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Abstract

Short-range wireless networks, such as wireless sensor networks, have become an inte-

gral part of our modern lives and have been broadly applied inmany fields such as in-

dustry, military and research to facilitate the gathering and distribution of information.

Compared with traditional wireless networks, such as cellular networks, short-range

wireless networks have the following unique characteristics. (i)Dense deployment: the

network devices are often densely deployed to achieve better monitoring of the environ-

ment. (ii) Circuit power consumption: due to the short communication distances, the

network devices communicate with each other using low transmit power that is com-

parable to the devices’ circuit power consumption. Thus, circuit power consumption is

a major contributor to the energy drain of the network devices. (iii) Battery powered:

the network devices are usually battery powered and may be deployed in remote areas.

Thus, it is difficult or even impossible to replace the energysupplies of many of the

network devices in a short-range wireless network. Therefore, maximizing the energy

efficiency of short-range wireless networks is of paramountimportance.

In this dissertation, I explore the cross-layer design principle to improve the energy

efficiency of energy constrained short-range wireless networks, while fully considering

their unique characteristics as outlined above. In order tomaximize energy efficiency,

my research focuses on the cross-layer optimization of the physical layer, the data link

layer, the multiple access layer, the network layer, and theapplication layer. In this

dissertation, I (i) develop an energy efficient cross-layerdesign of the physical layer and

the data link layer in a typical narrowband system over an additive white Gaussian noise
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(AWGN) channel and a Rayleigh fading channel, as well as in a typical Impulse Radio

Ultra Wideband (IR-UWB) system over a frequency selective channel; (ii) optimize

the energy efficiency of a clustered wireless network by choosing the optimal transmit

power, selecting the optimal cluster head, and deciding whether or not to use multi-

hop routing within a cluster; and (iii) optimize the energy efficiency of a short-range

wireless network with distributed source coding (DSC) and adaptive transmission, as

well as with DSC over Gaussian multiple access channels.

Compared with existing work in the literature, I make uniquecontributions in this

dissertation in the following aspects. First, the unique characteristics of short-range

wireless networks, such as dense deployment and circuit power consumption, are con-

sidered in all of my cross-layer optimizations. Second, I focus on achieving a balance

between cost and performance during the development of the cross-layer optimization

schemes, due to the limited computational capacity of the network devices in short-

range wireless networks. Third, throughout this dissertation, I develop universal opti-

mal solutions that are highly parameterized and directly applicable in general scenarios.

My research results in a large improvement in the energy efficiency of devices for short-

range wireless networks.
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1 Introduction

Recently, densely deployed short-range wireless networks(SRWNs), in particular wire-

less sensor networks (WSNs), have attracted attention in the scientific community.

These types of wireless networks have been broadly applied in many environments,

providing support for applications ranging from security and surveillance to monitor-

ing and health care.

The popularity of densely deployed wireless networks has been propelled by their

unique features. First, the network devices of short-rangewireless networks, namely

nodes, are of very low cost. This makes it possible to densely deploy the network

devices to greatly improve the network robustness. Second,due to the self organization

feature that is often available in modern short-range wireless networks, the nodes can

be deployed in inhospitable environments for the collection of data of interest. For

instance, sensors in WSNs can be used to detect survivors in adisaster site where it is

too dangerous to send in a search team. There are many other benefits of the application

of SRWNs, such as the ability to provide full monitoring coverage of an area. While

the value of SRWNs has been fully realized, the research community is still addressing

the design challenges of SRWNs to facilitate the design and implementation of new

applications for SRWNs.

The network devices used in densely deployed SRWNs are usually small in size
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and close in distance. Compared with the devices used in traditional wireless networks,

the SRWN nodes are usually much more limited in power, computational ability, and

energy. This imposes great challenges on the design and optimization of short-range

wireless networks. Due to the nodes’ limited energy storageand the difficulties in

replacing batteries, the efficient expenditure of energy inthe nodes is of particular in-

terest.

One of the major design issues for a SRWN is the considerationof circuit power

consumption. Unlike with long range wireless networks where the circuit power con-

sumption is negligible compared with the transmit power, inSRWNs it is crucial to

consider the circuit power consumption in the design of the communication protocols.

Therefore, the balance between the transmit power and the circuit power must be care-

fully evaluated. The objective of my dissertation researchis to improve the energy

efficiency of short-range energy constrained wireless networks through cross-layer op-

timization techniques that consider these unique characteristics of SRWNs.

1.1 Wireless Sensor Networks

One particular type of SRWN is a wireless sensor network. A wireless sensor network

(WSN) consists of spatially distributed autonomous sensors that cooperatively monitor

physical or environmental conditions, such as temperature, sound, vibration, pressure,

motion or pollutants. In the past ten years, there has been increasing interest in wireless

sensor networks. This interest has been fueled, in part, by the availability of small, low

cost sensor nodes (motes), enabling the deployment of large-scale networks for a vari-

ety of sensing applications [1]. The following are just a fewexamples of applications

that can benefit from wireless sensor networks.

• Agricultural monitoring - evaluation of soil nutrients andmoisture.

• Home automation - temperature or movement detection.
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• Industrial monitoring - sensing faults in machinery or surveillance of property.

• Wildlife/environmental survey - cataloging animal movements and the status of

forested areas.

• Battlefield surveillance - rapidly deployable systems to send situational aware-

ness data to a virtual command center.

• Medical monitoring - monitoring the condition of a patient.

The broad applications of wireless sensor networks have greatly facilitated science ex-

ploration. For instance, battery powered sensor networks can be deployed in the Ama-

zon rainforest, the north pole, and even the bottom of the ocean to obtain data that has

been inaccessible by traditional means. On the other hand, sensor networks are be-

coming a part of people’s daily lives. Wireless home security systems and temperature

control systems make life safe and more comfortable.

Energy efficiency is a paramount design issue for wireless sensor networks. Wire-

less sensor networks are extremely resource-limited, especially in terms of their energy

supply. Sensor nodes are usually powered by batteries, which impose strict constraints

on not only the available energy but also the output power. Inmany wireless sensor

networks, the number and location of nodes make recharging or replacing the batteries

infeasible at worst and inconvenient at best. For this reason, energy consumption is a

universal design issue for wireless sensor networks.

1.2 Motivation

The energy efficiency of short-range energy constrained wireless networks is of paramount

importance and has attracted many research efforts [2]. Past research has shown the

benefit of cross-layer optimization to reduce the energy consumption of wireless de-

vices [3–7]. In my thesis, I extend this idea of cross-layer optimization to improve the
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design and performance of short-range wireless networks. Specifically, in my thesis,

I develop several techniques to improve the energy efficiency of short-range wireless

networks while taking account of their unique characteristics, i.e., low transmit power,

limited energy supply, significant circuit power consumption, and low computational

ability.

1.3 Thesis Statement

I focus my research on improving the energy efficiency of short-range wireless net-

works through cross-layer optimization. The optimizations in this thesis are conducted

jointly at the physical layer, the data link layer, the multiple access layer, the network

layer, and the application layer. The main contributions ofthis dissertation are high-

lighted as follows.

• The introduction of a metric, i.e., energy consumption per information bit, to

evaluate the energy efficiency of a communication link in short-range wireless

networks. This metric incorporates the influences of the circuit power consump-

tion of the nodes, the transmit power consumption, packetization overhead, cod-

ing overhead, and possible retransmissions.

• The analysis of the energy-optimal relay distance that minimizes the energy con-

sumption per information bit.

• The analysis of the optimum constellation size, packet length, and duty cycle

that minimize the energy consumption per information bit over an additive white

Gaussian noise (AWGN) channel.

• The analysis of the optimum packet length, the optimum number of RAKE fin-

gers, the optimum modulation and coding schemes that minimize the energy

consumption per information bit in a typical Impulse Radio Ultra Wideband (IR-

UWB) system over a frequency selective channel.
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• A comprehensive analysis of improving the energy efficiencyof a clustered wire-

less network by choosing the optimal transmit power, selecting the optimal clus-

ter head, and deciding whether or not to use multi-hop routing within a cluster.

• An energy efficient design of wireless networks jointly considering distributed

source coding, adaptive transmission, and clustering topology. By applying the

philosophy of cross-layer optimization over the physical and application layers,

I propose a joint optimization of transmit time durations, transmit powers, and

Slepian-Wolf (SW) coding rates of the source nodes. I comprehensively evaluate

the impacts of the communication environment and the residual energy of the

nodes on the Slepian-Wolf coding rates, and I derive closed form solutions of the

optimal transmit time durations, transmit powers, and Slepian-Wolf coding rates

that maximize the samples gathered at the fusion center.

• Derivation of a low complexity joint optimal rate allocation of the SW cod-

ing rates and the information rates when using a multiple access channel in an

average-power constrained short-range wireless network.I examine the optimal-

ity of three orthogonal multiple access channel schemes, namely code division

multiple access (CDMA), frequency division multiple access (FDMA), and time

division multiple access (TDMA), from an information theoretical perspective,

and I propose an algorithm to determine how to choose the joint optimal SW

coding rates and the information rates that maximize the sample rate of the net-

work.

1.4 Thesis Organization

In this thesis, different aspects of the design and optimization of energy efficient short-

range wireless networks are discussed. Chapter 2 summarizes related work in the area
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of cross-layer optimization of wireless networks and introduces the background of the

concepts and techniques used in this dissertation.

Chapter 3 describes an optimization approach to reducing energy dissipation at the

physical layer, by finding the optimal transmit (relay) distance and transmit power for

a given modulation scheme and a given channel model, in orderto maximize network

lifetime.

Chapter 4 describes a cross-layer optimization scheme for the link layer and the

physical layer for a narrowband communication link in SRWNs. Correspondingly, a

cross-layer optimization at the link layer and physical layer for a typical impulse radio

ultra wideband (IR-UWB) radio is developed in Chapter 5.

Clustering network topologies are taken into account in theoptimization model in

Chapter 6. A joint optimization at the physical layer, i.e.,adaptive transmit power,

and network layer, i.e., cluster head selection and multi-hop selection, is proposed to

maximize the data gathering capacity of a clustered wireless network.

Distributed source coding is added into the optimization model in Chapter 7 to

improve the information gathering capacity of a short-range wireless network, which is

measured in the number of samples gathered at the fusion center. Chapter 8 proposes a

joint optimal rate allocation of Slepian-Wolf coding ratesover multiple access channels

in a SRWN with the consideration of circuit power and averagepower constraints.

Chapter 9 concludes this dissertation.
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2 Related Work

In the past decades, there has been much research aimed at improving the energy ef-

ficiency of wireless networks. Thus, it is essential to have athorough understanding

of current enabling technologies in the energy efficient design of wireless networks,

upon which further developments and contribution can be built. In this chapter, I sum-

marize some important concepts and techniques from the literature on the principle of

cross-layer optimization and energy efficient design for wireless networks.

2.1 Cross-Layer Optimization

Optimization techniques, including linear programming, convex programming, geo-

metric programming, and dynamic programming, have been extensively used in the

field of wireless networks to improve the network performance. Before performing

any optimization, a clear understanding of a typical communication system is neces-

sary. A traditional 7-layer Open System Interconnection (OSI) protocol stack is shown

in Fig. 2.1 [8]. The physical layer (PHY) addresses the issueof establishing a phys-

ical link between communication ends, including transmission, reception, modulation

and demodulation. The data link layer ensures the reliability of the established phys-

ical link and coordinates the resources between different communication links. The

network layer is in charge of establishing, maintaining, and terminating end-to-end net-
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Figure 2.1: The seven layers of the OSI model.

work communication. Its functions include routing and relaying. The above three lay-

ers are sometimes referred to as the media layer, and the design of short-range wireless

networks is mainly concerned with these three layers.

The transport layer ensures robust end-to-end communication; the session layer

establishes system-to-system communication between two hosts; the presentation layer

reformats data, including data compression and encryption; and the application layer

serves as an interface to the users. These four layers are sometimes called the host

layers. In short-range wireless networks, due to the limitations of the computational

capacity of the nodes, the functionalities of these four layers may be reduced into one

or two layers.

A typical protocol stack for a short-range wireless networksuch as a sensor network

is shown in Fig. 2.2 [1]. Compared with the standard OSI model, the sensor network

protocol stack combines the application layer, the presentation layer and the session

layer into one application layer. This is because the data processing tasks in sensor
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Figure 2.2: The sensor network protocol stack model [1].

networks are usually very simple compared with the tasks in traditional networks, such

as the Internet. The remaining four layers remain the same. Note that the transport

layer may not be required by sensor networks.

The most significant difference between the sensor network protocol stack and the

OSI model is the introduction of the concept of aplane. As shown in Fig. 2.2, there

are three planes in a sensor network protocol stack, namely the power management

plane, the mobility management plane, and the task management plane. These planes

are a result of the collaborative nature of wireless sensor networks and the philosophy

of cross-layer design. In WSNs, aided by these management planes, cooperation is

embodied not only between different stack layers but also among different sensor nodes.

For instance, when the sensor battery is low, the power management plane can inform

the physical layer to lower its transmit power, the data linklayer to sleep longer, and

the network layer to avoid participating in a route. As another example, sensors may be

deployed in the field to monitor a common phenomenon. The taskmanagement plane

can schedule some of the nodes to sleep while guaranteeing that the active nodes can

still cover the area of interest.

Cross-layer, even cross-node, design principles are of considerable importance in
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short-range wireless networks. Cross-layer design is based on the cooperation of dif-

ferent protocol layers. For instance, in [9] the authors propose joint optimization over

transmit powers, rates, and link schedules of a wireless sensor network to maximize

lifetime. Flow conservation, maximum rate, energy conservation and transmission

range are considered as constraints. Convex optimization is used to solve for the op-

timal rates and powers for a given incidence matrix of the network graph, link gain

matrix, and initial energy. However, the computational complexity of the algorithm

grows as a double exponential function of the size of the network. Also, the input of

the algorithm is difficult to obtain in real-time applications. In the following section,

we will introduce some state-of-the-art design and optimization techniques that focus

on different layers.

2.2 Energy Efficient Designs for Short-Range Wireless

Networks

Wireless sensor networks (WSNs) are the most common type of short-range wireless

networks, and researchers have studied these networks for decades [10]. Numerous

strategies have been investigated to promote the energy efficiency of short-range wire-

less networks in general and WSNs in particular. These strategies include, but are not

limited to, transmit power control, mobile data sink deployment, multiple data sink

deployment, non-uniform initial energy assignment, and intelligent node/relay deploy-

ment [11, 12]. Moreover, much work has been done to minimize energy dissipation at

all levels of system design, from the hardware to the protocols to the algorithms [13–

15].

In this section, we highlight some important issues in the design of energy efficient

wireless networks.Adaptive communication is an optimization technique often used

at the physical layer.impulse radio ultrawideband andbursty transmission scheme are
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also introduced.Multiple access techniques address the design issue at the data link

layer. Clustered network topology andmulti-hop topology can be used to improve the

network performance at the network layer.Distributed source coding provides lossless

compression of the observed random variables and feeds datainto the network, which

can be viewed as a technique adopted at the application layer.

2.2.1 Adaptive Communication

Adaptive communication enables the transmitter to adjust its transmission approach, in-

cluding transmit power, modulation, and coding scheme, according to the link condition

between the transmitter and the receiver. A feedback channel is required between the

transmitter and the receiver so that the transmitter can acquire the channel conditions.

An illustrative system model using adaptive communicationis shown in Fig. 2.3. As

shown in this figure, the transmitted signal is demodulated and decoded at the receiver,

meanwhile the receiver estimates the channel conditions through the received signal.

The estimated channel condition is then sent back to the transmitter via a feedback

channel. According to the channel condition, the transmitter will choose an appropriate

transmission scheme, including modulation, coding, and transmit power, to achieve a

certain quality of service (QoS). For instance, the QoS can be defined as the data rate

given a fixed average transmit power, or as outage probability for a fixed data rate [7].

Adaptive communication can be used in a SRWN. However, thereare a number of

differences between the adaptive communication techniques used in SRWNs and in tra-

ditional communication systems. First, traditionally, adaptive communication is used

to achieve the maximum data rate given a time varying channel. However, in SRWNs,

maximizing the data rate is usually not the priority. Instead, the target of adaptive com-

munication in SRWNs is to minimize the energy consumption. For instance, adaptive

communication can be used to find the most energy efficient wayto transmit a data

packet, given a certain transceiver power model and channelcondition. Second, the
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Figure 2.3: A system model with adaptive communication.

adaptive communication scheme in SRWNs is adaptive based onthe path loss between

a transmitter and different receivers. Traditional adaptive communication is adaptive

based on the time varying channel between a transmitter and areceiver. This is caused

by the limited computational capacity of SRWN nodes, which are usually small and

equipped with simple circuits. Moreover, one node may communicate with different

nodes simultaneously. Maintaining a time varying adaptation to multiple links is very

demanding for a SRWN node. Thus, time invariant adaptive communication based on

path loss are considered in our work.

To facilitate the adoption of the adaptive communication technique based on path

loss, the power consumption model of the transceivers needsto be studied, and the

energy consumption as a function of transmission distance needs to be established. In

[14], the concept of an energy per useful bit metric is proposed. This metric sought

to define a way of comparing energy consumption, specificallylooking at the impact

of the preamble on the effectiveness of the system. The authors define the energy per

useful bit (EPUB) metric as:

EPUB = (Preamble Overhead)× (Total Energy) (2.1)

=

(

BD +BP

BD

)

(PTX + σPRX)T (2.2)
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whereBD is the average number of data bits andBP is the average number of pream-

ble bits. The termsPTX andPRX are transmit and receive power, respectively. The

parameterσ is determined by the multi-access protocol and represents the proportion

of time spent in receive mode compared to the proportion of time spent in transmit

mode. Finally,T is the time to transmit a bit. By looking at this metric, we cansee

that in finding the minimum EPUB, there is a relationship between the complexity of

the MAC (i.e., the size of the preamble) and the reduction in total energy. The authors

claim that a more complex MAC can reduce the total energy, butit requires a longer

preamble, and the energy consumption of this longer preamble can outweigh the gains

of the improved energy from the more complex MAC. The paper compares six phys-

ical layers to find the EPUB. The conclusion drawn from the analysis is that simpler

non-coherent modulations such as OOK and FSK-NC have the lowest EPUB.

In [3], the authors provide detailed analysis about the power consumptions of the

components at both the transmitter and the receiver ends. Moreover, the authors differ-

entiate the power consumptions of different modulation schemes (linear or nonlinear).

Both circuit power consumption and transmit power consumption are considered in [3].

A peak-power constrained optimization over the constellation sizes, linear/nonlinear

modulations, and coded/uncoded transmission schemes overdifferent transmission dis-

tances are provided. The authors concluded that at short transmission distances, band-

width efficient schemes (uncoded linear modulations with large constellation sizes) are

energy efficient; on the other hand, at large transmission distances, energy efficient

schemes (coded nonlinear modulations with small constellation sizes) are energy effi-

cient. The authors in [3] assume a fixed target bit error probability and no retransmis-

sions. This assumption may not meet some quality of service (QoS) requirements, such

as reliable communications.

In [15], the authors show how startup time, i.e., the time duration a device needs

to prepare its circuits for communication, correlates withthe energy efficiency of the

system. This work is based on the idea that the energy consumed in startup is a sig-



16

nificant part of the energy consumed in a transmission. ForM-ary modulations, asM

increases the maximum transmit energy must increase for a fixed BER, but the number

of transmissions decreases. With higher order modulationsthe transmitter is on for a

shorter time, and therefore even with the higher maximum cost it is shown that higher

order modulation schemes are more energy-efficient. However, this result does not hold

when there is a large startup time. This work demonstrates the importance of evaluating

the startup time of a physical layer, and it shows that for certain startup times, certain

modulation schemes are preferable to others.

The idea of finding an energy-efficient optimal hop distance has been evaluated in

previous work. In [16], the authors propose a distributed position-based network proto-

col optimized for minimum energy consumption in wireless networks. In this protocol a

node determines the potential relay nodes around it based onthe optimum energy dissi-

pation of the combined transmit/receive power of the sourceand relay nodes. Similarly,

in [17] the optimum one-hop transmission distance that willminimize the total system

energy is investigated. The main conclusion of this study isthat the optimum one-hop

transmission distance depends only on the propagation environment and the transceiver

characteristics and is independent of other factors (e.g.,physical network topology, the

number of transmission sources and the total transmission distance). In [18] it is shown

that given a route bit error rate (BER) and node spatial density, there exists a global

optimal data rate at which the transmit power can be globallyminimized. The authors

also report that there exists a critical node spatial density at which the optimal transmit

power is the minimum possible for a given data rate and a givenroute BER. In this

study the optimal common transmit power is defined as the minimum transmit power

used by all nodes necessary to guarantee network connectivity.

The authors in [13] analytically derive the optimal hop distance given a particular

radio energy dissipation model. The goal of the derivation is to minimize the total

energy consumed by the network to transmit data a distanceD.

ETotal =
D

d
EHop (2.3)
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whereD is the total distance between the source and the destination, d is the hop

distance andEHop is the total energy to transmit the data over one hop.

EHop = ETX + EHop,F ixed

= αERXd
n + ETX,F ixed + ERX,F ixed

≈ αERXd
n + 2EF ixed (2.4)

The valueEHop is made up of 2 components,ETX andEHop,F ixed. EHop,F ixed is the

fixed energy cost expended during the hop. This energy is based on running the circuits

to perform the modulation and any other processing, and it isnot dependant on the

distance between the nodes or the amount of energy radiated into the channel by the

radio.EHop,F ixed can be divided into two partsETX,F ixed andERX,F ixed. These are the

fixed energy costs of the transmitter and receiver, respectively. While these two values

are not necessarily equal, it is common practice to set them equal and thus the fixed

energy is2EF ixed.

The valueETX is the energy consumed to appropriately amplify the signal for trans-

mission. It can also be broken into multiple components. As seen in (2.4),ETX is the

product of the received energy,ERX , the hop distanced raised to the path loss factor

n, and a scalarα. ERX is the energy accumulated at the receiver, or more specifically,

the desired received energy. The constantα is the attenuation of the channel that comes

from the wavelength of the signal and antenna gains. This constant also includes the

amplifier efficiency.

Combining (2.3) and (2.4) yields the following result.

ETotal = D(αERXd
n−1 + 2EF ixedd

−1) (2.5)

The optimal hop distance,d∗, is

d∗ = n

√

2EF ixed

α(n− 1)ERX

(2.6)

Equation (2.6) is the expression for the energy-efficient optimal hop distance.
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In [19] the authors provide an analytical model for determining the transmission

range that achieves the most economical use of energy in wireless networks under the

assumption of a homogeneous node distribution. Given node locations, the authors

propose a transmission strategy to ensure the progress of data packets toward their final

destinations. By using the average packet progress for a single common transmission

range metric, they determine the transmission range that optimizes this metric.

Optimizing the packet size in wireless networks as an adaptive communication tech-

nique has also found considerable attention in the literature [4–6, 20–22]. In [6] tech-

niques for adapting radio parameters (e.g., frame length, error control, processing gain,

and equalization) to channel variations is studied to improve link performance while

minimizing battery energy consumption. In [20] an algorithm for estimating the chan-

nel BER using the acknowledgement history is presented. Estimated channel BER is

used to optimize the packet size. It is reported that this algorithm can achieve close to

optimal performance using a history of just 10,000 bits.

In [21] the effect of error control on packet size optimization and energy efficiency

is examined. It is shown that forward error correction can improve the energy efficiency,

while retransmission schemes are found to be energy inefficient. Furthermore, binary

BCH codes are found to be more energy efficient than the best performing convolutional

codes. In [4] an analytical model characterizing the dependency between packet length

and delay characteristics observed at the application layer is presented. It is shown

that careful design of packetization schemes in the application layer may significantly

improve radio link resource utilization in delay sensitivemedia streaming under harsh

propagation environments.

In [22] link adaption techniques at the MAC layer, which use adaptive frame size,

are used to enhance the energy efficiency of wireless sensor nodes. To obtain accurate

estimates and to reduce computational complexity, extended Kalman filtering is uti-

lized for predicting the optimal packet size. In [23], the author considers the dynamic

sizing of the MAC layer frame to improve wireless link throughput, range and energy



19

efficiency. The philosophy is to obtain the balance of packetoverhead and packet error

probability.

In [24], the author utilizes optimum packet size and error control techniques to

improve the energy efficiency of wireless sensor networks. However, neither of them

considered the energy consumptions of the retransmission procedure, adaptive power

control, and power consumption of different components in transceivers.

In [25], the authors proposed the energy-per-useful-bit (EPUB) metric to measure

the PHY efficiency of wireless networks. The authors conclude that, to minimize

EPUB, high data rates, low carrier frequencies, and simple modulation schemes are pre-

ferred. However, the energy minimization procedure in [25]does not consider higher

order modulation or retransmissions. For example, the authors assume that the data

rate changes only through changing the width of the symbol pulse without considering

coding rate and/or high-order modulations. On the other hand, the investigation of the

impact of synchronization preambles in [25] is inspiring. The authors point out that the

packet header plays an important role in evaluating EPUB andshould be fully studied.

The authors investigated the joint optimization of the transmit power and the frame

length to improve the energy efficiency of a communication link in wireless sensor

networks [26]. The authors concluded that transmit power control is only beneficial

within a certain distance range, while at large transmission distances, full power trans-

mission is preferred. The investigation of this paper is experimental and thus specific

to a particular device type.

Besides the work mentioned above, other considerable contributions have been

made to improve the energy efficiency of wireless networks. For example, Wanget

al. investigated the energy efficient modulation and MAC for sensor networks with the

consideration of the power consumptions of detailed transceiver components as well as

the start-up energy consumption [27]. Denget al. studied the optimum transmission

range minimizing energy efficiency in Ad Hoc networks based on node density and

node coverage area [28]. In [29], the authors derive a simpledistributed optimization
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scheme, which is an abstracted model without the consideration of detailed channel

models, packet structure, and link/MAC layer protocols. Chien et al. designed an

adaptive radio to minimize energy consumption by adjustingthe frame length, error

control schemes, processing gain, and equalization based on channel conditions [30].

Cui et al. studied the energy per information bit,Eb, minimization problem considering

the dependency of circuit power consumption on modulation and coding schemes and

the time duration of a packet containingL information bits for different coding coding

schemes [31]. The fundamental model is

Eb =
Power× Time to transmit a packet

L
. (2.7)

Based on this model, the authors conducted an energy minimization considering both

transmit power and circuit power.

While this is the first important step towards the analyticalmodeling and analysis

of energy consumption at the PHY layer, there are some relevant factors that are not

considered in [31]. First, the authors did not consider retransmissions after a packet

loss, which is essential for a reliable link. Second, headerand preamble overhead

is not considered. Finally, the target bit error probability is assumed to be fixed in

[31]. Removal of this restriction allows for further reduction in energy consumption.

While all of this previous work has limitations, as described above, it has laid a solid

foundation for our study.

2.2.2 Impulse Radio Ultra Widedband

Impulse radio ultra wideband (IR-UWB) communications is regarded as an attractive

solution to provide high data rate and low radiated power, especially for short-range

wireless network applications [32]-[35]. As described previously, WSNs have been

used for applications ranging from environmental monitoring and health monitoring to

security and surveillance [2][36]. These different applications for WSNs have vastly

different date rate requirements. Take, for example, visual sensor networks (VSNs) for
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surveillance or health monitoring. These networks requirea relatively large date rate to

transmit and receive images or video in a timely manner, and alow radiated power to

avoid interference with coexisting wireless systems. IR-UWB technology, in this case,

has a great potential to facilitate the application of VSNs.

Compared with traditional wideband systems, IR-UWB systems feature low com-

plexity transceiver structures and low emission power. Moreover, the main complexity

of an IR-UWB system is in the design of the receiver. Fig. 2.4 shows the structure

of a typical IR-UWB transmitter and receiver. As shown in thefigure, an IR-UWB

transmitter consists of only a pulse generator, a pulse modulator, a digital amplifier

(DA), a clock generator, and a synchronizer. However, an IR-UWB receiver is equipped

with several correlator branches (mixer and integrator), an analog-to-digital converter

(ADC), a low noise amplifier (LNA), a variable gain amplifier (VGA), a pulse genera-

tor, a synchronizer, and a channel estimator.

Evidently, the complexity and, correspondingly, the powerconsumption of an IR-
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UWB receiver is more than an IR-UWB transmitter. Moreover, an IR-UWB system

is designed as a secondary system that co-exists and shares bandwidth with primary

systems. The United States Federal Communications Commission (FCC) has a strict

regulation on the transmit power of an IR-UWB system so that it does not cause no-

ticeable degradation to the performance of existing wireless devices [32]. As a result,

the power control is not feasible in an IR-UWB transmitter. Therefore, compared with

adaptive modulation where the optimization is conducted onthe design of the transmit-

ter, the focus of energy efficient IR-UWB system design is on the receiver. In our work,

we investigate how to adapt an IR-UWB receiver according to the link conditions.

The performance of IR-UWB has been extensively studied [37]-[39]. Some work

on the optimization of IR-UWB systems considering antenna design, synchronization,

and channel capacity are also present in the literature [40]-[43]. However, none of

these optimizations is aimed at minimizing the energy consumption in IR-UWB sys-

tems. The energy capture effect of a RAKE receiver in IR-UWB systems is first studied

by Win et al. in [44]. The authors analyze the relationship between the diversity level

and captured energy. Although no power model is assumed in [44], the authors have

concluded that there exists a threshold number of RAKE fingers in IR-UWB systems

such that adding more RAKE fingers does not significantly improve performance. De-

spite the fact that much research has been conducted on IR-UWB systems, a detailed

study on link energy minimization in IR-UWB based networks is lacking.

An effective channel model is critical in evaluating the performance of any com-

munication system. Numerous research efforts have been made towards establishing

an effective IR-UWB channel model [45]-[47]. In particular, comprehensive IR-UWB

channel models for both frequency ranges from3− 10 GHz and below 1 GHz are pro-

vided in [46]. A single-slope power decay law is adopted to describe the path loss fea-

ture of the IR-UWB channel, and Nakagami-distributed amplitude is used to describe

the small-scale fading of the IR-UWB channel [46]. This model has been accepted by

the IEEE 802.15.4a Task Group as a standard model to evalute UWB systems, and is
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also used in this work to evaluate the energy consumption of different schemes.

2.2.3 Bursty Transmission Scheme

Given an average transmit power, it can be shown that maximizing the transmission en-

ergy efficiency is equivalent to maximizing the channel capacity. This can be illustrated

as follows.

Transmission energy efficiency is measured by cost (energy consumption) per in-

formation bit. That is

Ebit =
P

C(P )
, (2.8)

whereEbit represents the transmission energy consumption per information bit mea-

sured in J/bit.P is the average power consumption (J/second),C(P ) denotes the chan-

nel capacity as a function of the average transmit power, measured in bits/second for

a given bandwidth. Clearly minimizingEbit is equivalent to maximizingC(P ) for a

givenP.

With the consideration of circuit power consumption, it hasbeen shown that bursty

transmission schemes achieve capacity and therefore maximize the transmission en-

ergy efficiency [48]. This conclusion is contrary to the common belief that low power,

constant transmission, namely lazy scheduling, maximizesthe transmission energy ef-

ficiency [49]. In fact, both schedules are optimal under different assumptions. Bursty

transmission is energy efficient when circuit power is not negligible, while lazy trans-

mission is energy efficient when circuit power is negligible.

In [50, 51], the authors investigate energy-efficient packet transmission scheduling

in wireless networks. In [50], it is shown that the transmission energy consumption

of a packet is a non-negative, monotonically decreasing function of the transmission

duration. That is, the longer it takes to transmit a packet, the less transmission energy

will be consumed. However, this is not true when the energy consumed takes into

account the circuit power consumption [52] [53]. In SRWNs, it is obvious that circuit
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power consumption is an important factor that influences theenergy efficiency of nodes.

Therefore, bursty transmission schemes should be considered. This coincides with our

intuition that a node should sleep as often as possible to save energy. Comprehensive

results on improving energy efficiency that can provide simple solutions yet consider

circuit power and energy constraints are desired.

2.2.4 Multiple Access Techniques

Multiple access techniques can be categorized into fixed access and random access

techniques. Fixed access techniques include fixed-access time division multiple access

(TDMA), code division multiple access (CDMA), frequency division multiple access

(FDMA), and space division multiple access (SDMA). Random access protocols for

sensor networks include Sensor MAC (S-MAC), SpeckMAC, and WiseMAC [54, 55].

Note that the above random access techniques share time resources among different

nodes and thereby can also be viewed as TDMA. The tradeoffs between fixed access

and random access are clear. Fixed access requires central control and can only be used

in heterogeneous wireless networks. Also the overhead of access scheduling for fixed

access techniques is high. However, fixed access can guarantee a collision free multiple

access channel for nodes, even under heavy traffic loads. On the contrary, random

access techniques do not require central control, have a lowscheduling overhead, and

incur high collision probability in a heavy traffic scenario. The choice of multi-access

technique depends on the features of the SRWN of interest andits applications.

In [56] an optimal variable-length TDMA scheme is obtained in a star-topology

wireless network. The authors assumed a specific transceiver power model, finite-

length transmitting queues, as well as a fixed deadline for collecting all data from all

transmitters. Iterative convex relaxation methods are used to solve the constrained op-

timization problem. A similar convex modeling method is also used in [31], where

the optimal constellation size and modulation method are found. Energy storage con-
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straints at the nodes are not considered in both [56] and [31].

2.2.5 Clustered Network Topology

The clustering of nodes consists of grouping nodes togetherto form a local subnetwork.

Using clustering, a flat homogeneous wireless network becomes a hierarchical hetero-

geneous network. Clustering is an effective method for efficient local scheduling, and

it greatly improves the network scalability.

As another option to improve the energy efficiency of SRWNs, clustering proto-

cols have been broadly adopted due to their effectiveness and simplicity. In clustered

SRWNs, neighboring nodes are grouped as clusters. One of thenodes in a cluster is se-

lected as the cluster head (CH), and the remaining nodes are the cluster members (CM).

The cluster head is usually in charge of certain local coordinations, such as collecting

data from the cluster members and communicating with other clusters and the data sink,

while cluster members simply transmit data to the cluster head. The cluster head may

be selected in a randomized manner, such as in HEED [57] or LEACH [58]. Such a

randomized selection of the cluster head, combined with rotating the cluster head posi-

tion, can effectively avoid the early drain of the energy of aparticular node. However,

it cannot guarantee the optimality of the selection. On the other hand, the cluster head

can be selected by a centralized algorithm through an optimization scheme. This type

of cluster head selection scheme requires a powerful control center and does not scale

well. The advantage of centralized algorithms is that they can guarantee the optimality

of the cluster head selection. More effective distributed algorithms or highly efficient

low complexity centralized algorithms for cluster head selection are still desired.

2.2.6 Multi-hop Topology

In SRWNs, nodes are usually densely deployed [1]. Thus, the distances between nodes

can be very small. Correspondingly, compared with single hop, the transmit power
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Figure 2.5: An illustration of a multi-hop scheme versus a single hop scheme.

of nodes can be kept low when communicating using multi-hop.This can be shown

by the example in Fig. 2.5, where the node distance isd and is assumed to be the

same for all nodes. Suppose node 1 wants to communicate with node 5. Node 1 has

two choices : single hop (solid line) and multi-hop (dashed line). Assume the nodes

require the received power to be at leastPr for correct communication, and the path

loss exponent is 2. Then if node 1 chooses single hop, the transmit power has to be

at leastPt = Pr(4d)
2 = 16Prd

2. However, if node 1 chooses a multi-hop route, the

transmit power only needs to bePt = Prd
2. The multi-hop scheme significantly lower

the transmit power compared with the single hop scheme.

However, in terms of energy efficiency, we cannot guarantee that multi-hop is supe-

rior to single hop, especially when the circuit power consumption is taken into account.

Still considering the example in Fig. 2.5, if node 1 chooses single hop, the energy con-

sumption of the communication link is

Elink, singlehop= (16Prd
2 + 2Pc)T, (2.9)

wherePc is the circuit power consumption, which is the same for all nodes and is the

same for transmission and for reception.T is the time duration of the transmission.

To simplify the analysis, we assume that a node only consumesPc when working as a

receiver. Similarly, when using multi-hop, the communication consumes

Elink, multi-hop = (4Prd
2 + 5Pc)T. (2.10)
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Therefore,

Elink, singlehop− Elink, multi-hop = (12Prd
2 − 3Pc)T. (2.11)

The above equation is greater than or equal to zero ifPrd2

Pc
≥ 1

4
, otherwise it is less than

zero. That is, if the nodes are close to each other, or the circuit power consumption is

large, the multi-hop scheme can be less energy efficient thanusing single hop, for it

involves more nodes in the route than single hop. Therefore,the multi-hop and single

hop schemes must be carefully evaluated in short-range energy constrained wireless

networks.

The performance of multi-hop techniques has been broadly studied in the litera-

ture. In [59] the performance of multiple multi-hop routingschemes are evaluated in

terms of packet delivery ratio and routing overhead. Although the simulation-based

performance evaluation in [59] is quite comprehensive, theenergy efficiency of dif-

ferent multi-hop routing schemes is not considered. The energy efficiency of a multi-

hop link is investigated in [60], where the authors studied the energy expenditure of a

path with a large number of short-distance hops and another with a smaller number of

large-distance hops. To guarantee reliable communications, two operating models are

compared: end-to-end retransmissions and hop-by-hop retransmissions. The optimal

routes are found for both models.

The energy efficiency of multi-hop schemes is evaluated froma different perspec-

tive in [61], where the optimal load distribution among nodes in a multi-hop scenario

has been found. The work is based on the observation that, compared with the nodes

that are far away from the sink, those near the sink tend to diefaster due to a high

local traffic load, since the traffic load accumulates along amulti-hop route to the sink.

The authors proposed varying the node’s transmission rangeaccording to the distance

between the node and the sink to evenly distribute the energyconsumption over the

entire SRWN of interest. There are many more works concerning the performance of

multi-hop schemes in the literature. In our work, we seek theanswer to the question

of whether and how a multi-hop scheme should be used in a cluster to maximize the



28

amount of data that the cluster head collects from the cluster members.

2.2.7 Distributed Source Coding

Distributed source coding (DSC) exploits the spatial correlation of the observed random

variables [62, 63]. DSC techniques are especially useful inwireless sensor networks

where sensors are densely deployed and the observed random variables are closely

correlated among neighboring nodes.

The key feature of DSC is that the sum source coding rate can bereduced to the joint

entropy without the nodes communicating with each other. The advantages of using

DSC can be better illustrated by an example. In the two sourcenode case, two observed

random variables are denoted byX1 andX2. If the nodes do not use distributed source

coding, the source coding rates at the nodes are

R1 = H(X1), R2 = H(X2), (2.12)

whereH(·) denotes the entropy of a discrete random variable. The two nodes will

generate data at a total rate ofR1 +R2 = H(X1) +H(X2) bits per samples.

If DSC, in particular Slepian Wolf coding [62], is used, the source coding rates

at the nodes fall into a rate region shown in Fig. 2.6. The coding rate region can be

expressed as

R1 ≥ H(X1|X2),

R2 ≥ H(X2|X1),

R1 +R2 ≥ H(X1, X2).

(2.13)

In this case, the two nodes can generate data at a total rate ofR1 + R2 = H(X1, X2)

bits per samples. We have

H(X1, X2) = H(X1|X2) +H(X2) ≤ H(X1) +H(X2), (2.14)

with equality only ifX1 andX2 are independent. Therefore, as long as the observed

random variables are correlated,H(X1|X2) < H(X1), and DSC generates fewer total
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Figure 2.6: An illustration of Slepian-Wolf source coding region (2 sources).

bits per sample than individual compression. The more correlated the random variables

are (smallerH(X1|X2)), the more data bits can be saved by using DSC techniques.

Fewer data bits will reduce the communication burden of the nodes and thereby improve

the energy efficiency of the wireless network.

DSC deals with the compression of several correlated data sources, sensed by re-

motely located nodes, without communication among the nodes (hence distributed)

such that a destination that knows the spatial correlation can recover all the data [63][64].

Consider two discrete correlated sourcesX1 andX2. Slepian and Wolf showed that cod-

ing at a combined rate ofR = H(X1, X2) is sufficient even for distributed encoding of

correlated sources [62]. Specifically, the Slepian-Wolf theorem states that the achiev-

able rate region of lossless DSC for discrete sourcesX1 andX2 is given by (2.13). The

achievability of Slepian-Wolf coding is generalized to an arbitrary number of discrete

correlated sources [63]. For lossless distributed compression ofN correlated discrete

sourcesX1, X2, ..., XN the combined rateH(X1, X2, ..., XN) is sufficient for perfect

reconstruction of all the sources. In other words, there is no rate penalty due to lack of

explicit side information at the encoders.
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By relying on the duality between source coding and channel coding, distributed

source codes have been constructed that achieve different points on the boundaries of

the Slepian-Wolf rate-region [65][66]. Powerful channel codes such as low-density

parity-check (LDPC) codes [67], Trellis codes [68], and convolutional and Turbo codes

[69] are employed to construct lossless DSC codes for two correlated binary sources.

Some of these codes are generalized to include twoq-ary orN > 2 binary correlated

sources [70].

Theoretical lossless DSC results have been recently utilized to address energy effi-

cient gathering of correlated data in wireless networks with mathematical optimization

techniques [71]-[79]. These works address the problem of constructing correlated data

gathering tree on a graph, which is different from classicalnetwork flow theory. Since

the data are correlated, standard solutions (e.g., shortest path spanning tree, minimum

cost flow) are not optimal, leading to new original rate allocation problems and orig-

inal tree building problems, depending on the source codingmodel. The prominent

approach is to formulate a flow-based linear programming problem to minimize the

energy consumption, taking into account the capacity constraints associated with the

wireless shared media, flow conservation constraints, and rate constraints enforced by

the lossless DSC rate region. In these works, the authors have jointly optimized the data

gathering tree and the rate allocation across the source nodes. To obtain these solutions,

the wireless media is abstracted as a graph with fixed cost perinformation bit, which

is often not the case in practice. Rather, different communication parameters such as

node distances and available energy in each node eschew the optimal allocation of the

communication burden.

An important question is how to assign the coding rates amongnodes. In the above

two source case, we want to selectR1 andR2 so thatR1 andR2 are within the cod-

ing region shown in Fig. 2.6 and the nodes can send the highestnumber of samples

during their limited lifetime. The optimal coding rates should be related with the con-

dition of the node (e.g., how much energy it has, its circuit power consumption), the
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network topology (e.g., the distance from the source node tothe data sink), and the

observed random variables (e.g., how much entropy they have). Such detailed analysis

and evaluations are conducted in our research.
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3 Optimizing Physical Layer

Parameters for Wireless Networks

In this chapter, we investigate the problem of energy-efficient transmission of data over

a noisy channel, focusing on the setting of physical layer parameters. We derive a met-

ric called the energy per successfully received bit, which specifies the expected energy

required to transmit a bit successfully over a particular distance given a channel noise

model. By minimizing this metric, we can find, for different modulation schemes, the

energy-optimal relay distance and the optimal transmit energy as a function of channel

noise level and path loss exponent. These results enable network designers to select

the hop distance, transmit power and/or modulation scheme that maximize network

lifetime.

3.1 Introduction

In short-range wireless networks (SRWNs), the energy of thenodes is usually very lim-

ited. To make the best use of the limited energy available to the nodes, and hence to the

network, it is important to appropriately set parameters ofthe protocols in the network

stack. Here, we specifically look at the physical layer, where the parameters available

for optimization include: modulation scheme, transmit power and hop distance. The

optimal values of these parameters will depend on the channel model. In this chapter,
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we consider both an additive white Gaussian noise (AWGN) channel model as well as

a block Rayleigh fading channel model. Moreover, we examinethe relationship among

these physical layer parameters as the channel model parameters are varied.

When a wireless transmission is received, it can be decoded with a certain probabil-

ity of error, based on the ratio of the signal power to the noise power of the channel (i.e.,

the SNR). As the energy used in transmission increases, the probability of error goes

down, and thus the number of retransmissions goes down. Thus, there exists an opti-

mal tradeoff between the expected number of retransmissions and the transmit power

to minimize the total energy dissipated to receive the data.

At the physical layer, there are two main components that contribute to energy con-

sumption in a wireless transmission, the energy consumption for retransmission caused

by channel loss and the fixed energy cost to run the transmission and reception cir-

cuitry [80]. The loss in the channel increases as a power of the hop distance, while

the fixed circuitry energy cost increases linearly with the number of hops. This im-

plies that there is an optimal hop distance where the minimumamount of energy is

expended to send a packet across a multi-hop network. Similarly, there is a tradeoff

between the transmit power and the probability of error. In this tradeoff, there are two

parameters that a network designer can change to optimize the energy consumed: trans-

mit power and hop distance. The third option for physical layer parameter selection is

much broader than the other two. The coding/modulation of the system determines the

probability of success of the transmission. Changes in the probability of a successful

transmission lead to changes in the optimal values for the other physical layer param-

eters [15]. Here we look at the case where the probability of error is a function of the

basic modulation scheme in an AWGN channel and a block Rayleigh fading channel,

and it depends on the noise level of the channel and the received energy of the signal

(i.e., it depends on the SNR). However, this work can be extended to incorporate any

packet error or symbol error model (e.g., models that incorporate channel coding).

To illustrate these physical layer tradeoffs, consider thelinear network shown in
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Network 3

Network 2

Network 1

Figure 3.1: Three examples of a linear wireless network. Network 1 has a short hop dis-

tance, Network 2 has a long hop distance, and Network 3 has theoptimal hop distance.

Fig. 3.1. In this network, a node must send data back to the base station. The first

physical layer consideration is hop distance. In the first case (Network 1), the hop

distance is very small, which translates to low per-hop energy dissipation. Because

the transmit energy must be proportional todn wheren ≥ 2 and d is the distance

between the transmitter and receiver, the total transmit energy to get the data to the base

station will be much less using the multi-hop approach than adirect transmission [80].

However, in this network, the main factor in the energy dissipation of the transmission

is the large number of hops. The fixed energy cost to route through each intermediate

hop will cause the total energy dissipation to be high.

In the second case (Network 2), the hop distance is very large. With so few hops

there is little drain of energy on the network due to the fixed energy cost. However,

there is a large energy drain on the nodes due to the high energy cost to transmit data

over the long individual hop distances. With a large path loss factor, the total energy in

this case will far exceed the total energy in the case of shorthops. Thus it is clear that

a balance must be struck, as shown in Network 3, so that the total energy consumed in

the network is at a minimum.

The contribution of this chapter is a method of finding the optimum physical layer

parameters to minimize energy dissipation in a multi-hop wireless network. To achieve
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this goal, first we define a metric that specifies the energy persuccessfully received

bit (ESB). This metric is a function of three physical layer parameters: hop distance,

d, transmit energy,Es,TX , and the modulation scheme. In addition,ESB depends on

the channel model. Given a specific channel model and a constraint on any two of the

three physical layer parameters, this formula allows a network designer to determine

the remaining physical layer parameter that will minimize energy dissipation and hence

optimize the performance of the network.

This chapter is organized as follows. In 3.2, we explain the channel and physical

layer models that are used in this work, and we describe the analytical framework used

to optimize the physical layer parameters. In 3.3, we show the results of experiments

to analyze the relationship between the three physical layer parameters as a function of

different channel models. Section 3.4 provides analysis and discussion of the experi-

ments as well as thoughts on future work that can be done in this area.

3.2 Channel and Physical Layer Model

In this section, we derive the model for the energy per successfully received bit (ESB)

for a given transmitter/receiver structure and packet structures. The ESB model is es-

tablished for AWGN channels and for block Rayleigh fading channels.

3.2.1 ESB Over AWGN Channels

3.2.1.1 Packet structure

In communications systems, packets must be sent with a training sequence in order

to estimate the channel conditions and facilitate the synchronization of the transmitter

and receiver. The length of the training sequence depends onthe estimation algorithm,

synchronization algorithm, RF technology, oversampling rate, and the required system

performance [81]. Usually, the longer the training sequence is, the more accurate the
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Figure 3.2: The packet structure used in AWGN channels.

channel estimate and synchronization are. Also, using morerobust modulation schemes

and operating at high SNRs will shorten the required training sequence length [82]. In

[83], the authors state that in a slowly changing Rayleigh fading channel, a training

sequence of50 symbols can completely remove any phase offset. Thus, we assume a

training sequence length of50 symbols for our work.

Additionally, in adaptive communications systems, a header must be included to

inform the receiver of the modulation scheme used for the information bits (packet

payload). We assume a header length of14 symbols. The training sequence and header

must be transmitted using a predetermined modulation scheme, which will be fixed

regardless of the modulation scheme used for the information bits. The modulation

used for the training sequence/header should be robust eventhough it may be bandwidth

inefficient. In this work, we assume that the training sequence consists of a binary

signal ({1, -1}), and the header is always modulated using BPSK, regardlessof the

modulation scheme used in the packet body.

We assume that a packet of lengthk containsk1 information-bearing bits andk0

bits of training sequence and header. Further, we assume that the training sequence

and header bits are always error-free. The packet structureused for AWGN channels is

shown in Fig. 3.2.
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3.2.1.2 Energy for a single packet transmission.

We use the model from [13] for the total energy for a single packet transmission:

EConsumed = αERX(
d

d0
)n + EF ixed, (3.1)

whered0 = 1 meter is the reference distance. Some fixed energy is required both in

the transmitter and in the receiver to run the circuitry.EF ixed represents the total fixed

energy in both the transmitter and receiver to transmit/receive one packet, andERX is

the received energy per packet.

The relationship between the transmit and circuit power consumption and energy

consumption per symbol can also be determined. Assume each symbol containsb bits

and the signal bandwidth isB Hz, then the time duration to transmit a packet ofk bits

(with k1 information bits andk0 overhead bits) is

Tk =
k1
bB

+
k0
B
. (3.2)

Also, we assume that the transmit power at the transmitter isPt and the total circuit

power of the transmitter and receiver isPc. Thus, the energy to transmit and receive a

packet ofk bits is

EConsumed = (Pt + Pc)Tk,

= (Pt + Pc)(
k1
bB

+ k0
B
).

(3.3)

Since each packet containsk1/b+k0 symbols, then the energy consumption per symbol

is

Es =
EConsumed

k1/b+ k0
=

Pt + Pc

B
= Es,TX + Es,F ixed, (3.4)

whereEs,TX = Pt/B is the transmitted energy per symbol andEs,F ixed = Pc/B is

the fixed energy consumption per symbol. Therefore, for a fixed bandwidth,Es,TX can

be adjusted by changing the transmit powerPt. Es,F ixed is determined by the circuitry

power consumptionPc. The circuitry power consumption can be found according to

the transceiver structure, modulation schemes, coding techniques, etc. In this work, we
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Figure 3.3: A typical transmitter structure using linear modulation.

Figure 3.4: A typical receiver structure using linear demodulation.

only consider linear modulation schemes (e.g.,M-QAM), which have typical transmit-

ter and receiver structures as shown in Figs. 3.3 and 3.4.

As shown in Fig. 3.3, the major energy consuming components at the transmitter

are the digital-to-analog converter (DAC), the low pass filter (LPF), the bandpass filter

(BPF), the mixer, the frequency synthesizer and the power amplifier (PA). In this work,

the power consumption of the LPF, BPF, mixer, and frequency synthesizer are viewed

as constants, while the power consumption of the DAC followsthe model in [3]. Also,

the power amplifier does not have perfect efficiency (see Section 3.3.7). The circuit

power consumption here excludes the power consumed by the power amplifier. The

energy consumption from the power amplifier is considered asa part ofEs,TX.

Fig. 3.4 shows the major energy consuming components at the receiver, which are

the analog-to-digital converter (ADC), the low pass filter (LPF), the low noise amplifier

(LNA), the mixer, the frequency synthesizer, and decoder. In this work, the power con-

sumption of the LPF, LNA, mixer, and frequency synthesizer are viewed as constants.

The power consumptions of the ADC and the Viterbi decoder follow the models in [3].
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Table 3.1: Power Consumption Values

Pfilter Pmixer PLNA Psyn

TransmitterPct 2.5 mW 30.3 mW - 50mW

ReceiverPcr 2.5 mW 30.3 mW 20 mW 50mW

The power consumption of the circuit components of the transmitter (excluding the

power amplifier) and the receiver is defined as

Pc = 2Pmixer + 2Psyn + Pfilter + PDAC + PLNA + PADC + Pv,

wherePmixer, Psyn, Pfilter andPLNA are the power consumptions of the mixers, fre-

quency synthesizers, filters, and LNA, respectively. The above power consumptions

are assumed to be constant. The values for these parameters are chosen based on typ-

ical implementations, as shown in Table 4.3 [3].PDAC andPADC represent the power

consumption of the DAC and the ADC, respectively.Pv is the power consumption of

the Viterbi decoder.Pv = 0 when uncoded modulation schemes are used. These power

consumptions can be determined using the formulas in [3]. From the value ofPc and

the signal bandwidthB, we can calculateEs,F ixed. For example, whenPc = 286 mW

andB = 100 kHz,Es,F ixed =
Pc

B
= 2.86 µJ.

3.2.1.3 ESB model

We model the probability of error in data reception using an AWGN channel with noise

varianceN0 to find the energy required to successfully receive a data packet. We as-

sume that an error in the reception of the packet implies thatthe packet needs to be

retransmitted. Thus there is a tradeoff that can be balancedto reduce energy dissipation

through appropriate selection of physical layer parameters.

First, we need to find the relationship between the energy perreceived symbol
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Es,RX and the transmitted energyEs,TX .

Es,RX =
Es,TX

αdn
(3.5)

The parameterα is the reciprocal of the product of the amplifier efficiency (L) and the

loss in the channel. For instance, in the free space model:

α =
(4π)2

GTGRλ2L
(3.6)

where in generalL is a constant. Section 3.3.7 investigates the case whereL is a

function ofEs,TX. The termEs,RX is used to determine the SNR of the received signal,

which is important for determining the probability of error.

The probability of a successful packet transmission is as follows:

Ps,p = (1− Pe,s)
k1
b (3.7)

wherePe,s, the probability of a symbol error, is dependent on the SNR ofthe signal.

Note that the above calculation of the probability assumes that thek0-bit training se-

quence bits are error free. The formulas forPe,s are given in Table 3.2 for a selection

of modulation techniques. The valuek1 is the number of information bits per packet,

andb = log2M is the number of bits per symbol. Thus the valuek1
b

is the number of

symbols needed for ak-bit packet containingk1 information bits.

The product of the probability of packet success and the number of data bits per

packet gives the expected amount of data received per packet.

T = k1Ps,p (3.8)

The ratio of the total energy to send a packet and the expectedamount of data per

packet gives the metricenergy per successfully received bit (ESB). This is the value

that should be minimized by appropriate setting of the physical layer parameters.

ESB =
(k1

b
+ k0)(Es,TX + Es,F ixed)

T

=
(k1

b
+ k0)(Es,TX + Es,F ixed)

k1(1− Pe,s)
k1
b

(3.9)
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Figure 3.5: The energy per successfully received bit (ESB) as a function of the transmit

energyEs,TX . This plot shows a clear minimum and thus the optimal transmit energy.

These results assume a fixed distanced = 10m, BPSK modulation and fixed channel

noise.

So, for BPSK modulation, the equation forESB (see Table 3.2 forPe,s,BPSK) is:

ESBBPSK =
k(Es,TX + Es,F ixed)

k1

[

1−Q

(

√

2Es,TX

αdnNo

)]k1
(3.10)

Equation (3.9), the energy per successfully received bit, is the primary metric for deter-

mining the energy efficiency values. As shown in Fig. 3.5,ESB has a minimum with

respect to the transmit energyEs,TX.

To find the minimum ofESB, we can take the derivative with respect toEs,TX

and set it equal to zero. However, the equationd
dEs,TX

ESB = 0 has no closed-form

solution and thus the values that minimizeESB must be calculated numerically.

3.2.2 ESB Over Block Fading Channels

3.2.2.1 Packet structure

In narrowband communication networks, the transmitted signal most often encounters

block fading. In block fading environments, the training sequence at the beginning
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Table 3.2: Table of symbol error formulas from [84].

Modulation Pe,s
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(

√

2Es,RX

No

)

QPSK 2Q

(

√

Es,RX

No

)[
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(M−1)

Es,RX

No

)]2

Figure 3.6: The packet structure with header andinterleaved training sequence in block

Rayleigh fading channels.

of a packet cannot provide an effective estimation of the channel, especially when the

packet length is large. Therefore,interleaved training sequences can be used to update

the channel estimation periodically according to the coherence time of the block fading

channel. The packet structure for this case of block fading is shown in Fig. 3.6.

Assume that there areNp inserted training sequences, each of lengthk0, and the

coherence time of the Rayleigh fading channel isτc. To have the maximum efficiency

and maintain estimation accuracy, we should have

k1
bB

+
Npk0
B
≈ Npτc, (3.11)

wherek1 is the total number of information bits in a packet. Thus, thetotal number of

bits in a packet isk = k1 +Npk0.
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The number of required training sequences is therefore

Np =
k1

b(Bτc − k0)
. (3.12)

3.2.2.2 Energy for a single packet transmission

For the sake of conciseness, we assume the same energy model for the transmitter and

receiver in block Rayleigh fading channels as for AWGN channels. Although there are

additional components in the transceiver when consideringblock fading channels, such

as automatic gain controller (AGC) to fight Rayleigh fading,their power consumptions

are constant and can be viewed as a small amount of increment over the circuit power,

Pc, in AWGN channels. For example, the AGC will increasePc by about7 mW [85].

3.2.2.3 ESB model

From equation 3.3, we have

EConsumed = (Pt + Pc)
(

k1
bB

+Np
k0
B

)

= (Es,TX + Es,F ixed)
(

k1
b
+Npk0

)

= (Es,TX + Es,F ixed)
k1Bτc

b(Bτc−k0)
.

(3.13)

Thus, the ESB is now

ESB = EConsumed

T

= (Es,TX + Es,F ixed)
k1Bτc

b(Bτc−k0)
1

k1(1−Pe,s)
k1
b

= (Es,TX + Es,F ixed)
Bτc

b(Bτc−k0)(1−Pe,s)
k1
b

.

(3.14)

3.2.2.4 ESB model with average system outage probabilities

In fading channels, the system outage probabilities must beconsidered in system de-

sign. Assume that the SNR threshold isγT , then the system outage probability can be

defined as

Pr(γ < γT ) =

∫ γT

0

1

γ̄
e−γ/γ̄dγ, (3.15)
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whereγ̄ =
Es,RX

N0
is the average SNR at a given distance, which is determined bypath

loss. Then, the ESB considering average system outage probabilities becomes

ESB = (Es,TX + Es,F ixed)
Bτc

b(Bτc−k0)(1−Pe,s)
k1
b (1−Pr(γ<γT ))

. (3.16)

The selection of SNR thresholdγT is very important, especially considering multi-

hop transmission, sinceγT reflects the configuration of the transmission range of a

node. A highγT will increase the outage-probability-scaled ESB in equation 3.16 and

require the designer to choose more nodes to cover a given distance. On the other hand,

a low γT will decrease the outage-probability-scaled ESB and make it possible to use

fewer nodes to cover a given distance. However, in this work,we do not focus on

the selection of SNR threshold. Instead, we viewγT as a predetermined system-level

parameter.

3.3 Optimizing Physical Layer Parameters

We performed several numerical calculations to minimizeESB, the energy per suc-

cessfully received bit, and hence find the optimum transmit energy and the energy-

optimal hop distances for different modulation schemes. There are considerable simi-

larities in the analysis for AWGN and block Rayleigh fading channels. Therefore, for

the sake of brevity, we focus on the analysis in AWGN channels(Sections 3.3.2 - 3.3.8),

with Section 4.9 providing an illustration of the performance in block Rayleigh fading

channels.

3.3.1 Numerical Calculations

All numerical optimizations are performed in MATLAB. The primary optimization

metric isESB, the energy per successfully received bit. The goal is to minimize this

value to reduce the energy required to transmit data successfully in the presence of
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Table 3.3: Parameters Used in the Models.

Description Parameter Value

Fixed radio cost Es,F ixed 2.86µJ/symbol

Packet size k 360 bits

Overhead bits per packet k0 64 bits

Path loss exponent n 3.5

Amplifier efficiency L 0.02

Carrier frequency f 2.4 GHz

Signal bandwidth B 100 kHz

Channel coherence time τc 1 ms

Outage threshold γT 0.1 (-10 dB)

channel noise. Because there is no closed-form solution, MATLAB is used to numeri-

cally solve the optimization ofESB with respect to transmit energy. All that is needed

to find the minimum transmit energy at an arbitrary distance is to searchESB for a

minima through differentEs,TX values. Finding optimum distances is more difficult

and is described in Section 3.3.3.

As a basis, the reference noise valueN0 is chosen such that the bit error rate (BER)

of a BPSK symbol is10−5 for an energy per received bitEb,RX = 50 nJ. In simulations

where a range of noise values are considered, the values are logarithmically spaced from

N0 to 128N0. Unless otherwise specified, we used the parameters shown inTable 3.3

for determiningESB.

3.3.2 Optimum Transmit Energy in AWGN Channels

In this section we evaluate the case where hop distance is fixed. Finding the optimum

transmit energy is a simple matter of finding the minimum of theESB function with
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Figure 3.7:E∗
s,TX andESB∗ for a fixed distance,̂d = 15m and a range of noise values

for different modulations.

respect to energyEs,TX for a particular channelN0, andn and at a particular hop

distance,d, and modulation. It was shown in Fig. 3.5 thatESB has a minimum with

respect toEs,TX. This value cannot be solved analytically because of the multiple Q-

functions in the derivative of theESB formula. However, the optimalEs,TX can be

solved numerically. Fig. 3.7 shows the optimum values ofEs,TX andESB over a

range of channel noise values and at different modulations.The figures were created

by fixing the hop distanced to 15 m and iteratively changing the noise valueN0 and

modulation. For each iteration, the value ofEs,TX that minimizesESB is found. The

optimalESB (ESB∗) and the optimalEs,TX (E∗
s,TX) values were stored and plotted

against the noise value in Fig. 3.7.

Fig. 3.7(a) shows thatE∗
s,TX increases with channel noise. This result is expected

to maintain the optimalESB, as increased channel noise must be offset with increased

transmission power to maintain a certain SNR. Fig. 3.7(b) shows that as the noise

increases, the optimalESB also increases.
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Figure 3.8: Determining optimal hop distance.

3.3.3 Optimum Distance in AWGN Channels

In addition to finding the optimum transmit energy, we also want to find the optimal hop

distance. In this section we evaluate the case where transmit energy and modulation are

fixed, and we want to find the optimum relay distance. The optimum energy-efficient

hop distanced∗ can be found by minimizing theESB divided by the hop distanced

(e.g.,ESB/d). This gives the value of energy per successfully received bit per meter,

ESBM . This metric is important, because if a packet needs to travel a route of distance

D, thenESBM ×D gives theESB of the entire route. Thus, by minimizingESBM ,

thenESB is minimized for the entire route.

The optimal distance can be seen by looking at a plot ofESBM versus transmit

energy and hop distance, shown in Fig. 3.8(a). The line of minimum values occur at

each distances’ optimum transmit energy value. It may appear thatESBM has a range

of values that are minimum, but as seen in Fig. 3.8(b), a plot of the values along the

trench,ESBM has a clear minimum value and, thus, an optimum hop distance.

Fig. 3.9 shows the optimal distanced∗ andESBM∗. Both plots were generated

with Es,TX = 5 nJ. Fig. 3.9(a) shows that the optimum distance decreases with in-
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Figure 3.9: Energy optimal hop distance as a function of noise.Es,TX = 5 nJ.

creasing channel noise. Similarly, Fig. 3.9(b) shows that as the channel noise increases,

ESBM∗ increases. This is as expected, since as the channel gets worse, more energy

on average to transmit the data is needed due to the increasedprobability of retransmis-

sion.

3.3.4 ESB at the Optimum Distance and Transmit Energy in AWGN

Channels

In Sections 3.3.2 and 3.3.3, the metricESB was evaluated with one degree of freedom,

namely,Es,TX or d, respectively. In this section we look at the case whereEs,TX and

d are both allowed to be set to their optimum values. For the analysis in this section,

all the desired modulations and channel noise values were iteratively evaluated. In

each iteration, the optimum hop distance was found, but instead of using one transmit

power, the optimal transmit power (as described in Section 3.3.2) was found for each

hop distance considered.

Fig. 3.10 shows the results when both parameters are set to their optimal values.

Fig. 3.10(a) shows the optimal hop distance. As expected theoptimal hop distance

decreases with an increase in channel noise. Unexpectedly,Figs. 3.10(b) and 3.10(c)

show that the optimalESB andEs,TX are independent of channel noise. This means
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Figure 3.10: Parameters calculated usingE∗
s,TX andd∗ at each point considered.

that nodes can be set with the predetermined optimal transmit power, and that the op-

timal energy-efficient solution can be obtained by simply changing the hop distance as

channel noise varies. This can be seen by rewriting equation(3.9) as follows:

ESB =
(k1

b
+ k0)(Es,TX + Es,F ixed)

k1

(

1− Pe,s(
Es,TX

αdnN0
)
)

k1
b

.

In this equation we can see that the only places that the hop distance and the noise term

appear are as a product of one another. Thus the two can be regarded as one term. Once

the desired ESB is found, any change in the environment that causesNo → ξNo, then

the same minimumESB can be achieved by scaling the hop distanced→ 1
n√ξ

d.

3.3.5 Selecting the Optimal Modulation Scheme

In Section 3.3.2 we showed how to find, for different modulation schemes, the optimal

transmit energy for a given hop distance, and in Section 3.3.3 we showed how to find

the energy optimal hop distance. If these two parameters of hop distance and transmit

energy were the constraints on the network and it was up to thenetwork designer to

decide what type of modulation and coding to use, then it may seem that the proper so-

lution is to find which modulation scheme has its optimal distance and transmit energy

parameters nearest to the desired values provided by the network designer. However,

this will not provide the best (minimum total energy) solution. As can be seen in Fig.
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Figure 3.11: Selection of the modulation scheme for each (noise, distance) value based

on (a) which modulation scheme’s optimal is closest to the point and (b) which modu-

lation scheme obtains the optimum ESB at that point. Subfigure (c) shows the ratio of

ESB using thenth best modulation and the best modulation scheme.

3.11(a), for each hop distance, there is an optimal modulation scheme that minimizes

energy dissipation.

Fig. 3.11(b) shows that using a particular modulation’s optimum hop distance does

not guarantee that it is the most efficient means of modulation. The vertical lines show

where the optimal relay distances are for each modulation. The top bar shows which

modulation is closest to its optimal for each distance. The lower bar shows which

modulation scheme has a minimumESB for each relay distance. We can see that

these two bars are not the same, and thus we need to select the modulation scheme

based on which scheme has a minimumESB for the particular hop distance in order

to minimize energy.

Fig. 3.11(c) is an evaluation of the effects of using a suboptimal modulation scheme.

In this figure, the ratio between the best and thenth best modulation scheme are com-

pared. This figure shows that the penalty for using a modulation that is only one off

from the optimal scheme does not have a great impact onESB, but using a modu-

lation that is much different from the optimal one will perform quite poorly. Thus it

is important to use either the optimal or the next-optimal modulation scheme to save
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energy.

3.3.6 Effect of Packet Size

Packet size has a significant effect on the efficiency of the system. The model we are

using gives the probability of packet success as the productof all symbol successes,

as shown in (3.7). Then, for a given modulation scheme, the probability of a success-

fully received packet decreases as the packet size increases. Thus there is an increase

in energy efficiency with small packets. However, this is only true if we do not con-

sider the per-packet overhead. Equation (3.8) shows that the throughput of the system

approaches zero as the bits per packet,k, approaches the number of overhead bits,k0.

Thus there is some optimal packet size to obtain the highest energy efficiency.

This tradeoff in packet size can be seen in Fig. 3.12, which shows the optimal

energy per successfully received bit,ESB, as packet size is varied for different amounts

of per-packet overhead. The case where packets have zero overhead shows the minimal

energy tending to zero. However, when packet overhead is considered, there is a non-

zero minimum energy packet size. As expected, as the size of the overhead increases

the optimal packet size also increases.

3.3.7 Amplifier Efficiency

In our model, parameterα that is used to encapsulate both the loss in the channel and the

amplification efficiency. In all the previous experiments, this term was constant. The

amplification efficiency term is due to the loss in energy fromthe loss in amplification

of the signal before it is sent to the antenna. In a traditional model for a radio, there is

some fixed cost for operating the radio. That is, for every 1 mWput into the amplifier,

there will beδ mW radiated out of the antenna, whereδ < 1.

However, this is not the most important term in the analysis of this work, as this

term has only a relational impact on the equations. Rewriting (3.9) to be in terms of
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transmitted energy shows that the only impact ofα is as a scalar to the noise,N0. As

described in Section 3.3.1, the reference noise level was defined for a BPSK system to

have a BER of10−5 and anEb,RX = 50 nJ. This means that using anα that depends

on the amplifier efficiency is equivalent to scaling the noiseterm, as shown in this

equation:

ESB =
(k1

b
+ k0)(Es,TX + Es,F ixed)

k1

[

1− Pe,s

(

Es,TX

αdnN0

)]

k1
b

. (3.17)

Using a constantα is not the most accurate model, because in actual hardware the

amplifier is more efficient at higher power levels. For example, the Tmote Sky motes

developed by Sentilla Corporation (formerly MoteIV Corporation [86]) have a table

that specifies the current draw of the system, which providesus with the energy values

shown in Table 3.4.

Fig. 3.13 shows the optimalESB at different noise levels, for various values ofα.

This plot shows how the optimalESB changes whenα changes. The solid line shows

an example of how a non-constantα changes the optimalESB. This figure shows a



53

Table 3.4: Table of power consumed based on transmit power for the MoteIV Tmote

Sky. Based on information from [86].

Transmit Consumed

Power (mW) Power (mW)

1.00 52

0.79 49

0.50 45

0.31 41

0.20 37

0.10 33

0.03 29

0.003 25

slight change in the shape of the curve as the value ofα changes. The exact shape and

degree of the distortion depend on the range and degree of thenonlinearity in amplifier

efficiency as a function of transmit power. As seen in this example, the distortion is

not very severe and does not significantly affect the resultsobtained in the previous

sections.

3.3.8 Gain Achieved By Optimizing Physical Layer Parameters in

AWGN Channels

In actual wireless networks it would not be possible to placeall nodes in such a way

as to guarantee that nodes could always use the optimal hop distance, nor would it be

possible to set transmit powers to the exact optimum level. In both cases, the physical

constraints of the system in terms of topology of the SRWN andthe limitations on the

hardware’s precision will prevent the system from achieving this theoretical optimum
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behavior. Thus, the overall benefit of finding an optimum mustbe considered.

The two ways that a node could be used sub-optimally are in itshop distance and

in its transmit energy precision. If the nodes’ transmit energy is calibrated to transmit

a particular distance, and the actual distance covered is different from this calibrated

distance, then there will be a waste of energy. If the distance is smaller, the transmitter

could have used less power to send the message with a similar probability of success.

If the distance is longer, the probability of error will dominate and the number of re-

transmissions will negatively affect the efficiency. Similarly, if the transmit power is

non-optimal, there will be energy waste.

Figs. 3.14(a) and 3.14(b) show the impact of deviation from the optimum transmit

energy and hop distance values, respectively. Fig. 3.14(a)shows how error inEs,TX

affects the performance of the system. The figure shows the ratio of ESB∗ at an arbi-

trary distance andESB with differentEs,TX used for that same arbitrary distance of

20 m. The range ofEs,TX used are shown in percent ofE∗
s,TX. The figure shows that

underestimatingEs,TX requires more energy overall than overestimating this parame-
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Figure 3.14: Gain of finding optimal transmit energy and optimal distance.

ter.

Fig. 3.14(b) shows the effect of using hop distances other than the one used to find

the optimal transmit power. In this figure, the optimal transmit power was found for

a distance of 20 m. TheESB was then found for that transmit power over the given

range of distances. This was divided by the value ofESB if the optimal transmit power

had been recalculated for each distance. This shows that hopdistances that are greater

than expected will cost much more energy than distances lessthan expected. Distances

greater than expected would be equivalent to underestimating the transmit power, so

both figures in Fig. 3.14 show that it is better to use more energy in transmission when

there is uncertainty or an inability to get exact values ofEs,TX andd.

Table 3.5 shows the effects onESBM of using suboptimal modulation schemes.

This data tells us that the penalty for using a suboptimal modulation scheme can be

quite high, and thus it is important to match the modulation scheme with the expected

hop distance and channel model to reduce energy to send data in SRWNs.
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Table 3.5: Percent increase inESBM by using suboptimal modulation schemes. Data

used in figure 3.11(c).

Optimum Modulation

Maximum difference 4-QAM 16-QAM 56-QAM 256-QAM

Modulation 4-QAM 0% 43% 77% 110%

16-QAM 203% 0% 17% 37%

56-QAM 893% 82% 0% 12%

256-QAM 3323% 393% 41% 0%

Average difference 4-QAM 16-QAM 56-QAM 256-QAM

Modulation 4-QAM 0% 24% 63% 100%

16-QAM 150% 0% 10% 31%

56-QAM 683% 37% 0% 8%

256-QAM 2566% 201% 19% 0%

3.3.9 The Performance in Block Rayleigh Fading Channels with

Outage Probability

The performance of different modulations is also evaluatedin block Rayleigh fading

channels. The ESB model in this case is from (3.16). By observing (3.9) and (3.16), we

find that the ESB models in AWGN channels and block Rayleigh fading channels are

similar. Compared with the ESB model in AWGN channels, the ESB in block Rayleigh

fading channels is scaled by the outage probability and multiple sequences of training

symbols. Some illustrative results for block Rayleigh fading channels are shown in

Fig. 3.15. Fig. 3.15(a) shows that, for each hop distance, there is an optimal mod-

ulation scheme that minimizes energy dissipation in block Rayleigh fading channels.

Fig. 3.15(b) shows that using a particular modulation’s optimum hop distance does not

guarantee the most energy efficiency. Fig. 3.15(c) shows theimportance of using either
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Figure 3.15: Selection of the modulation scheme for each (noise, distance) value based

on (a) which modulation scheme’s optimal is closest to the point and (b) which modu-

lation scheme obtains the optimum ESB at that point. Subfigure (c) shows the ratio of

ESB using thenth best modulation and the best modulation scheme.

the optimal or the next-optimal modulation scheme to save energy. These results are

similar to the results for AWGN channels, and similar conclusions about optimal selec-

tion of transmit power, hop distance and modulation scheme can be made. The most

significant differences in the results using AWGN and block Rayleigh fading channels

are due to the increased energy consumption caused by the outage probability and the

multiple sequences of training symbols. For example, the optimized ESB for 4-QAM

is about10−7 J atd = 50 m in AWGN channels; while the optimized ESB for 4-QAM

increases to1.1× 10−5 J atd = 50 m in block Rayleigh fading channels.

3.4 Summary

In this chapter we investigated the impact of physical layerparameter selection on the

energy efficiency of short-range wireless networks. The analysis is conducted mostly

in AWGN channels, while we show that a similar procedure can be readily adopted for

the analysis in block Rayleigh fading channels. The resultspresented in this chapter

can be of great help to adaptive network designs. For example, as the simulation results
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show, once the channel and modulation scheme are known, one can easily find the

optimum distance that the node should hop to get its data to the destination, as well as

the optimum transmit energy. The contributions of this study are itemized as follows:

• The main conclusion of this study is that using optimal transmit energy and opti-

mal relay distance are crucial in achieving energy efficiency for a SRWN.

• Optimizing only the transmit energy without optimizing therelay distance is not

enough to achieve the best possible ESB.

• Over-estimating the transmit energy is preferable over under-estimating the trans-

mit energy.

• If the system is operating at the optimum distance, then the transmit energy and

ESB become independent of channel noise. This means that to maintain the same

ESB, as the noise floor of the channel increases, the hop distance can be scaled

without requiring a change in the transmit energy.

• It is important to match the modulation scheme with the expected hop distance

and channel noise model in order to efficiently use the limited node energy. Aver-

age increases in ESBM from using a suboptimal modulation scheme range from

8% up to greater than2500%.

• The results presented for AWGN channels can be extended to block Rayleigh

fading channels.

• As all networks will not be operating under the same conditions, it is important

for future short-range wireless network standards to allowfor adaptation in order

to achieve long network lifetimes.
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4 Joint Optimization of Physical

Layer and Link Layer in

Narrowband Communication

Systems

In the previous chapter, we proposed a metric called energy per successfully received

bit to evaluate the energy efficiency of a communication link. In this chapter, we look at

cross-layer optimization of the physical and link layer, further detailing the energy per

successfully received bit with the consideration of circuit power consumption, packeti-

zation and retransmission overhead, bit and packet error probability, and the duty cycle

of the transceiver.

We formalize the problem of minimizing the energy dissipated to successfully trans-

mit a single information bit over a link. In our model, we optimize the packet length

and transmit power as a function of distance between the transmitter and the receiver

for different modulation schemes. We propose a general unconstrained energy con-

sumption model that provides a lower bound on the energy dissipated per information

bit. A practical unconstrained physical layer optimization scheme is also provided to

illustrate the utilization of the model. Furthermore, minimized energy consumptions

of different modulation schemes are compared over an additive white Gaussian noise
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(AWGN) channel.

We extend this general energy consumption minimization problem by considering

two particular constraints: fixed average power and fixed average rate. The impacts

of the average power and the information rate constraints onenergy consumption are

explored. We determine the optimum constellation size, packet length, and duty cycle.

While only numerical optimization is used in the previous chapter, here we provide

analytical expression for the optimal packet length.

4.1 Introduction

In the design of communication systems, often the goal is to minimize the transmit

power [87, 88]. In recent years, with the advent of battery operated wireless communi-

cation nodes operating over small distances, much more attention is being paid to the

overall energy consumption. In this work, we investigate the problem of joint optimiza-

tion of PHY-layer and data link layer parameters to maximizethe energy efficiency of

a communication link.

Although an effective energy efficiency metric and a solid physical layer optimiza-

tion scheme are proposed in the previous chapter, there are noticeable limitations to

this work. First, in the reliable transmission scheme, the retransmission cost, both of

time and energy, is not considered. Second, the optimal transmit energy per symbol

and the optimal hop distance are derived for a given noise power. However, the noise

power is usually fixed for a given bandwidth and noise power spectral density while

the transmission distances are often unknown and variable.Therefore, to better facili-

tate the wireless network optimization, the optimal configurations should be provided

with respect to a given transmission distance instead of a given noise power. Third,

although the potential impacts of a variable packet length on the energy minimization

are briefly described in the previous chapter, the packet length is not considered as an

optimization parameter. Furthermore, the work in the previous chapter relies only on
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numerical calculations and did not exploit the possibilityof analytical solutions. Last

but not least, only unconstrained optimizations are considered in the previous chapter,

while in practice communication links are often bounded by many constraints, such as

transmission rate requirements and average power consumption limitations.

In this chapter, we extend our work from the previous chapterto address these lim-

itations. First, we derive a detailed model of an automatic repeat request (ARQ) based

retransmission scheme by including the different energy costs from different stages of

retransmissions.

Second, we thoroughly investigate the joint influence of transmit power, packet

length, modulation and coding schemes on the energy performance of a wireless link,

and we provide the optimal configurations with respect to transmission distances. This

allows a direct adoption of the optimal configuration in the deployment of a practical

wireless network. To further facilitate the real time calculation of the optimal commu-

nication scheme, we derive closed form solutions for both the optimal packet length and

the optimal target bit error probabilities for a given transmission distance andM-QAM

modulation scheme.

Third, we derive an analytical solution for the lower bound on the energy consump-

tion per information bit and the optimal transmit power froman information-theoretical

point of view, with the consideration of circuit power consumption and retransmission

overhead.

Fourth, we study the link energy minimization problem givenaverage power and

average rate constraints by further including the optimization over duty cycles. The

fixed average power constraint is particularly important inwireless networks that re-

quire a predictable lifetime, while the fixed average rate constraint is useful in wireless

networks that must provide a certain quality of service (QoS), such as guaranteeing

the continuity of a video stream. For both constrained optimization problems, we pro-

vide in-depth analyses of the impact of the constraints on the energy cost. Moreover,

we derive analytical solutions of the optimal transmit power and duty cycle from an
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information theoretical perspective in the fixed average power case.

In summary, the contribution of this work is three fold: first, we derive a com-

prehensive link-level energy consumption model that includes transmit power, circuit

power, retransmission overhead, packetization, and duty cycle. Second, the energy

minimization procedure is highly parameterized. That is, it is straightforward to adapt

the proposed energy consumption model and the energy minimization procedure to

transceivers with different circuitries and different channel models, such as Rayleigh

and Ricean fading channels. Third, some analytical solutions are derived to allow real

time calculations of the optimal configurations.

4.2 System and Signal Model

This section introduces the packet structure, transmitter/receiver structure, and auto-

matic repeat request (ARQ) scheme that lay the foundation for analyzing the impacts

of packetization, circuit power, and retransmissions on energy consumption. The nota-

tion used in this chapter is summarized in Table 4.1.

4.2.1 Packet Structure

The packet structure considered in this work is shown in Fig.4.1. It consists of four

components: payload, upper layer header, PHY/MAC-header,and preamble. We as-

sume that there areLL bits in the payload of each packet. The upper layer header

contains the control information added by the upper layers,such as routing informa-

tion, packet ID, etc. We assume there areLUH bits in the upper layer header. From the

view of the PHY and MAC layers, the payload and the upper layerheader are indistin-

guishable. Therefore, the payload and the upper layer header are modulated and coded

similarly.
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Table 4.1: Notations

Notation Meaning

B Signal bandwidth

d Transmission distance

Pb Bit error probability

N0 Noise power spectral density

η Bandwidth efficiency

γ Signal-to-noise ratio

G Path loss

Gc Coding gain

Rc Coding rate

Pr Received signal power

Pt Transmit signal power

Pc Circuit power (including both transmitter and receiver)

Λ Retransmission overhead

Φ Duty cycle

LL Number of information bits per packet

Eb Energy consumption per information bit
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Figure 4.1: Packet structure.

Table 4.2: Packet Structure Parameters

Component Length (bits) Duration (s) Modulation

Payload LL TL Adaptive

Upper layer header LUH TUH Adaptive

PHY/MAC header LH TH BPSK/coded BPSK

Preamble - TP -

Conversely, PHY and MAC headers are modulated using a predefined modulation

scheme, such as BPSK for an uncoded system and coded BPSK for acoded system.

This is because the PHY and MAC headers carry important control information, such

as information regarding modulation and coding for the payload and the upper layer

header. Therefore, the modulation scheme of the PHY/MAC-header has to be robust

and known to the receivera priori, so that the receiver can always demodulate the

received PHY/MAC-header, no matter what modulation schemethe payload and upper

layer header use. Finally, the preamble is a predefined sequence that serves the purpose

of synchronization, automatic gain control (AGC), etc. Moreover, we assume that the

transmit power is constant during the entire packet. A summary of the length and

duration parameters for these components are provided in Table 4.2.

4.2.2 Transceiver Model

In a node, energy is consumed for sensing, data processing and communications [36][89].

In this work, only the energy consumption involved in the communications is consid-

ered, since the energy consumption of sensing and data processing does not affect our
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Power

Amplifier

Channel

Encoder

Figure 4.2: A typical transmitter structure using linear modulation.

Figure 4.3: A typical receiver structure using linear demodulation.

optimization scheme. At the transmitter, energy consumption consists of the transmit-

ted energy and the energy consumed in the circuits. At the receiver, the only energy

consumption is that of the circuitry. To facilitate the analysis of the energy consump-

tion, we assume generic transmitter and receiver models as shown in Figs. 4.2 and

4.3.

4.2.2.1 Transmitter

As shown in Fig. 4.2, the major energy consuming components at the transmitter are the

digital-to-analog converter (DAC), low pass filter (LPF), bandpass filter (BPF), mixer,

frequency synthesizer and power amplifier (PA). In this work, the power consumption

of the LPF, BPF, mixer, and frequency synthesizer are viewedas constants, while the

power consumption of the DAC follows the model in [31]. The power consumption of

the power amplifier can be expressed as

Pamp = βPt, (4.1)

wherePt is the transmission power andβ = ε
ρ
− 1, ε is the peak-to-average ratio, and

ρ is the drain efficiency of the power amplifier. Note thatε andρ are both determined

by the modulation scheme.
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Table 4.3: Power Consumption Values

Pfilter Pmixer Pamp PLNA Psyn

TransmitterPct 2.5 mW 30.3 mW βPt - 50mW

ReceiverPcr 2.5 mW 30.3 mW - 20 mW 50mW

4.2.2.2 Receiver

As shown in Fig. 4.3, the major energy consuming components at the receiver are the

analog-to-digital converter (ADC), low pass filter (LPF), low noise amplifier (LNA),

mixer, frequency synthesizer, and decoder. In this work, the power consumption of

the LPF, LNA, mixer, and frequency synthesizer are viewed asconstants. The power

consumptions of the ADC and Viterbi decoder follow the models in [31].

The power consumption of the circuit components of the transmitter (excluding the

power amplifier) and the receiver is defined as

Pc = 2Pmixer + 2Psyn + Pfilter + PDAC + PLNA + PADC + Pv,

wherePmixer, Psyn, Pfilter andPLNA are the power consumptions of the mixers, fre-

quency synthesizer, filters, and LNA, respectively. The above power consumptions are

assumed to be constant. The values for these parameters are chosen based on typical

implementations, as shown in Table 4.3 [31].PDAC andPADC represent the power

consumption of the DAC and the ADC, respectively.Pv is the power consumption of

the Viterbi decoder. These power consumptions can be determined using the formulas

in [31].

4.2.3 Automatic Repeat Request Sessions

In this work, ARQ is used as the link-layer protocol, that is retransmissions are re-

quired when any bit error is detected. Considering retransmission, the procedure for
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Figure 4.4: The transmission and reception of one packet usingm total transmissions.

successfully transmitting/receiving one packet is shown in Fig. 4.4. We assume that

before transmission or reception of a packet, the transmitter and receiver will spend

Ttr seconds to go from the off (sleep) state to an on (active) state. Also, for a given

implementation, the time period to start up the frequency synthesizer,Ttr, is assumed

to be fixed.TIPS denotes the inter packet space (IPS).Ton is the time duration for the

transmission of one packet.Ton = (TL + TUH + TH)/Rc + Tp, whereRc is the chan-

nel code rate and is set to 1 for the uncoded case.TACK is the time period when the

transmitter listens for an acknowledgement. We setTACK = LH

BRc
+ TP .

Assume that to successfully deliver one packet, the total number of transmissions is

m. In the firstm− 1 transmissions, the energy consumption during theTACK period at

the transmitter is denoted byELN . In the last delivery, the energy consumption during

theTACK period at the transmitter isEACK . EACK
tx is the energy consumption of trans-

mitting the acknowledgement after receiving themth packet. We assume that during

the inter-frame space,TIPS, only the frequency synthesizer contributes to the energy

consumption denoted byEIPS. Also, we assume that in the first(m−1) TACK periods,

the energy consumption at the receiver isEIPS as well, since no ACK is transmitted.

Etr is the energy consumption during the transient mode,Etx is the energy consump-

tion at the transmitter to transmit one packet, andErx is the energy consumption at the

receiver to receive one packet. The detailed expressions ofthe energy consumptions

above will be defined in the following section.
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4.3 Unconstrained Energy Minimization

4.3.1 Lower Bound on Energy Consumption per Information Bit

A classic model of the energy consumption per information bit when communicating

at rateR is [90]

Eb =
Pt

R
, (4.2)

wherePt is the transmit power andR is the information rate. However, to obtain a more

refined model, we need to at least consider the following factors:

• the circuit power consumption;

• the reduction in information rate by packetization, duty cycle mode, and ARQ;

• the increase in power consumption caused by overhead.

We now provide a revised energy consumption per informationbit model considering

the above factors.

Firstly, considering the impact of circuit power consumption, the lower bound on

energy consumption per information bit can be modeled as

Eb ≥ Pt(1+β)+Pc

B log
(

1+
Pt

2GBN0

) , (4.3)

wherePt/G is the received signal power after path lossG, and2BN0 is the total noise

power within bandwidthB. SinceB log(1 + Pt/2GBN0) is the channel capacity, it

represents the maximum possible information rate and hence(4.3) provides a lower

bound on the energy consumption per information bit.

If we assume thatPt/Pc = α, a minimum value of (4.3) can be found for any given

distance with respect toα. The corresponding optimum value ofα is denoted as

α∗ = argmin (1+α+αβ)Pc

B log
(

1+ Pcα
2GBN0

) . (4.4)
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The function (1+α+αβ)Pc

B log(1+Pcα/2GBN0)
is a strict convex function ofα in α > 0, which

impliesα∗ = arg{∂Eb

∂α
= 0}. Thus, a closed-form expression ofα∗ can be found:

α∗ =





(

κ
1+β
− 1
)

log2 10

W
(

[ κ
1+β
− 1] log2 10

10ln2

) − 1





1

κ
, (4.5)

whereκ = Pc/(2BN0G), andW (.) is the Lambert W function [91]. Equation (4.5)

shows thatα∗ is also a monotonically decreasing function ofPc for any given path loss,

which is a function of distance between the transmitter and the receiver.

The corresponding optimum information rate and transmit power will be

P ∗
t = Pcα

∗

R∗ = B log
(

1 + Pcα∗

G2BN0

) . (4.6)

Based on the given parametersG, B, N0, the optimum parametersα∗, P ∗
t , andR∗

can be calculated for any given path loss.

Furthermore we modify the initial model in (4.3) according to the reduction in in-

formation rate that comes from overhead in a real system. Forexample, packetization

overhead, retransmission overhead, and duty cycle must be included. To incorporate

the ARQ scheme and packet structure considered in this work,the lower bound onEb

in (4.3) must be modified as

Eb ≥
(1 + α + αβ)Pc

ΛB log
(

1 + αPc

2GBN0

) , (4.7)

whereΛ represents the overhead induced by the link-layer protocoland the frame struc-

ture. For instance, inheriting previous assumptions,Λ can be defined as

Λ =
LL/B log

(

1 + αPc

2GBN0

)

2TIPS + TACK + TP + LL+LUH

B log
(

1+ αPc
2GBN0

)

. (4.8)

It is straightforward to extend the model in (4.7) to includethe duty cycle of wireless

transceivers, since the duty cycling can be viewed as a direct reduction in the informa-
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tion rate. If the transmitter/receiver only works atΦ fraction of the total time (we refer

toΦ as the duty cycle), the information rate then becomes

R = ΦΛB log

(

1 +
αPc

2GBN0

)

. (4.9)

The duty cycle does not affectEb in the unconstrained case we consider here, since

Eb ≥
Φ((1 + β)Pt + Pc)

ΦΛB log
(

1 + αPc

2GBN0

) =
(1 + α + αβ)Pc

ΛB log
(

1 + αPc

2GBN0

) , (4.10)

which is the same as the model expressed in equation (4.7). However, the duty cycle

mode will have a major influence in some constrained situations, such as fixed average

power transmission, as discussed in Section 4.4.

4.3.2 Minimization of Energy Consumption with Practical Modu-

lation and Coding Schemes

The information rate in practice is much lower than the boundprovided by the capacity

B log(1 + Pt/2GBN0), since the information rate is reduced by the imperfectionsof

coding, packetization overheads, etc. Therefore, to use the generalEb model in (4.3) in

practice, we need to obtain the realistic information rate and use this as the denominator

in (4.3). Therefore, we modify the model ofEb from (4.3) to adopt practical information

rates as follows

Eb =
(1 + β)Pt + Pc

R
= N

[(1 + β)Pt + Pc]Ton

LL

, (4.11)

whereTon is the time duration to transmit one packet,LL is the number of information

bits in one packet, andN is the total number of retransmissions needed to successfully

deliver one packet. That is, the energy consumption per information bit can be equiva-

lently expressed as the energy consumption per transmitting/receiving one packet mul-

tiplied by the average number of retransmissions required to successfully deliver the

packet divided by the number of information bits contained in the packet.
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4.3.2.1 Total number of retransmissions

We assume that there are no errors in the PHY/MAC-header. This assumption is reason-

able for two reasons. The robust modulation schemes used by the PHY/MAC-header

ensure that errors rarely occur in the PHY/MAC-header. Also, we assume that when-

ever there is a bit error in the received packet, a retransmission is required. For a packet

containingLL information bits, the probability of a packet error is

Ppe = 1− (1− Pb)
LL+LUH . (4.12)

The expected total number of retransmissions to successfully deliver one packet is

N =
1

(1− Pb)LL+LUH
. (4.13)

4.3.2.2 Average energy consumption per packet

Since the circuit powerPc is fixed, we only need to find the transmit powerPt. The

transmit power can be determined from the SNRγ at the receiver and the desired bit

error probabilityPb. The SNR per symbol is defined asγ = Pr/(2BN0), wherePr

is the received power,B is the signal bandwidth, andN0 is the spectral power density

of the white Gaussian noise. Theγ-Pb function ofM-QAM modulations over AWGN

channel is well defined as [87]

Pb ≈
2

log2M
e−

3
2(M−1)

γ. (4.14)

Then, the SNR-BER relation inM-QAM modulation is

γ = f(γ) =
2

3
(2b − 1) ln

2

bPb

, (4.15)

whereb = log2M .

Also, based on the signal propagation model, we havePt = GPr,whereG repre-

sents the path loss, whose decibel value is determined by

G(dB) = G1(dB) + 10k log10 d+ LM(dB), (4.16)
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whereG1 = 30 dB is the reference path loss at 1 m,k = 3.5 is the path loss constant,

andLM = 40 dB is the link margin [31].

Therefore, the transmit power can be eventually denoted as

Pt = 2BN0Gγ/Gc = 2BN0Gf(Pb)/Gc, (4.17)

whereGc denotes the coding gain, andGc = 1 for uncoded modulation.

The ARQ procedure has been shown in Fig. 4.4. The energy consumption during

each session is summerized as follows:

Etr = PsynTtr,

EIPS = PsynTIPS,

ELN = (Pcr − Pv)TACK ,

EACK = PcrTACK ,

Etx = [2(1 + β)BN0Gγ/Gc + Pct]Ton,

EACK
tx = [2(1 + β)BN0Gγ/Gc + Pct]TACK ,

Erx = PcrTon.

In the above equations,Pct andPcr represent the power consumption of the circuits

components of the transmitter and the receiver, respectively. Pv is the power consump-

tion of the Viterbi decoder, the value of which can be calculated from [92]. Moreover,

we have
Ton = (TL + TUH + TH)/Rc + Tp,

= (LL + LUH)/(RcηB) + LH/RcB + Tp.
(4.18)

That is,Ton is a function of packet length.

The total transmit and receive energy consumptions ofm deliveries are

Et(m) = (2EIPS + Etx + ELN )(m− 1) + 2Etr

+2EIPS + Etx + EACK .

Er(m) = (3EIPS + Erx)m+ 2Etr + EACK
tx .
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Consequently, to successfully deliver a packet, the average energy consumption is

Ē =
∑∞

i=1[Et(i) + Er(i)]Pr{m = i}, (4.19)

wherem is the number of transmissions andPr{m = i} denotes the probability that

the number of transmissions equalsi, which is given byPr{m = i} = P i−1
pe (1 − Ppe).

After simplification, we have

Ē = (2EIPS + Etx + ELN )N + 2Etr + PvTACK

+(3EIPS + Erx)N + 2Etr + EACK
tx .

(4.20)

From previous analysis,̄E is a function of target bit error probabilityPb and packet

lengthLL. Thus, the minimization ofEb can be conducted overLL andPb.

4.3.2.3 Minimization of energy consumption per information bit

Each packet containsLL information bits. Therefore, the average energy consumption

per information bit is

Ēbit =
Ē

LL
(4.21)

To minimizeĒbit with respect toLL, we set∂Ēbit

∂LL
= 0, which gives us

A1L
2
L +B1LL + C1 = 0, (4.22)

where
A1 = PonPb

Bη
,

B1 = Pb

(

5EIPS + ELN + PonTp +
PonLH

BRc
+ PonLUH

BηRc

)

,

C1 = −
(

5EIPS + ELN + 4Etr + EACK
tx + PvTACK

+PonTp +
PonLH

BRc
+ PonLUH

BηRc

)

,

Pon = 2(1 + β)BN0Gγ/Gc + Pc.

Solving (4.22) yields the optimum number of information bits per packet,LL

L∗
L =
−B1 +

√

B2
1 − 4A1C1

2A1
. (4.23)
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Correspondingly, the optimum targetPb can be found by solving∂Ēbit

∂Pb
|L∗

L
= 0.

When theM-QAM family is used, the corresponding closed-form solution of the opti-

mum targetPb can be found approximately as

P ∗
b ≈ 1

1+(LL+LUH )

[

ln( 2
b
)+10+

PcTon+5EIPS+ELN
2
3 (2b−1)A2

] ,
(4.24)

whereA2 =
2(1+β)BN0GTon

Gc
.

When transmission distanced is large,A2 →∞, and equation (4.24) becomes

P ∗
b ≈

1

1 + (LL + LUH)[ln(
2
b
) + 10]

. (4.25)

Therefore, the target bit error probability will eventually converge to a value solely

determined by the packet length and the modulation scheme. The optimum target bit

error probabilities of other modulation schemes and their corresponding convergence

values can be obtained similarly. Furthermore, equation (4.23) reveals a one-to-one

relation betweenP ∗
b andL∗

L at any given distance. Thus, asP ∗
b converges,L∗

L will also

converge for higher transmission distances. The analysis and calculation results for this

model will be shown and discussed in detail in Section 4.6.

So far, we have discussed the minimization of the energy consumption per informa-

tion bit in an unconstrained framework. However, in practice, different constraints may

apply, among which the most common ones are an average power constraint and an av-

erage rate constraint. In the following sections, we will study how these two constraints

affect the minimization of energy consumption.

4.4 Energy Minimization with a Fixed Average Power

Constraint

In this section, we consider bursty transmissions with a strict average power constraint.

A bursty transmission in this work means that the transceiver only transmits/receives
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for a fraction of time (duty cycle). Assume that the average power constraint is

Φ[(1 + β)Pt + Pc] = P̄ . (4.26)

Then,Eb in (4.7) can be expressed as

Eb ≥
(1 + β)Pt + Pc

ΛB log
(

1 + Pt

2GBN0

) =
P̄

ΦΛB log
(

1 + P̄ /Φ−Pc

2(1+β)GBN0

) . (4.27)

For a givenP̄ , the minimization ofEb is equivalent to the maximization ofR =

ΦΛB log(1+ P̄ /Φ−Pc

2(1+β)GBN0
. Using the expression ofΛ given in (4.8), we have the follow-

ing optimization model

max R = ΦLL

2TIPS+TACK+TP+
LL+LUH

B log(1+(P̄ /Φ−Pc)/2(1+β)GBN0)

,

subject to Φ[(1 + β)Pt + Pc] = P̄ ,

0 ≤ Φ ≤ 1.

(4.28)

whereLL represents the number of information bits contained in a packet. It is obvious

that to achieve the maximum information rateR, we should haveLL → ∞. However,

in practice, the packet length is always finite and overheadsare inevitable. Equation

(4.28) implies that overheads of both packetization and ARQdecrease the maximum

possible information rate from the ideal information rate.

For a given modulation scheme with bandwidth efficiencyη, the channel capacity

of a wireless channel with bandwidthB is limited toBη. Moreover, if we consider

the influence of finite packet length and channel distortion,the information rate can be

further specified as

max R = g(Φ, LL, η)Ppc

= ΦLL

2TIPS+TACK+TP+
LL+LUH

Bη

(1− Pb)
LL+LUH ,

subject to Φ[(1 + β)Pt + Pc] = P̄ ,

0 ≤ Φ ≤ 1,

(4.29)
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whereg(Φ, LL, η) =
ΦLL

2TIPS+TACK+TP+
LL+LUH

Bη

which is an increasing function of both

LL andΦ for a givenη, andPpc is the packet-correctly-received probability. For a

given distance,̄P andPc, Pb is a monotonically increasing function ofΦ, since large

Φ implies smallPt. This makesPpc = (1 − Pb)
LL+LUH a decreasing function ofΦ.

In addition,Ppc is also a decreasing function ofLL, since the larger the packet is, the

greater the possibility of an error in the packet. Therefore, there exists an optimum

combination of(L∗
L,Φ

∗) that balancesg(Φ, LL, η) andPpc and thereby maximizesR.

This idea can be further explained by the following example.

TakeM-QAM using fixed average power as an example. The expression of Pb in

this case is

Pb ≈
2

log2M
e
− 3(P̄ /Φ−Pc)/2(1+β)GBN0

2(M−1) . (4.30)

Also, we have bandwidth efficiencyη = log2M in this case. Consequently, (4.29)

becomes

max R = ΦLL

2TIPS+TACK+TP+
LL+LUH
B log2 M

(1− Pb)
LL+LUH

subject to 0 ≤ Φ ≤ 1,

Pb =
2

log2 M
e
− 3(P̄ /Φ−Pc)/2(1+β)GBN0

2(M−1) .

(4.31)

The above minimization problem is readily solvable throughnumerical methods. The

results are presented in Section 4.6 and explained in detail.

4.4.1 The Influence of Average Power

The imposed average power constraint plays an important role on the resulting mini-

mum energy consumption per bit. That is, the given average power constraint deter-

mines how close the resultingE∗
b is to the unconstrained global minimum value ofEb.

In this subsection, we investigate the influence of the average power constraint and find

the condition under which the fixed average power constrained model could give the

same global minimumEb as in the unconstrained case.
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The minimization model can be rewritten as

minEb = P̄
Φ

2TIPS+TACK+TP+
LL+LUH

B log(1+(P̄ /Φ−Pc)/2(1+β)GBN0)

LL
,

=
(Pt(1+β)+Pc)(2TIPS+TACK+TP+

LL+LUH
B log(1+Pt/2GBN0)

)

LL
,

subject to Φ[Pt(1 + β) + Pc] = P̄ ,

0 ≤ Φ ≤ 1.

(4.32)

This model can be used to describe any modulation scheme. Theminimum possible

Eb should be achieved over all possiblePt > 0. However, the constraints in (4.32)

indicate that

Φ[Pt(1 + β) + Pc] = P̄ ⇒ Pt = ( P̄
Φ
− Pc)/(1 + β),

0 ≤ Φ ≤ 1 ⇒ (P̄ − Pc)/(1 + β) ≤ Pt <∞.
(4.33)

Thus,Pt ∈ [(P̄ − Pc)/(1 + β),∞). To ensure thatPt is a nonnegative value, we have

that P̄ − Pc ≤ 0. That is, whenP̄ ≤ Pc, the fixed-power transmission can achieve the

same minimumEb as that of the non-constrained transmission presented in Section 4.3.

This is because when̄P ≤ Pc, Pt can be any nonnegative value be between[0,∞).

4.4.2 The Equivalence ofΦ, α, andPt

In this subsection, we assume thatP̄ is properly set so that (4.32) could achieve a global

minimum value. That is̄P < Pc.

From the following relations

Φ[Pt(1 + β) + Pc] = P̄ ,

Pt = αPc,
(4.34)

we haveα = ( P̄
ΦPc
− 1)/(1 + β). That is, for a given pair of(P̄ , Pc), if we can freely

adjustΦ andα, we can achieve an optimum pair(Φ∗, α∗), whereα∗ is achieved by

solely solving model (4.3) andΦ∗ is achieved by solely solving model (4.28).
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On the other hand, if we are given a fixedΦ and a relaxed average power consump-

tion constraint as

Φ[Pt(1 + β) + Pc] ≤ P̄ , (4.35)

then we haveα ≤
(

P̄
ΦPc
− 1
)

/(1 + β). For a givenΦ, the resultant optimizedα may

not be overall optimum. In fact, we have

α∗ =











[

( κ
1+β

−1) log2 10

W(( κ
1+β

−1) log2 10

10ln2 )
− 1

]

1
κ
, if Φ ≤ Φth

( P̄
ΦPc
− 1)/(1 + β), if Φ > Φth

(4.36)

whereκ = Pc/(2BN0G), andW (.) is the Lambert W function, and

Φth =
P̄

Pc









( κ
1+β
− 1) log2 10

W
(

( κ
1+β
− 1) log2 10

10ln2

) − 1





1 + β

κ
+ 1





−1

. (4.37)

That is, when the duty cycle is larger than a critical valueΦth, the resultingα∗ is

the overall optimal. Otherwise, the resultingα∗ will be suboptimal. In summery, for

minimizing energy consumption, the assigned duty cycle should be sufficiently large

(Φ > Φth).

We have discussed the energy minimization problem with fixedaverage power con-

straint. Additionally, we have investigated the impacts ofthe average power constraint

and duty cycle on the energy performance.

4.5 Energy Minimization with a Fixed Average Rate Con-

straint

In some cases, such as a sustainable video stream, a stable node-to-node throughput

is desired so that a certain quality-of-service (QoS) can beguaranteed. The above

analysis can be readily adapted to fixed average rate situations. The minimization of
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energy consumption per information bit under the fixed average rate constraint for a

given modulation scheme can be modeled as

min Eb =
[Pt(1+β)+Pc]Φ

R

subject to |R− Rconst| ≤ ∆R,

(4.38)

whereR = ΦLL

2TIPS+TACK+TP+
LL+LUH

Bη

(1−Pb)
LL+LUH , as defined previously,Rconst is the

desired information rate and∆R is the allowed information rate deviation, since the de-

viation is unavoidable in practice due to unpredictable circumstances (e.g., processing

delays from upper layers).

Moreover, since an average power constraint no longer exists, the one-to-one re-

lationship betweenΦ, α andPt disappears. This minimization problem thus must be

conducted over all possibleLL,Φ,M, andPt. The resulting average power and mini-

mumEb will be

E∗
b =

[P ∗
t (1+β)+Pc]Φ∗

Rconst
,

P̄ ∗ = [P ∗
t (1 + β) + Pc]Φ

∗.
(4.39)

As with the fixed average power constraint, the minimizationof energy consump-

tion per information bit with the fixed average rate constraint is not the overall minimum

E∗
b unless the target information rate is the overall optimal rate that minimizes energy

consumption in the unconstrained case.

4.6 Numerical Results

In this section, we present numerical results that verify the previous analysis and pro-

vide insight into the performance of the different optimization frameworks. We assume

a bandwidth ofB = 10KHz, LUH = 160 bits,LH = 32 bits,TP = 20 ms, coding rate

Rc = 1/2, and coding gainGc = 6.47. The transient period for the transceiver is set

to Ttr = 5 µs. The inter packet spaceTIPS = 5 ms. The power consumption values
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Figure 4.5: The minimumEb of different modulation schemes vs. distance compared

with the theoretical lower bound ofEb.

are shown in Table 4.3, which gives us the total circuit powerconsumption at the trans-

mitter and receiver asPc = Pct + Pcr = 0.2884 W. The power amplifier coefficient

β = 0.35. The optimization is implemented using a simple search algorithm. This ap-

proach is sufficient in practice, as the optimization can be performed and the optimum

configurations determined off-line before network deployment. Then a simple look-up

table can provide the optimal parameters depending on the existing conditions.

4.6.1 Unconstrained Energy Minimization

In this subsection, we compare the unconstrained energy consumption per information

bit lower bound in (4.3) with the practically minimized energy consumption per infor-

mation bit (4.21). In the practical scheme, the modulationsconsidered are confined to

coded and uncoded BPSK, QPSK, 16-QAM and 64-QAM.

Fig. 4.5 shows a comparison of the practical minimumEb of different modulation

schemes and the theoretical lower bound ofEb, which is given by (4.3). As transmission
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Figure 4.6: Optimized target bit error probability vs. transmission distance (LL = L∗
L).

distance increases, the total energy consumption per information bit increases. This is

mainly caused by the increasing transmitted energy. As shown in Fig. 4.5, uncoded

64-QAM, uncoded 16-QAM, uncoded QPSK, and coded QPSK are preferred for ultra

short, short, medium and long distances, respectively. This observation is justified by

noting the fact that at short distances, the energy consumption is dominated by that

of the circuitry. Consequently, bandwidth efficient modulation schemes that lead to

shorter on time will have an advantage. On the other hand, at longer distances, the

energy consumption is dominated by the transmitted energy.Hence, modulation and

coding schemes that require lower SNR will have an advantage. The curve labeled

‘Theoretical lower bound” in Fig. 4.5 is obtained by directly insertingα∗ in (4.4) into

Eb from (4.3).

Fig. 4.6 presentsP ∗
b at different transmission distances. As the transmission dis-

tance increases,P ∗
b will increase as well. This is because, as transmission distance

increases, a higher targetPb is preferred lest the transmission energy increase dramati-

cally to mitigate the path loss. Moreover, as transmission distance increases, a flattening

of P ∗
b can be observed, which is consistent with (4.25).
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Figure 4.7: Optimized packet length vs. transmission distance (Pb = P ∗
b ).

Fig. 4.7 depictsL∗
L at different transmission distances.L∗

L decreases as transmis-

sion distance increases and converges to a certain value at large transmission distances.

Recall thatP ∗
b increases asd increases, which gives rise to a higher retransmission

probability. Therefore, to reduce the retransmission cost, a shorter packet length is

preferred. Also, the convergence ofL∗
L occurs at large transmission distances asP ∗

b

flattens.

Fig. 4.8 shows the optimum transmit power,P ∗
t , that minimizesEb. The theoretical

and practicalP ∗
t s have the same trend. However, the theoreticalP ∗

t curve is smooth,

while the practicalP ∗
t curve exhibits a saw-toothed shape. This irregularity is caused

by the limitations of using a discrete modulation and the packetization parameters used

in the calculations for the practical model.

Fig. 4.9 compares the optimum rate,R∗, obtained through (4.31) and the optimum

information rate from (4.9). We can tell that the framework from (4.31) provides an

upper bound for the optimum information rate. Also, the staircase type curve of the

calculated optimum information rate is caused by the discrete nature of modulation

used in the numerical calculations.
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Figure 4.8: The optimized transmit powers vs. transmissiondistance (theoretical and
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Figure 4.9: The optimized information rate vs. transmission distance.

4.6.2 Energy Minimization with Fixed Average Power Constraint

This subsection presents the optimization results of the energy minimization with fixed

average power constraint. The average power constraintP̄ = 0.2894 W, and the circuit
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Figure 4.10: The information rate at distanced = 1 m.

power consumptionPc = 0.2884 W.

Figs. 4.10 to 4.12 show the achievable information rates at distances 1 m, 40 m

and 70 m, respectively. Note that the packet lengthLL and target bit error ratePb

have been optimized for any specificΦ. The boundR is achieved using (4.9). The

packetized/ARQ information bound is obtained using (4.28), and the information rates

are achieved using (4.31). The maximumR is achieved through (4.31) by searching the

constellation sizeM up to1012. Here we have allowed non-integer M.

As shown in Fig. 4.10, at very short distances, a largeM and a largeΦ will

maximize the information rate and thereby minimize the energy per bit under fixed

average power constraint. Moreover, Figs. 4.11 and 4.12 show that, as distance in-

creases, the parameters(M∗,Φ∗, L∗
L) will decrease. For example, the set(M∗,Φ∗, L∗

L)

is (8, 0.58, 3 × 104) at d = 40 m, while the set(M∗,Φ∗, L∗
L) is (4, 0.32, 1 × 104) at d

= 70 m. This trend is caused by the fact that the reliable (energy efficient) modulation

and coding schemes gradually outweighs the high-speed (bandwidth efficient) modula-

tion and coding schemes as the communication environment deteriorates. The cost we

pay to save energy is the information rate. As shown in Fig. 4.13, to achieve energy
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Figure 4.12: The information rate at distanced = 70 m.

efficiency, the information rate will drop rapidly. At d = 120m, theR∗ is only about 1

Kbps over a bandwidth ofB = 10 KHz.

For a given distance and a given family of modulation schemes, it is straightforward

to find the optimumΦ∗ with respect to a fixed constellation sizeM , or the optimum
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Figure 4.13: The information rate,M∗, P ∗
t , andΦ∗ of M-QAM at different transmis-

sion distances.

constellation sizeM∗ with respect to a fixedΦ by taking partial derivatives of (4.31)

and setting them to zero. For instance, theΦ∗ andM∗ of M-QAM at different distances

are shown in Fig. 4.13. From Fig. 4.13, we can see that, under astrict average power

constraint, the transceiver has to sacrifice its maximum possible information rate by

slashing its duty cycle to satisfy this constraint. For example, as shown in Fig. 4.13, at

d = 100 m, the duty cycle should be as low as24.6% to provide an appropriate amount

of transmit powerPt to guarantee a reasonably lowPb even when the constellation size

M = 2. This limits the maximum possible information rateR
′ ≤ B log2MΦ = 2.46

Kbps.

4.6.2.1 The influence of average power

Fig. 4.14 illustrates the impact of average power on the choice of duty cycle, min-

imum energy consumption per information bit, and transmit power, where the cir-

cuit power consumption isPc = 0.288W . The average power configurations are
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Figure 4.14: The influence of the average power on(Φ∗, P ∗
t , E

∗
b ) from (4.32).

P̄ = 0.28, 0.4, 0.7, and1 W. Fig. 4.14 shows that, for a given distance,Φ∗ is larger

for a higherP̄ . That is, whenPt is fixed asP ∗
t (d) (the unconstrained optimal trans-

mit power), the transmitter has to be on for a longer period oftime to meet a higher

P̄ . However, whenP̄ increases beyond a point whenΦ = 1, the transmit powerPt

has to start increasing to maintain the average power consumption requirement̄P . In

this case,Pt > P ∗
t (d) and the resulting minimumEb becomes suboptimal. The suffi-

cient average power constraint at any given distance isP̄ ∗(d) = P ∗
t (d)(1 + β) + Pc.

That is, for a given transmission distanced, any P̄ aboveP̄ ∗ is unnecessary and not

energy efficient. In fact, Fig. 4.14 shows that, under an average power constraint

whereΦ[Pt(1 + β) + Pc] = P̄ , the transmit power sometimes has to be higher than

the unconstrained optimum value just to maintain an unnecessarily high average power

constraint.

Although a low average power constraintP̄ < P ∗
t (1 + β) + Pc benefits energy

efficiency, it lowers the information rate correspondingly. An example is shown in

Fig. 4.15 where a higher average power obviously provides higher information rate.

This is because a low̄P requires the transmitter to sleep for a larger portion of the
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Figure 4.16: Range of efficient vs. inefficient zones for average power versus distance

from (4.32).

duty cycle (smallΦ). On the other hand, the information rateR is proportional toΦ.

Therefore, the information rate will drop with decreasingP̄ . Thus, the average power

P̄ reflects the trade-off between the energy-efficiency (lowP̄ ) and the information rate
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Figure 4.17: Information rate as a function of average powerfrom (4.32).

(highP̄ ). However, the tradeoff of energy-efficiency and the information rate caused by

P̄ should always be evaluated in the range(0, P ∗
t (1+β)+Pc], since beyond this range

the transmitter will operate in a classic inefficient trade-off betweenEb (linear increase

with respect toP̄ ) andR (logarithmic increase with respect tōP ). The efficient versus

inefficient zone ofP̄ is shown in Fig. 4.16 where the boundary isP ∗
t (1 + β) + Pc. Fig.

4.17 gives some examples to show the trend of information rate versus average power.

There clearly exists a point of̄P where the slope of the curve changes. For instance, at

d = 95 m, this point is about̄P = 1 W, below which theR P̄ curve increases linearly

(operating in efficient zone) and above which theR-P̄ curve increases logarithmically

(operating in inefficient zone) .

4.6.3 Energy Minimization with Fixed Average Rate Constraint

In the case of energy minimization with fixed average rate constraint, some illustrative

results are presented in Figs. 4.18 through 4.21, where the information rate constraint

Rconst = 20 Kbps with the rate deviation∆R = 100 bps.
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Figure 4.18:M∗, P ∗
t , andΦ∗ for M-QAM at different transmission distances (|R′ −

20Kbps| < 100bps).

Fig. 4.18 shows the optimum(M∗, P ∗
t ,Φ

∗) of M-QAM at different transmission

distances under this average rate constraint. As the transmission distance increases,M∗

decreases due to the fact that a robust modulation scheme becomes energy efficient as

the communication environment worsens. In contrast to the fixed average power case,

Φ∗ also increases in the fixed average rate scenario. This is because,Φ∗ is only used to

control the information rate in the fixed average rate transmission. Therefore, at short

distances, when largeM∗ is energy efficient, a smallΦ∗ needs to be chosen to meet

the information rate requirement. AsM∗ decreases,Φ∗ has to increase to maintain

information rate requirement. Therefore, for fixed averagerate transmissions, at short

distances wherePc is comparable withPt, a time sharing use of the channel is energy

efficient; at large distances wherePt ≫ Pc, a continuous use of the channel is energy

efficient.

Fig. 4.19 shows the information rate and̄P ∗ of M-QAM at different transmis-

sion distances, under average power constrained and average rate constrained cases,

respectively. It is easy to see whȳP ∗ does not change with distance in the average-
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Figure 4.19: The information rate and̄P ∗ of M-QAM at different transmission dis-

tances (fixed average power compared with fixed average rate).

power-constrained transmission case (hereP̄ ∗ = P̄ = 0.2894 W). In the fixed average

rate transmission case,P̄ ∗ will increase with distance. This is directly caused by the in-

crease in the duty cycle and the transmit power as shown in Fig. 4.18. In this particular

example, average rate constrained transmission achieves alowerP̄ ∗ than average power

constrained transmission whend ≤ 35 m. That is, for fixed average rate transmission,

a high average power budget is not necessarily beneficial in terms of energy efficiency

when transmission distance is below a certain valuedth, wheredth is a relative value

determined byRconst and P̄ . For example, whenRconst → 0, the fixed average rate

transmission always achieves a lowerP̄ ∗ than the fixed average power transmission

with P̄ = 0.2894 W for any d > dth = 0. On the other hand, although the fixed

average power constrained transmission provides a low power consumption at longer

distances, the provided information rate drops dramatically.

Fig. 4.20 shows theE∗
b of M-QAM at different transmission distances for the

unconstrained, fixed average rate transmission, and fixed average power transmission,

respectively. TheE∗
b of fixed average rate constrained transmissions is always higher
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Figure 4.20: TheE∗
b of M-QAM at different transmission distances.

than or equal to the unconstrained optimalE∗
b . From Fig. 4.20,Rconst = 20 Kbps

approaches the global energy efficient information rate in the transmission ranged ≤ 55

m. Compare this with Fig. 4.18, this is the range whereΦ∗ increases linearly. In this

distance range, the transceiver can achieve the desired information rate yet obtain the

overall minimum energy consumption by increasingΦ∗. Beyond this range, sinceΦ∗

cannot be further increased, extra energy has to be wasted tomaintain this information

rate. Therefore, a reasonable target information rate should be set according to the

transmission distance, or in general, the communication environment. In this case, the

target information rateRconst = 20 Kbps is suitable in terms of energy efficiency for

a wireless network with average distanced̄ ≤ 55 meters. When̄d is larger than this

range, the target information rate should be reduced to saveenergy. On the other hand,

for a given target information rate, this algorithm gives usa target node density that is

energy efficient.

A fixed average power constrained case is also shown in Fig. 4.20 with P̄ = 0.5

W. At short distances, the minimizedEb is suboptimal due to the superfluous average

power. However, asd increases, the minimizedEb becomes the global minimum value
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Figure 4.21: TheL∗
L of M-QAM at different transmission distances for the uncon-

strained, fixed-rate-constrained and fixed-power-constrained cases.

since there is no more wasted̄P . Fig. 4.20 indicates that, in general, fixed average

rate transmissions and duty cycle are energy efficient at short transmission distances,

while fixed average power transmissions and duty cycle are energy efficient at large

transmission distances.

Fig. 4.21 presents the optimumL∗
L of M-QAM at different transmission distances

for unconstrained and fixed average rate constrained transmissions, respectively. The

calculated results of the optimal packet length in Section 4.3 (unconstrained) are also

provided as a comparison. Note that the calculated results are obtained when the mod-

ulation schemes are restricted within coded/uncoded BPSK,QPSK, 16-QAM, and 64-

QAM.

We can see that the theoreticalL∗
L in the unconstrained transmissions is almost the

same as the optimum packet lengths given by the calculations. The differences between

the calculated and theoretical results are mainly caused bythe limited resolutions of

constellation sizes in the calculation. However, in the case of the fixed average rate
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(Rconst = 20 Kbps) transmission, the optimum packet length (denoted byL̂∗
L) is smaller

than the overall optimum packet lengthL∗
L at short distances, while larger thanL∗

L at

large distances. This is caused by the requirement of maintaining throughput. At short

distances (d < 15 m in this case), nodes should use larger constellation sizesto save

energy. However, a larger constellation size will increasethe throughput beyond the

acceptable range. Thus, other parameters must be adjusted to shrink the information

rate. These parameters include: adopting lower duty cycle and using shorter packet.

Therefore, the transmitter adopts a low duty cycle at very short distances as shown in

Fig. 4.18 and a packet lengtĥL∗
L < L∗

L. On the other hand, as distance increases, the

effect of increasingΦ∗ to maintain the information rate starts to fade (Φ∗ ≈ 1), the

L̂∗
L then needs to be larger than theL∗

L to increase the effective information rate by

amortizing the overhead over a larger number of informationbits.

4.7 Summary

In this chapter, we investigated the energy consumption minimization problem for a

single link in a wireless network. Specifically, we proposeda generic model for energy

consumption per information bit, considering circuit power, packetization, overhead

and duty cycle. We have considered the unconstrained, fixed average power, and fixed

average rate cases.

For the unconstrained case, the results reveal that when transmission distance is

short, a system adopting large packet length, small target bit error probability, and

high bandwidth-efficient modulation schemes (e.g., high-order uncoded QAM) is more

energy efficient. On the other hand, when transmission distance is large, a system

using small packet length, large target bit error probability, and high energy efficient

modulation schemes (e.g., coded BPSK) is energy efficient. Moreover, as transmission

distance increases, a flattening of the optimum values of packet length and target bit

error probability is observed.
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In the fixed average power case, we conclude that the minimization of energy con-

sumption per information bit is equivalent to the maximization of information rate.

At short distances, large constellation sizes and large duty cycle are energy efficient,

while the optimum constellation size and duty cycle both decrease with distance. This

indicates that, within the limits of average power constraint, bandwidth efficient mod-

ulations and continuous use of channels are energy efficientat short distances, while

robust modulations and duty cycling are energy efficient at large distances. The cost

associated with maintaining a fixed average power is the decrease of information rate

with distance.

In the fixed average rate case, at short distances, large constellation sizes and small

duty cycle are energy efficient. As transmission distance increases, the optimum con-

stellation size decreases and optimum duty cycle increasesto get data through while

minimizing the energy consumption. That is, under a strict average rate constraint,

bandwidth efficient modulations and duty cycling are energyefficient at short distances,

while robust modulations and continuous use of the channelsare energy efficient at long

distances.
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5 Joint Optimization of Physical

Layer and Link Layer in Impulse

Radio Ultra-Wideband (IR-UWB)

Communication Systems

In this chapter, we extend the work of the previous chapter byconsidering an Impulse

Radio Ultra Wideband (IR-UWB) based wireless network. Using detailed models of

typical IR-UWB transmitter and receiver structures, we model the energy consumption

per information bit in a single link of an IR-UWB system, considering packet overhead,

retransmissions, and a Nakagami-m fading channel.

Using this model, we minimize the energy consumption per information bit by find-

ing the optimum packet length and the optimum number of RAKE fingers at the receiver

for different transmission distances, using DifferentialPhase-Shift Keying (DBPSK),

Differential Pulse-Position Modulation (DPPM) and On-OffKeying (OOK), with co-

herent and non-coherent detection. Symbol repetition schemes with hard decision (HD)

combining and soft decision (SD) combining are also compared in this chapter.

Our results show that at very short distances, it is optimum to use large packets,

OOK with non-coherent detection, and HD combining, while atlonger distances, it is

optimum to use small packets, DBPSK with coherent detection, and SD combining.
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The optimum number of RAKE fingers are also found for given transmission schemes.

5.1 Introduction

Energy consumption is a very important design consideration in any IR-UWB based

system. Unlike in traditional communications systems, where transmit power can be

flexibly adjusted to minimize the energy consumption [31][52], there is a strict limit

on the effective isotropic radiated power (EIRP) in IR-UWB systems due to their over-

lay nature. Regulations mandate that the spectrum of the signal be limited to−41.25
dBm/MHz [32]. Since the IR-UWB system needs to operate at or near this limit to

achieve a reasonable range, the traditional optimization techniques, which mainly op-

erate by adjusting the transmit power, cannot be used for IR-UWB systems. However,

there are other parameters of the IR-UWB system that can be adjusted, such as the num-

ber of RAKE fingers, the packet length, the modulation scheme, the detection scheme,

and the coding or spreading scheme.

In IR-UWB communications, the channel delays are often resolvable due to the

narrow width of the IR-UWB pulse. Therefore, a RAKE receiverstructure can achieve

considerable diversity gain [93][94]. Another important utility of the RAKE receiver

structure is that it can increase the collection of the transmitted power through multi-

ple paths. The diversity gain and collected power will be increased by adding more

RAKE fingers (correlator taps), which in turn will increase the power consumption of

the receiver. Therefore, the tradeoff between the diversity gain as well as the power

collection and the power consumption at the receiver must beevaluated.

Packet length is another important factor that influences the energy consumption of

a communication link. A long packet will increase the packeterror probability; thereby

increasing the average number of transmissions in an automatic-repeat-request (ARQ)

system. On the other hand, a short packet will lower the system efficiency due to the

packet overhead. Thus, an optimum packet length should be found to minimize the
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energy consumption.

Binary modulation schemes, such as DBPSK, OOK, and DPPM, areusually used

in IR-UWB systems due to their simplicity and good performance. Among the three

modulation schemes considered in this chapter (DBPSK, OOK,and DPPM), DBPSK

is the most robust, but also the most energy consuming. Compared with DBPSK, OOK

requires less energy to transmit each bit, but has a lower performance. The performance

of DPPM is between DBPSK and OOK. The comparison and evaluation of these mod-

ulation schemes are important for the design of energy-efficient IR-UWB systems.

In our previous work, we proposed an energy consumption model of an IR-UWB

based communication link, and we compared the energy consumption features of DBPSK

and OOK modulations with coherent/noncoherent detectionsschemes [53]. Although

this work builds a solid background for the work in this chapter, the studies in [53]

need to be improved. First, in the channel model in [53], Rayleigh distribution is used

to depict the small-scale fading feature of an IR-UWB channel. This channel model,

however, is outdated. Second, comprehensive analysis on the energy consumption char-

acteristics of an IR-UWB communication link is missing. Third, an extensive compar-

ison of practical schemes is still desired. In this chapter we address the above issues in

detail.

We provide detailed power consumption models of a typical IR-UWB transmitter

and both coherent and noncoherent receivers. The optimization model considers these

detailed power consumption models as well as the packet structure and the ARQ pro-

cedure. Using this model we optimize packet length and the number of RAKE fingers

at different transmission distances for DBPSK, OOK, and DPPM, with both coherent

(CO) and noncoherent (NC) detection. Moreover, in IR-UWB systems, to increase the

effective energy per bit, repetition coding schemes are commonly used. At the receiver,

hard decision (HD) based combining or soft decision (SD) based combining may be

used. HD combining provides relatively low performance butit can be operated us-

ing a low-power, one bit analog-to-digital converter (ADC). On the other hand, SD
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combining provides good performance while demanding a high-resolution ADC and

memory units. The tradeoffs between these combining methods are also evaluated in

this chapter.

The remainder of this chapter is organized as follows. Section 5.2 introduces the

packet structure, transceiver power model, and channel model used in this work. In

Section 5.3, after deriving a lower bound on the energy consumption per information

bit in IR-UWB systems, we minimize the energy consumption per information bit over

packet length and number of RAKE fingers. Numerical results are presented in Section

5.4. Section 5.5 concludes this chapter.

5.2 System and Channel Models

We consider an IR-UWB system with a symbol repetition scheme. The coding rate

Rc = 1/Np, whereNp, which is an odd number, is the coding parameter. Moreover, in

order to avoid inter symbol interference (ISI), the maximumpulse rate is limited. Also,

perfect knowledge of the channel is assumed at the receiver.

5.2.1 IR-UWB Transceiver Power Consumption Model

A typical IR-UWB transmitter and a typical IR-UWB receiver with four RAKE fingers

and maximal ratio combining (MRC) are shown in Fig. 5.1. WhenDBPSK, DPPM,

and OOK are used at the transmitter, the power consumption ofthe transmitter can be

modeled as

Pt = PSYN + EpRp, (5.1)

whereEp is the fixed energy per pulse andRp is the pulse rate. The pulse rateRp =

ρtRb, whereρt = 1 for DBPSK and DPPM,ρt = 0.5 for OOK, andRb is the bit rate.

We have assumed that an information bit may be 0 or 1 with equalprobability. Further-
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Figure 5.1: The transmitter and receiver structure in an IR-UWB system.

more,PSYN represents the power consumption of the transmitter components that are

independent from the data transmission, namely the clock generator and synchronizer.

In our model, the power consumption of an IR-UWB transmitter, as described by

equation (5.1), is grouped into two parts: the power consumption from the circuit com-

ponents that are not related to pulse generating (PSYN), and the power consumption

from the ones that are related to pulse generating (EpRp). That is,EpRp includes the

power consumptions of the pulse generator, pulse modulatorand digital amplifier (DA),

whilePSYN is simply the power consumption of the clock generator and synchronizer.

As shown in Fig. 5.1, the power consumption of an IR-UWB receiver can be mod-

eled as

Pr = MPCOR+ ρcPADC + PLNA + PVGA + ρr(PGEN + PSYN + PEST), (5.2)

wherePCOR, PADC, PLNA , PVGA, PGEN, PSYN, andPEST respectively represent: the power

consumptions of one correlator branch (mixer and integrator), the analog-to-digital con-

verter (ADC), the low noise amplifier (LNA), the variable gain amplifier (VGA), the

pulse generator, the synchronizer, and the channel estimator. M represents the number

of RAKE fingers at the receiver.ρr is determined by the receiver structure. That is,
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ρr = 1 for coherent demodulation andρr = 0 for noncoherent demodulation. This is

because for a noncoherent UWB receiver, the pulse generator, clock generator, synchro-

nizer, and channel estimator are not necessary. Moreover,ρc = 1 for SD combining

andρc = 0 for HD combining. For SD combining, a 5-bit ADC is assumed [95], while

for HD combining, the power consumption of the ADC (one-bit ADC) is assumed to

be negligible.

At the receiver, we consider an IR-UWB receiver that is able to choose the coherent

or noncoherent demodulation after the signal passed through RAKE fingers and MRC.

When the IR-UWB receiver uses the coherent detection, the received signal will pass

through a matched filter and a template pulse needs to be generated to configure the

matched filter. When the IR-UWB receiver adopts the noncoherent detection, neither

a matched filter nor a template pulse is needed. The received signal will be either

correlated with the previously received signal, or simply be multiplied by itself (envelop

detection). A differential modulation scheme can cooperate with either the coherent

detection or noncoherent detection. For example, a DBPSK modulated signal can be

noncoherently detected by a correlation with the previously received signal so that only

the difference between the two signals will be at output of the ADC, or each DBPSK

modulated signal can be coherently detected individually through a matched filter and

the difference between two adjacent bits can be measured in the digital domain. In

general, the coherent detection provides a better performance than the noncoherent

detection in terms of bit error probability. However, the coherent detection requires

more circuit components (template pulse generator, synchronizer, and etc.) and thereby

consumes more power than the noncoherent detection.

As with the transmitter, we also group the power consumptionof an IR-UWB re-

ceiver into two parts: the power consumption of the circuit components that are not

related to the detection schemes,MPCOR+ ρcPADC +PLNA +PVGA, and the power con-

sumption of the circuit components that are related to the detection schemes,ρr(PGEN+

PSYN+PEST). That is,MPCOR+ρcPADC+PLNA +PVGA represents the power consump-
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tion of M correlator branches, the ADC, the LNA, and the VGA. These components

need to be active whether coherent or noncoherent detectionis used at the receiver.

However, the pulse generator, the synchronizer, and the channel estimator are only ac-

tive during coherent detection, where a template pulse has to be generated to correlate

with the received pulse and the channel information is required. During noncoher-

ent detection, the pulse generator, the synchronizer and the channel estimator are not

necessary because no template pulse is needed and the received signal pulse is only

correlated with the previously received pulse. The power consumption of the MRC is

not considered, since a MRC is simply an adder.

5.2.2 Packet Structure

The packet structure consists of three components: synchronization preamble (SP),

PHY-header (PHR), and payload. We assume that there areLL bits in the payload,

LPHR bits in the PHR, andLSP symbols in the SP. Correspondingly, the time durations

to deliver the payload, the PHR, and the SP are denoted byTonL, TPHR, andTSP, re-

spectively. The energy consumption to transmit a packet once is the summation of two

parts: EO, the energy consumed on delivering the SP and PHR, andEL, the energy

consumed on the payload.

We assume that the synchronization preamble has values{-1, 1}. Moreover, the

PHR is modulated using DBPSK and always received coherently. This is to ensure that

the PHR is transmitted using the modulation and detection schemes with the highest

performance, since the PHR carries important information.Also for the sake of sim-
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plicity, we assume that the PHR is coded in the same manner as the payload. Therefore,

the overhead energy consumption is

EO = E(TX)
O + E(RX)

O

= (LSP+ LPHR/Rc)Ep + PSYNTO + PrTO,
(5.3)

whereLSP is the number of SP symbols,LPHR is the number of PHR bits, andTO =

TSP+TPHR = (LSP+
LPHR
Rc

)/Rbase, whereRbaseis the fixed base data rate. In this work, a

frequency selective slow fading channel is assumed. Therefore, the channel estimation

block consumesPEST amount of power only during the reception of the overhead.

The energy consumption for the payload can be modeled as

EL = E(TX)
L + E(RX)

L , (5.4)

whereE(TX)
L andE(RX)

L represent the energy consumption to transmit/receive the pay-

load containingLL information bits, respectively. ForE(TX)
L , we have

E(TX)
L = ρtEpLL/Rc + PSYNTonL, (5.5)

whereTonL = LL/RbRc, is the time duration to transmit the payload containingLL

bits, andRc is the coding rate.

The energy consumption to receiveLL information bits is given by

E(RX)
L = ρt(MPCOR+ ρcPADC + PLNA + PVGA)TonL

+ρr(PGEN + PSYN)TonL.
(5.6)

The receiver does not consume power on channel estimation during the reception of

information bits when using either coherent or noncoherentdetection, since the channel

information has been estimated during the reception of the overhead bits.

5.2.3 Channel Model

The channel model consists of a path loss model and a frequency selective fading

model. In this work, we focus our research on the frequency range from 3-10 GHz.
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5.2.3.1 Path Loss Model

The UWB path loss model is both distance and frequency dependent and can be mod-

eled as [46]

Gd = G0 − 20(κ+ 1) log10

(

f

fc

)

− 10n log10 d− 3, (5.7)

whered is the transmission distance,G0 is the path gain at the reference distance (d = 1

m), n is the path loss exponent,f is the UWB transmission center frequency,fc is the

reference frequency, andκ is the frequency dependency decaying factor. BothGd and

G0 are expressed in dB.

5.2.3.2 Frequency Selective Fading

In an IR-UWB system, the transmitted signal inevitably encounters frequency selective

fading. The baseband channel impulse response of a frequency selective fading channel

in UWB systems consists of clusters and rays and can be represented as [46]

c(t) =
L
∑

l=0

K
∑

k=0

αk,le
−θk,lδ[t− Tl − τk,l], (5.8)

whereθk,l follows a uniform distribution (over[0, 2π]) andαk,l is the amplitude gain of

thekth ray in thelth cluster.L andK represent the number of clusters and rays, respec-

tively. Tl is the arrival time of thelth cluster, andτk,l is the arrival time of thekth ray

in the lth cluster.Tl andτk,l follow the following independent interarrival exponential

probability density functions, the details of which can be found in [46].

The average power gain of thekth ray in thelth cluster is modeled as

E[α2
k,l] = E[α2

0,0]e
−Tl/Γe−τk,l/γ , (5.9)

whereΓ andγ are power-delay time constraints for the clusters and rays,respectively.

E[α2
0,0] is the average power gain of the first ray of the first cluster, which is expressed

as

E[α2
0,0] =

Gd

γλ
. (5.10)
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The parameterαk,l follows a Nakagami distribution described as

p(αk,l) =
2

Γ(m)

(

m

E[α2
k,l]

)m

α2m−1
k,l e

−
mα2

k,l

E[α2
k,l

] , (5.11)

wherem > 0.5 is the Nakagami m-factor andΓ(m) is the gamma function.

5.3 Link Energy Minimization

5.3.1 Lower Bound on Average Energy Consumption per Informa-

tion Bit

5.3.1.1 Lower bound based on channel capacity

The transmit power is strictly limited in IR-UWB systems to avoid interfering with pre-

existing communication systems. In the following analysis, we assume the transmit

power is a constant denoted byPtx. Considering the power consumption at the trans-

mitter and receiver and the channel capacity, the lower bound of energy consumption

per information bit is modeled as

Eb ≥
Pt + Pr

B log
(

1 +
∑M

i=1 |αi|2Ptx

Gdσ2

) =
PSYN + EpRp +MPCOR+ PCNST

B log
(

1 +
∑M

i=1 |αi|2Ptx

Gdσ2

) , (5.12)

wherePCNST = ρcPADC+PLNA +PVGA+ρr(PGEN+PSYN) represents the receiver power

consumption that is independent of the number of RAKE fingers, and|αi|2 represents

the average power gain of theith selected path. Note that the power consumption of

the channel estimator is not considered, since the channel estimator is not involved in

the actual data communication. We assume that the positioning of the RAKE fingers

is ideal and therefore|αi|2 are the largestM values ofE[|αk,l|2] from (5.9). M is the

number of RAKE fingers, andB is the signal bandwidth. Correspondingly,B log(1 +
∑M

i=1 |αi|2Ptx/Gdσ
2) represents the channel capacity [96].
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Equation (5.12) can be minimized through proper selection of the number of RAKE

fingers,M . As transmission distance increases, the optimum number ofRAKE fingers

increases and eventually converges to a certain value. In other words, when received

SNR approaches zero, there exists an optimum number of RAKE fingers that minimizes

the energy consumption in IR-UWB systems. This optimum number is only a function

of the power delay profile of the channel and the power consumption values of the

components of the transceiver.

Removing the integer constraint onM , we can determine this convergence by find-

ing the discrete derivative of the right hand side of (5.12) with respect toM and setting

the resulting equation to zero, i.e.,

(log2 e)

∑M∗

i=1 |αi|2
|αM∗|2

(

1 +

∑M∗

i=1 |αi|2Ptx

Gdσ2

)

=
PCNST+ PSYN +RpρtEp

PCOR
+M∗, (5.13)

wheree is the natural number. As distance increases,M∗ will eventually converge to a

particular value as
∑M∗

i=1 |αi|2Ptx/Gdσ
2 → 0. The convergence value ofM∗ , which is

denoted byM∗
CONV, can be found from:

(log2 e)
∑M∗

CONV
i=1 |αi|2
∣

∣

∣
αM∗

CONV

∣

∣

∣

2 − PCNST+PSYN+RpρtEp

PCOR
= M∗

CONV. (5.14)

In general, there is no closed form solution for (5.14), since the distribution of|αi|2 di-

rectly determines the solvability of this equation andM has to be chosen in the positive

discrete domain. For the doubly exponential decay ofE[|αk,l|2], M∗
CONV exists and can

always be easily found through an exhaustive search.

5.3.1.2 Lower bound based on data rate

During the modeling in (5.12), the data rate is bounded by thechannel capacity, which

implies a linear channel (such as an AWGN channel), infinitely long codewords, and

arbitrarily low bit error rates (i.e., no retransmissions). Most of the above assumptions

do not hold in practical communication systems. Thus, the practical data rate is usually

much lower than the channel capacity. The lower bound from (5.12) is, therefore, a very
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loose lower bound. In the following analysis, instead of using channel capacity, we de-

rive the lower bound energy consumption per information bitby using achievable data

rates. In particular, the data rate needs to consider the penalty caused by retransmission

and packetization.

In this work, we only consider binary modulation schemes. Also, to avoid ISI, the

maximum pulse rate is limited by the maximum excess delay of the multipath channel,

Ds. That is, the maximum pulse rate is1/Ds. In addition, considering the impacts of

packetization, retransmission and overheads, the lower bound of the energy consump-

tion per information bit can be further tightened as

Eb ≥
(

Pr+PSYN+ρtEpRp

1/Ds

)

N Ton+2TIPS+TACK
TonL

, (5.15)

whereN is the total number of transmissions.(Ton+2TIPS+TACK)/TonL denotes the rate

penalty caused by packetization, whereTIPS denotes inter packet space andTACK repre-

sents the time duration the transmitter listens for acknowledgement from the receiver.

The detailed formulas ofTIPS andTACK can be found in the following section. The

above parameters are determined by the detailed packet structure, channel conditions,

and modulation schemes. Although (5.15) implies an ideal wideband channel with no

multipath and omits the possible energy losses due to circuit start-up, this model tight-

ens the bound from (5.12) and better represents practical scenarios since bothN and

(Ton + 2TIPS+ TACK)/TonL are greater than or equal to 1.

5.3.2 Practical Average Energy Consumption Per Information Bit

Although (5.15) provides a lower bound on the energy consumption per information

bit, it does not consider many practical issues. For example, it does not consider the

energy spent on the packet overhead and listening. In practice, we need to consider the

detailed procedure of transmitting one packet instead of one bit [52].
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Figure 5.3: The transmission and reception of one packet usingN total transmissions.

5.3.2.1 Energy Consumption per Packet with Retransmissions

To guarantee the successful reception of one packet, an automatic repeat request (ARQ)

protocol is used. A delivery procedure involvingN − 1 retransmissions is shown in

Fig. 5.3. The inter packet space (IPS) is denoted byTIPS. The power consumption

duringTIPS is mainly due to the clock generator and synchronizer. Therefore, the corre-

sponding energy consumption at the transmitter isE(TX)
IPS = PSYNTIPS, while the receiver

consumesE(RX)
IPS = ρrPSYNTIPS.

We assume that before transmission or reception of a packet,the transmitter and

receiver spendTtr amount of time to go from the off (sleep) state to an on (active) state.

We refer to this time duration as the “transient session”. During the transient session,

the transmitter consumesE(TX)
tr = PSYNTtr amount of energy to start the front end clock

generator and synchronizer. Similarly, the receiver consumesE(RX)
tr = ρrPSYNTtr.

Ton is the time duration for the transmission of one packet. Thatis

Ton = TSP+ TPHR+ TonL =

(

LSP+
LPHR

Rc

)

/Rbase+
LL

RbRc
. (5.16)
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The energy consumptions at the transmitter and receiver during Ton are

E(TX) = E(TX)
L + E(TX)

O ,

E(RX) = E(RX)
L + E(RX)

O .
(5.17)

whereE(TX)
L , E(TX)

O , E(RX)
L andE(RX)

O are given in (5.3), (5.4), (5.5) and (5.6), respec-

tively.

TACK is the time period when the transmitter listens for an acknowledgement. We

setTACK = TO. Overall, the definitions of the energy consumptions within one trans-

mission are summarized as follows

EIPS = 2E(TX)
IPS + 2E(RX)

IPS ,

ELN = ρrPSYNTACK ,

ETRAN = 2E(TX)
tr + 2E(RX)

tr ,

E(RX)
ACK = PrTACK ,

E(TX)
ACK = (LSP+ LPHR/Rc)Ep + PSYNTACK ,

E(TX) = E(TX)
L + E(TX)

O ,

E(RX) = E(RX)
L + E(RX)

O ,

(5.18)

whereEIPS is the total energy consumed by the receiver and the transmitter in IPSs

within one transmission.ETRAN is the total energy consumption of the receiver and the

transmitter during the transient sessions. In both IPSs andtransient sessions, only the

frequency synthesizers consume energy.

ELN denotes the energy consumption of the transmitter on listening to the media for

the ACK from the receiver in the firstN − 1 unsuccessful transmissions. Therefore,

ELN is the energy consumption of idle listening duringTACK . E(RX)
ACK ,E(TX)

ACK are the energy

consumption of the transmitter for receiving the ACK and theenergy consumption of

the receiver for transmitting the ACK. In this work, we assume the ACK message is

simply a packet containing only the PHR and the SP. Since the PHR and the SP always

consist of{−1, 1} symbols and only coherent detection with SD combining is used,

E(RX)
ACK andE(TX)

ACK are constant for a given repetition coding scheme.
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The decomposition of the energy consumption during each packet transmission ses-

sion has been shown in Section 5.3.2.1. Therefore, the average energy consumption for

successful delivery of a packet can be expressed as

E = (E(TX) + E(RX) + ELN + EIPS)N

−ELN + ETRAN + E(TX)
ACK + E(RX)

ACK ,
(5.19)

whereN is the average number of transmissions/receptions required to successfully

deliver one packet. The average number of transmissionsN = 1/(1 − Pb)
LL , where

Pb is the average BEP. Note that(1 − Pb)
LL is the probability that a packet is received

correctly. As shown in the following subsection, the average BEPPb is closely related

to the modulation type, detection schemes, repetition coding/combing schemes, and

number of Rake fingers.

5.3.2.2 Average BEP over Independent Nakagami Fading Channels

The average BEP can be obtained utilizing the characteristic function of the pdf of the

output SNR after the MRC [87][97][98]. The instantaneous SNR at theith finger is

γi =
|αi|2Ptx

Gdσ2
, (5.20)

wherePtx is the transmit power,Gd denotes the path loss at distanced, andσ2 represents

the noise power at the receiver. Also,αi represents the attenuation of the selected path

preserving theith largest power. The instantaneous SNR at the output of the MRC is

γ =
∑M

i=1 γi.

The average bit error probability of DBPSK-CO can be found byaveraging the BEP

of DBPSK-CO over an AWGN channel, with the pdf ofγ which is indicated byp(γ).

By using an alternate representation of the Q-function, we have the BEP of DBPSK-CO

over an AWGN channel as [7][99]

Pb,DBPSK-CO,AWGN ≈ 2Q(
√
2γ)[1−Q(

√
2γ)].

≈ 2Q(
√
2γ),

= 2
π

∫ π
2

0
e
− 2γ

sin2 φdφ.

(5.21)
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The average BEP can be expressed as

Pb,DBPSK-CO =
∫∞
0

Pb,DBPSK-CO,AWGNp(γ)dγ,

=
∫∞
0

[

2
π

∫ π
2

0
e
− 2γ

sin2 φdφ
]

p(γ)dγ,

= 2
π

∫ π
2

0

[

∫∞
0

e
− 2γ

sin2 φp(γ)dγ
]

dφ,

(5.22)

On the other hand, the moment generating function (MGF) of the pdf ofγ is defined

asΨγ(ν) =
∫∞
0

eνγp(γ)dγ. Therefore,

P
b,DBPSK-CO=

2

π

∫ π
2

0

Ψγ(ν)|ν=− 2
sin2 φ

dφ. (5.23)

Sinceαk,l follows a Nakagami-m distribution from the channel model, the MGF of

the pdf ofγ has been established as [87]

Ψγ(ν) =
M
∏

i=1

1

(1− νγ̄i/mi)
mi

(5.24)

whereγ̄i = E[|αi|2]PtxGc/Gdσ
2 is the average received SNR at theith finger.E[|αi|2]

represents the average power of theith selected path, that isE[|αi|2] = E[|αk,l|2], where

|αk,l|2 has theith largest expectation among all paths.mi is the Nakagami m-factor for

the ith selected path. As shown in [46], for the first ray of each cluster,mi is assumed

to be deterministic and independent of delay; while for the remaining paths,mi follows

a delay-dependence lognormal distribution.

Moreover, if we consider repetition coding with parameterNp and SD combining,

the average SNR will increaseNp times compared with the corresponding uncoded

modulations. That is, the eventual average BEP for DBPSK with coherent detection

and SD combining (DBPSK-CO-SD) is

P
b,DBPSK-CO-SD=

2
π

∫ π
2

0
Ψγ(ν)|ν=− 2Np

sin2 φ

dφ. (5.25)
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Instead, if HD combining is used, the average BEP for DBPSK with coherent de-

tection and HD combining (DBPSK-CO-HD)Pb,DBPSK-CO-HDcan be expressed as

P
b,DBPSK-CO-HD=

Np
∑

k=
Np+1

2





Np

k



P k

b,DBPSK-CO(1− P
b,DBPSK-CO)

Np−k,

(5.26)

wherePb,DBPSK-COis given in (5.22). A similar procedure can be directly applied to

OOK with coherent detection and DPPM with coherent detection, using either HD or

SD combining.

In the case of DBPSK-NC, the average bit error probability ofDBPSK-CO can

be found by directly utilizing the MGF of the pdf ofγ. First, we have the BEP of

DBPSK-NC over an AWGN channel as [7]

P
b,DBPSK-NC,AWGN ≈ 1

2
e−γ (5.27)

The average BEP can then be expressed as

P
b,DBPSK-NC =

∫∞
0

P
b,DBPSK-NC,AWGNp(γ)dγ,

=
∫∞
0

1
2
e−γp(γ)dγ,

= 1
2
Ψγ(ν)|ν=−1,

= 1
2

M
∏

i=1

1
(1+γ̄i/mi)

mi

(5.28)

Correspondingly, we have

P
b,DBPSK-NC-SD =

1

2

M
∏

i=1

1

(1 +Npγ̄i/mi)
mi

, (5.29)

Pb,DBPSK-NC-HD =

Np
∑

k=
Np+1

2





Np

k



P k

b,DBPSK-NC(1− P
b,DBPSK-NC)

Np−k.
(5.30)

The average bit error probabilities of DPPM and OOK with non-coherent detec-

tion, using either HD or SD combing, can be obtained following a similar procedure.
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Moreover, to avoid excessive requirements of memory units,only HD combining is

considered for noncoherent detections.

5.3.2.3 Energy per Information Bit Minimization

From (5.19), the energy consumption per information bit is

Eb =
E(TX) + E(RX) + ELN + EIPS

LL(1− Pb)LL
+

ETRAN + E(TX)
ACK + E(RX)

ACK −ELN

LL

. (5.31)

Our goal is to find an optimum combination of the modulation scheme, the detec-

tion scheme, the repetition coding parameterNp, the combining scheme, the packet

length,LL, and the number of RAKE fingers at the receiver,M , over a slow frequency-

selective channel for a given transmission distance, that minimizes the effective energy

consumption per information bit denoted by (5.31). Removing the integer constraint

onLL, it is straight forward to find the closed form optimum packetlength by solving

∂Eb/∂LL = 0. At high SNR, the result is

L∗
L ≈ −Pb(A+B)+

√
P 2
b (A+B)2+4(A+B)CPb

2CPb
, (5.32)

where

A = ETRAN + E(TX)
ACK + E(RX)

ACK −ELN,

B = EIPS+ ELN + E(TX)
O + E(RX)

O + E(RX)
L ,

C = (ρtEp + PSYN/Rb)/Rc

+[ρt(MPCOR+ ρcPADC + PLNA + PVGA) + ρr(PGEN + PSYN)]/(RbRc).

As indicated by (5.32),L∗
L will decrease as BEP increases. In a real application of this

model, the packet length can always be selected as the nearest integer of the resulting

L∗
L.

In this work, we have assumed that the data rate is fixed at the maximum allow-

able data rate that avoids ISI. Correspondingly, the transmit power, as shown in (5.1),

is also fixed. Therefore, the average BEP at a given transmission distance for a given
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modulation scheme is only determined by the modulation and detection schemes, repe-

tition coding and combining schemes, and the number of RAKE fingers at the receiver.

For a given combination of the modulation/detection schemeand the repetition cod-

ing/combining scheme, the BEP follows a non-increasing function of the number of

RAKE fingers. Thus,L∗
L follows a non-decreasing function of the number of RAKE

fingers.

The optimum number of RAKE fingers reflects the tradeoff between the power con-

sumption cost,MPCOR and the received power gain,E[|αi|2]Ptx/Gd. The optimum se-

lection of modulation/detection schemes and repetition coding/combining schemes re-

flects the tradeoff between the performance and the power consumption at the transceiver,

since higher performance is often accompanied by higher power consumption. Unlike

the optimum packet length, there are no closed form expressions for the optimum mod-

ulation/detection schemes, repetition coding/combiningschemes and number of RAKE

fingers. However, numerical optimizations can be performedover these parameters,

and the optimization results will be given in the following section.

5.4 Numerical Results

In this section, we demonstrate the results of minimizing the effective energy consump-

tion per information bit modeled by equation (5.31). We assume thatB = 500MHz,

LSP = 1024 symbols,LPHR = 16 symbols [32], coding rateRc = 1/Np, andNp =

1, 3, 5, ..., 15. The maximum excess delay isDS = 40 ns, which limits the maximum

pulse rate toRp ≈ 1/Ds = 25 Mbps to avoid inter symbol interference. The power

consumptions of the transmitter and receiver components are as follows [95],[100]-

[103]: PSYN = 30.6mW,PADC = 2.2mW,PGEN = 2.8mW,PVGA = 22mW,PLNA =

9.4mW,PCOR = 10.08mW. To the best of our knowledge, there is no existing literature

providing specific power consumption evaluations of the channel estimation block in

an IR-UWB receiver. Therefore, in this work we assume the IR-UWB receiver uses the
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Figure 5.4: The optimum target BEP versus distance (Np = 3).

data-aided estimation method from [104], which can essentially be implemented as a

correlator. Thus, we assumePEST = PCOR = 10.08mW.

The fixed emitted energy per pulse isEp = 4.5 pJ/pulse. Therefore, the maximum

amount of transmit power isPtx = EpRp = 0.113 mW. Also, we assumeTIPS = 200

µs andTtr = 400 µs. Moreover,Rbase = 1 Mbps, whereRbase denotes the data rate

to transmit the header and preamble symbols, and the path loss parameter is set to

Lw = 0.7 dB/m.

The parameters of the channel model for an office environmentwith no line of sight

(NLOS) are used [46]. That is, the path loss exponentn = 3.07, the frequency de-

pendency decaying factorκ = 0.71, reference path gainG0 = −59.9 dB, transmission

center frequencyf = 3.1 GHz, the reference frequencyfc = 5 GHz. The distance

range of interest isd ∈ [3, 27] meters. We used exhaustive search to solve the opti-

mization model. The quality of service (QoS) is assumed to beerror free. That is, the

expected number of total transmissions is1/(1− Pb)
LL.
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Figure 5.7: The minimum energy consumption per informationbit versus distance

(Np = 3).
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5.4.1 Optimization With Fixed Np

To better understand the influence of the packet length, the number of RAKE fingers,

the modulation, the combining schemes, and the detection schemes, first, we consider a

fixedNp = 3 to isolate the impact of repetition coding from the rest of the parameters.

The optimum BEPs and optimum packet lengths of different modulation/combining/detection

schemes withNp = 3 are shown in Figs. 5.4 and 5.5, respectively. As shown in Fig.

5.4, as the transmission distance increases, the optimum BEP will increase since it will

require increasingly more power at the receiver to maintaina low BEP asd increases.

Therefore, the optimum choice is to lower the target BEPs to avoid a dramatic increase

in the number of RAKE fingers. Correspondingly, as shown in Fig. 5.5, the optimum

packet length will decrease asd increases to avoid costly retransmissions caused by

higher BEP, since a short packet length results in a lower packet error probability.

Note that, at short transmission distances, there are high variations ofP ∗
b andL∗

L.

This is because at short distances whereP ∗
b is very low,P ∗

b is very sensitive to a change

in the number of RAKE fingers. That is, at short distances, additional RAKE fingers

will provide a considerable amount of collected power gain.Correspondingly,L∗
L will

change significantly as the number of RAKE fingers changes at short distances. On the

other hand, at large distances, additional RAKE fingers onlyprovide a small amount of

collected power gain. Therefore,P ∗
b andL∗

L are not sensitive to a change in the num-

ber of RAKE fingers. The curves ofP ∗
b andL∗

L thereby become smooth as distances

increase.

Fig. 5.6 shows the optimum number of RAKE fingers at the receiver versus dis-

tance. As the transmission distance increases, the optimumnumber of RAKE fingers

will increase and converge to a certain value. This is due to the change of balance

between the diversity gain and the power cost induced by eachadditional RAKE fin-

ger. The absolute value of the increase in collected energy by an additional RAKE

finger decreases with distance. This diminishing gain incurs a fixed cost, namelyPCOR.
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Consequently, as distance increases, to avoid excessive retransmissions, the number of

RAKE fingers should increase to collect more received power.However, when dis-

tance increases beyond a certain level, path loss becomes very large, and increasing the

number of RAKE fingers does not lead to the collection of considerably more received

power. However, more RAKE fingers will incur more power consumption at the re-

ceiver. Thus, at large transmission distances, increasingthe number of RAKE fingers

does not improve the energy efficiency. The optimum receiverpower consumptions of

different modulation schemes at different transmission distances follow the trend of the

optimum number of RAKE fingers shown in Fig. 5.6. The optimum number of RAKE

fingers from (5.12) is also shown in Fig. 5.6. Since (5.12) does not include the im-

perfection of repetition coding/modulation and the overhead caused by packetization

and retransmissions, the received power that is collected by the RAKE fingers at the

receiver reaches the theoretical maximum efficiency (no waste on overhead).

The overall minimized energy consumption per information bit is shown in Fig.

5.7. OOK-NC-HD consumes the least amount of energy whend < 6m, while DBPSK-

NC-HD offers the lowest energy consumption per informationbit when6m ≤ d <

11m. DBPSK-CO-HD is the most energy efficient scheme when11m ≤ d < 16m.

DBPSK-CO-SD is the most energy efficient scheme when the distance is greater than

16 meters. This trend reflects the balance between the transmitter energy consumption

and the receiver energy consumption. At a short transmission distance, the less robust

schemes (OOK-NC-HD) require less power consumption at the transmitter/receiver and

provide a BEP low enough to avoid excessive retransmissions. Therefore, the OOK

scheme, noncoherent detection, and HD combining have a highenergy efficiency at

short transmission distances. However, as transmission distance increases, the above

schemes require a large number of RAKE fingers to maintain a low BEP, thereby the

receiver power consumption will increase dramatically if using schemes like OOK-NC-

HD. On the other hand, the more robust schemes (such as DBPSK-CO-HD, DBPSK-

CO-SD) consume much less power at the receiver since they need fewer RAKE fingers
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to achieve a low BEP. Thus, as transmission distance increases, these schemes will

become the energy efficient schemes. The lower bound onEb from (5.12) and the

packetized lower bound onEb from (5.15) are also shown in Fig. 5.7. The packetized

bound from (5.15) is larger than (5.12), especially for large distances. This is caused by

the decrease ofL∗
L as distance increases, as shown in Fig. 5.5, which in turn increases

the packetization overhead.

The overall minimumEb and corresponding modulation, repetition coding and de-

tection schemes are shown in Fig. 5.8. This figure, together with Fig. 5.6, reveals

that, at short distances (high SNRs), low complexity and lowperformance modula-

tion/repetition coding/detection schemes, such as OOK-NC-HD with a small number

of RAKE fingers, are energy efficient; while at large distances (low SNRs), higher com-

plexity and higher performance modulation/repetition coding/detection schemes, such

as DBPSK-CO-SD with a large number of RAKE fingers, become energy efficient.

5.4.2 Optimization With Variable Np

Besides the optimization on packet length, number of RAKE fingers and modula-

tion/combining/ detection schemes, the repetition codingparameterNp in repetition

coding should also be adjusted to minimizeEb. Now we assume thatNp takes the val-

ues1, 3, 5, ..., 15.

Fig. 5.9 shows the overall minimum energy consumption per information bit for

different repetition coding parameters. To show the influence ofNp, theE∗
b shown in

Fig. 5.9 have been optimized overLL, M and modulation/repetition coding/detection

schemes. Fig. 5.9 shows that the optimumNp increases asd increases (SNR decreases).

This observation further confirms that, to guarantee link level reliable communication,

high-complexity and high-performance transceiver structures are energy efficient at low

SNRs; while low-complexity and low-performance transceiver structures are energy

efficient at high SNRs.
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Fig. 5.10 shows the optimum number of RAKE fingers and packet lengths for differ-

ent repetition coding parametersNp, with optimized modulation/combining/detection

schemes. The curves with differentNp display the same trend: asd increases (SNR de-

creases),M∗ increases and converges to the same level, whileL∗
L decreases. Fig. 5.10

also reveals that the effect of a largeNp on the packet error probability on the expected

number of retransmissions is equivalent to that of a smallLL or a largeM , and vice

versa. Therefore, it is possible to use a long repetition code to minimize energy un-

der some circumstances where a large number of RAKE fingers and adjustable packet

lengths are not feasible.

5.4.3 Optimum Configuration Table

The results of these optimizations can enable the transceiver to adapt by selecting the

overall optimum configurations (including the modulation/detection scheme, the repe-

tition coding/combining scheme, the packet length and the number of RAKE fingers)

according to the expected transmission distance through a lookup table. Table 8.1 is an

example of such a look-up table obtained with the particularpower consumption and

channel models assumed in this work.

5.4.4 The Effects of Power Consumption Values on the Optimum

Configurations

Implementation technologies have a paramount impact on thechoice of the optimal

communication schemes. For example, shouldPSYN become smaller, the distance range

in which coherent detection is energy efficient becomes larger. In fact, considering an

extreme case where the transceiver does not consume any power, we shall always use

the communication scheme with the highest performance, such as DBPSK with co-

herent detection, soft decoding and an all-RAKE receiver. In real applications, the



123

overall optimum configurations should be carefully evaluated using the generic en-

ergy consumption model provided in this work as summarized in (5.31) and the power

consumption values of the actual circuit components based on the adopted production

technologies. For instance, suppose we choose another set of power consumption val-

ues wherePSYN = 2.2mW, with the rest of the power consumption values stay the

same. The resulting overall optimum configurations are summarized in Table 5.2. By

comparing Tables 8.1 and 5.2, we find that since the difference in power consumption of

coherent and noncoherent schemes becomes smaller, the distance range in which coher-

ent detection is energy efficient becomes larger. However, the general trend of the op-

timal configurations versus transmission distance stays the same: high-complexity and

high-performance transceiver structures are energy efficient at large distances; while

low-complexity and low-performance transceiver structures are energy efficient at short

distances.

5.5 Summary

In this chapter, we provided the power consumption models oftypical transmitter and

receiver structures of IR-UWB systems. Then, under the assumption of a frequency

selective time-invariant channel, a minimization of energy consumption per informa-

tion bit considering packet overhead, retransmission, repetition coding and number of

RAKE fingers is performed. An optimum number of RAKE fingers exists under the

assumption of a frequency selective time-invariant channel with a double exponentially

decaying power delay profile. The results show that low-complexity, low-performance

transmission schemes are energy efficient at high SNRs, while high-complexity, high-

performance schemes are energy efficient at low SNRs. Detailed optimum transmission

schemes, including packet length, modulations, detection, repetition coding, combin-

ing, and number of RAKE fingers, are also provided for given transmission distances

for a typical IR-UWB link.
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Table 5.1: Overall Optimum Configurations

Distance (m) Modulation Detection Np Combining M∗ L∗
L (Kbit)

3 7

4
OOK

10

5 NC 6

6 7

7 8
∼ 1500

8 7

9 1
HD

8

10 10

11 11

12 14

13 16

14 DBPSK 21

15 23

16 12

17 14
∼ 500

18
CO

16

19 3 18

20 21

21 23

22 SD 16

23 5 17

24 19 ∼ 50

25 16

26 7 17

27 19
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Table 5.2: Overall Optimum Configurations

Distance (m) Modulation Detection Np Combining M∗ L∗
L (Kbit)

3 NC 7 ∼ 3000

4
OOK

9

5 4

6 5

7 6
∼ 1500

8 7

9 1
HD

8

10 9

11 11 ∼ 500

12 13

13 15

14 DBPSK 18

15 22

16 10

17 CO 11
∼ 100

18 12

19
3

14

20 16

21 18

22 SD 13

23 14

24
5

16 ∼ 50

25 18

26 14

27
7

16
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6 Maximizing Data Gathering in

Clustered Short-Range Wireless

Networks

In this chapter, we extend our cross-layer optimization to include the network layer. In

particular, we investigate the maximization of the amount of gathered data in a clustered

short-range wireless network (SRWN). The amount of gathered data is maximized by

(i) choosing the optimal transmit power, (ii) selecting theoptimal cluster head, and

(iii) deciding whether or not to use multi-hop within a cluster. For problem (i), we

find closed-form solutions for the optimal or near optimal transmit power of cluster

members (CM). For problem (ii), we propose a near optimal cluster head selection

(CHS) algorithm. The communication burden and computational complexity of CHS

only grow linearly with the size of the cluster. Finally, forproblem (iii), we propose an

algorithm to decide whether or not to use multi-hop within a cluster to further increase

the amount of data gathered by a cluster.

In the proposed algorithms, iterations have been avoided inorder to significantly

lower the complexity of the algorithms compared with traditional iteration-based nu-

merical optimization algorithms, making these approachessuitable for use in energy-

constrained wireless networks. The optimization gain is shown to be significant.
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6.1 Introduction

In the domain of short-range wireless networks, there has been much research effort

aimed at efficiently utilizing the limited energy at the nodes [2][10]. Numerous strate-

gies have been investigated to improve the energy efficiencyof SRWNs, including

power control, mobile data sink deployment, multiple data sink deployment, nonuni-

form initial energy assignment, and intelligent node and relay deployment [11].

Another option to improve the energy efficiency of SRWNs, clustering protocols

have been broadly adopted due to their effectiveness and simplicity. In clustered net-

works, neighboring nodes are grouped as clusters. One of thenodes in a cluster is

selected as the cluster head, and the remaining nodes are thecluster members. The

cluster head is usually in charge of certain local coordinations, such as collecting data

from the cluster members and communicating with other clusters and the data sink,

while cluster members simply transmit data to the cluster head. The cluster head may

be selected in a randomized manner, such as in HEED [57] or LEACH [58]. Such a

randomized selection of the cluster head, combined with rotating the cluster head posi-

tion, can effectively avoid the early drain of the energy of aparticular node. However,

it cannot guarantee the optimality of the selection.

Transmit power is a very important factor that influences theenergy efficiency of

SRWNs from the physical layer (PHY) [12]. Power control techniques can be easily

adopted in clustering topologies [56]. In this chapter, we focus our attention on a clus-

tered wireless network with power control capability at thecluster members. The goal

is to maximize the energy efficiency of a cluster by optimallydetermining the cluster

head and obtaining the optimal transmit power of the clustermembers.

Multi-hop can be used to further improve the energy efficiency of a SRWN. By

utilizing multi-hop routing, the transmitting nodes are able to use less transmit power

and thereby save energy spent on transmitting information.However, in multi-hop

routing, there are more nodes involved in delivering information from the source node
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to the sink. Therefore, the energy efficiency needs to be carefully evaluated considering

the extra energy consumption at the relay nodes. In this chapter, we analyze the use of

multi-hop within the scope of a cluster to further improve the energy efficiency of a

cluster. That is, we propose a criterion to determine if a transmitting cluster member

should choose multi-hop routing to reach the cluster head, and which of its neighbor

should be chosen as the relay node, so that the energy efficiency of the cluster can be

improved.

The energy efficiency of wireless networks is usually evaluated by network life-

time. Network lifetime can be defined as the time elapsed until the first node in the

network depletes its energy. This definition of lifetime canavoid the situation that

certain nodes have very high power consumption, such as the common relay nodes of

many routes, during network optimization. However, in a clustering-based network,

due to the uneven importance of cluster members and cluster heads, the definition of

network lifetime needs to be modified.

In this chapter, we define the lifetime of a cluster as the timeduration for a cluster to

function properly, i.e., the time elapsed until the clusterhead dies or all cluster members

die, whichever comes first. In data-centric applications, however, lifetime itself is not as

meaningful a criterion as the amount of data gathered duringthe lifetime to evaluate the

performance of a cluster. Thus, the goal of our proposed optimization is to maximize

the amount of data gathered during the lifetime of a cluster,under the energy constraints

and fairness constraints. The optimization parameters arethe transmit power of cluster

members, the selection of the cluster head, and the decisionabout whether or not to use

multi-hop routing within the cluster.

The rest of the chapter is organized as follows: In section 6.2, we formulate the

optimization problem for selecting the cluster members’ transmit power to maximize

the amount of data gathered during the lifetime of a cluster,given energy and fairness

constraints. Moreover, we derive an iteration-free solution to this optimization prob-

lem. The complexity of the solution is significantly lower than conventional iterative
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Figure 6.1: A typical cluster topology (Nd = 5).

numerical solutions. In section 6.3, we model the cluster head selection problem, and

from this model we formulate an optimization problem to determine the near optimal

cluster head. In section 6.4, an algorithm is proposed to decide whether or not to use

a multi-hop within a cluster to further increase the amount of data gathered during the

lifetime of the cluster. The performance of the proposed algorithms is evaluated in

section 6.5. Finally, section 6.6 concludes this chapter.

6.2 Transmit Power Optimization

6.2.1 Optimization Model

Fig. 6.1 shows a typical cluster topology with 5 cluster members (CMs) and 1 cluster

head (CH). In this work, cluster members operate under afairness constraint. The

fairness constraint of a CM is defined as the constraint that the cluster head should

collect an equal number of information bits from each CM. That is, if every CMi works
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for time durationTi, then duringTi, each CM transmitsD bits of data to the cluster

head. This fairness constraint is due to the fact that the nodes in a cluster are usually

geographically adjacent, and thus they observe the same phenomenon and generate

the same amount of samples and, consequently, generate the same amount of data for

transmission given every node has the same source coding rate.

Given this fairness constraint and Shannon’s channel capacity theorem, we have

BTi log

(

1 +
Pi

dni Pn,i

)

> D, ∀i ∈ {1, 2, ..., Nd}, (6.1)

whereB is the bandwidth,Pi is the transmit power of cluster memberi, di is the

transmission distance from cluster memberi to the cluster head,n is the path loss

exponent,Pn,i is the additive white gaussian noise (AWGN) power on the linkfrom

nodei to the cluster head, andNd denotes the number of cluster members.

Rearranging Eq. (6.1), the transmit power of CMi is

Pi >
(

2
D

BTi − 1
)

dni Pn,i. (6.2)

That is, the transmit power of CMi is determined by its operation time durationTi and

the total transmitted dataD.

Moreover, the energy constraints at the CMs are

Ti(Pi + PCT ) ≤ Ei, ∀i ∈ {1, 2, ..., Nd}, (6.3)

wherePCT denotes the circuit power consumption at the CMs, and the transmit powers

are constrained by Eq. (6.2).

At the cluster head, the energy consumption comes from receiving the data from

cluster members. Therefore, the energy constraint at the cluster head is

PCR

Nd
∑

i=1

Ti ≤ E0, (6.4)

wherePCR is the circuit power consumption to receive data.
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6.2.2 Problem Formulation

The resulting maximization of the total gathered data giventhe energy constraints and

the fairness constraint can be formulated as

min −D
s.t. C1 : Ti > 0,

C2 : PCR

Nd
∑

i=1

Ti ≤ E0

C3 : Ti[Pi + PCT ] ≤ Ei,

C4 : Pi > (2
D

BTi − 1)dni Pn,i,

(6.5)

wherei ∈ {1, 2, ..., Nd}. In this model, constraintsC2 andC3 are the energy constraints

at the cluster head and cluster members, respectively.C4 results from the fairness

constraint. Our goal is, for given residual energies and communication environments, to

find the optimal cluster member operation time durations[T1, T2, ..., TNd
] and transmit

powersPi that maximize the total data gathered at the cluster head.

Problem (6.5) is a minimum feasible set test problem with variablesTi, Pi andD

[105]. Assume that the optimal solution isD∗, T ∗
i andP ∗

i , whereP ∗
i = (2

D∗

BT∗
i −

1)dni Pn,i + ǫi, ǫi > 0. It is obvious thatD∗, T ∗
i andP̂i, whereP̂i = (2

D∗

BT∗
i − 1)dni Pn,i +

ǫi
2
, ǫi > 0, is also an optimal solution, asD∗, T ∗

i andP̂i satisfy the constraints. There-

fore, we can always have the optimal transmit powerP ∗
i → (2

D∗

BT∗
i − 1)dni Pn,i from the

right hand side. Thus, we can replace the inequality in constraintC4 with equality. The

resulting problem model is

min −D
s.t. C1 : Ti > 0,

C2 : PCR

Nd
∑

i=1

Ti ≤ E0

C3 : Ti[Pi + PCT ] ≤ Ei,

C4 : Pi = (2
D

BTi − 1)dni Pn,i.

(6.6)

The optimal solutions of the above problem are arbitrarily close to the optimal solutions
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Figure 6.2: AverageD∗ as the CH energy increases.

of problem (6.5). We determine an iteration-free solution to this problem in the next

subsection.

6.2.3 Transmit Power Optimization Algorithm

Problem (6.6) is a typical minimum feasible set test of a quasi-convex optimization

problem, which can be readily solved through iterative numerical methods [105]. How-

ever, performing hundreds of iterations is prohibitively complex in energy-limited SR-

WNs, and a simple solution with few or no iterations is desirable. In this section, we

propose a simple iteration free solution to find the near optimal transmission time du-

rations and transmit powers of each CM in a cluster.

Consider a cluster with 5 cluster members where the initial energy of the cluster

members and the transmission distances are randomly generated. Fig. 6.2 presents the

average maximum information bits gathered by the cluster head,D∗, obtained from the

numerical solution of (6.6). We observe that asE0 increases, the maximum data gath-

ered at the CH increases until it reaches a saturation limit.That is, there are two regions

of maximum data gathered,D∗, asE0 increases, namely theCH-constrained region
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and theCM-constrained region. In the CH-constrained region, the cluster head energy

is the limiting factor in the total amount of data collected,while in the CM-constrained

region, the residual energy at the CMs becomes the limiting factor. Our goal is to find

an iteration-free solution forTi that maximizesD in both the CH-constrained and the

CM-constrained regions. After obtaining the optimalTi, the corresponding optimal

transmit powerPi of the CMs can be easily determined.

6.2.3.1 CH-constrained region

In the CH-constrained region, the limiting factor on the amount of data collected is the

cluster head energy. In this case, the cluster head uses up its energy. The total available

operation time for all cluster members can thus be expressedas

Nd
∑

i=1

Ti =
E0

PCR
. (6.7)

Through linear approximations, an IFS for problem (6.6) when the cluster operates in

the CH-constrained region can be achieved.

In the CH-constrained region, since the cluster head is the limiting factor, the clus-

ter head and all cluster members should use up their energy. Otherwise, any cluster

member having energy left indicates that at least one of the cluster members limits the

increase of the collected data and the cluster is operating in the CM-constrained region.

Therefore, both the cluster head and the cluster member energy constraints are active.

That is

Nd
∑

i=1

Ti =
E0

PCR
, (6.8)

Ti

[(

2
D

BTi − 1
)

dni Pn,i + PCT

]

= Ei. (6.9)
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From (6.9), we have

log2

(

Ei
Ti

−PCT

dni Pn,i
+ 1

)

= D
BTi

,

a
==⇒ Ti log2

(

Ei

Tidni Pn,i

)

≈ D
B
,

==⇒ Ti log2

(

Ei

dni Pn,i

)

− Ti log2 Ti ≈ D
B
,

b
==⇒ Ti ≈ D/B

log2

(

Ei
dn
i
Pn,i

)

+ 6
ln 2

,

(6.10)

where stepa follows by assuming that the signal-to-noise ratio is much greater than 1

and Ei

Ti
≫ PCT . Stepb follows from Borchardt’s algorithm [106], which provides the

following approximation which is the linearization of thisfunction around zero:

Ti log2 Ti ≈ −Ti
6

ln 2
. (6.11)

Therefore, we have

Ti
Nd
∑

i=1
Ti

=

D/B

log2

(

Ei
dn
i
Pn,i

)

+ 6
ln 2

D/B
Nd
∑

i=1

1

log2

(

Ei
dn
i
Pn,i

)

+ 6
ln 2

=
1/(log2(Ei/dni Pn,i)+6/ ln 2)

Nd
∑

i=1
1/(log2(Ei/dni Pn,i)+6/ ln 2)

.

(6.12)

Thus, from (6.8) and (6.12), we have

T ∗
i ≈ E0

PCR

1/(log2(Ei/dni Pn,i)+6/ ln 2)
Nd
∑

i=1
1/(log2(Ei/dni Pn,i)+6/ ln 2)

. (6.13)

The above approximation is accurate around zero. The optimal transmit power for node

i in the CH-constrained region can be easily calculated by

P ∗
i =

Ei

T ∗
i

− PCT . (6.14)
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The maximum collected data from each node in the CH-constrained region is then

D∗ ≈ BT ∗
i log

(

1 +
P ∗
i

dni Pn,i

)

. (6.15)

6.2.3.2 CM-constrained region

In the CM-constrained region, the maximum possible total data gathered from each

cluster member asE0 → ∞ is determined by the minimum value of the following

sequence

D∗ = min{D1, D2, ..., DNd
}, (6.16)

where the operator min{·} returns the minimum element of a sequence, andDi are the

values of the following unconstrained maximization problems:

Di = max

{

BTi log

(

1 +
Ei
Ti

−PCT

dni Pn,i

)}

, (6.17)

The above unconstrained maximization problems are conducted overTi, and their ana-

lytical solutions can be found as

T †
i = Ei

ln 2(PCT −dn
i
Pn,i)

W

(

ln 2
2dn

i
Pn,i

(PCT −dn
i
Pn,i)

)+PCT−dni Pn,i

,
(6.18)

whereW (·) is Lambert W function [107]. Although the Lambert W functioncan be

calculated efficiently using numerical methods, it is stillprohibitively complicated to

calculate in nodes. However, it is possible to further simplify (6.18) whenPCT ≫
dni Pn,i. In this case,

T †
i ≈ Ei

PCT ln 2

W

(

ln 2
2dn

i
Pn,i

PCT

)+PCT

,

≈ Ei
PCT ln 2

ln

(

ln 2
2dn

i
Pn,i

PCT

)

−3

+PCT

.

(6.19)

Then

D∗ = min

{

BT †
i log

(

1 +

Ei

T
†
i

−PCT

dni Pn,i

)}

, (6.20)
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where exact, (6.18) or approximate, (6.19) values ofT †
i can be used.

Without loss of generality, assumeD1 ≤ Di, ∀i ∈ {2, 3, ..., Nd}. Then we have

D∗ = D1,

T ∗
1 = T †

1 .
(6.21)

Moreover,T ∗
i ∀i ∈ {2, ..., Nd} can be any values that satisfy the following constraints:

T ∗
i > 0,

Nd
∑

i=1

T ∗
i ≤ E0

PCR
,

T ∗
i

[(

2
D∗

BT∗
i − 1

)

dni Pn,i + PCT

]

≤ Ei.

(6.22)

Another important observation is that in the CM-constrained region, an increase in

the cluster head energy cannot increase the total number of bits collected from the CMs.

Thus, once the cluster enters the CM-constrained region, that is, when the energy at the

CH,E0, is greater than a critical value,̂E0, an increase in the receiver energy becomes

redundant. The value of̂E0 can be determined by the following equation

Ê0 = PCR

Nd
∑

i=1

T ∗
i , (6.23)

whereT ∗
1 = T̂1 as defined by (6.21), and

T ∗
i = min

{

arg

[

BTi log

(

1 +
Ei

Ti
− PCT

dni Pn,i

)

= D∗

]}

, (6.24)

∀i ∈ {2, ..., Nd}, whereD∗ is from (6.20). Clearly the resultingT ∗
i ∀i ∈ {2, ..., Nd}

also satisfy the constraint set (6.22).

6.2.3.3 Transmit power optimization algorithm

Based on the previous analysis, the transmit power optimization algorithm that finds

the near optimal solution to model (6.6) is summarized in Fig. 6.3. As shown in Fig.

6.3, the first step is to determine the condition of the cluster of interest (CH-constrained
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Figure 6.3: The transmit power optimization algorithm flowchart.

region or CM-constrained region); once the operating condition is determined, the re-

sults from sections 6.2.3.1 and 6.2.3.2 can be directly used. This algorithm does not

require prohibitive numbers of iterations as in conventional numerical algorithms. The

performance of the proposed algorithm will be evaluated in section 6.5.

6.3 Cluster Head Selection

The transmit power optimization algorithm proposed in the previous selection can also

be used to identify the optimal cluster head that can providethe largest amount of total

data gathered. An obvious approach is to repeat the transmitpower optimization algo-
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rithm Nd + 1 times and determine which is the optimal cluster head. However, there

are redundancies in this method. For example, some information generated by the pro-

posed algorithm, such as the optimal transmit power, are notnecessary in determining

the optimal cluster head.

In this section, we propose a simplified method to identify the optimal cluster head,

which only involves the calculation of (6.16) and (6.23) in each iteration. The simplified

algorithm is based on a linear approximation around zero of the following functions:

Di = BTi log

(

1 +
Ei
Ti

−PCT

dni Pn,i

)

. (6.25)

First, we have the following observation:D∗ has a near-linear relationship with the

cluster head energy E0 in the CH-constrained region. The linearity is strengthened

when PCT ≫ dni Pn,i and Ti → 0.

Proof: From (6.13), the optimalTis and the energy of the cluster headE0 has an

approximately linear relationship in the CH-constrained region. Therefore, to show that

D∗ has a near-linear relationship withE0 in the CH-constrained region, we only need

to show the linearity ofDi andTi, for i ∈ {1, 2, ..., Nd}:

Di = BTi log

(

1 +
Ei
Ti

−PCT

dni Pn,i

)

,

==⇒ Di = BTi

[

log
(

PCT−dni Pn,i

dni Pn,i

)

+ log
(

−1 + Ei

(−dni Pn,i+PCT )Ti

)]

,

a
==⇒ Di ≈ BTi

[

log
(

PCT−dni Pn,i

dni Pn,i

)

+ log
(

Ei

PCT

)

− log Ti + log
(

1− PCT Ti

Ei

)]

,

b
==⇒ Di ≈ BTi

[

log
(

PCT−dni Pn,i

dni Pn,i

)

+ log
(

Ei

PCT

)

+ 6
ln 2

]

.

The approximationa becomes accurate whenPCT ≫ dni Pn,i, and the approximationb

becomes accurate whenTi → 0. As shown by the above derivation,Di andTi have a

near-linear relationship whenPCT ≫ dni Pn,i andTi → 0.�

The assumptionPCT ≫ dni Pn,i is usually true in small-scale narrowband systems

where the noise power is low and transmission distances are in general short. However,

Ti → 0 is not usually the case when the cluster operates in the CH-constrained region.

In fact,Ti → 0 is true only when the cluster head has very limited energy. Therefore, in
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most cases, the linear approximation is a coarse approximation toD∗ as a function of

E0. Although the linear approximation cannot describeD∗ very accurately, it provides

good performance in the cluster head selection and greatly reduces the computation

complexity.

Let D
′

(i) denote the linear approximation of the maximum data collected for the

cluster with nodei as the cluster head. The procedure for the proposed cluster head

selection algorithm is straightforward: for each nodei, calculateD
′

(i); then choose the

node with the largestD
′

(i) as the cluster head.

In the proposed cluster head selection (CHS) algorithm,D
′

(i) can be expressed as

D
′

(i) =







D∗ Ei ≥ Ê0

D∗ − D∗

Ê0
(Ê0 −Ei) Ei < Ê0

(6.26)

whereD∗ can be obtained from (6.16) and̂E0 can be calculated from (6.23).

The CHS algorithm can be distributed as follows (assuming each node knows the

distances to its neighbors): first, each node uses one broadcast to inform the other nodes

of its residual energy, and each node can then find its ownD
′

through (6.26). The node

with the most residual energy (assume it is nodei) broadcasts to the other nodes to

declare itsD
′

(i). The rest of the nodes will compare the receivedD
′

(i) with their own

D
′

(j), j 6= i. If D
′

(j) > D
′

(i), then nodej will notify node i of its D
′

(j). Otherwise,

nodej does not take any action. At last, nodei will compare the received information

and use one broadcast to inform the rest of the nodes about theselected cluster head

which provides the largestD
′

. The performance of the proposed CHS algorithm will

be evaluated in section 6.5.

6.4 To Hop or Not to Hop

So far, we have obtained the optimal transmit power and the optimal selection of the

cluster head in a single-hop cluster. To further improve theperformance of a cluster,
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Figure 6.4: A 3-node cluster with a potential multi-hop route.

we investigate the use of multi-hop relaying within a cluster during the CM-constrained

region.

We assume that the nodes have the ability to choose either direct communication

or one-hop relaying to send information to the cluster head.Fig. 6.4 shows a 3-node

cluster with multi-hop relaying. Node 1 can communicate to the cluster head (node 0)

directly, or by relaying its data through node 2. As shown in Fig. 6.4, a multi-hop link

may imply shorter transmission distance for node 1than a direct link. However, a multi-

hop link also incurs additional energy cost at the relay node. The energy consumption

tradeoff is an important issue that deserves to be investigated.

It is also obvious that the multi-hop technique can only reduce the energy dissipation

at the source node. Thus, multi-hop does not help when the energy storage at the

CMs does not affect the cluster’s performance, such as in a cluster operating in the

CH-constrained region. In the CM-constrained region, the residual energy at the CMs

determines the performance of the cluster and needs to be preserved to the maximum

extent, and thus multi-hop relaying has enormous potentialto improve the cluster’s

performance.

Let us start the analysis by considering the simple case of a 3-node cluster as de-

picted in Fig. 6.4. Assume that the cluster is operating in the CM-constrained region,
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and the unconstrained maximum amount of data directly transmitted from node 1 and

node 2 to the cluster head areD∗
1 andD∗

2 defined by (6.17), andD∗
1 < D∗

2.

Under a strict fairness constraint as defined in section 6.2.2, a simple rule of thumb

is that if D∗
1 ≥

D∗
2

2
, then a single-hop cluster must be better than a multi-hop link; if

D∗
1 <

D∗
2

2
, a multi-hop link has the potential to outperform a single-hop cluster. This

is because, in the multi-hop link, the relay node (node 2) hasto transmit both the data

received from node 1 and its own data. According to the strictfairness constraint, these

two transmissions need to be of equal amount. That is, the maximum amount of data

collected from each node cannot exceedD∗
2

2
in a multi-hop link. On the other hand, the

maximum amount of data collected from each node isD∗
1 in a single-hop cluster. By

comparing these two values, we have the above simple rule.

However,D
∗
2

2
is simply an upper bound on the maximum amount of data collected

from each node in a multi-hop link. The detailed evaluation of clustering and multi-

hop requires the knowledge of the exact value of the maximum amount of data collected

from each node in a multi-hop link.

In the multi-hop link depicted in Fig. 6.4, it is observed that, when the energy at

node 1 is smaller than a certain value, denoted byE1,2,critical, the data collected through

this multi-hop link is determined by node 1. That is, node 1 transmits the unconstrained

maximum amount of data it could send to node 2,D∗
1,2 = max

{

T1B log2

[

1 + E1/T1−PCT

dn1,2Pn,1,2

]}

,

wherePn,1,2 represents the noise power on the link between node 1 and node2. When

the energy at node 1 is greater thanE1,2,critical, the data collected through this multi-hop

route is determined by the relay node, node 2. That is, the energy storage at the relay

node becomes the threshold for maximizing the data collected through the multi-hop

route.

The exact expression of the transmitted data of the multi-hop routeD̃1,2 can be

found through the following rule: IfE1 ≥ E1,2,critical, then D̃1,2 = D̂1,2; If E1 <

E1,2,critical, thenD̃1,2 = D∗
1,2, whereD∗

1,2 = max
{

T1B log2

[

1 + E1/T1−PCT

dn1,2Pn,1,2

]}

, D̂1,2 =
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E1

P̂1+PCT
log2

(

1 + P̂1

dn1,2Pn,1,2

)

,

P̂1 = −
W
(

−a ln 2
c

2b−
ad
c

)

a ln 2
− d

c
, (6.27)

wherea =
D∗

2

2E1
, b =

D∗
2

2

(

PCT

E1
− PCR

)

, c = 1, andd = 1
dn1,2Pn,1,2

. W (·) is the lambert

function. The value ofE1,2,critical can also be obtained analytically. That is

E1,2,critical =
D̂1,2

B
P ∗
1 +PCT

log2

[

1 +
P ∗
1

dn1,2Pn,1,2

] , (6.28)

where

P ∗
1 = argmax

{

1

P1 + PCT
log2

[

1 +
P1

dn1,2Pn,1,2

]}

,

=







(

PCT

dn1,2Pn,1,2
− 1
)

ln 2

W
[(

PCT

dn1,2Pn,1,2
− 1
)] − 1







dn1,2Pn,1,2. (6.29)

Once the exact value of the maximum transmitted data of the multi-hop routeD̃1,2

has been found, we can compare it with the maximum data using single-hop linksD∗
1.

That is, if D̃1,2 ≥ D∗
1, then a multi-hop route is better than a single hop link, and vice

versa.

This algorithm can be easily extended to a general clustering topology withNd + 1

nodes. Without loss of generality, we assume thatD∗
1 = min{D∗

i } , then the algorithm

can be stated as:

Step 1 Compute the maximum amount of data that can be transmitted bynode 1

though all possible relaying nodesi, D̃1,i

Step 2 Use nodei with the highestD̃1,i as the relay node of node 1;

Step 3 Determine the analytical solution of the optimal transmit power P ∗
1 from

(6.27).
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Step 4 Utilize the transmit power optimization algorithm to find the optimal transmit

powers for the new topology.

Step 5 Assume if the current maximum amount of gathered data isD∗, then ifD∗ ≤
D∗

1, the original single-hop topology should be kept; otherwise, the multi-hop

topology should be used.

The proposed algorithm to decide whether or not multi-hop should be used within a

cluster can be applied together with the previously proposed transmit power optimiza-

tion algorithm and CHS algorithm to further increase the amount of data collected by

a cluster, when the cluster of interest is working in the CM-constrained region. The

performance of this algorithm will be evaluated in the next section.

6.5 Results

6.5.1 Transmit Power Optimization Algorithm

In the transmit power optimization algorithm, the main result is the approximation made

on the optimal operation time assignmentTi through (6.13) in the CH-constrained re-

gion. Compared with the solutions ofTi in the CM-constrained region (which are exact

optimal solutions), (6.13) provides a near optimal approximation. Therefore, the ef-

fectiveness of the approximation needs to be evaluated. We assume that 5 nodes are

uniformly placed within a disk with a radius of 100m, centered at the cluster head. The

path loss exponent isn = 4. The circuit powers arePCR = 30 mW, andPCT = 10

mW. The signal bandwidth isB = 100 KHz. The AWGN power is−116.5 dBmW and

is equal on all links.

Fig. 6.5 shows the maximum data gathered when all CMs have random residual

energyEi chosen from a uniform distribution between 1 J and 25 J. The cluster head

has energyE0 varying from0.01 to 0.5 J. This setup guarantees that the cluster works
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Figure 6.5: The maximum data gathered by clusters operatingin the CH-constrained

region.

in the CH-constrained region. We compare four scenarios:(i) the optimal solution to

problem (6.6) through numerical methods;(ii) the proposed analytical approximation

(iteration free solution);(iii) each node has an equal transmission time duration con-

straint, with numerically optimized transmit power and time duration;(iv) each node

has an equal transmit power constraint, with numerically optimized transmit power and

time duration.

The maximum amount of data collected is shown in Fig. 6.5. From Fig. 6.5, we can

see that the proposed transmit power optimization algorithm provides a close approx-

imation to the numerical optimization maximizing the amount of data collected in a

CH-constrained cluster. The proposed transmit power optimization algorithm achieves

a significant gain compared to the cluster with equal power and equal transmission time

duration constraints. For instance, whenE0 = 0.3 J, the cluster using the proposed

transmit power optimization algorithm gathers an average of 1.2 times the maximum

gathered data bits in the equal time duration case, and8.9 times the number of the max-
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Figure 6.6: The maximum data gathered by clusters with different cluster head selection

strategies.

imum gathered data bits in the equal transmit power case. Also shown in the figure

is that the analytical approximation becomes more accurateas the cluster head energy

decreases, which agrees with the analysis in section 6.2.

6.5.2 CHS Algorithm

The performance of the proposed CHS algorithm is evaluated,and the results are shown

in Fig. 6.6. The residual energy of the nodes is generated using a random variables,

which is uniformly distributed between 0 and 1, through

Ei = 2s, ∀i ∈ {0, 1, ..., Nd}, (6.30)

whereNd ∈ {4, 9, 14, 19}, and the nodes are placed within a disk with a radius 100 m

following a uniform distribution.

In Fig. 6.6, the termlinear approximation means that the proposed CHS algorithm

by (6.26) is used to select the cluster head; while the termanalytical approximation
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refers to a brute force cluster head selection approach, which uses the proposed trans-

mit power optimization algorithm in each iteration, to select the optimal cluster head.

The termOptimal refers to a brute force cluster head selection approach, which uses

a numerical solution of model (6.6) through an interior-point method in each itera-

tion. Moreover, the performance of a random selection and a worst case selection of

the cluster head is provided. After cluster head selection,the proposed transmit power

optimization algorithm is used to configure the transmit powers of the CMs in all cases.

Fig. 6.6 shows that the proposed CHS algorithm (linear approximation) provides

a sound approximation to the optimal cluster head selectionin terms of performance.

That is, the maximum amount of data collected by the cluster using the CHS algorithm

is almost as much as that of a cluster using the numerically optimized cluster selection,

while the CHS algorithm avoids the iterations in the numerical optimization. Therefore,

the proposed CHS algorithm has great potential in SRWN applications. Also shown

in Fig. 6.6, the analytical approximation method also provides a sound performance,

although compared with the proposed CHS algorithm, it has slightly worse performance

and higher complexity. The proposed CHS algorithm has a significant performance

gain over the random selection and worst case selection. Forexample, when there are

ten nodes in the cluster (Nd = 9), the cluster using the proposed CHS algorithm with

linear approximation can collect1.9 times the average number of maximum data bits

collected by the clusters with the random selection, and5.4 times the average number

of maximum data bits collected by the clusters with the worstcase selection.

6.5.3 To Hop or Not to Hop

We assume that two nodes are placed within a disk with a radius100 m, according to a

uniform distribution, centered at the cluster head. The cluster head has a large amount

of energy. The cluster members have energy uniformly distributed over[1, Ei,max],

whereEi,max ∈ {5, 10, 15, 20} . We compare the maximum amounts of data gathered
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at the cluster head in a cluster with and without the possibleuse of multi-hop. The

results are shown in Fig. 6.7.

As shown in Fig. 6.7, the possible use of multi-hop always provides a performance

gain. Moreover, the gain of the possible use of multi-hop increases asEi,max increases.

For instance, the clusters with the possible use of multi-hop can collect1.09 times the

average number of maximum data bits collected by the clusters without using multi-

hop whenEi,max = 5 J, and1.21 times the average number of maximum data bits

collected by the clusters without using multi-hop whenEi,max = 20 J. This is because

a largeEi,max introduces a large variance in the energy distribution and thereby a large

variance on the nodes’ ability to transmit information bitsto the cluster head. Therefore,

asEi,max increases, it becomes more likely that multi-hop improves the performance

(whenD∗
i <

D∗
j

2
, for somei andj).
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6.5.4 Overall Performance Gain

The optimal transmit power, CHS algorithm, and the possibleuse of multi-hop can

be naturally combined together to increase the maximum amount of collected data in

a cluster. That is, for a given group of nodes, we can construct an optimal cluster

with the optimal cluster head, the optimal transmit power atthe cluster members, and

the possible use of multi-hop. In comparison, we refer to an unoptimized cluster as a

cluster with randomly selected cluster head, equal transmit time duration at the cluster

members, and no multi-hop. We compare the amount of data collected by an optimal

cluster and an unoptimized cluster and show the results in Fig 6.8. In Fig. 6.8, we

also show the performance of clusters with the optimal cluster head and the optimal

transmit power at the cluster members, as well as the performance of clusters with only

the optimal transmit power at the cluster members.

The residual energy of the nodes is generated from a random variables uniformly

distributed between 0 and 1, through

Ei = m(s+ 1), ∀i ∈ {0, 1, ..., Nd}, (6.31)

andm ∈ {5, 10, 15, 20, 25}. The nodes are placed within a disk with a radius 100 m

following a uniform distribution, and there are 5 nodes in the network (i.e.,Nd = 4).

As shown in Fig. 6.8, the performance gain of the optimization (the optimal cluster

head, the optimal transmit power at the cluster members, andthe possible use of multi-

hop) is significant, especially when the residual energy variation between the nodes is

large. For instance, whenm = 25, the optimal cluster can collected an average amount

of bits of data throughout its lifetime that is2.6 times the average number of maximum

data bits collected by the unoptimized cluster. The clusters with the optimal transmit

power at the CMs, the optimal CH, and no multi-hop can collecttwice the average

number of maximum data bits collected by the unoptimized cluster, while the clusters

with only the optimal transmit power at the CMs can collect1.33 times the average

number of maximum data bits collected by the unoptimized cluster. The clusters with
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the optimal transmit power at the CMs, the optimal CH, and no multi-hop can collect

1.51 times the average number of maximum data bits collectedby the clusters with only

the optimal transmit power at the CMs. Therefore, the optimal selection of the cluster

head is very important in improving the cluster’s performance, as the cooperation of

the optimal cluster head selection and the optimal transmitpower at CMs provides a

significant additional gain over the use of optimal transmitpower at CMs alone.

This performance gain increases with an increase in the variation of the residual

energy of the nodes. This is because, first, the possible use of multi-hop will provide

more performance gain when there is large energy variation.Second, when there are

large differences between nodes’ conditions (distances and residual energy), the impor-

tance of the optimization of transmit power and cluster headselection becomes more

significant, as a random choice of clustering in this case maybe poor, e.g., by random

selection, a node with little energy left and long distancesto the rest of the nodes may be

chosen as a cluster head. Since usually there is a wide range of conditions for different

nodes, the optimization of the clustering can be highly beneficial.
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6.6 Summary

In this chapter, for the transmit power optimization, we proposed an iteration-free algo-

rithm for maximizing the amount of data gathered by a clusterthroughout its lifetime,

considering energy constraints and a strict data fairness constraint. This framework

can be easily adapted to a fixed-rate constraint case. Moreover, we developed a cluster

head selection (CHS) algorithm to determine the optimal cluster head that provides the

largest amount of collected data for a cluster. Furthermore, we present an algorithm to

decide whether or not multi-hop should be used within a cluster to further improve the

performance of a cluster. The performance gain by using the optimal transmit power,

the optimal cluster head selection, and the possible use of multi-hop has been shown to

be significant.
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7 Maximizing Gathered Samples in

Wireless Networks with

Slepian-Wolf Coding

In this chapter, we look at the cross-layer design of the datalink and application lay-

ers, considering an energy constrained data-gathering wireless network. We consider

an energy constrained wireless sensor network, with arbitrary number of nodes, where

source nodes utilize Slepian-Wolf (SW) coding before transmission to a joint decoder.

We investigate optimal and near-optimal SW coding rates, transmit powers, and trans-

mit durations that maximize the number of collected samplesduring the network life-

time, subject to channel capacity, SW rate region, and residual energy constraints. We

find optimal (near-optimal) closed-form solutions in the absence (presence) of an en-

ergy constraint at the joint decoder. We take into account the energy consumption of

SW encoding and decoding and communication circuitry. Numerical results demon-

strate the effectiveness of the proposed optimization, especially when the joint decoder

is not energy constrained.
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7.1 Introduction

Exploiting the spatial correlation of sensed data, often present in wireless sensor net-

works (WSNs), is crucial for the energy efficient operation of a battery powered WSN.

Distributed Source Coding (DSC) is a promising compressionapproach that can reduce

the energy consumption in WSNs by extracting the spatial redundancy in the sensed

data at the nodes, without requiring the nodes to share theirmeasurements with each

other [62]-[65]. The Slepian-Wolf (SW) rate region determines the minimum DSC

sum-rate required for lossless recovery of the discrete correlated sources. In general

there are infinitely many sets of DSC rates that achieve this minimum sum-rate. In

practice, sensors have different conditions (i.e., distance to the destination and residual

energy). Moreover, the cost of transmitting one bit from each sensor is affected by the

communication parameters chosen (i.e., transmission power and duration). Therefore,

the utility of the network can be significantly improved if the DSC rates and communi-

cation parameters are jointly optimized.

Researchers have considered the use of theoretical DSC results, in particular SW

coding, to enable energy efficient gathering of correlated data in WSNs [78]-[73]. The

utility metric considered in these existing studies varies. Oftentimes, the goal is to

minimize the total energy consumption, subject to certain constraints. Several works

use abit-hop utility metric to measure the energy expenditure [108][79], while others

use the sum of the number of bits transmitted over a link, weighted by a function of the

distance between two sensors on that link [72]-[109][74]. Total energy consumption,

however, is not the best utility metric to consider since it does not take into account the

fact that different sensors cannot share their energy. Rather, they likely have different

energy reserves (residual energy) and energy costs (distance from the destination).

Alternatively, one can assume some residual energy in each node and consider the

total utility of the network in terms of lifetime [110][111]or the number of collected

samples [73]. The total number of collected samples is a reasonable utility metric since
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it reflects the performance of a data-gathering wireless network. However, in using this

utility metric, the existing literature generally assume that the cost of transmitting one

bit over a link is independent of transmit power or transmission rate, thus assuming a

linear relationship between transmission rate and power consumption. In reality, the

logarithmic nature of channel capacity tells us that as the transmission rate over one

link increases, the cost of transmitting one bit increases as well.

The existing literature also vary in terms of the network model and optimization

variables. The majority of the existing works consider a multi-hop setting and seek

to jointly optimize the DSC rates and the routing paths [79]-[76][74] or the flow rates

[109]-[73] at the network layer. Among these, only [110] hasconsidered physical layer

parameters for optimization. The results, however, are numerical. In contrast, [108]

focuses on a single hop setting, and studies the tradeoff between sum-rate and loss

factor, and does not seek to optimize the system parameters.With a more practical point

of view, [112] and [113] study the joint optimization of DSC rates and communication

parameters in a lossy setting. Other works [114]-[117] aim to reduce the computational

complexity of the optimal DSC rate and power allocation problem, generally by further

constraining the optimization problem and enforcing pair-wise DSC among nodes.

Another important issue, arising in practice, is the energyconsumption in the cir-

cuitry for compression and transmission. None of the existing literature use energy

consumption models that take these energy costs into account.

In this work, we consider this problem with an analytical approach, while consid-

ering a more detailed and realistic optimization problem. We consider a data-gathering

WSN, where each sensor (source node) generates a fixed numberof samples and trans-

mits the encoded samples to a joint decoder. We assume that the medium is shared

by the sources through an interference-free multi-access scheme. This maximizes the

sum-rate when considering circuit power consumption [118]. We choose the total num-

ber of collected samples as the utility metric. Our optimization problem takes as input

the distances of the sensors from the joint decoder, the residual energy of each node,
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the circuit power consumption, the cost of SW encoding and decoding, the channel

model (AWGN or Rayleigh fading), and the SW coding rate region constraints1. We

employ the Shannon channel capacity to establish a realistic relationship between the

cost of transmitting each bit, transmit power and rate. We then maximize the utility and

provide jointly optimal SW coding rates, transmit powers and transmit durations that

achieve this maximum value, all in closed-form expressions. Our optimization incurs

little communication overhead. For the scenarios where thenodes have fixed commu-

nication distances and the sources have fixed correlations,the proposed optimization

requires the nodes to initially communicate with the joint decoder about their residual

energy and distances to the joint decoder. The joint decoderbroadcasts the jointly op-

timal solutions to the nodes. Therefore, only one round of communication is needed to

implement our solution.

Major contributions of this work are (i) considering a more detailed optimization

problem by including circuit power consumption, energy constraint at the joint decoder,

SW encoding and decoding costs, channel capacity constraints, and different commu-

nication channel models, (ii) extending the optimization parameter space beyond SW

coding rates (via enabling adaptive transmit powers and transmit durations), thus fur-

ther enhancing the network energy efficiency, and (iii) providing closed-form solutions

to the optimization problem, with low computational complexity. To do this, we as-

sume that a cluster consisting of a number of sensors and a joint decoder (cluster head)

has already been formed. To form the cluster, any existing clustering technique, such as

linked cluster algorithm (LCA) and random competition based clustering (RCC) [122],

may be used.

1In this work, as generally assumed in the literature [72]-[109][73][74], we assume that the joint

entropy of the sources are known. The problems of estimatingthe field entropy and joint probability

have been previously addressed in the literature [119]-[121].
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Figure 7.1: A data-gathering WSN withN source nodes where each node employs SW

coding for distributed compression and the joint decoder reconstructs all the collected

samples losslessly.

7.2 Problem Formulation

Consider a network withN sensors. Each sensor collectsS samples2 during the net-

work lifetime and transmits the encoded samples over orthogonal channels to a joint

decoder (Fig. 7.1). LetXi andRi (bits/sample) denote the random sample and the SW

coding rate at nodei, respectively. The SW theorem [63] states thatXi can be perfectly

reconstructed at the joint decoder, if and only ifR(G) ≥ H(X(G)|X(Gc)), ∀G ⊆
{1, 2, ..., N}, G 6= ∅, whereH(·) is the entropy function,R(G) =

∑

i∈G
Ri, X(G) =

{Xj|j ∈ G}, andGc is the complement ofG.

Assume that the transmit duration of nodei isTi, during which it transmitsSRi data

bits to the joint decoder. Invoking the AWGN channel capacity constraint we obtain

BTi log2

(

1 + Pi

dni N0

)

≥ SRi, whereB is the channel bandwidth,Pi is the transmit

power of nodei, di is the distance from nodei to the joint decoder,n is the path loss

exponent, andN0 is the noise power. Therefore, we can find a lower bound onPi

Pi ≥ (2
SRi
BTi − 1)dni N0.

The energy constraints at sensori and at the joint decoder areTi(Pi + PCT ) ≤ Ei,

2DSC exploits the correlation between samples generated by different sources [64][65], and therefore,

it requires the same number of samples generated by each source node.
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andPCR

∑N
i=1 Ti ≤ E0, whereE0 andEi, i = 1, ..., N , denote the residual energy

at the joint decoder and at nodei, respectively,PCT andPCR denote the circuit power

consumption during transmission and reception, respectively. Maximization of the total

gathered samples can be formulated as

(P7.1) min−S
s.t. C

′

0 : Ti > 0, S > 0, C
′

1 : PCR

∑N
i=1 Ti ≤ E0,

C
′

2 : Ti(Pi + PCT ) ≤ Ei,

C
′

3 : Pi ≥ (2
SRi
BTi − 1)dni N0,

C
′

4 : R(G) ≥ H(X(G)|X(Gc)),

∀G ⊆ {1, 2, ..., N}, G 6= ∅.

Here,C
′

1 andC
′

2 are the energy constraints at the nodes.C
′

3 is the channel capacity

constraint, andC
′

4 is the SW coding rate region constraint. Note thatS is allowed to be

non-integer. Problem(P7.1) is a minimum feasible set test problem with variablesS,

Ri, Pi, andTi [105].

Let (S∗, R∗
i , P̂i, T

∗
i ) be an optimal solution of(P7.1), whereP̂i = (2S

∗R∗
i /BT ∗

i −
1)dni N0 + ǫi for ǫi > 0. Then(S∗, R∗

i , P
∗
i , T

∗
i ), whereP ∗

i = (2S
∗R∗

i /BT ∗
i − 1)dni N0, is

also an optimal solution of(P7.1). Thus, we can replaceC
′

3 with an equality, which

yields

S∗R∗
i = BT ∗

i log2

(

1 +
P ∗
i

dni N0

)

⇒ S∗
N
∑

i=1

R∗
i =

N
∑

i=1

BT ∗
i log2

(

1 +
P ∗
i

dni N0

)

⇒ S∗ =

N
∑

i=1
BT ∗

i log2

(

1+
P∗
i

dn
i
N0

)

∑N
i=1 R

∗
i

.

We observe that, givenP ∗
i andT ∗

i , S∗ is a decreasing function of
∑N

i=1R
∗
i . Moreover,

the SW rate region dictates
∑N

i=1R
∗
i ≥ H(X1, X2, ..., XN). Hence, givenP ∗

i andT ∗
i ,

S∗ attains its maximum if and only if
∑N

i=1R
∗
i = H(X1, X2, ..., XN). Consequently
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(P7.1) reduces to

(P7.2) min−S

s.t. C0 : Ti > 0, S > 0, C1 : PCR

N
∑

i=1

Ti ≤ E0,

C2 : Ti[(2
SRi
BTi − 1)dni N0 + PCT ] ≤ Ei,

C3 : R(G) ≥ H(X(G)|X(Gc)),

∀ G ⊂ {1, 2, ..., N}, G 6= {1, 2, ..., N}, G 6= ∅,

C4 :
N
∑

i=1

Ri = H(X1, X2, ..., XN)

where variablesPi have been eliminated from the optimization problem.

Here we assume that the orthogonal channels between sensorsand the joint decoder

are modeled as AWGN. Our formulation can be easily extended to a Rayleigh fading

case, by changing the channel capacity expression fromCAWGN = log2

(

1 + Pi

dni N0

)

to

CRayleigh ≈ log2

(

1 + σiPi

2dni N0

)

, whereσi is the mean of the channel amplitude, assuming

that channel state information is available at the joint decoder [123]. This approxima-

tion is accurate at high SNR (ifσiPi > 8dni N0).

7.3 maximizing collected samples without joint decoder

energy constraint

Let us first assume that the joint decoder is not energy constrained, e.g. when it has

a plugged-in power supply (See Section 7.4 for the energy constrained joint decoder).

ThenC1 in (P7.2) can be omitted. Proposition 1 provides closed-form solutions for

the optimalR∗
i andT ∗

i that produceS∗.

Proposition 1: Let us defineD†
i = max

Ti

{

BTi log2(1 +
Ei−PCT Ti

Tidni N0
)
}

as the max-

imum number of information bits that nodei can send, in the absence of an energy

constraint at the joint decoder, and letD†(G) =
∑

i∈GD†
i . The optimalR∗

i andT ∗
i are
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as follows.

R∗
1 = max

G

{

H(X(G)|X(Gc))D†
1

D†(G)

}

,

T ∗
1 = E1

(

ln 2(PCT−dn1N0)

W
(

ln 2
2dn

1
N0

(PCT−dn1N0)

) + PCT − dn1N0

)−1

.

R∗
j for j ≥ 2 can be any feasible solution that satisfies

N
∑

j=2

R∗
j = H(X1, X2, ..., XN)−

R∗
1. GivenR∗

j , T
∗
j must satisfy(Pj+PCT )T

∗
j ≤ Ej , wherePj = dnjN0(2

D†
1R

∗
j/(BT ∗

j R
∗
1)−

1). In particular, if(Pj + PCT )T
∗
j = Ej, thenT ∗

j is

T ∗
j =

(

−W(−a ln 2
b

2−
ad
b )

a ln 2
− d

b

)−1

, (7.1)

whereW(·) is the Lambert function,a = D†
1

R∗
j

BR∗
1
, b =

Ej

dnj N0
, andd = 1− PCT

dnj N0
.

Before proving Proposition 1 we need the following lemma.

Lemma 1: DefineD∗
i = S∗R∗

i as the optimal number of information bits that node

i can send. For at least one node we haveD∗
i = D†

i .

Proof of Lemma 1: Considering (P7.2) we note thatC3 is independent ofS∗.

Hence,S∗ is only constrained byC2. FromC2 we haveS∗ ≤ (BTi/R
∗
i ) log2(1+(Ei−

PCTTi)/(Tid
n
i N0)). Therefore,S∗ can be expressed as

S∗ = min
i

{

1
R∗

i
max
Ti

[

BTi log2

(

1 + Ei−PCT Ti

Tidni N0

)]

}

= min
i

{

D†
i

R∗
i

}

,
(7.2)

implying that at least one ofD∗
i is equal toD†

i .�

Without loss of generality we assume thati = 1 satisfies the minimization in (7.2),

i.e. D∗
1 = D†

1.

Proof of Proposition 1: Assume that nodei sendsD∗
i = S∗R∗

i bits andD∗
1 = D†

1.
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Then
N
∑

i=1

D∗
i = S∗

N
∑

i=1

R∗
i

I
==⇒ S∗ = 1

H(X1,...,XN)

N
∑

i=1

D∗
i

II
==⇒ S∗ =

D†
1

H(X1,...,XN)

(

1 + 1
R∗

1

N
∑

j=2

R∗
j

)

.

(7.3)

Step I results from
∑N

i=1R
∗
i = H(X1, ..., XN), and step II follows fromD∗

i

R∗
i
= S∗.

Examining (7.3), we see thatS∗ attains its maximum ifR∗
1 assumes its smallest feasible

value and
∑N

j=2R
∗
i assumes its largest feasible value, subject toR∗

1 taking its smallest

feasible value. First, we find the smallest feasible value ofR∗
1. We have

D†
1

R∗(G)

R∗
1

= D∗(G) ≤ D†(G)⇒ R∗(G) ≤ D†(G)R∗
1

D†
1

.

whereR∗(G) =
∑

i∈G
R∗

i andD∗(G) =
∑

i∈G
D∗

i . Combining with the SW coding rate

region constraintR∗(G) ≥ H(X(G)|X(Gc)) we have

D†(G)R∗
1

D†
1

≥ H(X(G)|X(Gc))⇒ R∗
1 ≥

H(X(G)|X(Gc))D†
1

D†(G)
,

implying that the smallest feasible value ofR∗
1 isR∗

1 = max
G

{

(H(X(G)|X(Gc))D†
1)/D

†(G)
}

.

Furthermore,T ∗
1 = argmax

T1

{

BT1 log2

(

1 + E1−PCT T1

T1dn1N0

)}

leading to theT ∗
1 expression

given in the proposition statement. KnowingR∗
1 andD†

1 we can findS∗ = D†
1/R

∗
1. The

largest feasible value of
∑N

j=2R
∗
i , subject toR∗

1 taking its smallest feasible value given

above is
∑N

j=2R
∗
i = H(X1, X2, ..., XN)−R∗

1. We note that optimalR∗
i are not unique

for N > 2 and any non-negative values that satisfy

R∗
1 = max

G

{

H(X(G)|X(Gc))D†
1

D†(G)

}

,
∑N

j=2R
∗
i = H(X1, X2, ..., XN)−R∗

1

R∗(G) ≥ H(X(G)|X(Gc)),

∀ G ⊆ {1, 2, ..., N}, G 6= {1, 2, ..., N}, G 6= ∅,

(7.4)

are optimal. In particular, if

R∗
1 = max

G

{

H(X(G)|X(Gc))D†
1

D†(G)

}

=
H(X(g)|X(gc))D†

1

D†(g)
, where g ∈ G,

(7.5)
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thenR∗
i = D†

iR
∗
1/D

†
1 for i ∈ g andR∗(gc) =

∑

i∈gc
R∗

i = H(X1, X2, ..., XN)− R∗(g).

ForN > 2, the optimalT ∗
j for j ≥ 2 are also not unique, as long asT ∗

j guarantees

nodej can transmitD∗
j = D†

1R
∗
j/R

∗
1 information bits to the joint decoder and the

energy constraintC2 in (P7.2) is met. One optimal solution can be obtained from

solving

BT ∗
j log2

(

1 +
Ej − PCTT

∗
j

T ∗
j d

n
jN0

)

= D†
1

R∗
j

R∗
1

.

assuming that all nodes use up their entire energy, where thesolutions are given in (7.1).

�

We note that the complexity of obtaining the optimal setR∗
i andT ∗

i (through Propo-

sition 1) is low for the following reasons: First, as long as the system parameters are

fixed, this calculation is performed only once. All the SW coding rates, transmit pow-

ers and durations are calculated and sent to the sensors for use throughout the network

lifetime. Second, the Lambert function can be efficiently calculated [124]. Third, while

the complexity of findingR∗
1 in (7.5) grows exponentially withN , in practiceN will

not be large. This is due to the fact that (i) the number of sensors with highly corre-

lated measurements (where DSC is effective) is not expectedto be large (ii) often local

clustering techniques divide the nodes into groups with smaller numbers of nodes.

7.4 maximizing collected samples with joint decoder en-

ergy constraint

In general the energy storage at the joint decoder may be finite, leading to one of two

scenarios: (i) the joint decoder’s energy is sufficiently high such that it does not impose

any constraint, and (ii) the joint decoder’s energy is a limiting factor. We refer to such a

network as ajoint decoder limited network. Scenario (i) is equivalent to the case where

there is no energy constraint at the joint decoder, which wasaddressed in Section 7.3.
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In this section we consider scenario (ii) and in Section 7.5 we will study the delineation

of these two scenarios.

In a joint decoder limited network, the total transmit duration is limited by the

energy storage at the joint decoder, i.e.,
∑N

i=1 T
∗
i = E0/PCR. The optimal transmit

power of sensori can be upper bounded asP ∗
i ≤ Ei/T

∗
i − PCT . To maximize the

number of transmit information bits in a given duration, thesensors will spend all their

energy, i.e.,P ∗
i = Ei/T

∗
i −PCT . This means that both the joint decoder and the sensors

use up their energy. Based on this observation and a linear approximation of problem

(P7.2), Propositions 2 and 3 provide closed-form solutions for thenear-optimalR∗
i

andT ∗
i that produce near-optimalS∗, respectively.

Proposition 2. In a joint decoder limited network, the near-optimalR∗
i areR∗

1 =

H(X1), R
∗
2 = H(X2|X1), R

∗
3 = H(X3|X1, X2), ..., R

∗
N = H(XN |X1, X2, ..., XN−1),

where we haveE1/d
n
1 ≥ E2/d

n
2 ≥ E3/d

n
3 ≥ ... ≥ EN/d

n
N .

Proof: Both the joint decoder and the sensors’ residual energy constraints are active

PCR

N
∑

i=1

T ∗
i = E0, T ∗

i

(

(2
S∗R∗

i
BT∗

i − 1)dni N0 + PCT

)

= Ei. (7.6)

From (7.6), we have

log2

(

Ei/T
∗
i − PCT

dni N0
+ 1

)

=
S∗R∗

i

BT ∗
i

I
==⇒ T ∗

i log2
Ei

T ∗
i d

n
i N0

≈ S∗R∗
i

B

⇒ T ∗
i log2

Ei

dni N0
− T ∗

i log2 T
∗
i ≈

S∗R∗
i

B
,

II
==⇒ T ∗

i ≈
S∗R∗

i /B

log2
Ei

dni N0
+ 6

ln 2

, (7.7)

where step I assumes that(Ei/Ti − PCT )/(d
n
i N0)≫ 1 andEiTi ≫ PCT . The first ap-

proximation is equivalent to assuming a high SNR. The secondapproximation means

that much more energy is consumed by transmission, rather than the circuit compo-

nents. This approximation is reasonable in the joint decoder limited network, where
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the transmission durations are mostly determined by the limited energy of the joint de-

coder and are reasonably short. In this scenario, short transmission durations and large

power need to be used.

Step II employs the linear approximationT ∗
i log2(T

∗
i ) ≈ −6T ∗

i / ln 2, which is accu-

rate for smallT ∗
i , a reasonable assumption ifE0 is small. DefiningUi = [log2(Ei/d

n
i N0)+

6/ ln 2]−1 and using (7.7) we findT ∗
i ≈ S∗UiR

∗
i /B and consequently

∑N
i=1 T

∗
i ≈

S∗

B

N
∑

i=1

R∗
iUi. On the other hand, we have

∑N
i=1 T

∗
i = E0/PCR. Combining these and

solving forS∗ we obtain

S∗ ≈ BE0

PCR

(

N
∑

i=1

R∗
iUi

)−1

. (7.8)

Examining (7.8) we see thatS∗ attains its maximum value if
∑N

i=1R
∗
iUi assumes its

minimum feasible value. Hence, the near-optimalR∗
i can be found by solving the

following inequality form linear programming (we refer to the solutionsR∗
i of (P7.3)

asnear-optimal, since the linear approximation we used to form(P7.3) is accurate for

smallT ∗
i )

(P7.3) min
N
∑

i=1

RiUi

s.t. R(G) ≥ H(X(G)|X(Gc)),

∀G ⊆ {1, 2, ..., N},
This problem has been solved in [76] by invoking the contra-polymatroid feature of

the SW coding rate region. We thus directly conclude thatR∗
1 = H(X1), R

∗
2 =

H(X2|X1), R
∗
3 = H(X3|X1, X2), ..., R

∗
N = H(XN |X1, X2, ..., XN−1) is near-optimal,

if and only if U1 ≤ U2 ≤ ... ≤ UN , or equivalentlyE1/d
n
1 ≥ E2/d

n
2 ≥ ... ≥ EN/d

n
N .

�

Proposition 3: In joint decoder limited networks, the near-optimalT ∗
i are

T ∗
i = E0

PCR

R∗
iUi

∑N
j=1 R

∗
jUj

. (7.9)
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Proof: RecallT ∗
i ≈ S∗UiR

∗
i /B. Hence,Ti/Tj = (RiUi)/(RjUj). We have

∑N
i=1 Ti =

E0

PCR
⇒ T1

(

1 + T2

T1
+ ...+ TN

T1

)

= E0

PCR
,

⇒ T1

(

1 + R2U2

R1U1
+ ...+ RNUN

R1U1

)

= E0

PCR

⇒ T1
1

R1U1

∑N
i=1RiUi =

E0

PCR

⇒ T1 =
E0

PCR

R1U1
∑N

i=1 RiUi
.

Therefore, given near-optimal ratesR∗
i , the near-optimal transmit duration of node 1 is

T ∗
1 = E0R

∗
1U1/(PCR

∑N
i=1R

∗
iUi). Repeating this procedure yields (7.9).�

The following remark highlights the differences between the optimal and near-

optimalR∗
i provided in Propositions 1 and 2 and the literature.

Remark: Neglecting energy constraints at the joint decoder and thenodes, the

authors in [72][76][74] assigned rates to the nodes according toR∗
1 = H(X1), R

∗
2 =

H(X2|X1), R
∗
3 = H(X3|X1, X2), ..., R

∗
N = H(XN |X1, X2, ..., XN−1), where1/dn1 ≥

1/dn2 ≥ 1/dn3 ≥ ... ≥ 1/dnN . This solution can lead to early energy drain of nodes that

are closer to the joint decoder, since it assigns highest (lowest) rate to the node that is

closest to (farthest from) the joint decoder. In contrast, Proposition 2 considers both

distance and residual energy for rate assignment and assigns highest (lowest) rate to the

node that has the largest (smallest) ratio of residual energy to thenth power of distance.

The rate assignment in [72][76][74] is also significantly different from the one pro-

vided in Proposition 1. The solutions provided in Proposition 1 indicate that there

always exists at least one limiting source node whose jointly optimal transmit duration

and SW coding rate are the ones that enable the limiting node(s) to send as much data as

possible under the SW coding rate region constraints. Meanwhile the remaining nodes

have the freedom to choose any feasible transmit durations and SW coding rates. The

jointly optimal transmit durations and SW coding rates depend on the residual energy,

the distances, the circuit power consumption, and the channel capacity constraints.



164

7.5 The critical energy of the joint decoder

We define the critical energy of the joint decoder as the minimum energy storage at the

joint decoder such that constraintC1 in (P7.2) remains inactive. WhenE0 is greater

than or equal to (less than) the critical energy,C1 in (P7.2) is inactive (active) and we

can use Proposition 1 (Propositions 2 and 3). In this sectionwe investigate this critical

energy.

Suppose theR∗
i andT ∗

i are solutions provided by Proposition 1. We have

T ∗
i B log2

(

1 +
P ∗
i

N0dni

)

=
D†

1R
∗
i

R∗
1

⇒ T ∗
i =

D
†
1
R∗
i

BR∗
1

log2

(

1+
P∗
i

N0d
n
i

)

I
==⇒ T ∗

i ≥
D

†
1
R∗
i

BR∗
1

log2

(

1+
Ei/T

∗
i
−PCT

N0d
n
i

)

II
==⇒ T ∗

i ≥ fi(R
∗
i )

wherefi(R∗
i ) =

(

−W(−ai ln 2
ci

2
− aidi

ci )/(ai ln 2)− di/ci

)−1

, ai = D†
1R

∗
i /(BR∗

1), ci =

Ei/(d
n
i N0), anddi = 1−PCT/(d

n
i N0). Step I results fromP ∗

i ≤ Ei/T
∗
i −PCT and step

II is due to the Lambert function being monotonically increasing overR. Therefore, if

for an optimal setR∗
i the joint decoder energy storageE0 = PCR

∑N
i=1 T

∗
i is greater

than or equal to the critical energyPCR

∑N
i=1 fi(R

∗
i ) thenC1 in (P7.2) is inactive.

Since the optimal setR∗
i is not unique (in fact, based on Proposition 1 there is an

infinite number of optimal sets), we can formulate the following linear constrained

optimization problem to find the critical energy

(P7.4) Ê0 = minPCR

∑N
i=1 fi(R

∗
i ),

s.t. Ca : R
∗
1 = max

G

{

H(X(G)|X(Gc))D†
1

D†(G)

}

,

Cb :
∑N

i=2R
∗
i = H(X1, X2, ..., XN)−R∗

1,

Cc : R
∗(G) ≥ H(X(G)|X(Gc)),

∀ G ⊆ {1, 2, ..., N}, G 6= {1, 2, ..., N}, G 6= ∅.
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Solving(P7.4) gives us the exact value for the critical energy. However, this is rather

complicated. A simple suboptimal approach is to minimize anapproximation of the

lower bound onPCR

∑N
i=1 fi(R

∗
i ). Examiningfi(R∗

i ) we find

fi(R
∗
i ) =

(

−W(− ai ln 2

ci
2
−

aidi
ci )

ai ln 2
− di

ci

)−1

≈
(

−− ai ln 2

ci
2
−

aidi
ci

ai ln 2
− di

ci

)−1

= ci

2
−

aidi
ci −di

= Ei

N0dni 2
ViR

∗
i +PCT−N0dni

,

whereVi = D†
1(PCT − N0d

n
i )/(EiBR∗

1). The approximation above is based on the

linear approximation of the Lambert functionW(−x) ≈ −x, whenx → 0+, and it

becomes accurate whenN0d
n
i ≪ PCT . This is equivalent to assuming a high SNR

when the circuit and transmit power consumptions are comparable. Consequently, we

have
∑N

i=1 fi(R
∗
i ) ≈

∑N
i=1

Ei

N0dni 2
ViR

∗
i +PCT−N0dni

= 2
log2

(

∑N
i=1

Ei

N0d
n
i
2
ViR

∗
i +PCT−N0d

n
i

)

≥ 2L(R
∗
i ),

where
L(R∗

i ) =
∑N

i=1
1
N
log2 Ei + log2N

−∑N
i=1

1
N
log2(N0d

n
i 2

ViR
∗
i + PCT −N0d

n
i ),

(7.10)

and the inequality results from the concavity of the logarithm function and Jensen’s

inequality. Thus,L(R∗
i ) = PCR2

L(R∗
i ) is a lower bound on the critical energy and

minimization of this bound is equivalent to minimizing the third term in (7.10). We can

rewrite this term as

1
N

N
∑

i=1

[

log2(
N0dni 2

ViR
∗
i

PCT−N0dni
+ 1) + log2(PCT −N0d

n
i )

]

≈
N
∑

i=1

N0dni 2
ViR

∗
i

N(PCT−N0dni )
+ 1

N

N
∑

i=1

log2(PCT −N0d
n
i )

≈
N
∑

i=1

N0dni D
†
1R

∗
i

NEiBR∗
1

+
N
∑

i=1

log2(PCT−N0dni )

N
.

(7.11)
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The first approximation in (7.11) is based on the linear approximationlog2(1+x) ≈ x,

whenx → 0. The second approximation in (7.11) results from the Maclaurin expan-

sion and discarding higher-order components. These approximations become accurate

whenN0d
n
i ≪ PCT . We note that minimizing the critical energy lower bound is equiv-

alent to maximizing
∑N

i=1(R
∗
iN0d

n
i D

†
1)/(NEiBR∗

1). Therefore, the minimization of

the critical energy lower bound can be approximated by

(P7.5) max
∑N

i=1
N0dni D

†
1

NEiBR∗
1
R∗

i ,

s.t. C
′

a : R
∗
1 = maxG

{

H(X(G)|X(Gc))D†
1

D†(G)

}

,

C
′

b :
∑N

i=2R
∗
i = H(X1, X2, ..., XN)−R∗

1,

C
′

c : R
∗(G) ≥ H(X(G)|X(Gc)),

∀ G ⊆ {1, 2, ..., N}, G 6= {1, 2, ..., N}, G 6= ∅.

Let R̃∗
i denote the SW coding rate allocation obtained by solving(P7.5). Using similar

techniques we used to prove Proposition 2, we findR̃∗
1 = max

G

{

H(X(G)|X(Gc))D†
1

D†(G)

}

, R̃∗
2 =

H(X1, X2|X3, ..., XN) − R̃∗
1, R̃

∗
3 = H(X1, X2, X3|X4, ..., XN) − R̃∗

1 − R̃∗
2, ..., and

R̃∗
N = H(X1, X2, ..., XN) −

∑N−1
i=1 R̃∗

i , where we havedn2/E2 ≥ dn3/E3 ≥ ... ≥
dnN/EN . Thus, the critical energy must satisfy

PCR

N
∑

i=1

fi(R̃
∗
i ) ≥ Ê0 ≥ L(R̃∗

i ).

When the joint decoder’s residual energy satisfiesE0 ≥ PCR

∑N
i=1 fi(R̃

∗
i ), the con-

straintC2 in (P7.2) is inactive. WhenE0 ≤ L(R̃∗
i ) this constraint is active. When

PCR

∑N
i=1 fi(R̃

∗
i ) ≥ E0 ≥ L(R̃∗

i ), we cannot determine whether or not the network

is joint decoder limited. In this case, we assume constraintC2 is active and find a

suboptimal solution using Propositions 2 and 3.

7.6 Impact of SW Encoding and Decoding Energy Costs

So far we have assumed that the SW encoding and decoding energy costs are negligible.

In the following, we investigate how we can incorporate these energy costs into(P7.2)
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and how the results of Propositions 1, 2, and 3 can be used to find the optimal resource

allocation when these costs are incorporated. We modify constraintsC1 andC2 in

(P7.2) as follows

C1 : PCR

∑N
i=1 Ti ≤ E0 −EDESN,

C2 : Ti[(2
SRi
BTi − 1)dni N0 + PCT ] ≤ Ei − EEN,iS,

(7.12)

whereEDE andEEN,i, measured both in Joules/sample, denote the energy cost of SW

decoding at the joint decoder and encoding at nodei, respectively.

Let (P7.6) denote the new optimization problem with modified constraintsC1 and

C2 given in (7.12). Also, letS∗
E, R∗

E,i andT ∗
E,i, respectively, denote the optimal param-

eters obtained from solving(P7.6). Unfortunately, solving(P7.6) in closed-form is

intractable. However, in the following we describe an iterative numerical method to

solve(P7.6).

Let S∗
m, R∗

i,m andT ∗
i,m, represent the solution of(P7.2) andEi,m andEm, respec-

tively, indicate the residual energy of sensori and the joint decoder, in themth iteration.

We setEi,0 = Ei andE0 = E0. In themth iteration, we first update the residual en-

ergy asEi,m = Ei,m−1 − EENS
∗
m−1 andEm = Em−1 − NEDES

∗
m−1, then solve(P7.2)

using these updated residual energies and obtainS∗
m, R∗

i,m andT ∗
i,m. Clearly,S∗

0 is

an upper bound ofS∗
E. It is easy to show that in general the resultingS∗

m is either a

new upper bound or a new lower bound ofS∗
E, depending on whetherm is even or

odd. Asm increases, these upper and lower bounds approach toS∗
E. The conver-

gence of the algorithm will be demonstrated in Section 7.8 through simulations. The

iterations will be stopped when the average decreases of thelower and upper bounds

0.5
(

|S∗
m − S∗

m−2|+ |S∗
m−1 − S∗

m−3|
)

/S∗
m is less than a small valueǫ. Note that at least

4 iterations are required to use this stopping criterion. Ateach iteration as we update the

residual energies, we need to apply the results in Section 7.5 and re-evaluate whether

or not the network is joint decoder limited and hence use the appropriate proposition to

find the optimal or near-optimal set for that specific iteration. The iterative procedure

to solve(P7.6) is summarized in the pseudocode shown in Table. 7.1.
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Table 7.1: The proposed optimal rate allocation with codingenergy cost

Algorithm 7.6.1: OPTIMAL RATE ALLOCATION (EEN,i, EDE)

Initialize Ei,0 = Ei, E0 = E0

calculate{S∗
0 , R

∗
i,0, T

∗
i,0} based onEi,0, E0

m← 1;while m ≤ 4

do















































m←m+ 1

update residual energyEi,m=Ei,m−1 − S∗
m−1EEN,i,

Em=Em−1 −NS∗
m−1EDE

calculate{S∗
m, R

∗
i,m, T

∗
i,m}based onEi,m, Em

m← 4; ǫ← a small positive number

while 0.5
(

|S∗
m − S∗

m−2|+ |S∗
m−1 − S∗

m−3|
)

/S∗
m ≥ ǫ

do















































update residual energyEi,m=Ei,m−1 − S∗
m−1EEN,i,

Em=Em−1 −NS∗
m−1EDE

calculate{S∗
m, R

∗
i,m, T

∗
i,m}based onEi,m, Em

m←m+ 1

let S∗
E = S∗

m, R
∗
E,i = R∗

i,m, T
∗
E,i = T ∗

i,m

7.7 Extensions to Multi-hop Scenarios

So far we have assumed that the sensors are a single hop away from the joint decoder.

This is a reasonable assumption assuming that the network isclustered, and the cluster
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heads are the joint decoders. Many algorithms for clustering and cluster head selection

have been proposed and well studied in the literature [112][125]-[127].

Figure 7.2: Application of the proposed algorithms in a data-gathering wireless network

with multi-hop routes.

In the case that the network is not clustered, or that the cluster heads cannot act as

joint decoders, it is desirable to perform the optimizationin a multi-hop setting. The

proposed methodology in the single hop scenario can be extended to a specific multi-

hop scenario, where all of the multi-hop routes are distinct(non-overlapping). An

example of such a multi-hop network is shown in Fig. 7.2, where three source nodes

send data through a 3-hop, a 2-hop, and a 2-hop route to the sink, respectively.

Assume that we haveN sources and correspondinglyN distinct routes. The source

on theith route is labeled as(i, 1). Furthermore, assume that there areKi relay nodes

on each route, and the relay nodes are denoted by(i, k), wherek = 2, ..., Ki + 1. Let

di,k be the distance of node(i, k) to the next node on the route,(i, k + 1), andEi,k be

the energy of node(i, k). When there is no joint decoder energy constraint, the energy
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constraints of the source and relay nodes are

Ti,1

[

(2
SRi
BTi,1 − 1)dni,1N0 + PCT

]

≤ Ei,1,

Ti,k−1PCR + Ti,k

[

(2
SRi

BTi,k − 1)dni,kN0 + PCT

]

≤ Ei,k,

∀k = 2, ..., Ki + 1, i = 1, 2, ..., N,

whereTi,k is the transmit duration of node(i, k). Note that the above energy constraints

correspond to constraintsC2 of (P7.2) in the single-hop scenario. The SW coding

region constraints stay the same in the multi-hop scenario.Equivalently, the above

constraints can be written as

SRi ≤ BTi,1 log2

(

Ei,1/Ti,1−PCT

dni,1N0
+ 1
)

,

SRi ≤ BTi,k log2

(

(Ei,k−Ti,k−1PCR)/Ti,k−PCT

dni,kN0
+ 1
)

,

∀k = 2, ..., Ki + 1.

Therefore, maximizing the number of samples is equivalent to finding the optimal trans-

mit durationsTi,k that maximize the tightest constraint in the above constraint set. That

is S∗Ri ≤ D†
i , where

D†
i = max

Ti,k

min
{

BTi,1 log2

(

Ei,1/Ti,1−PCT

dni,1N0
+ 1
)

,

BTi,k log2

(

(Ei,k−Ti,k−1PCR)/Ti,k−PCT

dni,kN0
+ 1
)}

.
(7.13)

Assume that the solutions to the above max-min problem areT †
i,k. Based on Proposi-

tion 1 and Lemma 1, without loss of generality, we assumeD∗
1 = D†

1. Correspond-

ingly, the optimal transmit durations for route one isT ∗
1,k = T †

1,k, ∀k = 1, ..., K1 + 1,

and the optimal SW coding rate of node (1,1) is the same as in the single hop case,

i.e.,R∗
1 = max

G

{

H(X(G)|X(Gc))D†
1/D

†(G)
}

. The maximum number of samples is

S∗ = D†
1/R

∗
1. R∗

j for j ≥ 2, can be any feasible solution that satisfies
∑N

j=2R
∗
j =

H(X1, ..., XN) − R∗
1. The optimal transmit durations for routej are the ones that en-

able routej to deliverS∗R∗
j amount of data to the joint decoder. Unfortunately, unlike

the single-hop case, there are no analytical solutions for the optimalTi,k.
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In the presence of an energy constraint at the joint decoder,a similar linearization

method as in Section 7.4 can be applied to the last hop to the decoder, i.e.,k = Ki + 1.

That is,

SRi

= BTi,Ki+1 log2

(

(Ei,Ki+1−Ti,Ki
PCR)/Ti,Ki+1−PCT

dni,Ki+1N0
+ 1
)

≈ BTi,Ki+1 log2
(Ei,Ki+1−Ti,Ki

PCR)/Ti,Ki+1−PCT

dni,Ki+1N0

≈ B
[

log2(
Ei,Ki+1

dni,Ki+1N0
) + 6

ln 2

]

Ti,Ki+1,

where we assume[(Ei,Ki+1 − Ti,Ki
PCR)/Ti,Ki+1 − PCT ]/(d

n
i,Ki+1N0)≫ 1, i.e. a high

SNR, andEi,Ki
≫ Ti,Ki−1PCR + Ti,Ki

PCT . Thus, we have a similar problem that

provides the near-optimalR∗
i andT ∗

i,Ki
by using Propositions 2 and 3. The remaining

near-optimal transmit durationsT ∗
i,k, ∀k 6= Ki can be any feasible solutions that satisfy

the constraints.

Slightly more complicated multi-hop topologies may be treated as above with some

further detail. However, not much can be said for an arbitrary multi-hop topology.

7.8 Numerical Results

In this section, we numerically verify the analytical optimal and near-optimal solutions

provided in Propositions 1, 2, and 3, and we quantify the increase in the number of

collected samples due to our optimization. We consider two cases withN = 2 and10

source nodes and assume that the nodes are uniformly placed within a disk with a radius

of 200 m, centered at the joint decoder. In our simulations, the path loss exponent is

n = 3.5, the bandwidth isB = 50 kHz, the circuit power consumption at the transmitter

and receiver, respectively, arePCT = 84.8 mW andPCR = 107.8 mW, and the power

spectral density of noise is−174 dBm/Hz [112].
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7.8.1 Network with N = 2 source nodes

We compare the average of the maximum number of collected samplesS∗ as the spa-

tial correlation varies for six different approaches. The average is calculated over 1000

random network deployments. The six approaches are: (i) Each node codes its infor-

mation with a rate equal to its unconditioned entropyRi = H(Xi) and uses optimized

Ti. We refer to this approach as “No DSC”. (ii) The SW rate allocation among nodes

is specified by a corner of the SW coding rate region and nodes use optimizedTi. We

refer to this approach as “CornerRi”. (iii) Nodes use equal SW coding rates of the joint

entropy divided byN and optimizedTi, which we refer to as “EqualRi”. (iv) Nodes

determine their transmit powers according to a target SNR of20dB and numerically

optimize the SW coding rates, which we refer to as “FixedPi”. (v) The SW coding

rates and transmit durations are obtained from Proposition1 (whenC2 in (P7.2) is

inactive) or Propositions 2 and 3 (when it is active), which we refer to as “Analytical

Results”, and (vi) The SW coding rates and transmit durations are found via numeri-

cally solving(P7.2) without any approximations or simplifications, which we refer to

as “Numerical Optimization.”

We letH(X1) = H(X2) = 1 andH(X1|X2) = H(X2|X1) = h, 0 ≤ h ≤ 1. Note

that a largerh indicates a lower spatial correlation betweenX1 andX2, and vice versa.

For the “CornerRi” approach we choose the cornerR1 = H(X1|X2), R2 = H(X2).

For the case when constraintC2 in (P7.2) is inactive we assume the joint decoder and

the sensors’s residual energies areE0 = 11880 J (approximately the energy capacity of

a AA battery [128]) andE1 = E2 = 118.8 J, (selected to be 1% ofE0), respectively.

For the case when constraintC2 in (P7.2) is active we assumeE0 = 118.8 J and

E1 = E2 = 11880 J.
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Figure 7.3: Performance comparison when the network is not joint decoder limited:

averageS∗ versush for N = 2.

7.8.1.1 ConstraintC2 in (P7.2) is inactive

Fig. 7.3 shows that the “Analytical Results” and “NumericalOptimization” approaches

have similar performance. Also, the “Analytical Results” approach offers a significant

performance gain over the “FixedPi”, “No DSC”, “Corner Ri”, and “EqualRi” ap-

proaches. For instance, forh = 0.3 , the average ofS∗ in the “Analytical Results”

approach is2.1 times that of the “No DSC” approach,1.8 times that of the “FixedPi”

approach,1.6 times that of the “CornerRi” approach, and1.3 times that of the “Equal

Ri” approach. The relative importance of the optimization over transmit durations and

the SW coding rates differs according to the conditional entropy. This is evident by

comparing the “FixedPi” and the “No DSC” approaches. The “FixedPi” approach op-

timizes only over the SW coding rates, while the “No DSC” approach optimizes only

over the transmit durations. Whenh is small, the “FixedPi” approach outperforms the

“No DSC” approach, since the optimization over the SW codingrates is relatively more

important than the optimization over the transmit durations. Whenh is large, the “No
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Figure 7.4: Performance comparison when the network is joint decoder limited: aver-

ageS∗ versush for N = 2.

DSC” approach outperforms the “FixedPi”, approach since in this case the optimiza-

tion over the transmit durations is the dominating factor due to the SW coding being

less effective in absence of high spatial correlation between sources.

7.8.1.2 ConstraintC2 in (P7.2) is active

Fig. 7.4 shows that the performance of the “Analytical Results” and the “Numerical

Optimization” approaches are close, although the computational complexity of the for-

mer approach is almost negligible, compared with that of thelatter. Comparing Figs.

7.3 and 7.4, we observe that joint optimization in networks with inactive joint decoder

energy constraints is more important than that of networks with active joint decoder en-

ergy constraints. Considering Fig. 7.3, we observe that when h ≈ 0.1, the “Analytical

Results” approach provides a gain as large as 171% over the “CornerRi” and the “Equal

Ri” approaches, while considering Fig. 7.4, we see that this gain is only about 22%.

This is because when constraintC2 is inactive, the total transmission durationT1 + T2
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is determined byE1 andE2, and a non-optimal SW coding rate allocation accelerates

the drain of energy at the nodes and reducesT1 + T2. However, when constraintC2 is

active,T1 + T2 is mainly determined byE0 and it is less affected by the adopted SW

coding rate allocation (compared with the case whereC2 is inactive). Thus, when the

nodes’ residual energy is limited and the joint decoder energy storage is abundant, SW

coding rate optimization becomes more crucial. This is alsoevident by the fact that

the performance of the “No DSC” approach is always better than that of the “FixedPi”

approach. We also note that the performance gap between different approaches, ex-

cluding the “FixedPi” approach, diminishes ash increases since SW coding becomes

less effective.

7.8.2 Network with N = 10 source nodes

Our joint entropy model for the 10-source node case is based on the entropy approx-

imation proposed in [79] where theith source contributes an amount of uncorrelated

data equal to ri
c+ri

H(X1), whereri is the minimum distance of theith source to the

1, ..., i− 1 sources andc is a constant representing the extent of the spatial correlation

of the data and varies with respect to the data of interest. Similar to [79] we letc = 25

andrj < ri, ∀j > i. For the sake of simplicity, a complete symmetry of the entropy is

assumed.

We assume the joint decoder and sensors’ residual energies are uniformly dis-

tributed within(0, Emax], with Emax = 1000J,2000J, and3000J. For eachEmax, 1000

trials are simulated. We letri be10, 20, ..., 90, andH(Xi) = 1, ∀i. For the “CornerRi”

approach we randomly choose one corner of the SW coding region. In addition to the

previously described six approaches, we include two more approaches: the “Proposi-

tion 1” approach and “Propositions 2 and 3” approach. In the “Proposition 1” approach,

we assume the network is never joint-decoder-limited and only use Proposition 1 to

determine the optimal transmit durations and the SW coding rates, while in the “Propo-

sitions 2 and 3” approach we assume the network is always joint-decoder-limited and
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Figure 7.5: Performance comparison: averageS∗ versusEmax for N = 10.

only use Propositions 2 and 3 to determine the optimal transmit durations and the SW

coding rates. These two additional approaches illustrate the importance of the choice

of appropriate solutions according to the calculated critical energy. In the “Analytical

Results” approach, for each realization, we apply our results in Section 7.5 to find the

critical energy and hence determine whether constraintC2 is inactive or active.

Fig. 7.5 shows that the performance of the “Analytical Results” approach (provided

by either Proposition 1 or Propositions 2 and 3, depending onwhetherC2 is inactive

or active) and the “Numerical Optimization” approaches arevery close, although the

computational complexity of the former approach is almost negligible, compared with

that of the latter approach. For instance, forEmax = 3000 J the averageS∗ for the

“Analytical Results” and the “Numerical Optimization” approaches has only1% differ-

ence. Furthermore, the “Analytical Results” approach offers a significant performance

gain over the “No DSC”, “CornerRi”, “Equal Ri”, and “FixedPi” approaches. For in-

stance, forEmax = 3000 J the average ofS∗ in the “Analytical Results” approach is2.5

times that of the “No DSC” approach,2.0 times that of the “CornerRi” approach,1.9
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times that of the “EqualRi” approach, and777.8 times that of the “FixedPi” approach.

In our calculations, the percentage of using Proposition 1,i.e., C2 is inactive ac-

cording to the calculated critical energy, is approximately 70% (2093 out of 3000 tri-

als). The percentage of using Proposition 2 and 3, i.e.,C2 is active according to the

calculated critical energy, is about30% (907 out of 3000 trials). Thus, as shown in Fig.

7.5, the performance of the “Analytical Results” approach which is based on critical

energy, is better than either “Proposition 1” or “Propositions 2 and 3” approaches, and

the “Proposition 1” approach outperforms the “Propositions 2 and 3” approach, since

oftentimes constraintC2 is inactive. The results show the importance of choosing the

appropriate proposition(s) based on the critical energy calculation.

7.8.3 Impact of SW Encoding and Decoding Energy Costs

To demonstrate the effectiveness of the proposed algorithmin Section 7.6, we apply it

to a 10-source node network with residual energies1000J for all nodes and transmission

distancesdi = 100m for all sources. The remaining parameters remain unchanged.

It has been shown in the literature that low-density parity-check (LDPC) coding

is a promising implementation technique for DSC [129][130]. Thus, we assume the

energy consumption of the DSC decoder is the same as that of a state-of-the-art LDPC

decoder [131]. In [131], the author states that the normalized energy consumption

efficiency of the LDPC decoder implementation is 243 pJ/bit/iteration, and the number

of iterations is 10. Therefore, the normalized energy consumption of the decoder is 2.43

nJ/bit. Since there areH(X1, .., XN) bits/sample to be decoded, we let the DSC decoder

energy consumption be2.43H(X1, .., XN) nJ/sample. On the other hand, the DSC

encoder is similar to the LDPC encoder, which consists of simple matrix multiplications

and is much simpler than the LDPC decoder. We assume that the energy consumption

of the encoder is 5% of that of the decoder, i.e.0.12H(X1, X2, ..., XN) nJ/sample.

Fig. 7.6 showsS∗
E, S∗

m andS∗. We observe that the addition of SW encoding and

decoding energy costs decreases the total collected samples by about3%. The impact
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Figure 7.6: Performance of the proposed iterative algorithm: S∗
n approachesS∗

E asn

increases forN = 10.

of encoding and decoding energy consumption is thus not verysignificant. We also

note that the proposed algorithm converges in only 4 iterations with ǫ = 10−3. Of

course, the number of iterations required for the the algorithm to converge depends

on the choice ofǫ. Table 7.2 illustrates the average number of iterations required for

convergence in terms ofǫ. These are the results of averaging over104 random network

deployments and random initial residual energies. Our simulation results indicate that

the proposed algorithm converges in every trial, and the required number of iterations

for convergence decreases asǫ increases.

7.9 Conclusions and Discussion

In this chapter, we considered a cluster in an energy constrained WSN, where each

source node utilizes SW source coding to transmit its encoded information bits to a joint

decoder. To maximize the collected samples during the network lifetime, we formulated
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Table 7.2: The average number of iterationsn̄ w.r.t. ǫ

ǫ n̄

10−10 8.7

10−9 8.1

10−8 7.7

10−7 7.0

10−6 6.7

10−5 6.0

10−4 5.7

10−3 5.0

10−2 4.7

10−1 4.0

a detailed optimization problem, that takes into account circuit power consumption,

energy constraints at the joint decoder and the nodes, the SWcoding rate region, and

the capacity constraints imposed by different communication channel models. The

optimization parameters are the SW coding rates, the transmit powers, and the transmit

durations.

For the case where the joint decoder is not energy constrained, we found low com-

plexity optimal closed-form solutions. For the case where the joint decoder is energy

constrained, we approximated the original nonlinear optimization problem with an in-

equality form linear program, and we found near-optimal closed-form solutions. Our

proposed optimal and near-optimal rate assignments are fundamentally different from

the ones in literature, which assume the communication costper information bit de-

pends only on distances. We also provided a simple criterionfor determining whether
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or not the joint decoder is energy constrained. Our numerical results validated our an-

alytical solutions and also demonstrated the effectiveness of the proposed optimization

to increase the number of collected samples, especially when the joint decoder is not

energy constrained. Lastly, we proposed an iterative algorithm that employs our ana-

lytical results to solve the problem when the SW encoding anddecoding energy costs

are also taken into account. Numerical results indicate that this algorithm has a fast

convergence rate.

In this work we have considered a single, pre-determined, cluster. We note that the

clustering algorithm can have a significant impact on the performance of the algorithm.

Consequently, further gains are potentially possible using cross layer optimization that

includes our approach described in this work and the clustering algorithm.
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8 Optimal Rate Allocation for

Distributed Source Coding over

Gaussian Multiple Access Channels

In this chapter, we continue the work of Chapter 7 by studyingthe problem of joint op-

timization of Slepian-Wolf (SW) source coding and transmission rates over a Gaussian

multiple access channel with the considerations of circuitpower consumption and av-

erage transmit power constraint. The goal is to maximize thesample rate at the source

nodes. We first derive a criterion to determine the optimality of different multiple ac-

cess schemes such that the highest sample rate can be achieved at the source nodes

when SW coding is used. Based on the derived optimality criterion, we propose a rate

allocation procedure to determine the jointly optimal SW coding and transmission rates

corresponding to code division multiple access (CDMA), frequency division multiple

access (FDMA) and time division multiple access (TDMA) schemes. Several demon-

strative numerical examples are provided to show the performance gain of the proposed

joint rate allocation scheme.
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8.1 Introduction

Studies suggest that most of the observations made in modernsensing systems are spa-

tially correlated due to the fact that the sensing devices are densely deployed [132][133].

An efficient exploitation of this spatial correlation is needed to meet the stringent con-

straints on these systems, in terms of bandwidth usage and energy consumption. The

exploitation of spatial correlation has been investigatedin the research community for

the past decades and different approaches have been proposed, including: distributed

source coding (DSC) [64][134], data-correlation-aware routing [135], minimum-energy

data gathering [136], and cross-layer optimization [137][138]. Among these tech-

niques, DSC is particularly attractive due to its unique features. DSC enables compres-

sion of correlated sources without requiring any communication between the sources,

given the joint distribution of the sources at the encoders and the decoder [62]. More-

over, DSC can be seamlessly incorporated with many other techniques to further exploit

the spatial correlation of the sources, such as the aforementioned data-correlation-aware

routing [136] and cross-layer optimization [137][138].

Although the theoretical results of DSC do not require coordination between the

distributed encoders at the sources and the joint decoder atthe destination, the infor-

mation delivery between different sensing devices and the joint decoder does require

some degree of coordination [36]. For example, in clusteredwireless sensor networks

(WSNs) where a cluster consisting of several sensors and a joint decoder (cluster head)

has already been formed, the data sensed by sensors should besent to the cluster head

through multiple direct links. Therefore, the multiple access channel problem arises

naturally in a typical distributed sensing system since thecommunication of the sens-

ing devices must be coordinated to prevent possible data loss.

The performance of orthogonal multiple access (MA) schemes, such as code divi-

sion multiple access (CDMA), time division multiple access(TDMA) and frequency

division multiple access (FDMA), have been extensively studied within the context of
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multiple access channel problems, where an average power constraint is imposed at

the transmitting nodes, albeit without the considerationsof circuit power consumption

and SW coding [63][139]. A recent study shows that, considering the circuit power

consumption can significantly alter the rate region of a MA scheme [118]. This sug-

gests that the performance analysis and evaluation of different MA schemes needs to

be carefully revised when circuit power consumption is not negligible.

The impact of the circuit power consumption on the rate regions of different MA

schemes is illustrated in Fig. 8.1, which shows the rate regions of CDMA, FDMA and

TDMA over a Gaussian multiple access channel with two transmitters. When circuit

power consumption is not considered (Fig. 8.1(a)), it has been shown that CDMA

is optimal in terms of providing the highest sum rate, while TDMA and FDMA are

equivalent [63]. When the circuit power consumption is considered, however, the rate

region of TDMA is no longer contained in that of CDMA [118].

1r

2r

1r

2r
(a) (b)

TDMA and

FDMA

TDMA

FDMA
CDMA

CDMA

T

Figure 8.1: The rate regions of TDMA, CDMA, and FDMA forN = 2 without (a) and

with (b) the consideration of circuit power consumption.

The performance analysis of different MA schemes is critical in distributed sensing

systems, since the transmission rates provided by a particular MA scheme directly de-

termine the sample rate that can be supported at the sensing device. The optimization

of MA schemes to improve the energy efficiency of sensing systems has been studied in
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the literature [140]-[142]. Most of these works do not take DSC into the consideration.

In the context of DSC, and in particular, Slepian-Wolf (SW) coding, the performance

of the MA technique needs to be carefully evaluated, since the adoption of SW coding

imposes additional constraints on the transmission rates.That is, we need to consider

not only the rate regions of the MA schemes but also the SW coding rate region [62].

The source-channel separation theorem has been shown to be valid for the trans-

mission of correlated sources over a Gaussian multiple access channel under certain

conditions [143][144], e.g., side information is available at the decoder. However, this

theorem does not hold for general multiple access channels with correlated sources.

The optimization problem of multiple access channels with correlated sources has been

extensively studied from the joint source-channel coding perspective since the pioneer

work in [145]. Over the past decade, substantial research efforts have been made in the

information theoretical study of multiple access channel rate regions with correlated

sources and joint source-channel coding [146][147]. Although joint source-channel

coding has been proven to be capacity achieving, a joint source-channel coding scheme

is still not immediately available for real world implementations. On the other hand,

cross-layer design has proven to possess practical importance in resource allocation

problems in WSNs due to its merits, such as simplicity and scalability [148][149].

Maximizing the sample rate with an average power constraintis of significant prac-

tical importance. Moreover, in WSNs the circuit power consumption of the sensing

devices must be taken into account as the transmit power is usually very low and com-

parable to the circuit power consumption. Thus the maximization of the sample rate

results from an understanding of the requirements imposed by a practical sensing sys-

tem.

In [150], we provided some preliminary results on maximizing the sample rate for

SW coding of two correlated source nodes over Gaussian multiple access channels.

We showed that the optimal MA scheme maximizing the sample rate is the one that

provides the highest sum rate within a certain region determined solely by the source
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entropies. Moreover, we proved that either CDMA or TDMA may be the optimal

MA scheme under certain conditions governed by the source entropies, average power

and circuit power consumption constraints, noise power, and transmission distances.

Although the work in [150] laid the foundation for our subsequent research, it provides

neither a detailed criterion to test the optimality of CDMA and TDMA nor a concrete

algorithm to generate the jointly optimal rate allocation for CDMA and TDMA.

In this work, we study the problem of joint optimization of the SW coding rates

and the MA transmission rates to maximize the sample rates atthe sensing devices,

when circuit power consumption and an average power constraint are considered. First,

we provide a criterion to determine the optimality of CDMA, FDMA and TDMA, and

also find the optimal transmission rate allocation for the MAscheme with an arbitrary

number of sources. We will show that FDMA cannot be the optimal MA scheme and

neither CDMA nor TDMA can guarantee optimality. Based on theoptimal transmission

rates of the MA scheme, we also find the corresponding optimalSW coding rates at the

sources. In our work, we adopt the cross-layer optimizationmethodology. That is, the

channel coding and source coding are implemented separately, while optimized jointly.

Our proposed algorithm is easy to implement and provides thejointly optimal allocation

of MA transmission rates and SW coding rates.

8.2 Problem Formulation

Consider a group ofN source nodes that gather information about the environment

of interest and send their information to the destination (node 0) through a multiple

access channel (Fig. 8.2). We denote the common sample rate of the nodes byS

(samples/second). The observed samples at nodei, denoted byXi, are discrete-valued

random variables. At the nodes, SW coding is used, and the corresponding source code

rate at nodei is represented byRi (bits/sample). After source coding, the nodes apply

channel coding to the resulting bit streams and send the coded bits to the destination.
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Figure 8.2: An illustration of a WSN with SW coding and a Gaussian multiple access

channel.

The transmission rate of the link between nodei and the destination is denoted byri

(bits/second).

Our goal is to maximize the sample rate,S. We formulate this sample rate maxi-

mization problem with the following considerations. First, nodei has an average power

of Pi, a circuit power consumption ofPCT, and a transmission distancedi from the des-

tination. These constraints are typical of energy constrained, short-range WSNs where

the circuit power consumption is not negligible. Second, the signal is transmitted over

an additive white Gaussian noise (AWGN) multiple access channel. The signal band-

width and the noise power are denoted asB andPN , respectively.

To maximize the sample rate, we must jointly consider the rate regions of the mul-

tiple access channel and the SW coding. The transmission rates of the communication

links are bounded by the achievable rate region of the multiple access channel, which

can be expressed as follows

r(G) ≤ C(G), ∀G ⊆ {1, 2, ..., N}, G 6= ∅, (8.1)

wherer(G) =
∑

i∈G
ri andC(G) represents the maximum achievable sum rate of the
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communication links inG. In other words,C(G) for all G define the boundary of

the multiple access channel capacity region. For example, whenN = 2, the above

region is described byr1 ≤ C({1}), r2 ≤ C({2}), andr1 + r2 ≤ C({1, 2}), where

C({1}), C({2}), andC({1, 2}) depend on the particular MA scheme.

According to the Slepian-Wolf theorem [62][63], the achievable rate region of SW

coding is

R(G) ≥ H(X(G)|X(Gc)), ∀G ⊆ {1, 2, ..., N}, G 6= ∅, (8.2)

whereH(·) represents the entropy function,R(G) =
∑

i∈G
Ri, andX(G) = {Xj |j ∈ G}.

For instance, whenN = 2, the SW coding rate region is described byR1 ≥ H(X1|X2), R2 ≥
H(X2|X1), andR1 +R2 ≥ H(X1, X2).

For each source node, there is a flow constraint, i.e., the input and output informa-

tion rates should be equal. Together with the equal sample rate constraint, this flow

constraint can be expressed asri = SRi. Thus, considering the SW coding rate region,

we have

r(G) ≥ SH(X(G)|X(Gc)), ∀G ⊆ {1, 2, ..., N}, G 6= ∅. (8.3)

Therefore, the sample rate maximization problem under the constraints imposed by the

achievable multiple access channel and SW coding rate regions is

(P8.1) min−S
s.t. C1 : r(G) ≤ C(G), ∀G ⊆ {1, 2, ..., N}, G 6= ∅

C2 : r(G) ≥ SH(X(G)|X(Gc)), ∀G ⊆ {1, 2, ..., N}, G 6= ∅.
(8.4)

The optimization parameters are the transmission ratesri, from which we can deter-

mine the optimal SW coding ratesR∗
i = r∗i /S

∗. Problem(P8.1) is in fact a rate alloca-

tion problem which provides the jointly optimalr∗i andR∗
i that support the maximum

sample rateS∗ at the nodes. Note thatC(G) in (P8.1) depends on the particular MA

scheme we employ. Problem(P8.1) enables us to answer the following questions: For

a given set of candidate MA schemes, i.e., CDMA, FDMA, and TDMA, which one can

produce the maximum sample rate? (We refer to this as the optimal MA scheme.) How
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is the optimal MA scheme related to the system design parameters? What are the cor-

responding optimal transmission and SW coding rates? To facilitate answering these

questions, we first provide an equivalent optimization problem to (P8.1) in Section

8.3.

8.3 Performance Evaluation for MA Schemes with SW

coding

In the following, we show that(P8.1) is equivalent to maximizing the sum of achiev-

able transmission rates within a polyhedral cone rate region determined by the source

entropies.

Proposition 1: Problem(P8.1) is equivalent to problem(P8.2) where

(P8.2) min−∑N
i=1 ri

s.t. C1 : r(G) ≤ C(G), ∀G ⊆ {1, 2, ..., N}, G 6= ∅
C2 : Mr ≤ 0,

(8.5)

where the column vectorr = [r1 r2 ... rN ]
T and the matrixM is uniquely defined by

the source entropies.

Proof:. To prove proposition 1, we first note that given any feasiblesample rateS

in (P8.1), there exists a set of feasible transmission ratesri such that

N
∑

i=1

ri = SH(X1, X2, ..., XN). (8.6)

The proof of this statement follows the proof of Proposition1 in [150] and is there-

fore omitted here for the sake of conciseness. This statement implies that(P8.1) is

equivalent to maximizing the sum of transmission rates within the rate region of a

MA scheme, andr∗i s always reside in a region of the hyperplane inR
N determined

by (8.6). This region is bounded by the half-spaces defined bythe constraintsr∗(G) ≥
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S∗H(X(G)|X(Gc)), for all G ⊂ {1, 2, ..., N}, G 6= ∅. That is,r∗i s satisfy the following

relations

r∗(G) ≥ S∗H(X(G)|X(Gc)), r∗(Gc) ≥ S∗H(X(Gc)|X(G)),

r∗(G) + r∗(Gc) = S∗H(X1, X2, ..., XN).
(8.7)

SinceH(X(Gc)|X(G)) + H(X(G)) = H(X1, X2, ..., XN), we have the following

inequalities

S∗H(X(G)|X(Gc)) ≤ r∗(G) ≤ S∗H(X(G)). (8.8)

Using the fact that
∑N

i=1 r
∗
i = S∗H(X1, X2, ..., XN), equivalently we have

H(X(G)|X(Gc))

H(X1, ..., XN)
≤ r∗(G)

N
∑

i=1

r∗i

≤ H(X(G))

H(X1, ..., XN)
. (8.9)

The above expressions describe multiple half-spaces inR
N passing through the ori-

gin. In other words, they define a polyhedral cone. For example, whenN = 2, the

polyhedral cone is described by

H(X1|X2)

H(X1, X2)
≤ r1

r1 + r2
≤ H(X1)

H(X1, X2)
,
H(X2|X1)

H(X1, X2)
≤ r2

r1 + r2
≤ H(X2)

H(X1, X2)
.

(8.10)

The polyhedral cone in (8.9) can be represented in a more compact form

Mr ≤ 0, (8.11)

where the column vectorr = [r1 r2 ... rN ]
T . Matrix M has2N − 2 rows andN

columns, and its entries are determined by the source entropies. For example, forN =

2, and3, we find

M =





H(X2|X1) −H(X1)

−H(X2) H(X1|X2)



 (8.12)
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Figure 8.3: A visualization of Proposition 1 forN = 2.

and

M =





























−H(X3) −H(X3) H(X1, X2|X3)

H(X3|X1, X2) H(X3|X1, X2) −H(X1, X2)

H(X2, X3|X1) −H(X1) −H(X1)

−H(X2, X3) H(X1|X2, X3) H(X1|X2, X3)

−H(X2) H(X1, X3|X2) −H(X2)

H(X2|X1, X3) −H(X1, X3) H(X2|X1, X3)





























(8.13)

�.

Fig. 8.3 illustrates Proposition 1 forN = 2. The bottom left and upper right

regions in Fig. 8.3, respectively, are defined by the achievable multiple access channel

and SW coding rate regions. For a sample rateS to be feasible, the two rate regions

must intersect. For a given MA scheme, asS increases, the SW coding rate region will

shift to the upper right. Thus, for a sample rateS to be optimal, these two regions must

be tangent as shown in Fig. 8.3, andr∗i on the tangent point must satisfyr∗1 + r∗2 =

S∗H(X1, X2) according to (8.6). Moreover, Fig. 8.3 shows thatr∗i , i.e., the tangent
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point, falls in the shaded polyhedral cone (which is simply atriangular region in the

case ofN = 2) described byMr ≤ 0.

Based on Proposition 1, for a given set of candidate MA schemes, we can find the

optimal MA scheme by (i) solving the optimization problem in(P8.2) and finding

the maximum of the sum of achievable transmission rates within the polyhedral cone

rate region characterized by (8.9), that each MA scheme can provide, and (ii) letting

the optimal MA scheme be the MA that provides the largest maximum of the sum of

transmission rates. Note that at the end of step (i) we can calculate the maximum sample

rateS∗ that can be supported by each candidate MA scheme viaS∗ =
∑N

i=1 r
∗
i

H(X1,...,XN)
and

the corresponding optimal SW coding rates viaR∗
i =

r∗i
S∗ .

8.4 Optimal Rate Allocation for MA Schemes with SW

coding

Considering CDMA, FDMA, and TDMA as the MA scheme candidates, in the follow-

ing we solve the optimization problem in(P8.2) for each scheme.

8.4.0.1 Optimal rate allocation for CDMA

We need to solve(P8.2)whereC(G) is substituted withCCDMA(G), where [63]

CCDMA(G) = B log2

(

1 +
∑

i∈G

Pi−PCT
dni PN

)

.

We realize that(P8.2) becomes a linear optimization problem, which can be easily

solved. We observe that there exists at least one setG, denoted byG∗, for which

the optimal transmission rates satisfyr∗(G∗) = CCDMA(G
∗). This is because(P8.2)

becomes equivalent to finding a supporting hyperplane of thelinear region defined by

constraintsC1 andC2 in R
N . The gradient of the supporting hyperplane is the vector

[1, 1, ..., 1]. This supporting hyperplane is tangent with the multiple access channel rate
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region defined byC1, since the polyhedral cone defined byC2 is unbounded in the

direction determined by the vector[1, 1, ..., 1]. In the following we show

G∗ = argmin
G

{ CCDMA(G)

H(X(G)|X(Gc))

}

. (8.14)

For any set of transmission rates,ri, the achievable sample rate is upper bounded

by

S ≤ r(G)
H(X(G)|X(Gc))

≤ min
G

{

r(G)
H(X(G)|X(Gc))

}

, G ⊆ {1, 2, ..., N}, G 6= ∅. (8.15)

We can always increase the set of transmission rates with theminimal value of r(G)
H(X(G)|X(Gc))

within the boundary defined byCCDMA(G). One can repeat this process until no further

increase inmin
G

{

r(G)
H(X(G)|X(Gc))

}

is possible, in which case the set of transmission rates

with the minimum value of r(G)
H(X(G)|X(Gc))

reaches the boundary defined byCCDMA(G).

The resulting maximum sample rate is

S∗ =
CCDMA(G

∗)

H(X(G∗)|X(G∗c))
, ∃G∗ ⊆ {1, 2, ..., N}, G∗ 6= ∅. (8.16)

Consider two given setsG,G′ ⊆ {1, 2, ..., N}, such that

CCDMA(G)

H(X(G)|X(Gc))
>

CCDMA(G
′)

H(X(G′)|X(G′c))
. (8.17)

If we assumeG∗ = G, we have

r(G′) ≥ S∗H(X(G′)|X(G′c)),

= H(X(G′)|X(G′c)) CCDMA(G)
H(X(G)|X(Gc))

,

> CCDMA(G
′),

(8.18)

which violates constraintC1. Therefore, we reachG∗ in (8.14).�

We conclude thatr∗i s are any feasible points of the following linear region

r∗(G) ≤ CCDMA(G),

r∗(G∗) = CCDMA(G
∗), where G∗ = argmin

G

{

CCDMA(G)
H(X(G)|X(Gc))

}

.
(8.19)
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8.4.0.2 Optimal rate allocation for TDMA

We need to solve(P8.2) whereC(G) is substituted byCTDMA(G). By definitionCTDMA(G)

is the solution of the following optimization problem

(P8.3) CTDMA(G) = max
θi

∑

i∈G
Bθi log2

(

1 + Pi/θi−PCT

dni PN

)

s.t.
∑

i∈G
θi ≤ 1; θi > 0, ∀i ∈ G

(8.20)

We recognize that to solve(P8.2) we first need to solve(P8.3).

Let θ∗i denote the optimalθi obtained from solving(P8.3). For any given setG,

introducing Lagrange multipliersλ∗
i for the inequality constraintsθi > 0, ∀i ∈ G, and

a multiplierµ∗ for the inequality constraint
∑

i∈G
θi ≤ 1, we obtain the Karush-Kuhn-

Tucker (KKT) conditions [105]



































θ∗i > 0, λ∗
i ≥ 0, µ∗ ≥ 0

∑

i∈G
θ∗i ≤ 1, λ∗

i θ
∗
i = 0

µ∗(
∑

i∈G
θ∗i − 1) = 0

R′

(G, θ∗i )− λ∗
i + µ∗ = 0

(8.21)

whereR(G, θ∗i ) =
∑

i∈G
Bθ∗i log2

(

1 +
Pi/θ∗i −PCT

dni PN

)

andR′

(G, θ∗i ) represents the first or-

der derivative ofR(G, θ∗i ) with respect toθ∗i .

Clearlyθ∗i > 0 impliesλ∗
i = 0, ∀i ∈ G. Thus

R′

(G, θ∗i ) = −µ∗. (8.22)

Solving (8.22) forθ∗i , we find

θ∗i =
Pi

eaidni PN [W(ai2−µ∗/B)]
−1

+ PCT− dni PN

, (8.23)

whereai = (PCT/(d
n
i PN) − 1)/e, e is the base of natural logarithm andW(·) is the

Lambert function. Equation (8.23) shows that to calculateθ∗i we need to first findµ∗.

Considering the KKT conditionµ∗(
∑

i∈G θ∗i − 1) = 0, two cases are possible: either
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µ∗ = 0 and the resultingθ∗i s must satisfy
∑N

i=1 θ
∗
i ≤ 1, or µ∗ > 0 and the resulting

θ∗i s must satisfy
∑N

i=1 θ
∗
i = 1. Thus, the main complexity in calculatingθ∗i is to find

µ∗ > 0 such that the resultingθ∗i s satisfy
∑

i∈G
θ∗i = 1. If such a solution does not exist,

thenµ∗ = 0. Unfortunately, this is not analytically tractable. To facilitate the numerical

search forµ∗ > 0, we derive the following lower and upper bounds forµ∗, denoted by

µ∗
L andµ∗

U, respectively

µ∗
L = −B log2

[

νeν
(

PCT
PNdnmax

− 1
)−1
]

− B
ln 2

,

µ∗
U = −B log2

[

νeν
(

PCT
PNdnmin

− 1
)−1
]

− B
ln 2

.
(8.24)

whereν =
(

∑N
i=1 Pi/(PCT − PNd

n
i )− 1

)−1

. Also,dmax anddmin are the maximum and

the minimum ofdi, respectively. The detailed derivations of these bounds are given as

follows.

Suppose there existsµ∗ > 0 such that the resultingθ∗i satisfy
∑

i∈G
θ∗i = 1. Therefore,

using (8.23) we have

1 =
∑

i∈G

Pi

eaidni PN [W(ai2−µ∗/B)]
−1

+PCT−dni PN

≤ ∑
i∈G

Pi

eaidni PN min
i

{

[W(ai2−µ∗/B)]
−1
}

+PCT−dni PN

= 1

min
i

{

[W(ai2−µ∗/B)]
−1
}

+1

∑

i∈G
Pi/(PCT − dni PN)

⇒ ∑

i∈G
Pi/(PCT − dni PN)− 1 ≥ min

i

{

[

W(ai2
−µ∗/B)

]−1
}

.

(8.25)

Similarly, we have

∑

i∈G
Pi/(PCT− dni PN)− 1 ≤ max

i

{

[

W(ai2
−µ∗/B)

]−1
}

. (8.26)

Since
[

W(ai2
−µ∗/B)

]−1
=
[

W(
PCT/(d

n
i PN )−1

e
2−µ∗/B)

]−1

is a monotonic function ofdi,

there exists ad ∈ [dmin, dmax] wheredmin = mini di anddmax = maxi di, such that

∑

i∈G
Pi/(PCT − dni PN)− 1 =

[

W(
PCT/(d

nPN)− 1

e
2−µ∗/B)

]−1

. (8.27)
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Defineν =

(

∑

i∈G
Pi/(PCT − PNd

n
i )− 1

)−1

, solving (8.27) forµ∗ we find

µ∗ = −B log2

[

νeν
(

PCT

PNdn
− 1

)−1
]

− B

ln 2
, (8.28)

which is a monotonically decreasing function ofd. Using the fact thatdmin ≤ d ≤ dmax,

we reach the lower and upper bounds presented in (8.24). Since θ∗i is a monotonic

function ofµ, µ∗ can be found numerically through a binary search between thebounds.

Onceµ∗ andθ∗i are found, From(P8.3) we have

CTDMA(G) =
∑

i∈G
Bθ∗i log2

(

1 +
Pi/θ

∗
i − PCT

dni PN

)

. (8.29)

Having solved(P8.3), now we return to solving(P8.2) whenC(G) is substituted

with CTDMA (G) in (8.29). Unfortunately, an analytical solution to this optimization prob-

lem in general remains elusive. For the special case where the transmission rates ob-

tained from (8.29) lie within the polyhedral cone defined byMr ≤ 0, these rates are in

fact the optimal transmission ratesr∗i . However, when the transmission rates obtained

from (8.29) do not lie within the polyhedral cone, we resort to exhaustive search to

solve(P8.2) .

8.4.0.3 Optimal rate allocation for FDMA

We need to solve(P8.2) whereC(G) is substituted withCFDMA(G). By definition,

CFDMA(G) is the solution of the following optimization problem

(P8.4) CFDMA(G) = max
θi

∑

i∈G
Bθi log2

(

1 + Pi−PCT
θidni PN

)

s.t.
∑

i∈G
θi ≤ 1; θi > 0, ∀i ∈ G

(8.30)

We recognize that to solve(P8.2) we first need to solve(P8.4). To solve(P8.4),

we take a similar approach as we did for solving(P8.3). By invoking the KKT condi-

tions, we find the optimalθ∗i as follows

θ∗i =
Pi − PCT

eaid
n
i PN [W(ai2−µ∗/B)]

−1 − dni PN

, (8.31)
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whereai = −1/e, such that
∑

i∈G
θ∗i ≤ 1 whenµ∗ = 0 or

∑

i∈G
θ∗i = 1 for someµ∗ > 0.

Similar to the TDMA case, onceµ∗ andθ∗i are found, from(P8.4) we have

CFDMA(G) =
∑

i∈G
Bθ∗i log2

(

1 +
Pi − PCT

θ∗i d
n
i PN

)

. (8.32)

For the special case where the transmission rates obtained from (8.32) lie within the

polyhedral cone defined byMr ≤ 0, these rates are in fact the optimal transmission

ratesr∗i . However, when the transmission rates obtained from (8.32)do not lie within

the polyhedral cone, we resort to exhaustive search to solve(P8.2) .

One important result is that, considering the circuit powerconsumption, the rate

region of CDMA contains that of FDMA. This can be easily shownas follows

CCDMA(G) = B log

(

1 +
∑

i∈G

Pi−PCT
dni PN

)

= B log

(

∑

i∈G
θi +

∑

i∈G
θi

Pi−PCT
dni PNθi

)

= B log

(

∑

i∈G
θi

(

1 + Pi−PCT
dni PNθi

)

)

≥ ∑
i∈G

θiB log
(

1 + Pi−PCT
dni PNθi

)

, ∀G ∈ {1, 2..., N}, G 6= ∅.
(8.33)

where the inequality in (8.33) is based on Jensen’s inequality [63]. This inequality holds

for any set ofθi whereθi > 0 and
∑

θi ≤ 1, including the set which maximizes the

right side of the inequality. HenceCCDMA(G) ≥ CFDMA(G), implying that the rate region

of CDMA contains that of FDMA, i.e., comparing CDMA and FDMA,the former

always provides a larger sum of the achievable transmissionrates. Combined this with

Proposition 1, we find that CDMA can always support a higher sample rate than FDMA.

Thus, in the subsequent analysis we only consider CDMA and TDMA.

8.5 Optimal MA and Rate Allocation: Two-Source Node

Case

In this section, we show that, unlike the general case, forN = 2 the optimality of

TDMA and CDMA can be directly evaluated without the need to solve (P8.2) for both
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Figure 8.4: Region selection of TDMA and CDMA forN = 2.

TDMA and CDMA.

Fig. 8.4 depicts the rate regions of CDMA and TDMA with the consideration of

circuit power consumption. We observe that the CDMA and TDMArate region bound-

aries intersect in at most four points1, denoted by[r(i)1 , r
(i)
2 ] for i = 1, 2, 3, 4. Con-

sequently, the non-negative quadrant is divided into five regions denoted byAi, for

i = 1, 2, 3, 4, 5. Each region can be described asAi = {(r1, r2)|ρi−1 < r2
r1

< ρi},
whereρ0 = 0, ρi =

r
(i)
2

r
(i)
1

, for i = 1, 2, 3, 4, andρ5 = ∞. The expressions forr(i)1 , r(i)2

are derived in Appendix A. It is clear that TDMA is optimal inA1, A3 andA5, and

CDMA is optimal inA2 andA4.

As suggested by Proposition 1, the MA scheme that provides the highest sum rate in

the polyhedral coneB =
{

(r1, r2)
∣

∣

∣

H(X1|X2)
H(X2)

< r2
r1

< H(X1)
H(X2|X1)

}

is optimal. Therefore,

if B overlaps withA3, TDMA is optimal and the optimal point denoted by[r∗1, r
∗
2] is in

A3. If B does not overlap withA3, but it overlaps withA2 (orA4), CDMA is optimal

and the optimal point is inA2 (or A4). And if B does not overlap withA3 andA2

1Although it is possible that the two boundaries intersect infewer points, in the following we focus

on the more general case where there are four intersection points. Other cases, can be treated similarly,

and with less complexity.
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(orA4), TDMA is optimal and the optimal point is inA1 (orA5). These observations

are summarized in Table 8.1. In the following, for each case,we find r∗1, r
∗
2. Having

these, one can calculate the maximized sample rateS∗ = (r∗1 + r∗2)/H(X1, X2) and the

optimal SW coding ratesR∗
1 = r∗1/S

∗ andR∗
2 = r∗2/S

∗.

Table 8.1: The optimal MA scheme forN = 2

Optimal MA [r∗1, r
∗
2] ∈ The polyhedral cone The rate ratio

TDMA A1 B ⊂ A1
H(X1)

H(X2|X1)
< ρ1

CDMA A2 B ∩A3 = ∅,B ∩A2 6= ∅ ρ1 <
H(X1)

H(X2|X1)
< ρ2

TDMA A3 B ∩ A3 6= ∅ ρ2 <
H(X1)

H(X2|X1)
and H(X1|X2)

H(X2)
< ρ3

CDMA A4 B ∩A3 = ∅,B ∩A4 6= ∅ ρ3 <
H(X1|X2)
H(X2)

< ρ4

TDMA A5 B ⊂ A5 ρ4 <
H(X1|X2)
H(X2)
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8.5.1 CDMA

Let us denote the corners of the CDMA rate region inA2 andA4 by

C2 =

[

B log2

(

1 +
P1 − PCT

dn1PN + P2 − PCT

)

, B log2

(

1 +
P2 − PCT

dn2PN

)]

, (8.34)

and

C4 =

[

B log2

(

1 +
P1 − PCT

dn1PN

)

, B log2

(

1 +
P2 − PCT

dn2PN + P1 − PCT

)]

, (8.35)

respectively. Similarly, denote the corners of the SW rate region byS1 = [SH(X1|X2), SH(X2)]

andS2 = [SH(X1), SH(X2|X1)] (see Fig. 8.5). Furthermore, denote the slopes of

lines passing though the origin and these corners by

ρC2 =
log2

(

1+
P1−PCT

dn1 PN+P2−PCT

)

log2

(

1+
P2−PCT
dn
2
PN

) , ρC4 =
log2

(

1+
P1−PCT
dn1 PN

)

log2

(

1+
P2−PCT

dn
2
PN+P1−PCT

) ,

ρS1 = H(X1|X2)
H(X2)

, ρS2 =
H(X1)

H(X2|X1)
,

(8.36)

respectively. Now, suppose the optimal point[r∗1, r
∗
2] ∈ A2. It is clear thatC2 is the

unconstrained optimal point (without the constraint imposed by the polyhedral cone

B). Thus, ifC2 ∈ B, or ρS1 < ρC2 < ρS2 , then any point on the line piece connecting

C2 andS1, including the cornerC2, is optimal (case 1 in Fig. 8.5). Otherwise, ifC2
falls bellowB, or ρC2 < ρS1 , then any point on the line piece connectingS1 andS2,
including the cornerS1, is optimal (case 2 in Fig. 8.5). Finally, ifC2 falls aboveB,

or ρS2 < ρC2 , then the optimal point isS2 (case 3 in Fig. 8.5). To summarize, when

[r∗1, r
∗
2] ∈ A2, we have

r∗1 =



































min
{

B log2

(

1 + P1−PCT
dn1PN

)

,

BH(X1|X2)
H(X1,X2)

log2 (1+
P1−PCT
dn1PN

+ P2−PCT
dn2PN

)}

ρC2 < ρS1

B log2

(

1 + P1−PCT
dn1PN+P2−PCT

)

ρS1 < ρC2 < ρS2

B H(X1)
H(X2|X1)

log2

(

1 + P2−PCT
dn2PN

)

ρS2 < ρC2

r∗2 =



















r∗1
H(X2)

H(X1|X2)
ρC2 < ρS1

B log2

(

1 + P2−PCT
dn2PN

)

ρS1 < ρC2 < ρS2

B log2

(

1 + P2−PCT
dn2PN

)

ρS2 < ρC2

(8.37)
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Figure 8.6: Rate allocation of TDMA forN = 2.

Similarly, when[r∗1, r
∗
2] ∈ A4, we have

r∗1 =



















B log2

(

1 + P1−PCT
dn1PN

)

ρC4 < ρS1

B log2

(

1 + P1−PCT
dn1PN

)

ρS1 < ρC4 < ρS2

r∗2
H(X1)

H(X2|X1)
ρS2 < ρC4

(8.38)

r∗2 =



































B H(X2)
H(X1|X2)

log2

(

1 + P1−PCT
dn1PN

)

ρC4 < ρS1

B log2

(

1 + P2−PCT
dn2PN+P1−PCT

)

ρS1 < ρC4 < ρS2

min
{

B log2

(

1 + P2−PCT
dn2PN

)

,

BH(X2|X1)
H(X1,X2)

log2 (1+
P1−PCT
dn1PN

+ P2−PCT
dn2PN

)}

ρS2 < ρC4

8.5.2 TDMA

Let C = [r†1, r
†
2] denote the unconstrained optimal point (without the constraint imposed

by the polyhedral coneB)(Fig. 8.6). This point is the solution of(P8.3) for the special

case ofN = 2, and the solution for the optimalθi is given in (8.23). It is clear that if

C ∈ B, or ρS1 <
r†1
r†2

< ρS2, then this point is optimal and[r∗1, r
∗
2] = [r†1, r

†
2] (case 1 in

Fig. 8.6). On the other hand, ifC falls belowB, or r†1
r†2

< ρS1 , the optimal point must
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satisfy r∗1
r∗2

= ρS1 (case 2 in Fig. 8.6). We note that this condition is always satisfied in

A5. Similarly, if C falls aboveB, or r†1
r†2

> ρS2 , the optimal point must satisfyr
∗
1

r∗2
= ρS2

(case 3 in Fig. 8.6). This condition is always satisfied inA5. Thus, in these cases, the

optimal point is the solution of

max θ1 log2

(

1 +
P1
θ1

−PCT

dn1PN

)

+ θ2 log2

(

1 +
P2
θ2

−PCT

dn2PN

)

s.t. θ1, θ2 > 0, θ1 + θ2 ≤ 1, θ1 log2

(

1 +
P1
θ1

−PCT

dn1PN

)

= ρθ2 log2

(

1 +
P2
θ2

−PCT

dn2PN

)

(8.39)

whereρ is equal to eitherρS1 or ρS2 based on the conditions given above.

8.5.3 Overall Rate Allocation Algorithm

Based on the results in Sections 8.5.1 and 8.5.2, we can find the optimal rate allocation

using the procedure described in the flow chart in Fig 8.7.

8.6 Numerical Results

In this section, we provide numerical results to demonstrate the benefits of the proposed

jointly optimal rate allocation algorithm. In our simulations, we assume the circuit

power consumption of all source nodes are identically equalto PCT = 0.1 W, the signal

bandwidth is100 KHz, the AWGN has a power spectral density of−174 dBm/Hz, and

the path loss exponent isn = 4.

Figs. 8.8 and 8.9 quantify the increase in the sample rate dueto the joint optimiza-

tion of transmission and SW coding rates, when the optimal MAis TDMA. Similar

numerical gains are observed for the case where the optimal MA is CDMA and are

omitted for the sake of conciseness. We compare the maximum sample rateS∗ asd1

varies for five different approaches: (i) Jointly optimal SWcoding and transmission

rates. We denote this approach by “R∗
i , θ

∗
i ”. (ii) Optimal transmission rates with equal

SW coding rates at each source node. We refer to this approachas “EqualRi, θ∗i ”. (iii)
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Figure 8.7: The flowchart of the optimal rate allocation for CDMA and TDMA with

N = 2.
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Optimal SW coding rates with equal TDMA time slots. We refer to this approach as

“R∗
i , Equalθi”. (iv) Equal TDMA time slots with a simple SW coding rate allocation

strategy which assigns the highest SW coding rate to the source with the highest trans-

mission rate. We refer to this approach as “Equalθi, CornerRi (Good)”, and (v) Equal

TDMA time slots with a simple SW coding rate allocation strategy which assigns the

lowest SW coding rate to the source with the highest transmission rate. We refer to this

approach as “Equalθi, CornerRi (Bad)”.

In Fig. 8.8, we letN = 3 and fix d2 = 50 m andd3 = 80m, while we increase

d1 from 1 m to 100 m. The nodes have equal average power ofPi = 0.11 W. For the

sake of simplicity, we assume symmetric entropy whereH(Xi) = 1, ∀i ∈ {1, 2, 3},
H(Xi|Xj) = 0.5, ∀i, j ∈ {1, 2, 3}, i 6= j, andH(Xi|Xj, Xk) = 0.25, ∀i, j, k ∈
{1, 2, 3}, i 6= j 6= k.

Fig. 8.8 shows that the “R∗
i , θ

∗
i ” approach always performs the best. The perfor-

mance of the “EqualRi, θ∗i ” and “R∗
i , Equalθi” approaches is closely related to the

experiment setup (e.g. average power, transmission distances and source entropies).

If the configuration is symmetric, i.e., nodes have the same average powers and trans-

mission distances and the source entropies are symmetric, the partial optimizations in

“EqualRi, θ∗i ” and “R∗
i , Equalθi” approaches are equivalent to the “R∗

i , θ
∗
i ” approach.

Furthermore,S∗ in “EqualRi, θ∗i ” and “R∗
i , Equalθi” approaches is similar to that of

the “R∗
i , θ

∗
i ” approach whend1, d2, d3 are also similar, i.e.,50 m ≤ d1 ≤ 70 m. On

the other hand, the performance loss becomes more significant when the differences

between the transmission distances increase.

The “Equalθi, CornerRi (Good)” approach is an intuitively sensible SW coding

rate allocation strategy with the purpose of coupling the source coding rates with the

transmission rates. However, this strategy suffers from thresholding and over compen-

sation. For example, when the difference between the transmission rates with equalθi

is small, an equal SW coding rate allocation is more likely tobe a better choice than a

corner SW coding rate allocation. This also explains the large performance loss when
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Figure 8.9:S∗ versusδ for TDMA andN = 2.

the transmission distances of the three source nodes are similar, i.e.,50 m ≤ d1 ≤ 70

m. The “Equalθi, CornerRi (Bad)” approach performs the worst, indicating how much

loss can an unwise rate allocation cause.

The benefits of the “R∗
i , θ

∗
i ” approach are more pronounced in non-symmetric sce-

narios. In Fig. 8.9, we letN = 2, Pi = 1.11 − δτi W and di = 1 + 100δτi m,

whereτis are independent and uniformly distributed between 0 and 1,and the constant

δ ∈ {0.11, 0.31, 0.51, 0.71, 0.91}. The entropies of both sources are randomly gen-

erated with a fixed joint entropy ofH(X1, X2) = 1.5. Each point in Fig. 8.9 is an

averaged value of a 1000 trials.

Fig. 8.9 demonstrates that the “R∗
i , θ

∗
i ” approach provides the largestS∗ among

the five approaches. For instance, the value ofS∗ provided by the “R∗
i , θ

∗
i ” approach

is up to 2.4 times that of the “EqualRi, θ∗i ” and “R∗
i , Equalθi” approaches; and is up

to 1.5 times that of the “Equalθi, CornerRi (Good)” and “Equalθi, CornerRi (Bad)”

approaches.

It is interesting to observe that the “EqualRi, θ∗i ” approach performs worse than

the “Equalθi, CornerRi (Good)” and “Equalθi, CornerRi (Bad)” approaches. This is

because, in a non-symmetric scenario, the linear constraint imposed byR1 = R2 does
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for N = 3, P3 = 110 mW.

not necessarily intersect with the SW coding rate region on the boundary specified by

R1+R2 = H(X1, X2). As a result, we may haveR∗
1+R∗

2 > H(X1, X2), which greatly

exacerbates the performance of SW coding. Therefore, the “EqualRi, θ∗i ” approach is

not favorable in practice.

Fig. 8.10 compares the value ofS∗ provided by the “R∗
i , θ

∗
i ” approach for CDMA

and TDMA. We letN = 3, d1 = d2 = d3 = 50 m,P3 = 110 mW, while we increaseP2

andP1 from 110 mW to 1.5 W. We assume symmetric entropy with the same param-

eters as those used in Fig. 8.8. The value ofS∗ is calculated following the procedure

described in Section 8.4. As the average powers change, the MA rate regions change as

well. For a given rate region defined by (8.11) through sourceentropies, either CDMA

or TDMA can provide the highest sum rate within this rate region as the average powers

change. This is evident in Fig. 8.10, which shows that SW coding with TDMA pro-

vides largerS∗ for some average power values, while SW coding with CDMA provides

largerS∗ for other values.
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8.7 Summary

In this chapter, we first evaluated the performance of CDMA, TDMA and FDMA in a

Gaussian multiple access channel for a sensing system with average power constraint

and the consideration of circuit power consumption, in terms of the achievable sample

rate when SW source coding is utilized in the sensing device.We concluded that the

performance of either CDMA or TDMA can be the best among the three candidate

MA schemes depending on the entropies of the random sources,while FDMA is never

optimal. Further, we developed an algorithm to obtain the jointly optimal allocation

of SW coding rates and CDMA or TDMA transmission rates. Numerical results are

provided to demonstrate the performance of the proposed rate allocation algorithm.
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9 Conclusions and Future Directions

This research dissertation provides an in-depth investigation of cross-layer design to

improve the energy efficiency of short range wireless networks. Extending from the

traditional physical layer design, I incorporate the energy efficient design of the data

link layer, multiple access layer, network layer, and application layer. I propose nu-

merous innovative designs and algorithms that greatly improve the energy efficiency of

short-range wireless networks.

9.1 Contributions

9.1.1 PHY-layer and Data Link Layer Optimization

First, I start my analysis with an emphasis on the impact of physical layer parameter

selection on the energy efficiency of short-range wireless networks. I show that the

optimal transmit power, modulation scheme and relay distance are crucial in achieving

energy efficiency for a short-range wireless network. The optimal transmit power and

modulation scheme are important factors for the physical layer design of short-range

wireless networks; while the optimal hop distance has greatpotential for use in route

selection for the network layer design. The analysis is conducted in both AWGN chan-

nels and block Rayleigh fading channels.
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In the second part of the dissertation, I propose a cross-layer optimization of the

PHY and Link layers to maximize the energy efficiency of a short-range wireless net-

work. I investigate the energy consumption minimization problem for a single link for

short-range wireless networks over an AWGN channel. Specifically, I propose a generic

energy consumption per information bit model considering circuit power, information

packetization, communication overhead and duty cycle. Based on this model, I de-

veloped an unconstrained, a fixed average power constrained, and a fixed average rate

constrained case.

In the unconstrained case, I perform an optimization over both target bit error prob-

ability and packet length to minimize the energy consumption per information bit, with

the consideration of retransmissions, a detailed packet structure and MQAM modu-

lation schemes. The target bit error probability optimization is a form of the trans-

mit power optimization as they are closely related, and the packet length optimization

is to find the balance between the overhead and retransmission probability. For both

coded and uncoded MQAM modulations, I find the closed forms for the optimum val-

ues of packet length and target bit error probability for a given transmission distance

by removing the integer constraint on the packet length. Themain results are: when

transmission distance is short, a system adopting large packet length, small target bit er-

ror probability, and high bandwidth-efficient modulation schemes (e.g., uncoded high-

order QAM) is more energy efficient. On the other hand, when transmission distance

is large, a system using small packet length, large target bit error probability, and high

energy efficient modulation schemes (e.g., coded BPSK) is energy efficient.

Correspondingly, energy minimizations are conducted using the fixed average power

and fixed average rate constrained models with the introduction of an additional param-

eter: duty cycle. It is shown that the minimization of energyconsumption per infor-

mation bit is equivalent to the maximization of informationrate for the fixed average

power transmission.

In addition, I perform an optimization over packet length, duty cycle, and constella-
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tion size to minimize the energy consumption in the fixed average power transmission

case. I perform an optimization over packet length, duty cycle, constellation size, and

transmit power to minimize energy consumption in the fixed average rate transmission

case. I conclude that, fixed average rate transmissions and duty cycling are energy

efficient at short transmission distances, while fixed average power transmissions and

duty cycling are energy efficient at large transmission distances. The optimization in

this part of the dissertation is meaningful in the sense thatit provides a guideline to se-

lect physical layer parameters (e.g., the transmit power) and data link layer parameters

(e.g., the packet length) given a communication environment, such as the transmission

distance.

In the third part of the thesis, I investigate the use of cross-layer optimization in

IR-UWB networks. I provide the power consumption models of typical transmitter

and receiver structures of IR-UWB systems. Moreover I consider a frequency selective

time-invariant channel. The optimization parameters usedto minimize the energy con-

sumption per information bit are: packet overhead, retransmission, repetition coding

and number of RAKE fingers.

I conclude that low-complexity, low-performance transmission schemes are energy

efficient at high SNRs, while high-complexity, high-performance schemes are energy

efficient at low SNRs. Moreover, I provide the detailed optimum transmission schemes,

including packet length, modulations, detection, repetition coding, combining, and

number of RAKE fingers, for given transmission distances fora typical IR-UWB link.

This information is important for it can serve as a lookup table for the transceiver to

choose the optimum transmission schemes. The optimizationperformed in this part of

the dissertation is also on the physical and data link layers.
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9.1.2 PHY-layer and Network Layer Optimization

In the fourth part of the thesis, I begin to consider two of theimport network layer

factors: network topology and multi-hop. In particular, I choose clustering topology

as the network topology of interest due to its high potentialin improving the energy

efficiency of wireless networks.

In this part of the dissertation, I jointly optimize three aspects of a SRWN: the

transmit power of the nodes, the cluster head selection and how to choose a route. The

contributions of this part are three-fold: first, I propose an iteration-free algorithm for

maximizing the amount of data gathered by a cluster; moreover, I developed a low

complexity cluster head selection (CHS) algorithm to determine the optimal cluster

head; furthermore, I present a low complexity algorithm to decide whether or not multi-

hop (only 2-hop route is considered) should be used within a cluster to further improve

the performance of a cluster. I show that the performance gain by using the optimal

transmit power, the optimal cluster head selection, and thepossible use of multi-hop is

significant. The proposed algorithms feature low complexity and high performance and

they can be easily implemented in the nodes. Thus, the potential of these algorithms in

field applications is considerable. The optimization performed in this part of the thesis

is on the physical and network layer.

9.1.3 PHY-layer and Application Layer Optimization

In the fifth part of the dissertation, by building upon previous analysis, I further include

the concept of distributed source coding.

I propose low-complexity solutions to maximize the amount of samples gathered

during a cluster lifetime with Slepian-Wolf (SW) coding foran arbitrary number of

sources, with energy constraints and SW coding constraints. The optimization param-

eters are the transmit time durations (which determine the transmit power) and source

coding rates of the source nodes.
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I derive closed form solutions for the joint optimal transmit time durations and

SW coding rates when there is no active energy constraint at the fusion center. I also

derive closed form solutions for the near optimal transmit time durations and source

coding rates when there is an energy constraint at the fusioncenter by resorting to linear

approximation. A simple criteria for determining whether the fusion center energy

constraint is active or not is also provided. The optimization gain in the number of

collected samples is shown to be significant.

The main contributions are the derivation of the closed formsolutions that avoid the

exceedingly complex iterations in traditional optimization techniques. The proposed

algorithms are of significance since a low complexity high performance algorithm is

critical for wireless nodes which have very limited energy and computational ability.

The optimization performed in this part of the thesis is on the physical layer (transmit

power optimization) and application layer (source coding allocation).

9.1.4 Multi-access Layer and Application Layer Optimization

Finally, I investigate the performance of SW coding over multiple access channels un-

der the considerations of circuit power consumption and average power constraint.

Different from our previous study where I assume an infinite number of information

samples are available at the transmitters, in this study theinformation data is delivered

over the multiple access channel as the samples are gatheredfrom the environment.

This research is of significant practical importance for modern sensing systems built

upon short range wireless networks, such as wireless sensornetworks, where onboard

storage space is rather limited, circuit power consumptioncannot be neglected and a

stringent average power constraint is often imposed to regulate the functional lifetime

of the sensing device.

Through our study, I find that, among CDMA, TDMA, and FDMA, SW coding

performs best either with CDMA or TDMA based on the source entropy, and always
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performs worst with FDMA. This discovery is, to the best of myknowledge, unprece-

dented. Also in this work, I propose a joint optimal rate allocation of SW coding rates

and CDMA/TDMA rates to maximize the sample rate achievable at the sensing de-

vice. The proposed rate allocation features low complexityand is partially analytically

solvable.

9.2 Future Directions

While this dissertation has provided many techniques and ideas to improve the energy

efficiency of short-range wireless networks, much researchstill remains.

9.2.1 Extension of DSC Optimal Rate Allocation

One interesting direction is to consider the optimal rate allocation of DSC in multi-

hop networks with stringent power and energy constraints. This problem is a natural

extension of the work in this dissertation, and it possessesimportant practical signifi-

cance. In SRWNs, the data sources may not be able to send the information to the sink

through direct communication due to the limited transmit power of the nodes. In this

case, multi-hop communication is necessary. Moreover, multi-hop communication in-

troduces many challenging yet interesting constraints on the rate allocation problem of

DSC, e.g., the choice of the next hop and the energy storage ofthe intermediate nodes.

This is a promising research topic that deserves substantial research efforts.

9.2.2 Implementation of DSC Optimal Rate Allocation

In this dissertation, optimal rate allocation procedures of DSC are proposed from a the-

oretical perspective. It is interesting to further consider the implementation issue of

the optimal rate allocation of DSC in a practical wireless network. When performing
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the optimization, instead of using information theoretical boundaries, we need to con-

sider the actual information rates that are achievable through practical modulation and

coding schemes, the realistic source coding rate constraints imposed by implementable

DSC techniques, and more complicated yet realistic time varying fading channel mod-

els. Although it is highly unlikely that an elegant analytical optimal solution would

exist in this case, it is certainly intriguing to study the possible rules of the optimal rate

allocation of DSC for a practical wireless network.
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A Intersection Points of CDMA and

TDMA Rate Regions Boundaries

A.1 Finding the points [r(1)1 , r
(1)
2 ] and [r

(4)
1 , r

(4)
2 ]

The point [r(1)1 , r
(1)
2 ] is the intersection of the TDMA rate region boundary with the

following line segment

r2 = B log2

(

1 +
P2 − PCT

dn2PN

)

, 0 ≤ r1 ≤ B log2

(

1 +
P1 − PCT

dn1PN + P1 − PCT

)

. (A.1)

Since the TDMA rate region boundary is specified by (8.20), tofind this intersection

point we need to solve

max θ1 log2

(

1 +
P1
θ1

−PCT

dn1PN

)

+ θ2 log2

(

1 +
P2
θ2

−PCT

dn2PN

)

s.t. θ1 > 0, θ2 > 0, θ1 + θ2 ≤ 1

θ2 log2

(

1 +
P2
θ2

−PCT

dn2PN

)

= log2

(

1 + P2−PCT
dn2PN

)

0 ≤ θ1 log2

(

1 +
P1
θ1

−PCT

dn1PN

)

≤ log2

(

1 + P1−PCT
dn1PN+P1−PCT

)

(A.2)

It is easy to show that the intersection takes place in the region whereθ1 + θ2 = 1,

since (A.2) is a line segment parallel to (A.1) in the region whereθ1 + θ2 < 1. Now, let

0 < θ†2 < 1 be a solution of

θ2 log2

(

1 +
P2

θ2
− PCT

dn2PN

)

= log2

(

1 +
P2 − PCT

dn2PN

)

(A.3)
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Thenθ1 = 1− θ†2 satisfies (A.1). Thus if

0 ≤ (1− θ†2) log2



1 +

P1

1−θ†2)
− PCT

dn1PN



 ≤ log2

(

1 +
P1 − PCT

dn1PN + P1 − PCT

)

(A.4)

then

[r
(1)
1 , r

(1)
2 ] =



B(1− θ†2) log2



1 +

P1

1−θ†2)
− PCT

dn1PN



 , B log2

(

1 +
P2 − PCT

dn2PN

)





(A.5)

Otherwise, this point does not exist. The point[r
(4)
1 , r

(4)
2 ] can be calculated in a similar

manner.

A.2 Finding the points [r(2)1 , r
(2)
2 ] and [r

(3)
1 , r

(3)
2 ]

We note that these points are the intersection points of the borders of the TDMA and

CDMA rate regions, limited to

B log2

(

1 +
P1 − PCT

dn1PN + P2 − PCT

)

≤ r1 ≤ B log2

(

1 +
P1 − PCT

dn1PN

)

, (A.6)

B log2

(

1 +
P2 − PCT

dn2PN + P1 − PCT

)

≤ r2 ≤ B log2

(

1 +
P2 − PCT

dn2PN

)

. (A.7)

Thus[r(2)1 , r
(2)
2 ] and[r(3)1 , r

(3)
2 ] are the solutions to the following equation set

r1 + r2 = B log2

(

1 + P1−PCT
dn1PN

+ P2−PCT
dn2PN

)

, (A.8)

r1 = Bθ log2

(

1 +
P1
θ
−PCT

dn1PN

)

, r2 = B(1− θ) log2

(

1 +
P2
1−θ

−PCT

dn2PN

)

. (A.9)

Equation (A.6) implies that the intersection points are on the boundary of the CDMA

rate region, and (A.7), (A.8), and (A.9) imply that the intersection points are on the

boundary of the TDMA rate region whereθ1 + θ2 ≤ 1 is active. Alternatively,

1 +
P1 − PCT

dn1PN
+

P2 − PCT

dn2PN
=

(

1 +
P1

θ
− PCT

dn1PN

)θ(

1 +
P2

1−θ
− PCT

dn2PN

)(1−θ)

. (A.10)
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Equation (A.10) has only one degree of freedom and is easy to solve numerically. If

this equation has two distinct solutions that satisfy (A.7), then[r(2)1 , r
(2)
2 ] and[r(3)1 , r

(3)
2 ]

are obtained. Otherwise, these points do not exist.
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