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Abstract

In mobile-cloud computing, there are two primary hurdles: (1) long communica-
tion latency and non-negligible communication latency uncertainties from a mobile
to the cloud; and (2) optimal server(s) selection from among the large number of
available cloud servers. The mobile-cloudlet-cloud architecture called MOCHA
(MObile Cloud Hybrid Architecture) introduces an intermediary (cloudlet) be-
tween the mobile devices and the cloud servers. The introduction of a cloudlet,

which serves as an edge-server, provides us the potential to address these hurdles.

The goal of this thesis is to demonstrate the benefits (in terms of communi-
cation latency) in utilizing the edge-server (cloudlet) in the MOCHA architecture
for mobile-cloud computing through the architecture hardware and software setup
of MOCHA, network latency measurements, data analysis and modeling, as well

as task division algorithm simulations and validations.

The results show that utilizing a cloudlet in mobile-cloud computing provides
significant benefits from the use of dynamic profiling (utilizing two algorithms
called fixed and greedy) for optimal server(s) selection. On the other hand, with-
out profiling, a random server selection approach is capable of providing acceptable

latency performance with high redundancy.
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1 Introduction

1.1 Motivation

In the past decade there have been incredible advancements in mobile, wireless,
and cloud technologies. Cloud servers are available everywhere, allowing users
to remotely access enormous computing power and storage. These resources can
be utilized to handle computationally intensive applications that can hardly be
run on mobile devices with limited resources, such as tablets and smartphones.
Thus, it is desirable to offload the computation to cloud servers. Long latency
and huge latency uncertainties from a mobile to the cloud are often referred to as
a dominating technical hurdle for the widespread adoption of mobile-cloud com-
puting. Furthermore, selecting the best server(s) from among the large number

of available cloud servers is also a major hurdle.

Recently, a mobile-cloudlet-cloud architecture called MOCHA (MObile Cloud
Hybrid Architecture) has been developed at the University of Rochester as a
framework for running computationally intensive mobile applications with low
response time requirements [1], [2]. The introduction of a cloudlet, which serves
as an edge-server, provides us the potential to address the hurdles for mobile-cloud

computing mentioned above.

Instead of transmitting data directly from a mobile device to the cloud servers,



using MOCHA, we can send the data to a cloudlet/cloudlets first. A cloudlet
is capable of storing and updating a profile of the network latencies and their
variation to reach different cloud servers. Using this approach, we can perform
smart task division to select the best server(s) such that the overall communication

latency is minimized.

The goal of this thesis is to explore the benefits in utilizing an edge-server
(cloudlet) in the MOCHA architecture for mobile-cloud computing through net-
work latency measurements, data analysis and modeling and task division algo-

rithm simulations and validations.

1.2 Contributions

The main contribution of this thesis is the demonstration of the benefits in utilizing
a cloudlet within the MOCHA architecture to support mobile-cloud computing.
Both the task division simulations and the real measurements on cloudlets show
that using a cloudlet provides a viable approach for selecting the best server(s),
thus minimizing overall communication latency. A range of work has been done

to achieve this goal.

(1) We set up the hardware platform for the MOCHA architecture. This
includes two main parts: mobile device to cloudlet communication and cloudlet
to cloud servers communication. For the mobile device to cloudlet connection,
we establish wireless communication between an Android tablet (ARCHOS 32
internet tablet) and a PC (Window 7 64bits OS). For the cloudlet to cloud servers

connections, we utilize 130 PlanetLab servers across 5 continents.

(2) We implement the software for communication between a mobile and a
cloudlet, the cloudlet to the cloud servers. We develop Java code using socket

packages on the mobile side and a C # program on the PC side. For the cloud



to cloud servers connection, we develop a Java program utilizing the TCP/IP

protocol.

(3) We collect and process critical data for the MOCHA architecture, e.g.,
network latency, path route changes, etc. We solve the challenges of obtaining

network information utilizing 130 PlanetLab servers across 5 continents.

(4) We analyze and model network behaviors from a number of critical per-
spectives: latency and its variance, latency/variance change as data size increases,
latency /variance change as the number of hops increases, and communication path
changes. We create latency distribution models and latency and variance linear

models, which are the basis of the task division simulations.

(5) We perform task division simulations and analyze the results using different
methods, including a random redundancy algorithm, a fixed algorithm and a
greedy algorithm. Finally, we conduct comparisons and analysis of these methods

to demonstrate their benefits.

Our results show:

Utilizing a cloudlet in mobile-cloud computing provides significant benefits
(in terms of response latency) from the use of dynamic profiling (performing the
fixed or greedy algorithms) for the optimal server selection. Without profiling, the
random server selection is capable of providing acceptable latency performance at

the cost of increased redundancy.

1.3 Organization

This thesis is organized as follows. Chapter 2 provides general background knowl-
edge about the MOCHA architecture and PlanetLab resources. Chapter 3 in-

troduces the experiment design of this thesis, including software and hardware



development and data collection strategy. Chapter 4 presents the data analy-
sis, including latency behavior, the latency variance behavior, and other aspects
(communication path changes, latency distribution). Chapter 5 provides the task
division simulations and comparisons for different task division algorithms. Fi-

nally, Chapter 6 presents the final conclusions and the future work in this area.



2 Background

In this chapter we provide general background knowledge about the MOCHA

architecture and PlanetLab resources that are critical in this thesis.

2.1 MOCHA Introduction

MOCHA (MObile Cloud Hybrid Architecture) was created as a solution to support
massively-parallelizable mobile-cloud applications (Soyata et al., 2012a, 2012b).
MOCHA, which is shown in Figure 2.1, consists of three parts: Mobile, Cloudlet
and Cloud. It formulates a solution to allow mobile-cloud computing applications,
such as object recognition in a battlefield, by introducing an edge-server, which
is called a cloudlet [3]. A cloudlet is used as an intermediary between the mobile
devices and the cloud servers and determines how to partition the computation,
in terms of tasks, among itself and multiple cloud servers to optimize the overall
quality of service (QoS), based on continuously updated statistics of the QoS

metrics (e.g., latency).

Running many resource-intensive applications far exceeds the capabilities of
today’s mobile devices, such as conducting real-time face recognition of known
criminals. There are many limitations of the mobile device, such as low processor
speed, small memory size, and limited storage capacity. Facing these challenges,

cloud servers with tremendous computing power and storage space as well as
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Figure 2.1: The MOCHA architecture: mobile devices interact with the cloudlet
and the cloud via multiple connections and use dynamic partitioning to achieve
their QoS goals (e.g., latency, cost) (reprinted from (Soyata, T., Muraleedharan,
R., Funai, C., Kwon, M., & Heinzelman, W., 2012) with permission of the au-

thors).



access to particular databases are suitable choices to accelerate applications run
on mobile devices. Nevertheless, several major hurdles limit these benefits, such as
long network latency, which hurts the user experience in mobile-cloud computing.
As a result, powerful, well-connected and safe cloudlets are necessary to intercept
the data sent from the mobile and perform smart task division algorithms to

minimize the overall communication latency to and from the cloud.

There are many applications that can benefit from utilizing an edge server
(cloudlet in MOCHA), such as battlefield support applications, natural language

processing, airport security, an enhanced Amber Alert system, among others.

2.2 Planet-Lab Introduction

In this thesis, we utilize PlanetLab servers as cloud servers. PlanetLab is a global
research network that supports the development of new network services. It was
established in 2002 by Prof. Larry L. Peterson [4]. Since the beginning of 2003,
more than 1,000 researchers at top academic institutions and industrial research
labs have used PlanetLab to develop new technologies for distributed storage,
network mapping, peer-to-peer systems, distributed hash tables, and query pro-
cessing [5]. PlanetLab currently consists of 1167 nodes at 550 sites (March 18,
2013). In this thesis, we utilize 130 PlanetLab nodes across 5 continents, as shown
in Figure 2.2. The geographically diverse sites in PlanetLab allow us to test dif-

ferent parts of the network with more comprehensive observations.

PlanetLab is a great tool to perform large-scale Internet studies. Its power
lies in that it runs over the common routes of the Internet and spans nodes across
the world, making it far more “realistic” than a simulation. However, this reality
comes at the price of route-failures, node outages, ssh-key sharing issues, and

other network realities, which make managing experiments difficult.



Figure 2.2: Distribution of 130 PlanetLab nodes that are used in this thesis.



3 Experiment Design

In this chapter, we present the design of our experiments, including software and
hardware development as well as the data collection strategy. Details are pre-
sented for the mobile to cloudlet connection and the cloudlet to cloud connection,

respectively.

3.1 Hardware and Software Development

3.1.1 Mobile to Cloudlet Connection

Wireless Connection Methods Selection

To achieve direct communication between a mobile and a cloudlet for real data
measurements, we need to set up a physical communication channel. In our
experiments, the cloudlet is a desktop computer (with Windows 7 64-bit operating
system), while the mobile device is an ARCHOS 32 internet tablet with Android
2.2.1 OS.

There are several ways to set up a physical communication channel between a
PC and a mobile device, such as Bluetooth, WiFi and 3G. In this thesis, we choose

WiFi because it is the most commonly used technology for wireless communica-
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tion between a mobile and a PC. There are two approaches to achieve wireless

communication between the PC and the Android tablet via WiFi.

(1) Set up a wireless ad hoc network
A wireless ad-hoc network is a decentralized type of wireless network. The network
is ad hoc because it does not rely on a pre-existing infrastructure, such as routers
in wired networks or access points in managed (infrastructure) wireless networks.
Instead, each node participates in routing by forwarding data for other nodes, and
so the determination of which nodes forward data is made dynamically based on

the network connectivity [6].

(2) Set up a wireless access point network
In computer networking, a wireless access point (WAP) is a device that allows
wireless devices to connect to a wired network using WiFi, Bluetooth or related
standards. The WAP usually connects to a router (via a wired network), and can
relay data between the wireless devices (such as computers or printers) and wired

devices on the network [7].

Internet access via ad hoc networks, using features like Windows Internet Con-
nection Sharing, may work well with a small number of devices that are close to
each other, but ad hoc networks do not scale well. Internet traffic will converge
to the nodes with direct Internet connections, potentially congesting these nodes.
For Internet-enabled nodes, access points have a clear advantage, with the possi-
bility of having multiple access points connected by a wired LAN. Furthermore,
the Android devices do not support ad hoc mode automatically. Consequently,
in this thesis, we decided to set up a wireless access point (WAP) at the PC
(cloudlet) so that the Android tablet (mobile device) can connect to the cloudlet
through the WAP.
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Wireless Access Point Setup

In the Window 7 operating system, there is a new function called Microsoft Virtual
WiFi. Based on one real WiFi card, Window 7 has the capability to create a
virtual WiFi card, which can be used to set up a wireless access point. This
new feature provides us a way to achieve the physical communication between
the cloudlet and the mobile device with minimum cost. The basic procedures for

setting up the connection in this way are as follows:

Step 1: Run cmd.exe with Administrator Privileges
The access point setup must be under administrator privileges. In the “Start”
menu, type “cmd” then right click the search result, choose “run as administrator”

or with hotkey combo “Ctrl+Shift+cmd.exe.”

Step 2: Start and Set the “Virtual WiFi” Mode
Using command lines: Netsh wlan set hostednetwork mode=allow ssid=TestAP001
key=123456789 to set up the access point, Figure 3.1 shows the results. Here
“mode” determines whether the Virtual WiF1i is started or not; “ssid” is the name

of the wireless network and “key” is the password of the wireless network.

——
B Administrator: C\Windows\System32\cmd.exe =

Microsoft Windows [Uersion 6.1.76811
Copyright <c»> 28A? Microsoft Corporation. All rights reserved.

C:“MWindows*~system32>netsh wlan set hostednetwork mode=allow ssid=TestAPAA1 key=1
23456789
The hosted network mode has heen set to allow.

The S8ID of the hosted network has been successfully changed.
The user key passphrase of the hosted network has been successfully changed.

C:sMWindowsssystem32>

Figure 3.1: Setup information of the wireless network.

Step 3: Start Internet Connection Sharing (ICS)
This step is not necessary for the PC-Mobile connection setup. It is useful only if

one also wants to use the network for internet surfing. Open “internet connection,”
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choose “change the adapters setting,” and right click one adapter with internet
connection, then choose “properties.” In the menu “share,” choose “TestAP001”

as the target to share the Internet. Figure 3.2 shows the setup information.

F—— B
U Local Area Connection Pmperliﬁm g
Sharing |

Intemet Connection Sharing

Allow other network users to connect through this
computer's Intemet connection

Home ne‘twnrking connection:

ivate network connection

Selec:t a private network connection
[Edl TestAPDDT |

£ Wireless Network Connection

Using ICS (Intemet Connection Sharing)

| oKk || cance |

Figure 3.2: Internet connection sharing setup information.

Step 4: Start the Wireless Network in the Command Line Window
Using the command line:  Netsh wlan start hostednetwork to start the access

point, Figure 3.3 shows the corresponding information.

After these 4 steps, the wireless access point is successfully set up. The Android

tablet is able to find this network and join it. Moreover, through the IP address
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m Administrator: C\Windows\System32\cmd.exe -_

C:“Mindouwsssystem32inetsh wlan start hostednetwork
The hosted network started.

C:“Mindows“system32>

Figure 3.3: Command line for starting the wireless network.

of the access point, the mobile can send data directly to the PC (cloudlet) and
the PC (cloudlet) can send data directly to the mobile.

Transmitter and Receiver Program Development

After setting up the access point on the PC (cloudlet), we develop the transmitter
program (mobile device side) in Eclipse Java EE IDE using socket packages and
the receiver program (cloudlet side) in Microsoft Visual Studio 2010 using Window

Sockets API (WSA).

The Windows Sockets API (WSA), which was later shortened to Winsock,
is a technical specification that defines how Windows network software should
access network services, especially TCP/IP. It defines a standard interface be-
tween a Windows TCP/IP client application and the underlying TCP /IP proto-
col stack [8]. In addition, TCP/IP provides end-to-end connectivity specifying
how data should be formatted, addressed, transmitted, routed and received at the

destination [9].

The mobile transmitter program (Colin Funai, 2012) was first developed by
Colin Funai of the MOCHA research group. We modify this program to send
different sizes of data via the wireless network. Figure 3.4 shows the application
user interface at the mobile. The cloudlet receiver program is capable of receiving
data from the mobile and sending back acknowledgment messages. Figure 3.5

shows the user interface at the cloudlet.
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MOCHA
Hello World, MOCHAAC
Hello World, MOCHAAC

y:

192.168.137.1
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% 10:19pm
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PQRS = TUV | WXYZ
7 8 9

0

Figure 3.4: Transmitter program user interface at the mobile.
3.1.2 Cloudlet to Cloud Connection

As we mentioned in Section 2.2, we utilize PlanetLab nodes as cloud servers in

this thesis.

PlanetLab is a group of computers available as a testbed for computer net-
working and distributed systems research worldwide. Each research project has a
“slice,” or virtual machine access to a subset of the nodes. Figure 3.6 shows the
“slice” information for the work described in this thesis, where U is the number

of users and N is the number of nodes.

PlanetLab Setup

Computers on PlanetLab are called nodes. These nodes can only be interacted
with by using the OpenSSH protocol (i.e., SSH). Furthermore, they can only be
accessed via a public/private key pair. To create a public/private key pair, we use

the following command:



5 | file:///C:/Users/Edward/Desktop/Mocha N...| = || & |[z£3]

pesesesesessess i Cloudlet Receiver

m

Please Input Port Numbher:
4008

Vaiting for a connection from mobile... _

Figure 3.5: Receiver program user interface at the cloudlet.

PEER NAME » USERS U N EXP. D/M/Y
PLC urochester_mocha | zdou2@z.rochester.edu 3 198 | 01/04/2013

Figure 3.6: PlanetLab “Slice” information of the work described in this thesis.
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sshkeygen -t rsa -f planetlab-key

Then a password will be created. This password is used to secure the private

key and prevents others from using your slice.

After the above command runs, a planetlab-key file will be generated (en-
crypted private key). planetlab-key.pub is the public key and needs to be up-
loaded to the PlanetLab account on planet-lab.org. PlanetLab then distributes
this public key to all the nodes in the UR MOCHA slice.

To connect to a Planet-lab node the following syntax is used:
ssh -i planetlab-key slicename@hostname

Then the user must enter the private key password. If the connection is refused,
it may be that node is off-line currently. It is cumbersome (yet secure) to type
in the ssh-key password, especially when performing experiments associated with
a large number of nodes and over a long period of time. To login automatically
without entering in a password, OpenSSH has a program called ssh-agent, which
allows private keys to be decrypted and stored in memory for password-less logins.

An ssh-agent can be run using the command:

eval ‘sshagent’
ssh-add planetlab-key

This then only requires the user to type in the password once for the private
key, and once this is entered, using ssh to log into the nodes does not require the

-i switch or entering in the password.

The first time connecting to a node via SSH, OpenSSH asks the user whether
or not the user wishes to accept the nodes’ public key. The user has to type “yes”

in order to authenticate the node. To eliminate the key check, the user must add

a file called “config” to the folder SHOME/.ssh folder. This file contains the line:

StrictHostKeyChecking no
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Client and Server Program Development

For the client transmitter and server receiver program, we develop Java programs
using sockets. A socket is a dual-way communication link between two programs
running on the network. Socket classes are used to represent the connection
between a client program and a server program. The java.net package provides
two classes: Socket and ServerSocket to implement the client side and the server

side, respectively.

The server-side program is started using the command:

Java Server001 port-number data-size repeat-count

The receiver program is capable of receiving arbitrary size data and sending
back an acknowledgment message via the same connection.

The client-side program is started using the command:

Java Client001 slicename@hostname port-number data-size repeat-count

The transmitter program has the capability of sending different sizes of data
to the servers and recording the time used after receiving the acknowledgment

message from the server.

In order to run the client and server Java programs in the PlanetLab nodes
in our Slice, we need to install the Java run time environment on the PlanetLab

nodes. This is done using the following command:

sudo -¢ “yum install java-version-gcj-compat-devel”

For monitoring and organizing the client program, server program and the
PlanetLab nodes’ information together, we utilize Shell scripting in Linux. Writ-
ing a shell script is much quicker than writing the equivalent code in other pro-
gramming languages, and there are many advantages, including easy program or

file/programs selection, quick start, and interactive debugging.
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The most common Linux shell is named “Bash” (Bourne Again SHell). The

followings commands show an example bash shell program used in this thesis.

#1/bin/bash

cat nodesClient.tct | while read LINE

do set —— $LINE

xterm -hold -e “ssh urochester_mocha@ $1 ‘bash runClient.sh’ "&
done

exit

This shell program is used to automatically start a client program in all client
nodes specified in nodesClients.txt. Using the xterm command we can create a
monitoring window for printing out the debugging information of the running
client program. Moreover, as we can see in this shell program, another shell pro-
gram, runClient.sh, is embedded into the current one. The runClient.sh is used to
manage multiple client programs with different specifications and constraints. It is
convenient to embed shell programs together to perform sophisticated scheduling

and achieve automatic operation.

3.2 Data Collection Strategy

In this section we introduce the data collection strategy for the mobile to cloudlet
communication link and the cloudlet to cloud communication link. The primary
information we measured is the two-way communication latency, also called the
response latency (i.e., the time between when one client starts sending a certain
size of data and the client receives an acknowledgement message sent from the

destination server via the same connection).
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Name Parameters

Time Weekdays

Data Size  8,64,256,512,1024,2048,5120,10240 (KB)

Data Points 500 per data size
Category One-hop and Multi-hop WiFi
Hardware ARCHOS 32 internet tablet

PC with Window 7 64bits OS

Table 3.1: Mobile to cloudlet measurement parameters.
3.2.1 DMobile to Cloudlet Latencies

Our first set of measurements is the two-way communication latencies from the
Android-based mobile device to the cloudlet (PC) via 1) a direct WiFi connection
as described in Section 3.1.1 and 2) a WiFi hotspot. The connection is a single
hop in the former and multiple hops in the latter. The parameters for this set of

measurements are shown in Table 3.1.

3.2.2 Cloudlet to Cloud Latencies

For the cloudlet to cloud measurements, we once again collect the information
about the two-way communication latencies. In addition, we also record the num-
ber of hops in the path between the client (cloudlet) and the servers using the
traceroute command in Linux. The parameters for this set of measurements are

shown in Table 3.2.



Name Parameters

Time Weekdays, Weekends
Data Size 8,64,256,512,1024 (KB)
Data Points 400 per data size
Client Number )

Server Number 130

Category Wide-area networks (WAN)
Hardware PlanetLab nodes

Table 3.2: Cloudlet to cloud measurement parameters.

20
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4 Data Analysis

In this chapter, we present data analysis for the measured latencies for data trans-
fer between the mobile and the cloudlet and between the cloudlet and the cloud.
We examine the average latency as well as the variance in latency, as a function
of the data size and the number of hops in the route. The motivation is to study
the capabilities of the cloudlet in order to minimize the overall communication
latency through intelligent server selection when abundant cloud resources are
available. In particular, we want to determine whether we can use the measured
latencies to create models for estimated latencies for different cloud servers. This
“profiling” would enable the cloudlet to select the server(s) that would minimize

overall latency. We will see in the next chapter the benefits of such an approach.

4.1 Latency Measurements

For the mobile to cloudlet connection, Figures 4.1 and 4.2 show the maximum,
mean, and minimum latencies as the file size changes from 8 KB to 10 MB for
one-hop and multi-hop WiFi, respectively. For a given data size, the highest point
indicates the maximum, the lowest is the minimum, and the middle one with an

error bar denotes the mean latency with standard deviation (error bar).

For the cloudlet to cloud connection, Figures 4.3 and 4.4 show the maximum,

mean, and minimum latencies as the file size changes from 8 KB to 1 MB for 2
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Figure 4.1: The mean, maximum, and minimum latencies as the file size changes

for one-hop WiFi.
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Figure 4.3: The mean, maximum and minimum communication latencies as the
file size changes for communication over Planet-Lab nodes with the client in the

US and the server in Europe.

example server nodes (the client in the US, the server in the US for one and the

server in Europe for the other) among the 130 nodes.

The results clearly indicate that the difference between the maximum and
minimum latencies increases with file size for both the single hop and multi-hop
cases as well as for the PlanetLab nodes. Furthermore, the data also show that
the mean latency increases with data size in a linear fashion. This feature can be
utilized to create a latency model for different nodes. These latency models can
be stored and updated in the cloudlet in order to optimize the server selection and

minimize the overall communication latency, as we will see in the next chapter.
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Figure 4.5: Standard deviations of communication latency via single hop and

multi-hop WiFi connections.

4.2 Latency Variance Behavior

For the mobile to cloudlet communication, Figure 4.5 shows the standard deviation
as the file size changes from 8 KB to 10 MB for one-hop and multi-hop WiFi. The
results clearly indicate that the standard deviation increases with file size for both

the single hop and multi-hop connections.

For the cloudlet to cloud communication, Figure 4.6 shows the standard de-
viations of latency for 130 nodes with the same average latency when 1 MB data
is transferred. The data in Figure 4.6 indicates, roughly speaking, that there is
a monotonic trend that latency variance increases as the latency increases. This
trend indirectly suggests that there is potential to use this feature for controlling
client-server pairs to optimize the server selection, especially when there are plenty

of diverse cloud resources available.
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28

4.3 Other Related Aspects

4.3.1 Communication Path Changes

In [10], the author shows that approximately 68% of the routes in the Internet do
not change for seven days, while the rest change in the range of between a second

and 6+ hours.

In Sections 4.1 and 4.2, we have studied the communication latency and its
variance behavior with the measurements being performed for both weekdays and
weekends. We aim to figure out if there is a frequent path change during the
measurement time. If the path changes frequently, it is difficult and meaningless
to model the latency for different servers. Table 4.1 shows the trace-route results

for ten randomly chosen servers. Table 4.2 shows the measurement parameters.

Our experiment corroborates the observations of [10]. Only one pair out of
ten changes its path and the number of hops several times, and all of the other
pairs never change their paths. This feature ensures our basis for the simulations

that will be introduced in Chapter 5.

4.3.2 Latency Distribution

Figures 4.7 and 4.8 show histograms of the latencies for one-hop and multi-hop
connections for 10MB data transfer, respectively. Figure 4.9 shows a histogram
of the latencies for 1IMB data transfer of one example server node in PlanetLab.
The latency distributions (666 distributions in total) have the same behavior for

all file sizes, and they are omitted here.

All histograms indicate an identical shape, which is similar to a Rayleigh
distribution (with an x-axis shift) with a peak close to the average and then

gradually decreasing as latency increases. This feature can be used to build a
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Node+# Node Area Path Change # of Hops

1 North America No 14
2 North America No 14
3 North America No 15
4 Asia No 14
5 South America No 14
6 Europe No 15
7 Europe Yes 19(17)
8 Oceania No 15
9 Asia No 17
10 Asia No 14

Table 4.1: Traceroute results for ten randomly selected servers.

Name Parameters

Time Saturday (pm), Sunday (am & pm), Monday (am & pm)
Data Size 8,64,256,512,1024 (KB)

Data Points 500 per data size

Category Wide-area networks (WAN)

Hardware PlanetLab nodes

Table 4.2: Path changes measurement parameters.
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Figure 4.7: Latency distributions with 10MB data transfer for one-hop WiFi.

latency model for each data size, which could be stored and updated in the cloudlet
for optimizing the server selection in order to minimize the overall communication

latency.
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Figure 4.9: Latency distribution with 1IMB data transfer for communication be-

tween a pair of PlanetLab nodes.
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5 Task Allocation Techniques:
Analysis and Evaluation

In this Chapter, we present several techniques for task allocation: random allo-
cation, fixed allocation and greedy allocation. We simulate these different algo-
rithms and conduct real measurements using the different algorithms to evaluate

the benefits and tradeoffs in terms of latency and overhead.

5.1 Latency Linear Model

Using a cloudlet enables the use of smart allocation algorithms to minimize the
overall communication latency to the cloud server(s). If the cloudlet has a-priori
information about the latencies (and variances) to different cloud servers, it can
optimize the performance. The cloudlet is able to update this information on a

fairly regular basis to ensure accuracy.

As we have shown in Chapter 4, based on the measurement results, the latency
displays a linear behavior as a function of data size, roughly speaking. Also, the
latency distribution for a certain data size is similar to a Rayleigh distribution

and can be approximated by a Gaussian distribution for simplicity.

Consequently, we create two models to support the task allocation algorithms:
(1) latency linear model; (2) latency standard deviation linear model. With these

two models, when given the latency distribution model (Gaussian model used in
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this thesis), we are able to predict communication latency given a certain server
node and a certain data size with a certain probability. The latency distribution

models are used to perform Monte-Carlo simulation for task allocation algorithms.

Figures 5.1, 5.2 and 5.3 show the linear regression plots for three different server
nodes in PlantLab, including Instituto Tecnologico Buenos Aires, Zuse Institute
Berlin and University of Oregon. All of them are receiving data from a University
of Rochester node. We model these latencies as y = ax + b, as shown in Table

5.1, where x is the data size and y is the latency.

4
3.5x 10

151

Latency (ms)

0.5r

1 1 1 1 1
0 200 400 600 800 1000 1200
Data Size (KB)

Figure 5.1: Latency linear regression for Instituto Tecnologico Buenos Aires.

These models will be used to estimate latency to a target server for an arbitrary
data size when the original data is split into multiple chunks and sent to multiple
servers. For example, when we send 1MB data to 3 servers, the data are split into

three 341KB data chunk, approximately. Then we use the latency and variance
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Server a b

Buenos Aires 23.5 13.3
Berlin 22.2 40.2
Oregon 10.8 25.2

Table 5.1: Linear model y = ax + b (in ms) for servers in Buenos Aires, Berlin,

Oregon.

linear models to predict the latency and standard deviation for transferring 341 KB

data.

5.2 Server Selection Algorithms

For our experiments, we assume that a task must be performed on a large amount
of data. The task is performed on each data item independently. As an example,
suppose a face recognition algorithm must be performed on 1000 faces. All 1000
faces can be sent to one server for computation, or each face can be sent to 1000
different servers (or any combination in between). Thus, the client has the option
to divide the full data set into smaller chunks and send these chunks to different
servers for computation. The servers return the result of the computation, and
this is aggregated to obtain the final result. The question we address here is:
what is the best way to divide the data among different servers? We answer this
by evaluating different data division algorithms through simulations using the
latency and variance models and through experiments on PlanetLab. In addition,
the latency standard deviation linear model and latency distribution model are
only required in the simulations. For the real cloudlet, for now, the profile is only

the mean of the two-way communication latency of different network links /routes.
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5.2.1 Random Algorithm

For the random algorithm, a client sends M bytes of data to N randomly selected
servers with different communication latency models. The M bytes of data are
evenly divided into N tasks with [41] bytes of data sent to each of the N servers.
Then, the client aggregates the N responses received from the N servers. We

choose the final response received as the overall latency for all M bytes of data.

Furthermore, the client may send copies of the data to more than one server
for redundancy purposes. For example, client A sends 3 copies of data chunk 1 to
3 different servers, and client A is capable of receiving 3 responses for data chunk
1 due to this redundancy operation. In this case, we choose the first response
received for data chunk 1 (with minimum latency) as the latency for data chunk
1. Similarly, we choose the last response received for all the sub-tasks as the total

latency for completing the task.

The use of redundant servers for the same data chunk is expected to reduce
the overall latency by increasing the probability that a response for a given data
chunk is returned earlier. Figure 5.5 shows the simulation results for the random
algorithm with 1, 3, 5 and 10 redundant copies of each data chunk sent to different
servers, as the number of data chunks (x-axis number of servers) is increased.
Hence, when the x-axis “number of servers” is equal to 5, this means the original
data is split into 5 chunks. For a redundancy of 10 (R10 in the figure), each of
these 5 data chunks are sent to 10 different servers, hence in all 50 servers are used
to process the 5 chunks of data. Figure 5.4 shows the real measurement results

for the random algorithm with the same parameters of the simulation.

As we can see from Figure 5.5, the latency decreases as redundancy increases
(R3, R5, and R10) since more copies (e.g., more servers) are selected and the
probability of receiving an earlier response increases. This shows the benefit of

using a higher amount of redundancy in terms of latency. Obviously, the trade-off
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Figure 5.4: Simulation: the random algorithm with 1, 3, 5 and 10 redundant
copies of the data sent to the same number of servers. Here, R1 means that there
is only one copy of the data sent to the servers; R3 means there are 3 copies of the
same data sent to three different servers; R5 means there are 5 copies of the same
data sent to five different servers; and R10 means there are 10 copies of the same
data sent to ten different servers. The x-axis represents the number of servers
utilized for processing when there is no redundancy. So, for example, at an x-axis
point of 5 servers, this means the original data is broken into 5 chunks and each
chunk is then sent to R = 1, 3,5, 10 different servers for processing. Given our
overall limited number of servers, at a redundance of R = 10, we do not have
enough servers to split the data into more than 5 chunks (which translates to 50

servers). Here, data size M=1024 (KB), total number of servers = 55.



39

4000 ‘ ‘
—&—Random Experiments R1
—©—Random Experiments R3
3500- —¥—Random Experiments R5 ||
—&— Random Experiments R10
3000 E
~—~
[%)
£ 2500 E
N—’
>
o
o
+ 20001 E
|
15001 J
1000+ B
500 1 1 1 1 1
0 2 4 8 10 12

6
Number of Servers

Figure 5.5: Experiment: the random algorithm with 1, 3, 5 and 10 redundant
copies of the data sent to the same number of servers. Given our overall limited
number of servers, at a redundance of R = 10, we do not have enough servers
to split the data into more than 4 chunks (which translates to 40 servers). Here,
data size M=1024 (KB), total number of servers =41 (41 of 55 nodes with valid
data).
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is the enormous overhead in terms of redundant data sent through the network

and redundant computations performed on that redundant data by the servers.

5.2.2 Fixed Algorithm

The fixed algorithm is the same as the random selection algorithm except for the
following two aspects: (1) there is no redundancy operation; and (2) profiling of
the latency information is required. When sending (%} bytes of data, for the fixed
algorithm, we sort the servers in ascending order in terms of the average estimated
latencies based on the latency linear model for [%] data size. Then we select
the first NV severs from the lowest latency upward. The ultimate communication
latency is the time that it takes for the last response to arrive from these N selected
servers. Figure 5.6 shows the simulation results and the real measurement results

for the fixed algorithm.

As we can see from Figure 5.6, the latency decreases initially and increases
after a certain number or more severs (e.g., 5 in Figure 5.6) are involved. Latency
initially decreases since the data is split into more chunks and the data chunks are
sent to low latency servers. After a certain number of servers is reached, servers
with high latency must be used so that the burden sharing benefit is overshadowed

by the long latencies to these servers.

5.2.3 Greedy Algorithm

For the greedy algorithm, like the fixed algorithm, we order the servers by their
average estimated latencies based on the latency linear model. Then we give the
first chunk of data (here the chunk of data means the smallest chunk that a task
can be divided into) to the server that can complete this task in the minimum

amount of time. Then, we assign the second chunk of data to the server that
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crease N, the number of servers considered for sending data. In this algorithm,

each server receives [21] amount of data. Here, data size M=1024 (KB).
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can complete this task in the minimum amount of time (note that this may be
the same server as given the first task if the time for the first server to complete
both tasks 1 and 2 with data chunks 1 and 2 is less than the time for the second
server to complete just task 2 given only data chunk 2). We continue in this way,
greedily selecting the server for each task in turn. Finally, a set of servers with a
different number of tasks/data chunks are determined. The overall response time
of the greedy approach is the time it takes for the last response to be received

from all servers.

Finding this optimal set of such data chunks is inherently a complicated op-
timization problem, we use the approximation algorithm described in Algorithm
5.2 for our simulations and experiments. The main idea is to move a portion of
data (a(7) *u, where a(7) is the latency linear model slope for server i and w is the
unit data chunk) from server ¢ when i = 1: k — 1 to a newly added server k, and

iterate the process until finding the minimum latency.

Figure 5.7 shows the simulation results and the real measurement results for
the greedy algorithm. As we can see from Figure 5.7, the latency decreases and
becomes stable after a certain number of servers are added. The greedy algorithm
aims to find the optimal server selection with minimum latency. At the stabilized
point, high latency servers (with high fundamental overheads) would be required
if the number of servers was increased, and this does not provide any benefit for
reducing latency. As a result, these servers will not be selected and the set of

selected servers remains the same as before.

5.3 Comparison Among the Algorithms

The cloudlet is capable of storing and updating the network latency profiles, which

makes the fixed and greedy algorithms possible for performing optimal server
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1: for k=2:ndo

2: flag = true

3: while flag do

4: for all server(i)asi=1:k—1do

5: temp(i) = data()

6: data(i) = data(i) — a(i)u

T end for

8: data(k) = total Data — 31, data(i)

9: curLat = oo

10: if max(lat(0),lat(1), ...,lat(k)) < curLat then
11: flag = true

12: curLat = max(lat(0), lat(1), ..., lat(k))
13: else

14: flag = false

15: for all server(i)asi=1:k—1do

16: data(i) = temp(i)

17: end for

18: end if

19:  end while

20: end for

data(i): data size sent to server(i)

a(7): rate that latency increases as data(i) increases
lat(7) latency of server(i)

u unit data chunk

total Data: total data size

Table 5.2: Approximated Greedy Algorithm
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selection. Figure 5.8 shows the comparison of the random, fixed, and greedy
algorithms. Based on the fixed algorithm, we can find the optimal number of
servers (e.g., the lowest point in Figure 5.6), and the sizes of the data chunks are
the same for each server. For the greedy algorithm, the best server selection set
is found. The optimal latency is lower using this algorithm compared with using
the fixed algorithm since the sizes of the data chunks are different for the global
optimum. However, the premise of the greedy algorithm is that the data can
be split into arbitrary sizes, which may not be feasible for many applications in
reality, for example, the face recognition algorithm described earlier, since the data
representing a face cannot be split. Consequently, a hybrid method that combines
the fixed and greedy algorithms (i.e., split the entire data set into different fixed
data chunks based on the real conditions, such as different faces of different sizes,
then perform greedy algorithms) may be more suitable than the arbitrary-split

greedy algorithm for most real applications.

On the other hand, profiling in the cloudlet will incur higher costs (e.g., band-
width, power, storage, etc.). The random algorithm with redundancy provides
a simple method to achieve good latency performance. The random algorithm
sends more packets to the network and waits for the earliest response for one task
and thus achieves low latency without requiring any profiling of the network. The
profiling is reliable when the links/routes are long-lived, while the random algo-
rithm without profiling is more useful in short-lived links/routes or if the mobile,
which cannot feasibly perform network profiling, is sending data directly to the

cloud without the benefit of a cloudlet.

To sum up, when utilizing a cloudlet in mobile-cloud computing, and per-
forming server selection algorithms (with profiling) or random server selection
with redundancy (without profiling), we can obtain significant benefits in terms

of response latency.



46

10%

—©—Random Simulation R1
—@—Random Simulation R3
——Random Simulation R5
—w— Random Simulation R10 ]|
—o— Greedy Simulation
—=— Fixed Simulation

Latency (ms)
B(.».)

L
0 10 20 30 40 50 60
Number of Servers

Figure 5.8: Comparison of the random, fixed, and greedy algorithms. Here, data

size M=1024 (KB).



47

6 Conclusions and Future Work

6.1 Conclusions

In this thesis, we show the benefits of utilizing a cloudlet in mobile-cloud com-
puting. With the cloudlet, which can store and update network latency profile
information, we can utilize server selection algorithms to bring significant benefits

by reducing the overall response latency.

We set up the hardware platform and implemented the software for the MOCHA
architecture that utilizes a cloudlet. This setup is later used for network latency
measurements. Based on the measured latency data, a profile of the network
links/routes is created, including the latency linear model, the latency distribution
model, and the latency variance model. Utilizing dynamic profiling, performing
the fixed or greedy algorithms for server selection, the response latency is sig-
nificantly reduced. Moreover, we find that the greedy algorithm is not suitable
for non-arbitrary divisible applications (e.g., face recognition) where the hybrid
method of fixed and greedy algorithm may be more appropriate. On the other
hand, without profiling, which may incur extra costs (e.g., power, storage, and
bandwidth), the random algorithm is capable of providing acceptable latency per-
formance with high redundancy. In addition, we argue that the fixed or greedy
algorithms, which both highly depend on the profiling, are suitable for long-lived

links/routes network environments while the random algorithm is adaptive to
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short-lived links/routes network environments.

To sum up, utilizing a cloudlet in mobile-cloud computing provides significant

benefits from the use of dynamic profiling for optimal server selection.

6.2 Future Work

Profiling on a cloudlet is based on the network latency measurements. Although
we perform the measurements for weekdays and weekends and combine them
together to generate the profile, it is more reliable to subdivide the profile into
different time slots (e.g., daytime or nighttime). Furthermore, a dynamic profile
updating strategy should be developed, for example, update the profile when the
cloudlet has an otherwise low load and stop profiling when the load in the cloudlet

is too high.

Another possible area to look at is the hybrid approach, such as the hybrid
method using the fixed and greedy algorithms described in the previous chapter.
Moreover, another option worth exploring is adding redundancy to the greedy
algorithm. For example, require that 2 copies of all data be sent and use the
greedy algorithm to determine how /where to send the data. (e.g., using the greedy
algorithm with 2 copies sent). This hybrid method could help with incorrect or
invalid profile information, and it provides some level of fault tolerance in the case

where a selected server is unavailable.

In this thesis, we mainly focus on reducing the response latency. Nevertheless,
cloud resources are not free, especially for advanced services (e.g., larger storage,
more computation power, and high bandwidth). Cost is another important con-
cern in mobile-cloud computing. One should take into account both the latency
and the costs together to make a balanced selection in achieving an acceptable

response latency with a reasonable price. This could be an extension of the work
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described in this thesis. Furthermore, in addition to on-demand cloud resources
(e.g., pay a fixed price for certain resources), there are auction-based cloud re-
sources whose availabilities are controlled by the current bidding prices and the
auctions market [11]. In this case, achieving the optimal sever selection will be

more challenging and requires further research.
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