i-JZCTPcT) Ps; < Pey < Ps,
min {Blog2 (1 + anfCT) )

\ B?—L(Xz\Xl 10g2 (1+ J}LPPCT + Ign}fm)} ps, < pe,

8.5.2 TDMA

LetC = [r], r}] denote the unconstrained optimal point (without the caistimposed
by the polyhedral conB)(Fig. 8.6). This point is the solution ¢P8.3) for the special
case ofN = 2, and the solution for the optim4] is given in (8.23). It is clear that if
C € B,orps, < % < ps,» then this point is optimal angt;, ] = [r], 7}] (case 1 in

Fig. 8.6). On the other hand, f falls below 5, or% < ps,, the optimal point must

2
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satisfy% = ps, (case 2 in Fig. 8.6). We note that this condition is alwayssBatl in
T *
As. Similarly, if C falls above, or 2 > ps,, the optimal point must satisf% = ps,
L)
(case 3 in Fig. 8.6). This condition is always satisfieddin Thus, in these cases, the

optimal point is the solution of

0,1 5 g, —
max 6, log, 1+W + U2 log, 1+W

B p P _p
S.t. 01,0, >0, 01 +0, < 1,601 log, ( 1+ ey | = pha log, (1 + G?zgp:)

(8.39)

wherep is equal to eithepgs, or ps, based on the conditions given above.

8.5.3 Overall Rate Allocation Algorithm

Based on the results in Sections 8.5.1 and 8.5.2, we can &nojptiimal rate allocation

using the procedure described in the flow chart in Fig 8.7.

8.6 Numerical Results

In this section, we provide numerical results to demonstita benefits of the proposed
jointly optimal rate allocation algorithm. In our simulatis, we assume the circuit
power consumption of all source nodes are identically etu&l, = 0.1 W, the signal
bandwidth ist00 KHz, the AWGN has a power spectral density-of74 dBm/Hz, and

the path loss exponentis= 4.

Figs. 8.8 and 8.9 quantify the increase in the sample rateaine joint optimiza-
tion of transmission and SW coding rates, when the optimal MADMA. Similar
numerical gains are observed for the case where the optimalsMCDMA and are
omitted for the sake of conciseness. We compare the maxinaompls rateS* asd;
varies for five different approaches: (i) Jointly optimal S¢ding and transmission
rates. We denote this approach by ;. (ii) Optimal transmission rates with equal

SW coding rates at each source node. We refer to this appesatqualR;, 6;”. (iii)
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Figure 8.7: The flowchart of the optimal rate allocation fddMA and TDMA with

N =2,

*
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Figure 8.8:5* versusd; for TDMA and N = 3.
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Optimal SW coding rates with equal TDMA time slots. We refetthis approach as
“R?, Equald;”. (iv) Equal TDMA time slots with a simple SW coding rate atkttion
strategy which assigns the highest SW coding rate to thesauth the highest trans-
mission rate. We refer to this approach as “EqiyaCornerR; (Good)”, and (v) Equal
TDMA time slots with a simple SW coding rate allocation stigyt which assigns the
lowest SW coding rate to the source with the highest trarsongate. We refer to this

approach as “Equdl;, CornerR; (Bad)".

In Fig. 8.8, we letV. = 3 and fixd; = 50 m andds = 80m, while we increase
d; from 1 m to 100 m. The nodes have equal average powét ef 0.11 W. For the
sake of simplicity, we assume symmetric entropy whgieX;) = 1,Vi € {1,2,3},
H(X|X;) = 05,Vi,j € {1,2,3},i # j, andH(X;|X;, X)) = 0.25,Vi, 5,k €
{1,2,3},i # j # k.

Fig. 8.8 shows that theR;, 6" approach always performs the best. The perfor-
mance of the “Equak;, 6" and “R}, Equald,” approaches is closely related to the
experiment setup (e.g. average power, transmission distasnd source entropies).
If the configuration is symmetric, i.e., nodes have the saveeage powers and trans-
mission distances and the source entropies are symmétipartial optimizations in
“Equal R;, 6;” and “R;, Equald,” approaches are equivalent to thg;" 6" approach.
FurthermoreS* in “Equal R;, 6;” and “R}, Equald,” approaches is similar to that of
the “R}, 6" approach wheni,, ds, d; are also similar, i.,e50 m < d; < 70 m. On

the other hand, the performance loss becomes more signifidean the differences

between the transmission distances increase.

The “Equalé;, CornerR; (Good)” approach is an intuitively sensible SW coding
rate allocation strategy with the purpose of coupling there® coding rates with the
transmission rates. However, this strategy suffers framstiolding and over compen-
sation. For example, when the difference between the trasgn rates with equal;
is small, an equal SW coding rate allocation is more likelipéca better choice than a

corner SW coding rate allocation. This also explains thgdarerformance loss when
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Figure 8.9:5* versus) for TDMA and N = 2.

the transmission distances of the three source nodes atarsim.,50 m < d; < 70
m. The “EquaV;, CornerR; (Bad)” approach performs the worst, indicating how much

loss can an unwise rate allocation cause.

The benefits of theR}, 67" approach are more pronounced in non-symmetric sce-
narios. In Fig. 8.9, weletv = 2, P, = 1.11 — ér; W andd; = 1 + 10067; m,
wherer;s are independent and uniformly distributed between 0 aadd the constant

o € {0.11,0.31,0.51,0.71,0.91}. The entropies of both sources are randomly gen-
erated with a fixed joint entropy of{(X;, X») = 1.5. Each point in Fig. 8.9 is an

averaged value of a 1000 trials.

Fig. 8.9 demonstrates that th&!, 6" approach provides the largeSt among
the five approaches. For instance, the valu&“oprovided by the R}, 6" approach
is up to 2.4 times that of the “Equal;, 6;” and “R}, Equalé,” approaches; and is up
to 1.5 times that of the “Equdl, CornerR; (Good)” and “Equab;, CornerR; (Bad)”
approaches.

It is interesting to observe that the “Equa), 6} approach performs worse than
the “Equald;, CornerR; (Good)” and “Equab;, CornerR; (Bad)” approaches. This is

because, in a non-symmetric scenario, the linear constraposed byR, = R, does
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Figure 8.10:5* of the “R}, 6" approach for CDMA and TDMA in terms oP; and P

1!

for N =3, P; = 110 mW.

not necessarily intersect with the SW coding rate regiorherbbundary specified by
R+ Ry = H(X1, X5). As aresult, we may havi; + R; > H (X1, X,), which greatly
exacerbates the performance of SW coding. Therefore, thed;, 0}” approach is

not favorable in practice.

Fig. 8.10 compares the value 6f provided by the R, 6" approach for CDMA
and TDMA. We letN = 3, d; = dy = d3 = 50 m, P; = 110 mW, while we increasé’,
and P, from 110 mW to 1.5 W. We assume symmetric entropy with the same param-
eters as those used in Fig. 8.8. The valu&ofs calculated following the procedure
described in Section 8.4. As the average powers change,Ahatd regions change as
well. For a given rate region defined by (8.11) through soerdeopies, either CDMA
or TDMA can provide the highest sum rate within this rate oegs the average powers
change. This is evident in Fig. 8.10, which shows that SWmpavith TDMA pro-
vides largelS* for some average power values, while SW coding with CDMA ptes

largerS* for other values.
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8.7 Summary

In this chapter, we first evaluated the performance of COMBMA and FDMA in a
Gaussian multiple access channel for a sensing system watge power constraint
and the consideration of circuit power consumption, in eahthe achievable sample
rate when SW source coding is utilized in the sensing dewte.concluded that the
performance of either CDMA or TDMA can be the best among thredltandidate
MA schemes depending on the entropies of the random sowvbds,FDMA is never
optimal. Further, we developed an algorithm to obtain thetly optimal allocation
of SW coding rates and CDMA or TDMA transmission rates. Nuoairesults are

provided to demonstrate the performance of the proposedliatcation algorithm.
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O Conclusions and Future Directions

This research dissertation provides an in-depth invetstigaf cross-layer design to
improve the energy efficiency of short range wireless nétaoExtending from the
traditional physical layer design, | incorporate the egexfjicient design of the data
link layer, multiple access layer, network layer, and aggdlon layer. | propose nu-
merous innovative designs and algorithms that greatly avgthe energy efficiency of

short-range wireless networks.

9.1 Contributions

9.1.1 PHY-layer and Data Link Layer Optimization

First, | start my analysis with an emphasis on the impact gsplal layer parameter
selection on the energy efficiency of short-range wirelessvarks. | show that the
optimal transmit power, modulation scheme and relay degtame crucial in achieving
energy efficiency for a short-range wireless network. Thinogd transmit power and
modulation scheme are important factors for the physigadrlaesign of short-range
wireless networks; while the optimal hop distance has gretdntial for use in route
selection for the network layer design. The analysis is aotetl in both AWGN chan-

nels and block Rayleigh fading channels.
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In the second part of the dissertation, | propose a cross-lagtimization of the
PHY and Link layers to maximize the energy efficiency of a sihange wireless net-
work. | investigate the energy consumption minimizatioolppem for a single link for
short-range wireless networks over an AWGN channel. Spadlifj | propose a generic
energy consumption per information bit model considerimguit power, information
packetization, communication overhead and duty cycle.e8am this model, | de-
veloped an unconstrained, a fixed average power constraned fixed average rate

constrained case.

In the unconstrained case, | perform an optimization ovén target bit error prob-
ability and packet length to minimize the energy consunmpier information bit, with
the consideration of retransmissions, a detailed packettsre and MQAM modu-
lation schemes. The target bit error probability optimimatis a form of the trans-
mit power optimization as they are closely related, and teket length optimization
is to find the balance between the overhead and retransmigsdbability. For both
coded and uncoded MQAM modulations, | find the closed formsHe optimum val-
ues of packet length and target bit error probability foreegitransmission distance
by removing the integer constraint on the packet length. mae results are: when
transmission distance is short, a system adopting largeepkength, small target bit er-
ror probability, and high bandwidth-efficient modulatia@hsemesé€.g., uncoded high-
order QAM) is more energy efficient. On the other hand, whandamission distance
is large, a system using small packet length, large targetrtwr probability, and high

energy efficient modulation schemey(, coded BPSK) is energy efficient.

Correspondingly, energy minimizations are conductedguitia fixed average power
and fixed average rate constrained models with the intrazluof an additional param-
eter: duty cycle. It is shown that the minimization of eneagynsumption per infor-
mation bit is equivalent to the maximization of informatiate for the fixed average

power transmission.

In addition, | perform an optimization over packet lengthtydcycle, and constella-
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tion size to minimize the energy consumption in the fixed agerpower transmission
case. | perform an optimization over packet length, dutyesyamonstellation size, and
transmit power to minimize energy consumption in the fixegrage rate transmission
case. | conclude that, fixed average rate transmissions atydcglcling are energy
efficient at short transmission distances, while fixed aye@ower transmissions and
duty cycling are energy efficient at large transmissionagises. The optimization in
this part of the dissertation is meaningful in the senseithpbvides a guideline to se-
lect physical layer parameters (e.g., the transmit powet)data link layer parameters
(e.g., the packet length) given a communication envirortpserch as the transmission

distance.

In the third part of the thesis, | investigate the use of ctager optimization in
IR-UWB networks. | provide the power consumption modelsyfi¢al transmitter
and receiver structures of IR-UWB systems. Moreover | abgrsa frequency selective
time-invariant channel. The optimization parameters weeadinimize the energy con-
sumption per information bit are: packet overhead, retrassion, repetition coding

and number of RAKE fingers.

| conclude that low-complexity, low-performance transsios schemes are energy
efficient at high SNRs, while high-complexity, high-perftance schemes are energy
efficient at low SNRs. Moreover, | provide the detailed optimtransmission schemes,
including packet length, modulations, detection, repetitcoding, combining, and
number of RAKE fingers, for given transmission distancesaftypical IR-UWB link.
This information is important for it can serve as a lookupeabr the transceiver to
choose the optimum transmission schemes. The optimizaédormed in this part of

the dissertation is also on the physical and data link layers
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9.1.2 PHY-layer and Network Layer Optimization

In the fourth part of the thesis, | begin to consider two of iimport network layer
factors: network topology and multi-hop. In particular,Hoose clustering topology
as the network topology of interest due to its high potentidmproving the energy

efficiency of wireless networks.

In this part of the dissertation, | jointly optimize threepasts of a SRWN: the
transmit power of the nodes, the cluster head selection awddchoose a route. The
contributions of this part are three-fold: first, | proposeiteration-free algorithm for
maximizing the amount of data gathered by a cluster; momedwieveloped a low
complexity cluster head selection (CHS) algorithm to deiee the optimal cluster
head; furthermore, | present a low complexity algorithmeoide whether or not multi-
hop (only 2-hop route is considered) should be used withiaster to further improve
the performance of a cluster. | show that the performance lggiusing the optimal
transmit power, the optimal cluster head selection, anghtissible use of multi-hop is
significant. The proposed algorithms feature low compyeaiitd high performance and
they can be easily implemented in the nodes. Thus, the patehthese algorithms in
field applications is considerable. The optimization perfed in this part of the thesis

is on the physical and network layer.

9.1.3 PHY-layer and Application Layer Optimization

In the fifth part of the dissertation, by building upon praygsanalysis, | further include

the concept of distributed source coding.

| propose low-complexity solutions to maximize the amouihsamples gathered
during a cluster lifetime with Slepian-Wolf (SW) coding fan arbitrary number of
sources, with energy constraints and SW coding constraliis optimization param-
eters are the transmit time durations (which determinerdnestit power) and source

coding rates of the source nodes.
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| derive closed form solutions for the joint optimal transmime durations and
SW coding rates when there is no active energy constraitieafutsion center. | also
derive closed form solutions for the near optimal transimietdurations and source
coding rates when there is an energy constraint at the fasioter by resorting to linear
approximation. A simple criteria for determining whethle tfusion center energy
constraint is active or not is also provided. The optimmatgain in the number of

collected samples is shown to be significant.

The main contributions are the derivation of the closed feahntions that avoid the
exceedingly complex iterations in traditional optimipatitechniques. The proposed
algorithms are of significance since a low complexity highfgenance algorithm is
critical for wireless nodes which have very limited energygl @omputational ability.
The optimization performed in this part of the thesis is om physical layer (transmit

power optimization) and application layer (source codithgcation).

9.1.4 Multi-access Layer and Application Layer Optimization

Finally, | investigate the performance of SW coding over tiple¢ access channels un-
der the considerations of circuit power consumption andaae power constraint.
Different from our previous study where | assume an infinilenber of information
samples are available at the transmitters, in this studinfoemation data is delivered
over the multiple access channel as the samples are gatineredhe environment.
This research is of significant practical importance for Brodsensing systems built
upon short range wireless networks, such as wireless saatsorks, where onboard
storage space is rather limited, circuit power consumptenmot be neglected and a
stringent average power constraint is often imposed tolaggthe functional lifetime

of the sensing device.

Through our study, | find that, among CDMA, TDMA, and FDMA, SWding
performs best either with CDMA or TDMA based on the sourceapay, and always
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performs worst with FDMA. This discovery is, to the best of knowledge, unprece-
dented. Also in this work, | propose a joint optimal rate efibon of SW coding rates
and CDMA/TDMA rates to maximize the sample rate achievabltha sensing de-
vice. The proposed rate allocation features low complexity is partially analytically

solvable.

9.2 Future Directions

While this dissertation has provided many techniques aedsdo improve the energy

efficiency of short-range wireless networks, much resestittremains.

9.2.1 Extension of DSC Optimal Rate Allocation

One interesting direction is to consider the optimal ratecaltion of DSC in multi-
hop networks with stringent power and energy constraintgs problem is a natural
extension of the work in this dissertation, and it possesapsrtant practical signifi-
cance. In SRWNSs, the data sources may not be able to sendahmation to the sink
through direct communication due to the limited transmiwvpoof the nodes. In this
case, multi-hop communication is necessary. Moreovertithap communication in-
troduces many challenging yet interesting constrainthemdte allocation problem of
DSC, e.g., the choice of the next hop and the energy storaipe afitermediate nodes.

This is a promising research topic that deserves substaggiarch efforts.

9.2.2 Implementation of DSC Optimal Rate Allocation

In this dissertation, optimal rate allocation procedure®$C are proposed from a the-
oretical perspective. It is interesting to further consithee implementation issue of

the optimal rate allocation of DSC in a practical wirelessvoek. When performing
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the optimization, instead of using information theordtlmaundaries, we need to con-
sider the actual information rates that are achievableautjivgractical modulation and
coding schemes, the realistic source coding rate contrianposed by implementable
DSC techniques, and more complicated yet realistic timgingrfading channel mod-
els. Although it is highly unlikely that an elegant analglioptimal solution would
exist in this case, it is certainly intriguing to study thespible rules of the optimal rate

allocation of DSC for a practical wireless network.
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A Intersection Points of CDMA and
TDMA Rate Regions Boundaries

A.1 Finding the points [r\", »{!] and [r{", r{"]

The point [r%l),rél)] is the intersection of the TDMA rate region boundary with the

following line segment

P PCT PI_PCT
= Bl — <r <BI . (A1l
) 0g2< + 45 Py )7 0<nr < 0g2< &Py + P — B ) (A.1)

Since the TDMA rate region boundary is specified by (8.20¥jrtd this intersection

point we need to solve

—Per 92 —Per
max 6, log, + an +65log, | 1+ TPy
s.t. 6; >0, 92>O 0, +6, <1
—Fer P
Per
0<6,; log, (1 + Gcllnp ) < log, (1 + Wf_—%)

It is easy to show that the intersection takes place in themegheret; + 0, = 1,

(A.2)

since (A.2) is a line segment parallel to (A.1) in the regidmened; + 6, < 1. Now, let

0 < 6} < 1 be a solution of

&_PC Py — Py
05 log, <1+ B Py >:10g2 <1+ ngN) (A.3)
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Thend, = 1 — 6} satisfies (A.1). Thus if

Py _ P
i cr P - P
0<(1—601 14 22%) ) <00 (1 1~ Tor A4
< =t)log | 1+ =5 — | <l 1T G5 55—, ) A4
then
1 (1) t 1 P(;*) — Fer P, — P,
- CT

(A.5)
Otherwise, this point does not exist. The pqhﬁf), ré‘”] can be calculated in a similar

mannetr.

A.2 Finding the points [r\*, ] and [r{¥), r{¥]

We note that these points are the intersection points of thedos of the TDMA and
CDMA rate regions, limited to

Pl_PCT ) ( Pl_PCT>
Blo 1+ <r; <Blo 1+ , A.6
gz < d?PN + P2 . PCT >71 = g2 d;fPN ( )

PQ - PCT P2 - PCT
Bl 1 <ry< Bl 1+4—==. A7
ng ( + dgLPN + Pl _ PCT> ST > OgQ ( + dgLPN ) ( )
Thus[r?, r?] and[r®), +{¥)] are the solutions to the following equation set

ri+r = Blog, (14 &-fer 4 Zftr) (A.8)

P
1—

— Bllog, (14 3P — B(1—0)log, 14 =2t A9
= 0%\ Lt -gp ) 2= (1—0)logy {1+ Py ) (A.9)

Equation (A.6) implies that the intersection points are los boundary of the CDMA
rate region, and (A.7), (A.8), and (A.9) imply that the irstection points are on the
boundary of the TDMA rate region wheée + 0, < 1 is active. Alternatively,

— P. P P 0 P. (1-0)
Pl PCT 2 cT 71 - chT -9 26 - 1DCT
1 ‘1 I 1 n 1 o N . A,lo
711 N dSPN ( dl] N ngN ( )
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Equation (A.10) has only one degree of freedom and is easyhte sumerically. If
this equation has two distinct solutions that satisfy (AtAgn[r\”, '] and[r{¥), r{¥]

are obtained. Otherwise, these points do not exist.
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