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Abstract

Wireless Sensor Networks continue to gain tremendous popularity, as evidenced by

the increasing number of applications for these networks. The limiting factors of

the sensor nodes, such as their finite energy supplies and their moderate process-

ing abilities, as well as the unreliable wireless medium restrict the performance of

wireless sensor networks. In this dissertation, we explore application-aware tech-

niques for managing the limited resources available to wireless sensor networks,

focusing on ways to maximize the network lifetime for clustered sensor networks

and visual sensor networks.

We begin by focusing on a hierarchical cluster-based sensor network architec-

ture, which reduces the network’s need for resources through data aggregation

and a reduction of the communication overhead. In order to provide balanced

energy consumption in clustered sensor networks, we introduce novel methods for

network organization based on unequal size clusters, as opposed to the generally

accepted equal-size clustering approach. In sensor networks that are constrained

by coverage-preserving requirements we explore the use of application-aware (i.e.,

coverage-aware) metrics for cluster head, router, and active node role assignment.

We believe that the real potential of wireless sensor networks lies in their in-

tegration with various sensing technologies and research disciplines, which will

trigger widespread use of sensor networks in a number of specific applications.

Thus, we adopt these ideas of application-aware resource allocation specifically

for visual sensor networks. The higher demands for the network’s resources, the

tighter QoS requirements, and the unique camera sensing capabilities are the main

reasons why these types of networks are different and more challenging than ex-

isting (“traditional”) sensor networks. We examine the impact of camera-specific

sensing characteristics on the network’s behavior in the case when a routing pro-
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tocol designed for “traditional” sensor networks is used in a visual sensor network.

Furthermore, we propose different application-aware metrics for the selection of

camera-nodes that provide the image information necessary for the reconstruction

of the scene view from any arbitrary view point, while at the same time providing

an efficient means of managing the network’s resources. Finally, we explore the

problem of energy-efficient scheduling of cameras. Besides being used for mon-

itoring, the visual information provided by the cameras can be used for other

purposes as well. In particular, we examine how the image data can be used to

extract precise location information of a moving object by fusing the information

provided by the camera with a coarse location estimate provided by the sensor

nodes in a locationing system.
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Chapter 1

Introduction

Wireless Sensor Networks have the potential to significantly influence the evolution

of today’s popular wireless technologies. The development and integration of low-

power radio, sensor (MEMS), and chip (CMOS) technologies into wireless sensor

node devices will soon enable the widespread use of wireless sensor networks for

a number of diverse applications.

Today, cellular networks, broadband wireless access technologies (WiMax [1]),

and wireless local area networks (WLAN [2]) that rely on fixed infrastructure are

well known and commonly used for data and voice communication. Encouraged by

the enormous success of today’s pervasive wireless technologies, the research com-

munity has focused on exploring ways to extend the bounds of the current commu-

nication infrastructure and services, in order to provide less costly, more flexible,

reliable and less infrastructure-dependent communication systems. Achieving re-

liable communication without infrastructure support is the basic principle in the

design of mobile ad hoc networks (MANETs).

MANETs are self-configuring networks of mobile hosts/routers, connected by

wireless links. These networks are characterized by unreliable communication

between the hosts, caused by the unpredictable nature of wireless links, and by

the highly dynamic changes in network topology (the mobile routers can leave

the network area, for example), which brings many challenges in the design of

communication protocols that efficiently overcome these problems. These multi-

hop mobile ad hoc networks have been used by the military for a long time, and

they became a popular research topic in the mid to late 1990s, when laptops and

1
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the IEEE 802.11 standard [3] became widespread.

Along with the appearance of the first MANETs, wireless sensor networks

(WSNs) emerged as a special kind of infrastructure-less wireless network with their

own unique set of features. Wireless sensor networks consist of smart computing

devices — wireless nodes, envisioned as small, robust, and cheap devices that

can be deployed in a wide variety of applications and environmental conditions.

Equipped with different types of sensors, WSNs achieve tight integration with the

physical world. Similar to the nodes in MANETs, sensor nodes act both as hosts

as well as routers, operating in a self-organizing and adaptive manner. Usually,

sensor nodes do not have the capability to move, but rather they are deployed in

an ad hoc manner in an area of interest and left unattended to collect data for

long periods of time.

WSNs may contain various types of sensor nodes, in terms of their sensing and

processing capabilities. In this dissertation, we investigate how different types

of sensor nodes should be managed to provide maximum benefit to the specific

application. Considering the energy constraints of sensor nodes, we first show

how we can establish an energy balanced clustered heterogeneous sensor network.

Then, we analyze the sensor nodes’ role assignment problem in clustered networks,

in order to meet application-specific Quality of Service (QoS). Furthermore, we

examine various resource management problems in visual sensor networks, where

camera-nodes are used as a special type of sensor node, considering the differences

between these sensors and those commonly used in “traditional” sensor networks.

1.1 Core Features of Wireless Sensor Networks

The design of wireless sensor networks is determined by the sensor nodes’ charac-

teristics and by application-specific requirements. Oftentimes, the sensor network

has to satisfy several, sometimes competing constraints, suggesting the need for

compromise solutions that provide balance between all of the imposed constraints.

The list of design challenges is long; here we indicate some of the most important:

Energy limitations In the absence of promising energy-scavenging technologies

that would provide constant energy supplies for the sensor nodes, batteries are
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the most commonly used sources of energy. Energy is thus a scarce resource, and

it presents a basic limiting factor for the node’s lifetime. Thus, intelligent polices

for the efficient utilization of the energy resources are needed.

Communication in sensor networks is by far the most expensive operation in

terms of energy [4], [5]. As an illustration, it is worth mentioning that the energy

required for transmission of only one bit is sufficient for the execution of about

a thousand arithmetical operations [6]. In wireless networks, the received signal

power varies as a function of distance. This variation is caused by path loss and

shadowing. The energy spent for transmission of data packets, in the case of

variable transmission power, rises as a function of dk, where d is the transmission

distance and k is the path loss exponent [7]. The propagation of electromagnetic

waves (signals) through the medium can be disturbed by various environmental

factors, such as presence of obstructing objects or surface roughness, for example,

which causes signal absorbtion, reflection, scattering and diffraction [8]. These

factors further attenuate the signal power at the receiver, influencing the reception

of data packets and thereby increasing the overall energy consumption of the

network.

Local processing Data collected by the sensor nodes that lie in proximity to

each other may contain a high level of spatial and temporal redundancy [9]. Local

data processing (through data aggregation or data fusion) reduces the amount

of data that have to be transmitted back to the data sink, thereby providing

the application with high-level data representations that qualitatively satisfy the

application’s requirements.

Resistance to node failure Sensor networks are dynamic systems. Changes in

the network topology may be caused by node failure due to various factors such

as depleted batteries, environmental factors (fire, flood), an intruder’s attack,

etc. The network should be self-adaptable, meaning that the loss of sensor nodes

should not affect the overall functionality of the sensor network.

Scalability In many applications, a sensor network may contain hundreds or

even thousands of sensor nodes. The sensor network should be scalable, meaning
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that the performance of the sensor network should be minimally affected by a

change in network size. In many cases, recharging or replacing batteries is not

possible, and adding new sensor nodes is the only way to prolong the lifetime of

the network. In such cases, the network should easily integrate any new sensor

nodes, with minimal degradation of functionality.

Deployment Sensor nodes can be deployed in various ways, depending on the

application and the environmental conditions. They can be deployed randomly

over the monitoring field, they can be attached to a specific moving object that

is being monitored or they can be arranged deterministically. After deployment,

the sensor nodes in most applications remain static. Depending on the deploy-

ment strategy, suitable communication protocols should be developed based on

the existing network topology in order to support the network’s functionality.

Heterogeneity Sensor networks may consist of different types of nodes in terms

of their sensing capabilities, computation power, memory size, radio circuitry

and energy consumption. The diversity of hardware components can become

a gap between these devices, raising new issues in communication and network

configuration.

Quality of Service (QoS) Satisfying the application goals by meeting the

QoS requirements is one of the basic principles of sensor network design. Qual-

ity of service in wireless sensor networks can be defined from two perspectives:

application-specific and network. The application-specific QoS refers to QoS pa-

rameters specific to the application, such as: the quality of the sensor nodes’

measurements, the network’s coverage, the number of active sensors, delay, etc.

The network’s perspective of QoS refers to the problem of how the supporting

network can satisfy the application’s needs, while efficiently using the network

resources such as energy or bandwidth.
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1.2 Motivation

Regardless of the specific application, there are several common observations re-

lated to the design of any sensor network:

• Energy is a scarce resource in the network. However, minimizing energy

consumption does not necessarily prolong the network’s lifetime, nor does it

ultimately supports the QoS constraints imposed by the specific application.

• The sensor network’s design includes finding the best trade-offs between the

application’s goals and the network’s capabilities.

• The number of active sensor nodes should be minimized such that redun-

dancy in sensor readings is minimized, while providing satisfactory quality

of data.

• Sensor network design is directed by the type of senor nodes used in the

network.

Wireless sensor networks provide us with an expanded view of the environment

around us. When a large number of spatially close sensors performs data gather-

ing at the same time the redundancy of the sensor readings is high, which without

considering the application’s minimum requirements can result in expensive trans-

missions of the gathered data to the sink. However, the network should provide

the relevant data that is sufficient to satisfy the application-specific requirements,

by gathering the information from only a subset of sensor nodes, instead of all

available nodes in the network. Along this direction, we explore different methods

for the selection of the most suitable set of sensors to satisfy the application QoS

requirements in different types of sensor networks.

Sensor nodes are envisioned as multi-functional devices. For example, a sensor

node can either sense the environment, coordinate a group of other nodes and

process their data, act as a data router, or perform a mix of these operations. In

the case of clustered sensor networks, the nodes may have predetermined roles, or

they may have assigned roles that change over time, by following the application

requirements or energy conservation principle. We investigate how the particular

roles in clustered sensor networks can be supported for longer periods by exploring



6

different ways to build clustered network architectures. Also, we explore cluster

head election techniques in hierarchically organized sensor networks that must

satisfy certain coverage-preserving requirements.

Despite the many challenges in sensor network design, the interest for new

applications of these networks is tremendous. We believe that the real potential

of wireless sensor networks lies in their integration with other technologies and

research fields. This motivates our work on visual sensor networks as a new kind

of sensor network that provides visual information of the monitored region.

Therefore, my dissertation is directed toward designing application-aware sen-

sor network architectures and sensor management policies that are needed to

support the reduction of redundant data as well as node heterogeneity in order

to achieve application-determined quality. In particular, we follow this philoso-

phy through the design and optimization of two specific types of sensor networks:

hierarchical (cluster based) sensor networks and visual sensor networks.

1.2.1 Sensor Management for Hierarchical Networks

In the first part of this dissertation our attention is directed toward exploring

efficient hierarchical organization methods that provide application-aware resource

management in the network in order to prolong the network lifetime.

Clustering is a well known approach for efficient network organization. In

contrast to cellular networks, where each base station is powered by an essentially

limitless source of energy, the cluster heads in wireless sensor networks have a

limited amount of energy available. Since the loss of the cluster head nodes

usually translates into the loss of data from all the cluster members, we begin by

exploring the problem of cluster management in homogeneous and heterogeneous

sensor networks.

The multi-modal abilities of sensor nodes enables them to act as data sources,

data routers, or aggregators of received data. Multi-hop data routing through the

network reduces the overall energy consumption of the sensor network, but at the

same time quickly exhausts the energy of the sensor nodes that frequently serve as

data routers. Our solution to this problem proposes the use of a clustered network

architecture with clusters of unequal sizes in order to better balance the energy
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consumption of the sensor nodes. This approach follows the logic that if a sensor

node has limited remaining energy, once it becomes a cluster head node, it should

support clusters of smaller size than those sensor nodes that have more energy

available. In the case of heterogeneous networks, our solution to the problem of

unbalanced energy consumption is based on a deterministic deployment of the

cluster head sensor nodes.

Furthermore, we analyze how the application-specific QoS requirements can

be addressed in a cluster-based wireless sensor network, specifically by looking

into the problem of providing complete coverage of the network. We notice that

although cluster-based network organization reduces the overall energy consump-

tion in the network, it does not guarantee satisfaction of application coverage

requirements for long periods of time. Our approach suggests that both energy

constraints and coverage redundancy should be considered in order to find a way

to satisfy the application’s coverage requirements in clustered sensor networks for

longer periods of time.

1.2.2 Sensor Management for Visual Sensor Networks

Through our research on hierarchical sensor networks, we gain valuable knowledge

about the importance of application-aware management of sensor networks. We

apply this idea to visual sensor networks, as described in the second part of this

dissertation.

Visual sensor networks inherit characteristics from both wireless sensor net-

works and more general ad hoc networks. We first focus on the differences between

“traditional” and visual sensor networks, considering the research directions al-

ready established in the area of wireless sensor networks. Due to the unique

features of image sensors, the increased needs for the network’s resources and the

more strict QoS requirements, not all protocols developed for traditional sensor

networks can be used directly in visual sensor networks.

Visual sensor networks provide users with large amounts of information, which

makes them extremely resource demanding. The right sensor management polices,

in terms of sensor selection and scheduling, become essential in order to provide

persistent monitoring. A camera’s sensing differs from the sensing of other types of
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sensors, since it provides directional sensing, which enables the camera to capture

information from distant parts of the monitored area. The energy consumption

is important, but not the only constraint for visual sensor networks. In many

applications of visual sensor networks, the goal is to fully cover the entire mon-

itored 3D space with the cameras. Considering the unique characteristics of the

camera-nodes, the choice of the right set of cameras for performing the sensing

task broadly influences the quality of the data received and the lifetime of the

sensor network.

We begin by analyzing how existing routing protocols developed for “tradi-

tional” sensor networks behave when applied in visual sensor networks. Then,

we explore the influence of different camera-node selection methods on the net-

work’s lifetime and the quality of the reconstructed images. We continue the

work on resource management polices by looking into the problem of scheduling

active camera nodes. Finally, we show how the visual information provided by

the cameras can be used in order to improve the precision of an object’s position

determined by a wireless sensor network based localization system.

1.3 Dissertation Contributions

This dissertation provides analysis of several methods for sensor network organi-

zation and sensor management in different types of sensor networks. The specific

contributions to wireless sensor networks and visual sensor networks research are:

• We propose the Unequal Clustering Size approach that achieves better en-

ergy balanced hierarchically organized sensor networks compared with clus-

tering approaches that utilize equal size clusters.

• Based on a family of application-aware cost metrics, we provide a heuristic

for the selection of cluster head nodes, active nodes and routers, as well as

a clustering protocol for a hierarchical sensor network, thereby supporting

the coverage requirements of the sensor network.

• In visual sensor networks, we first explore the behavior of a coverage-preserving

routing protocol that was initially designed for traditional sensor networks,



9

when it is used for data routing in a network of wireless camera-nodes. Then,

we provide directions for the design of QoS-aware routing protocols in this

kind of network.

• We provide application-aware methods for the selection of camera-nodes in

visual sensor networks, with the goal of maximizing the 3D coverage of the

monitored area over time. We show the advantage of using a QoS-aware

approach for camera selection over other standard selection approaches.

• We analyze the energy-efficient camera scheduling problem in visual sensor

networks, where camera-nodes grouped into a number of coverage sets are

used to monitor the space of interest.

• Finally, we describe how the camera’s image sensing capability can be used

for improving a localization service in sensor networks. We describe the

localization system implemented in a real testbed consisting of a network of

wireless sensor nodes and a camera.

1.4 Dissertation Structure

In Chapter 2 of this dissertation we provide an overview of wireless sensor networks

and visual sensor networks, focusing on topics that are most relevant for the work

presented in this dissertation. We show the advantages of the unequal clustering

approach in homogeneous and heterogeneous networks in Chapter 3. The cluster

head selection methods and the clustering protocol for the preservation of the

network’s coverage are presented and analyzed in Chapter 4. In Chapter 5, we

analyze the problem of application-specific routing in visual sensor networks. Our

work with visual sensor networks continues in Chapter 6, where we analyze and

compare methods for the selection of active cameras. In Chapter 7, we present

approaches for the energy-efficient scheduling of camera-nodes. In Chapter 8 we

describe a prototype of a positioning system that fuses the location information

provided by a wireless sensor network and image information from a camera to

find the precise coordinates of an object. Finally, in Chapter 9 we conclude this

dissertation and provide directions for future work on clustered sensor networks
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and visual sensor networks.



Chapter 2

Background

In this chapter, we provide an overview of the most important characteristics, de-

sign challenges and metrics for the evaluation of the performance of wireless sensor

networks. Our overview begins with general information about the sensor node’s

hardware and network stack, followed by an overview of applications and related

work for wireless sensor networks, and this chapter concludes with an overview of

the main characteristics and research directions for visual sensor networks.

2.1 General Sensor Node Architecture

Over the past few years, a variety of hardware solutions have been proposed for

sensor nodes. The evolution of these sensor nodes is following a path toward solu-

tions that favor ultra-low power operations on the chip, more memory and higher

processing speed. The ultimate goal is to produce sensor nodes that are small in

size, cheap and that last for a very long time, thanks to low-power operations and

the low duty-cycle principle.

Today, with respect to the characteristics of wireless sensor networks men-

tioned in Section 1.1, sensor nodes are still in the early development phase, and

they mainly present prototypes of ongoing research. An extensive overview of the

currently available sensor node prototypes is provided in [10].

A sensor node contains several functional components, as shown in Figure 2.1.

The microcontroller/microprocessor performs the data processing, thereby sig-

nificantly reducing the total number of data bits transmitted over the wireless

11
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Figure 2.1: General architecture of a wireless sensor node.

medium. The radio interface comprises the radio transceiver with power control.

Increased transmission power results in smaller probability of dropped packets at

the receiver, but at the same time it increases the interference with other nodes

in the transmission range. Therefore, intelligent polices for power adjustment at

the node need to be considered.

Different types of sensors can be attached to the node through the sensor

interface. Since many sensors have analog output, an additional A/D circuit may

be needed to bridge the gap between the sensor and the node.

2.2 Protocol Stack

The traditional protocol stack of a wireless sensor node consists of several layers, as

illustrated in Figure 2.2. The physical layer is responsible for sending and receiving

a single bit over the wireless channel. It performs several tasks, such as: frequency

selection, carrier frequency generation, signal detection, and modulation [11].

The link layer is responsible for applying error correction. The medium ac-

cess control (MAC) layer controls the access of a sensor node to the shared radio

channel. The MAC layer has information about one-hop links, such as error char-

acteristics, the channel condition, packet loss rates, etc. This layer controls how

often the sensor is in different operation modes [12]. Therefore, the MAC layer
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Figure 2.2: The protocol stack and cross-layer services.

has a large impact on the energy efficiency of the sensor nodes [13–15]. The tradi-

tional goals of wireless MAC protocols, such as those related to channel bandwidth

utilization, delay, fairness or throughput, may not be the major concerns in very

low data rate wireless sensor networks. However, these goals are of concern for

the new generations of real-time multimedia sensor networks.

The network layer is responsible for discovering routes between the sensor

nodes in multi-hop wireless sensor networks. Routing should be energy-efficient

and stable, and it should support various QoS (end-to-end) requirements. The

network layer should have knowledge of the end-to-end characteristics of the route.

Routing has to support the data-centric nature of sensor networks, which requires

attribute-based instead of ID-based addressing of sensor nodes [16, 17].

The transport layer is concerned with the reliable delivery of packets. Tradi-

tional transport protocols, such as TCP, are not suitable for use in sensor networks.

For example, TCP assumes that the primary cause of packet loss is congestion

that occurs in the network; however, packet loss in sensor networks occurs mostly

due to interference or low power transmission.

The application layer is the only layer on the network stack that directly

interacts with the user. It implements the application requirements and performs

data acquisition and analysis.
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The application layer usually does not have information about the network

state, nor does the MAC layer have information about the end-to-end route, since

the design of each layer is done separately. However, the operations of one layer

strongly affect the functionality of all the other layers, suggesting that the inde-

pendent design of every network layer should be replaced by a cross-layer design

approach. Several papers [11, 18], emphasize the importance of cross-layer ser-

vices that are shared among all the layers of the network stack, as illustrated in

Figure 2.2. A cross-layer design approach, which considers the joint performance

of all layers, may be used in order to optimize the performances of the sensor

network.

The low data rate, low power consumption and low cost wireless networking

profile of wireless sensor nodes are specified in the IEEE 802.15.4 standard [19].

This standard specifies the Medium Access Control (MAC) and physical layer,

while the layers above IEEE 802.15.4 (i.e., the network and application layers)

are specified by the Zigbee protocol [20].

2.3 Applications of Wireless Sensor Networks

Some of the applications of wireless sensor networks are:

• Environmental monitoring - A collection of sensor nodes can be used for

monitoring a broad spectrum of environmental variables. One of the first

projects that considered the deployment of wireless sensor networks for habi-

tat monitoring was done by UC Berkeley [21], where sensor nodes were

placed on Great Duck Island in order to track the nest occupation of bird

colonies, and to collect data about the environmental conditions such as

temperature, barometric pressure or humidity.

• Medical Monitoring - Wireless sensor networks in medical applications are

used to provide help in emergency situations, when medical equipment is

out of reach or when on-time medical response is essential. Also, in the

rehabilitation process for patients, medical monitoring can be provided by

wireless sensor nodes that continuously measure vital statistics such as heart

rate, EKG or blood oxygen level [22].



15

• Industrial Monitoring and Control - Since wireless sensor networks elim-

inate the need for infrastructure deployment and enable flexible network

configurations, they can be easily adopted for various industrial monitoring

applications, such as pipeline or power line monitoring. However, in these

applications the sensor nodes must be able to withstand harsh environments,

meaning that the network must be failure resistant and self-configurable in

order to avoid single points of failure.

• Building Automation - This set of applications include sensor networks de-

ployed in public and commercial buildings. For example, sensor networks

deployed in a hotel can be used for room control, control of HVAC systems,

or building structure monitoring.

• Military Applications - Wireless ad hoc network technology has been used

for military purposes for a long time. Wireless sensors can be deployed

easily (by throwing them from an aircraft, for example), to collect various

data from a battlefield, and to collect data about the enemy (for example,

to track the enemy through some region).

2.4 An Overview of Sensor Networks

In this section, we present an overview of the ongoing research in the area of

wireless sensor networks.

2.4.1 Energy Consumption

In most applications, self-configuring wireless sensor networks are envisioned to

last for months or even years. The replacement of the batteries for a large number

of sensor nodes is often not an option, so in order to last longer, sensor networks

must have a low-power profile, achieved through the coherent design of both hard-

ware and the networking stack, providing a trade-off between energy consumption,

functional fidelity and lifetime of the sensor network. There are several factors

that affect the energy consumption of the sensor node.
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The radio circuit often consumes the highest amount of energy, which depends

on the hardware as well as the type of modulation and transmission power. The

transmission power depends on the transmission distance, and on previous radio

devices the radio transceiver consumed significantly larger amounts of energy for

transmission than for reception. However, the power consumption of the radio

circuitry in the receive mode for newer generations of sensor node platforms (Te-

los [23], for example) is comparable, if not even slightly higher than the power

consumption in the transmit mode. Also, the transitions from one transceiver

mode to the other are followed by noneligible energy dissipation and introduce

latency overhead for the application [24].

The choice of modulation scheme greatly affects the energy consumption as

well as the latency in the sensor node’s response. Earlier platforms for sensor

nodes (e.g., Mica, Mica2, or Rene [25]) used narrowband radios, that use simple

modulation schemes (OOK, ASK, FSK) and provide fast start-up, but they do

not use signal spreading, making the radio signal sensitive to noise. The newer

platforms (e.g., Telos) use wideband radios based on more complex modulation

techniques (OQPSK), and they use direct sequence spread spectrum (DSSS) to

increase the channel reliability and noise tolerance.

Today, there are a wide variety of processors available, each of which offer

different processing capabilities for different power consumption profiles, so the

general rule is to choose the processor to best suite the application. The proces-

sor/microcontroller can switch between different operational modes (active, sleep,

idle), which are usually characterized by different power consumption.

The power consumption of the sensors attached to the wireless nodes strongly

depends on the type of sensor. Some sensors, such as temperature, or seismic

sensors, have negligible power consumption. Other sensors, such as image sensors,

are characterized by very high power consumption. In the latter case, a significant

part of the energy is spent for expensive analog-to-digital conversions (ADC) [26].

2.4.2 Routing

The main goal of any type of network is to enable information exchange among

peers. Routing protocols establish the routing paths between the nodes. The
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first routing protocols developed for wireless ad hoc networks were strongly influ-

enced by the routing protocols already developed for the Internet, where the cost

for routing is proportional to the number of hops to reach the final destination

(shortest hop algorithm). However, these protocols were found not to be suit-

able for ad hoc networks for a number of reasons. First, the transmission of data

through Ethernet is characterized by extremely low probabilities of bit errors.

Also, wired networks contain a backbone network formed by a number of very

powerful routers, with virtually unlimited energy supply and memory. On the

other hand, ad hoc networks essentially do not rely on any existing infrastructure.

The lifetimes of the wireless nodes strongly depend on their battery supply. The

wireless channel is an extremely unreliable medium, with a very high probability

of error. These facts motivated new research related to improved routing in mobile

ad hoc networks and wireless sensor networks over the last decade.

2.4.3 Energy Aware Routing

Energy-aware routing considers the energy constraints of the wireless nodes in the

process of finding the best path from a source to a destination. Singh et al. [27]

proposed several routing metrics based on the node’s battery power consumption,

which significantly reduces the routing cost of the packets compared to shortest

path routing. The lifetime of the nodes can be prolonged by selecting paths that

do not use nodes with low remaining energy. According to this, the path selection

for packet j minimizes the total routing cost cj for sending packet j from node n1

to node nk:

cj =
k−1∑
i=1

fi(xi) (2.1)

where fi(xi) is the cost of node i along the routing path, represented by the total

energy xi expended by this node so far.

Chang et al. [28] analyzed the problem of routing path selection between a

source and a sink, so that the time until the first node exhausts its battery is

maximized. They noticed that routes with the total minimum energy expenditure

do not necessarily prolong the nodes’ lifetime, since some of the nodes can be

excessively burdened with a high relaying load. They proposed two algorithms
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for solving this problem. The first algorithm (called flow redirection algorithm)

is based on the fact that if the minimum lifetime of a node along two paths is

different, then the lifetime of a node along the path with the shorter lifetime can

be increased by redirecting a part of the traffic from this path to other paths. The

second algorithm (called the flow augmentation algorithm) uses the Bellman-Ford

algorithm and balances the load among the nodes in proportion to their remaining

energy. The link costs cij between nodes i and j are found as:

cij = ex1
ij Ei

−x2Ex3
i (2.2)

where eij represents the transmission energy from node i to node j, Ei represents

node i’s initial energy and Ei is the remaining energy of node i. The optimal

values (x1, x2, x3) are found through simulations. This algorithm outperforms

the flow redirection algorithm, since it considers the current energy status of the

nodes.

Toh et al. [29] proposed the min-max battery cost routing (MMBCR) and

conditional max-min battery capacity routing (CMMBCR) algorithms for the se-

lection of source-to-destination paths. The MMBCR algorithm selects a path from

the source to the destination along which the minimum of the residual energies

of the sensors is maximized. The CMMBCR finds the minimum energy paths

from the source to the destination in which no node has residual energy below a

threshold. If such a path cannot be found, then the MMBCR algorithm is used.

Li et al. [30] proposed the max-min zPmin algorithm for route selection. This

algorithm selects the path that uses at most z · Pmin energy, where z is a pa-

rameter of the algorithm and Pmin is the energy required by the minimum-energy

path. The selected path maximizes the minimum residual energy fraction (en-

ergy remaining after route/initial energy) of the nodes on the route. Possible

values for the residual energy fraction of a node i can be obtained by computing

(Ec(i)− v(i, j))/Er(i), where Ec(i) is the current energy at node i just before the

route, v(i, j) is the cost of the edge (i, j) and Er(i) is node’s i remaining energy.

This computation is done for all vertices j adjacent to i.
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2.4.4 Data Centric Routing Protocols

In a sensor network, the nodes are distinguished according to the data collected,

which eliminates the need for global node identification. Therefore, data retrieval

from the sensor network is commonly based on data-centric rather than address-

centric queries.

SPIN [31] was the first routing protocol that considered this fact. The SPIN-

1 protocol is designed for effective data dissemination following a 3-way hand-

shake procedure (ADV-REQ-DATA) between adjacent nodes, initiated by the

data source nodes. Sensor nodes use high-level names for their data, called meta-

data, for negotiation with other nodes before the data transmission, thereby avoid-

ing the transmission of redundant data. In the SPIN-2 protocol sensor nodes have

access to their current energy levels. Therefore, as a node approaches a low-energy

threshold, it reduces its participation in the protocol.

Directed diffusion [17] is a destination-initiated data centric routing protocol.

The nodes name their data by one or more attributes. Based on these attributes,

the destination (sink) floods the network with interests (queries). Upon reception

of an interest from a neighbor, a sensor node sets up a gradient (consisting of event

rate and direction toward the destination) to send data to the neighbor. Gradient

is stored in the node’s local cache together with the interest’s type and duration.

If the node receives the same interest from several neighbors, multiple paths can

be set up from the data source to the sink. The sink node may reinforce high

quality paths upon receiving low rate data from the source nodes. Also, directed

diffusion enables intermediate nodes to aggregate data, thereby improving the

energy efficiency of the network.

2.4.5 QoS-aware Routing Protocols

Routing in power-constrained sensor networks should consider the application’s

requirements (for example, demands for full coverage, delay tolerance, reliability).

Multi-hop transmission is often considered to be the most efficient way to route

data through a network. However, multi-hop routing results in increased delay

for the data packets, due to queuing and processing at the intermediate nodes.

Since end-to-end delay usually increases with the number of hops, QoS-aware
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routing protocols are often concerned with the energy-latency trade-off, provid-

ing expected delay guarantees through balancing the number of hops, the delay

requirements and the energy consumption.

The time-varying nature of the wireless channel makes it difficult for the net-

work to achieve hard QoS requirements, but soft QoS can be provided [32]. One of

the most successful routing protocols designed to achieve soft QoS is SPEED [33].

Since the end-to-end delay in a multi-hop network depends on distance a packet

travels, SPEED routes packets according to the packet’s maximum delivery speed,

which presents the rate at which the packet travels along a straight line to the des-

tination. The routing algorithm determines the transmission delay of the packet

considering its end-to-end distance and its delivery speed. When the maximum

delivery speed cannot be achieved due to network congestion, SPEED uses a back-

pressure rerouting scheme, which avoids routing packets over the congested links

while achieving the desired delivery speed.

DAPR [34] is a routing protocol integrated with a sensor activation protocol,

designed for applications that require persistent full coverage of the monitored area

over time. DAPR considers coverage redundancy as well as the nodes’ remaining

energy in route selection. This approach favors routing the data through areas

that are more densely populated with sensor nodes, thereby alleviating the nodes

that are not redundantly covered by their neighbors from the additional routing

load. The contribution of each sensor node to the coverage task is expressed by

an application-specific cost metric. The final cost of each node is the cost of the

route through which data is sent back to the sink. Decisions about the activation

of each sensor node are brought based on its final cost as well as by considering

whether the area under its sensing range is already covered by its neighboring

nodes. By this, only a subset of sensor nodes required to maximally cover the

monitored area is activated in each communication round, thereby reducing the

coverage redundancy by the sensor nodes over the monitored area.

2.4.6 Sensor Scheduling

In many application scenarios the sensor nodes are deployed densely over the

monitored field. The data collected from these nodes usually contain redundant
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information. Although the redundancy in sensor readings increases the reliabil-

ity of the collected information, at the same time the transmission of this data

presents huge overhead for the network.

Oftentimes data gathered from only a subset of sensor nodes instead of all

sensor nodes can be sufficient for the application. By intelligent scheduling of the

sensor nodes we can provide good resource management (e.g., energy or band-

width), while still meeting certain QoS requirements imposed by the application

(such as demand to maximize coverage, minimize delay, or achieve application-

specific data resolution/fidelity). Therefore, one of the problems that has intrigued

the research community over the last few years is the problem of how to utilize

the redundancy in the sensors’ deployment in order to provide benefits to the ap-

plication. This requires finding energy-efficient collaborative strategies that will

govern sensor nodes to jointly perform the sensing task.

Efficient sensor scheduling protocols determine whether a sensor node should

be active or in sleep mode, how long the sensor node should stay in each state, and

under what conditions the sensor node should change its state. There are many

factors that influence the design of efficient sensor scheduling protocols, such as:

• sensing/communication range — these ranges can broadly influence the per-

formance of the network, mostly affecting connectivity (as explained in [35]),

sensing redundancy and energy consumption.

• coverage degree — some applications require more redundancy in the data

extracted from the sensor network [36].

• deployment — in general, management protocols for sensor scheduling and

selection may be different in cases when the nodes are deployed in a deter-

ministic manner.

• nodes’ functionality — as stated previously, sensor nodes can support mul-

tiple functions, which raises the problem of assigning different roles to the

sensor nodes in the an optimal way for the particular application.

For example, in [37] the authors look into the problem of assigning different

roles (sensing, relaying, aggregating) from the feasible role assignment set (FRA)

to the nodes in a sensor network, which will allow sensing in a non-redundant
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manner. The authors provide an upper bound of the network lifetime for the

optimal collaboration strategy of the nodes. However, their role assignment tech-

nique is computationally cumbersome, which justifies the use of other heuristic

solutions for sensor role assignments.

One of the fundamental metrics for the qualification of sensor network per-

formance is coverage. The coverage metric tells us how well a physical space is

monitored by the sensor nodes [38]. One of the first algorithms for coverage

preservation was proposed in [39], where each node determines if it should be

turned on or off based on whether its sensing area is already covered by the sens-

ing areas of its neighboring nodes. The node covers the “sector” (central angle)

of the sensing range of its neighboring node. In order to prevent situations when

two neighboring nodes simultaneously decide to turn off, which can result in the

appearance of blind spots, the nodes evaluate their status after a random time,

after which they broadcast their decision to their neighboring nodes.

In a densely populated networks the application may require coverage with

different degrees. In [35] the authors present the Coverage Configuration Protocol

(CCP) that deals with this problem. The activation decision is brought at every

sensor node by considering the coverage of the intersection points of its sensing

range with the sensing ranges of the rest of the nodes. In order to inform its

neighbors of its current position and status, nodes periodically broadcast HELLO

messages. Nodes switch between three possible states: ACTIVE, SLEEP and

LISTEN. In the ACTIVE state nodes sense the environment and communicate

with other nodes. They periodically enter the LISTEN state and collect HELLO

messages from other nodes to determine their new state. However, this algorithm

does not guarantee connectivity among the sensor nodes when the node’s commu-

nication range is larger than twice the sensing range. This was fixed by integrating

CCP with SPAN [40]. SPAN is a decentralized protocol for topology control that

turns off unnecessary nodes while maintaining a communication backbone of ac-

tive nodes. The combined algorithms can provide the k-coverage of CCP and the

1-connectivity of SPAN.

PEAS [41] is another protocol designed to provide coverage with the goal of

keeping only a small number of nodes in the active state, without the additional

complexity of maintaining per-neighbor states or determining the duration of ac-



23

tive states of working nodes. The nodes wake up after an exponential sleeping

period, and they send PROBE messages within a probing range. If the node hears

a REPLY from any active node, it goes back to the sleeping mode; otherwise, it

activates. The performance of the algorithm is determined by two parameters:

the probing range and the wake-up rate. In applications that require robustness,

the probing range should be small to achieve a high density of active nodes. To

keep the protocol’s overhead (which depends on the nodes’ wake-ups), constant

the authors in [41] propose an adaptive sleeping mechanism, which adjusts the

wake-up periods of sleeping nodes according to an aggregated probing rate that

each node receives from its neighbors. The nodes include information about the

probing rate in their REPLY messages, which other nodes use to adjust their

sleeping periods.

The problem of achieving full coverage in wireless sensor networks was explored

in [42]. The proposed algorithm (OGDC) tries to minimize the number of active

nodes by reducing the overlapped area between the active sensors. To ensure that

different nodes are active in each round, the starting node broadcasts a power-on

message in a random direction along which working nodes are found. A node

decides to turn off if it covers an intersection point between two active sensors

and if it minimizes the overlapped area with active sensors. However, nodes do

not consider the energy levels of their neighbors, so they can send the power-on

messages in the direction of nodes with low remaining energy.

2.4.7 Clustering Algorithms

With an increase in the number of nodes in the sensor network, issues such as

load balancing, scalability, and energy efficiency become particularly important

in determining network lifetime. Clustering is one of the basic approaches for

providing energy efficient, robust and highly scalable distributed sensor networks.

In a hierarchically organized cluster-based sensor network spatially close nodes

are grouped into a cluster centered around a cluster head node, which manages

the rest of the nodes in the cluster. Cluster head nodes are responsible for various

tasks, including gathering data from the sensor nodes within the cluster, data

processing and aggregation/fusion of the data, and transmission of the collected
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data to other cluster head nodes or to the main processing center (i.e. the sink or

the base station).

Wireless sensor networks organized into clusters can be broadly classified as

homogeneous and heterogeneous networks, depending on the type and the func-

tionality of the sensor nodes in the network. All sensor nodes in a homogeneous

sensor network have the same hardware and equal processing capabilities. Sen-

sor nodes usually rotate the cluster head roles among themselves, which assures

more uniform energy spending among the nodes in the network. In heterogeneous

cluster-based sensor networks the cluster head roles can be preassigned to a spe-

cific group of high-power nodes (the nodes with enhanced processing capabilities,

more memory and larger energy supplies than the rest of the low-power nodes).

To filter out redundant data, the cluster head nodes can aggregate data from

the sensors before sending the data back to the sink. Apart from a reduction

in energy consumption, cluster-based organization of the sensor network enables

frequency reuse, thereby limiting interference in the communication of spatially

close clusters.

2.4.8 Homogeneous Cluster-based Sensor Networks

LEACH [43] was among the first proposed clustering-based protocols that utilized

randomized rotation of cluster heads to evenly distribute the energy consumption

among the sensor nodes in the network. LEACH incorporates data aggregation

into the routing protocol to reduce the amount of data transmitted to the base

station. The cluster heads are chosen probabilistically so that nodes with higher

remaining energy are more likely to become cluster heads in the upcoming round.

Each cluster head acts as a gateway between the cluster members and the base

station. The probabilistic approach for clustering in LEACH has a small imple-

mentation cost, which makes it attractive for realistic implementations. At the

same time, this approach makes the system less predictable due to the random

number of clusters formed in each communication round. An extension to LEACH,

called LEACH-C, ameliorates this problem. LEACH-C uses simulating annealing

to find the cluster heads such that the average transmission power between the

cluster head and its cluster members is minimized. However, this requires global
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knowledge of sensor node positions and current energy.

Homogeneous cluster-based sensor networks were also investigated in [44],

where the authors found the optimal clustering parameters such as the proba-

bility of becoming a cluster head and the cluster radius by minimizing the com-

munication cost of the network. Based on this the authors proposed a distributed

clustering algorithm to organize the network into single and multi-level clusters.

Younis et al. [45] proposed a distributed clustering algorithm called HEED

that is based on an iterative clustering process that terminates within a constant

number of iterations. HEED produces well distributed clusters, it minimizes the

control overhead and the clustering process does not depend on the network topol-

ogy or network size. Cluster head selection is based on the nodes’ residual energy

and intra-cluster communication cost. The communication cost is a function of

the cluster properties (such as cluster size), and it depends on whether the nodes

can use the minimum required power or they all use the same power to reach the

cluster head. HEED uses the nodes’ residual energies to probabilistically select

an initial set of cluster heads. In each iteration, every node that did not hear

the announcement message from a potential cluster head probabilistically elects

itself as a tentative cluster head. In every iteration the probability of becoming

a cluster head is doubled for each sensor node. The sensor node elects itself as

a new cluster head when its cluster head probability reaches one. More details

about this protocol are provided in Section 4.6.1.

In [46] the authors presented the ACE (Algorithm for Cluster Establishment)

clustering algorithm, which divides the sensor network into uniformly dispersed

clusters. ACE achieves uniform clusters by reducing the overlap among the clus-

ters established in the initial phase. Those nodes that have the largest number

of either “uncovered” neighbors or neighbors in non-overlapping cluster areas are

recruited as favorable new cluster head nodes.

The problem of scheduling nodes to enter the sleep mode in cluster-based

sensor networks was studied in [47]. The authors proposed a linear distance-

based sleep scheduling scheme, where the probability that a sensor enters the

sleeping state is proportional to its distance from the cluster head. Since such

a scheme leads to unequal energy consumption of sensor nodes in the cluster,

the same problem is further investigated in [48]. Here the authors present a



26

balanced energy scheduling scheme, which accounts for the total energy spent in

communication and sensing, thereby assuring that energy is uniformly dissipated

by the nodes.

2.4.9 Heterogeneous Cluster-based Sensor Networks

Mhatre et al. [49] present a comparative study of homogeneous and heterogeneous

clustered sensor networks where the clusters are organized as either single-hop or

multi-hop clusters. They consider the desirable characteristics of sensor networks:

low hardware cost and uniform energy consumption. The authors compare both

types of networks considering the overall networking cost, thereby providing an

energy-hardware trade-off. They found that for the case when the propagation

loss index is high (k > 2), single-hop communication within a cluster is not

an optimum choice. They extend the LEACH protocol to M-LEACH, where the

cluster members route data to the cluster head through multi-hop paths, achieving

by this additional energy savings among the sensor nodes.

Smaragdakis et al. propose SEP (Stable Election Protocol) [50], which studies

the impact of the heterogeneity of nodes, in terms of their energy, in clustered

wireless sensor networks. They assume an application that depends on the relia-

bility of the nodes’ responses, for which the death of the first node is referred to as

the stability period. SEP is based on weighted election probabilities of each node

to become cluster head according to the remaining energy in each node, which

can prolong the stability period and improve the throughput.

2.5 An Overview of Visual Sensor Networks

Camera-based networks have been used for security monitoring and surveillance

for a very long time. In these networks surveillance IP cameras act as indepen-

dent peers that continuously send video streams to a central processing server.

Captured video is analyzed by a human operator, or it is stored in a database for

later processing.

Rapid advances in image sensor technology have enabled the development of

cheap (on the order of ten dollars), low-power camera modules in recent years, as
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evidenced, for example, by the ubiquitous cellular phone cameras. This has given

rise to a new research area — visual sensor networks. Visual sensor networks are

networks of wireless camera-nodes, where the camera-node consists of the imager

circuitry, a processor, and a wireless transceiver. In the near future visual sensor

networks will provide more suitable solutions, compared with existing networks of

high-power and high-resolution cameras, for many image-based applications that

assume no infrastructure on site or no time for planning of the cameras’ placement.

In visual sensor networks, the camera-nodes can be simply stuck on walls or objects

prior to use without the need for preplanning of the cameras’ placement, thereby

obtaining arbitrary positions/directions. Furthermore, camera-nodes are powered

by batteries, and therefore, they do not require a constant power supply. This

makes visual sensor networks suitable for use in applications where temporary

monitoring is needed and in applications that require fast deployment and removal

of the camera network. All these characteristics, together with a flexible topology,

the ability to scale to hundreds of image sensor nodes, the absence of long cables

for camera networking, and the broad spectrum of applications are some of the

many reasons that visual sensor networks are more attractive than traditional

surveillance networking systems.

2.5.1 Characteristics of Image Sensors

Image sensors posses several characteristics that make them unique. In particular,

their distinctive characteristics compared to other sensor types are:

• Image sensor

Image sensors are composed of a large number of photosensitive cell arrays,

which measure the light intensity from different sources determined by an op-

tical lens. One measurement of the image sensor provides a two dimensional

set of data points, which we see as an image. The additional dimensionality

of the data compared with other sensor types results in higher complexity

in data analysis and a higher cost for data processing and transmission.

• Sensing model
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Figure 2.3: The camera model.

A camera’s sensing model is inherently different from the sensing model of

any other type of sensor. Typically, it is assumed that a sensor node can

collect data from its vicinity, as determined by the node’s sensing range,

which is often approximated by a circular sensing area around the node.

A camera is characterized by a directional sensing model — it captures

the images of distant objects from a certain direction. Also, a camera is

characterized by its depth of field, which is defined as the distance between

the closest and the furthest object that the camera can capture sharply.

Therefore, the two-dimensional sensing range of traditional sensor nodes is,

in the case of the cameras, replaced by the 3-dimensional viewing volume

(called the viewing frustum).

2.5.2 Introduction to Multiple-view Geometry

Extraction of relevant visual information is based on multiple-view vision concepts.

In this section, we provide a brief overview of the perspective camera model and

the most important image processing techniques for scene reconstruction.

Pinhole Camera Model

The pinhole camera, shown in Figure 2.3, is an ideal model of a camera used for

geometric representation of imaging. The image plane is located at a distance f

(focal length) from the optical center C of the camera. The line from the camera’s

center normal to the image plane is called the optical axis of the camera. A 3D
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point is projected onto the image plane with a line containing this point and

the optical center. Four planes, starting from the camera’s optical center, form

the visible volume of the camera, also known as its viewing frustum. The angle

between two inclined planes is known as the angle of view or field of view (FoV).

The relationship between the 3D coordinates of a scene point and the coordi-

nates of its projection onto the camera’s image plane are given by the perspective

projection model. From Figure 2.4, a 3D point M (x, y, z)T is mapped to the point

(fx/z, fy/z, f)T on the image plane. When the 3D point and its projection on the

image plane are given in homogeneous coordinates [51], the perspective projection

can be expressed in matrix form as:


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z


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or:

zm = PM

The matrix that describes the linear mapping is called the camera projection

matrix P , and M = (x, y, z, 1)T and m = (fx/z, fy/z, f)T are the homogeneous

coordinates of a 3D point and its projection on the image plane. The full rank

3x4 projection matrix P can be factored as:

P = K
[

R t
]
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where K represents the camera calibration matrix, R is the rotation matrix and

t is a translation vector. The calibration matrix contains the camera’s intrinsic

parameters (focal distance f , center of image plane (ox, oy), pixel sizes sx and

sy) needed for transformation from camera coordinates to pixel coordinates. The

position and orientation of the camera is described by extrinsic parameters, stored

in the rotation matrix R and the translation vector t.

The projection of a point in space to the image plane can be modelled as the

ray passing through the camera’s optical center and this point in space. This

optical ray that passes through the point m = (u, v, 1) is the locus of all points in

space that project onto m. This is described by the projection equation:

ζm = PM

where ζ represents depth or distance of M from the focal plane of the camera,

and it contains an arbitrary scale factor.

Epipolar Geometry

The two-view of epipolar geometry presents the geometry of two perspective views

of the same 3D scene. When there is no occlusion, most of the scene points

M = (x, y, z, 1)T can be simultaneously seen from both views. The point M =

(x, y, z, 1)T is projected to the left and right view as ml = (ul, vl, 1) and mr =

(ur, vr, 1), which are called corresponding points, and their relationship is given

by the epipolar geometry. Detailed information about epipolar geometry can

be found in [52]. The correspondence between the images is crucial for scene

reconstruction. The precision of scene reconstruction depends on the accuracy of

the corresponding points, as well as on the accuracy of the knowledge about the

camera setup and the scene itself.

2.5.3 Characteristics of Visual Sensor Networks

The problems and related research challenges of visual sensor networks go beyond

those of existing wireless sensor networks. Some of the main characteristics and

requirements of visual sensor networks are listed next.
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• Resource Requirements

The lifetime of battery-operated camera-motes is limited by the energy con-

sumption, which is proportional to their energy required for data processing

and data transmission over the wireless medium. Given the large amount

of data generated by the camera-motes, both processing and transmitting

image data are quite costly in terms of energy, much more so than for other

types of sensor networks. Furthermore, visual sensor networks require large

bandwidth for transmitting image data. Thus both energy and bandwidth

are even more constrained than in other types of wireless sensor networks.

• Local Processing

Local (on-board) processing of the image data reduces the total amount

of data that needs to be communicated through the network. Local pro-

cessing can involve simple image processing algorithms (such as background

substraction for motion/object detection, edge detection) as well as more

complex image/vision processing algorithms (such as feature extraction, ob-

ject classification, scene reasoning). Thus, depending on the application,

the camera-nodes may require different levels of intelligence, as determined

by the complexity of the processing algorithms they use [53]. For example,

low-level processing algorithms (such as frame differencing for motion de-

tection or edge detection algorithms) can provide a camera-node with more

information about the current environment, and help it decide whether it is



32

necessary to transmit the captured image or whether it should continue pro-

cessing the image at a higher level. More complex vision algorithms (such

as objects feature extraction, object classification, etc.) enable cameras to

reason about the captured phenomena, such as to provide basic classifica-

tion of the captured object. Furthermore, the cameras can collaborate by

exchanging the detected object features, enabling further processing to col-

lectively reason about the object’s appearance or behavior. At this point

the visual sensor network becomes a user-independent, intelligent system of

distributed cameras that provides only relevant information about the mon-

itored phenomena. Therefore, the increased complexity of vision processing

algorithms results in highly intelligent camera systems that are oftentimes

called smart camera networks [54].

• Real-time Performance

Most applications of visual sensor networks require real-time data from the

camera-nodes, which imposes strict boundaries on maximum allowable de-

lays of data from the sources (cameras) to the user (sink). The real-time

performance of a visual sensor network is affected by the time required

for image data processing and for the transmission of the processed data

throughout the network.

The amount of on-board processing affects the real-time performances of

a camera network. An embedded processor at the camera-node dictates

the processing speed. Constrained by limited energy resources as well as

by allowable delays, most camera-nodes have processors that support only

lightweight processing algorithms.

On the network side, the maximum data rate is limited by the channel band-

width, which is determined by the wireless networking standard employed.

However, the maximum physical data rate cannot be realized in most net-

works. The existing contention-based MAC protocols that provide access

to the shared wireless channel do not completely solve the packet collision

problem, which is the main reason for increased data delays. On the other

hand, TDMA-based MAC protocols successfully cope with collision problem,

but they require tight synchronization and do not have the situation-aware
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flexibility for transmitting data. Furthermore, upon detection of an event,

the camera-nodes can suddenly inject large amounts of data in the network,

which can cause data congestion and increase data delays.

Different error protection schemes can affect the real-time transmission of

image data through the network as well. Commonly used error protec-

tion schemes, such as automated-repeat-request (ARQ) and forward-error-

correction (FEC) have been investigated in order to increase the reliability

of wireless data transmissions [55]. However, due to the tight delay con-

straints, methods such as ARQ are not suitable to be used in visual sensor

networks. On the other hand, FEC schemes usually require long blocks in

order to perform well, which again can jeopardize delay constraints.

Finally, multi-hop routing is the preferred routing method in wireless sensor

networks due to its energy-efficiency. However, multi-hop routing may result

in increased delays, due to queueing and data processing at the intermediate

nodes. Thus, the total delay from the data source (camera-node) to the sink

increases with the number of hops on the routing path.

• Precise Location and Orientation Information

In wireless sensor networks, information about the location of the sensor

nodes is crucial for many routing and sensor management protocols. In

visual sensor networks, most of the image processing algorithms require in-

formation about the locations of the camera-nodes as well as information

about the cameras’ orientations. This information can be obtained through

a camera calibration process, which retrieves information on the cameras’

intrinsic and extrinsic parameters. The extrinsic parameters describe the

camera’s placement in a world reference coordinate system, given by a ro-

tation matrix and translation vector. The intrinsic parameters are related

to the camera circuitry, and determine the focal length, the position of the

principal point (center of the camera’s image plane) and skew [52]. Es-

timation of calibration parameters usually requires knowledge of a set of

feature point correspondences among the images of the cameras. When this

is not provided, the cameras can be calibrated up to a similarity transfor-

mation [52], meaning that only relative coordinates and orientations of the
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cameras with the respect to each other can be determined.

• Synchronization

The information content of an image may become meaningless without

proper information about the time at which this image was captured. Many

processing tasks that involve multiple cameras (such as object localization)

depend on highly synchronized cameras’ snapshots. Synchronization proto-

cols developed for wireless sensor networks [56] can be successfully used for

synchronization of visual sensor networks as well.

• Data Storage

The cameras generate large amounts of data over time, which in some cases

should be stored for later analysis. An example is monitoring of remote areas

by a group of camera-nodes, where the frequent transmissions of captured

image data to a remote sink would quickly exhaust the cameras’ energy re-

sources. Thus, in these cases the camera-nodes should be equipped with

memories of larger capacity in order to store the data. To minimize the

amount of data that requires storage, the camera-nodes should classify the

data according to its importance by using spatio-temporal analysis of image

frames, and decide which data should have priority to be stored. For ex-

ample, if an application is interested in information about some particular

object, then the background can be highly compressed and stored, or even

completely discarded.

The stored image data usually becomes less important over time, so it can be

substituted with newly acquired data. In addition, reduction of redundancy

in the data collected by cameras with overlapped views can be achieved via

local communication and processing. This enables the cameras to reduce

their needs for storage space by keeping only data of unique image regions.

Finally, by increasing the available memory, more complex processing tasks

can be supported on-board, which in return can reduce data transmissions

and reduce the space needed for storage of processed data.

• Autonomous Camera Collaboration
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Visual sensor networks are envisioned as distributed and autonomous sys-

tems, where cameras collaborate and, based on exchanged information, rea-

son autonomously about the captured event and decide how to proceed.

Through collaboration, the cameras relate the events captured in the im-

ages and they enhance their understanding of the environment. Similar

to wireless sensor networks, visual sensor networks should be data-centric,

where captured events are described by their names and attributes. Com-

munication between cameras should be based on the uniform ontology for

the description of the event and interpretation of the scene dynamics [57].

• Camera Management

An important issue in visual sensor networks is the problem of scheduling

the activity of the camera-nodes, so that they provide the application with

sufficient information, while the network’s resources are utilized efficiently.

This problem is inherited from traditional wireless sensor networks, but

solutions must be adapted to the unique aforementioned characteristics of

visual sensor networks and the fact that the visual sensor network needs to

cover a 3-dimensional space.

2.5.4 Applications of Visual Sensor Networks

Visual Sensor Networks can be used in many applications. We list some of the

most popular applications here:

• Surveillance — One application for visual sensor networks is continuous

monitoring of people or public places for security and surveillance purposes.

Surveillance has historically been the primary application of camera-based

networks, where the monitoring of large public areas (such as airports, sub-

ways, etc.) was performed by hundreds or even thousands of IP-based secu-

rity cameras. However, acquiring important information from the collected

image data requires a huge amount of processing and human resources, mak-

ing it time-consuming and prone to error. Current efforts in visual sensor

networking are concentrated toward providing extensive but non-redundant

coverage of the monitored space, and toward exploring ways to integrate
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resource-aware camera management policies with surveillance-specific tasks.

Visual sensor networks can help the current surveillance systems, by pro-

viding data from the specific, user determined areas, by adding tracking

functionality, and by providing the immediate view from any desired view-

point.

• Environmental monitoring — Visual sensor networks can be used for mon-

itoring remote and inaccessible areas over a long period of time. In these

applications, energy-efficient operations are particularly important in order

to prolong monitoring over a long period of time. Oftentimes the cameras

are combined with other types of sensors into a heterogeneous network, such

that the cameras are triggered only when an event is detected by other sen-

sors used in the network [58].

• Smart homes — There are situations (such as patients in hospitals or people

with disabilities), where a person must be under the constant care of oth-

ers. Visual sensor networks can provide continuous monitoring of people,

and using smart algorithms the network can provide information about the

person needing care, such as information about any unusual behavior or an

emergency situation.

• Smart meeting rooms — Remote participants in a meeting can enjoy a

dynamic visual experience using visual sensor network technology.

• Tele-presence systems — Tele-presence systems enable a remote user to

“visit” some location that is monitored by a collection of cameras. For

example, museums, galleries or exhibition rooms can be covered by a net-

work of camera-nodes that provide live video streams to a user who wishes

to access the place remotely (e.g., over the Internet). The system is able to

provide the user with any current view from any viewing point.

2.5.5 Research Directions in Visual Sensor Networks

Since visual sensor networks have started to gain popularity only over the last

decade, research in this area is still in its infancy. Visual sensor networks are
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based on several diverse research fields, including image/vision processing, com-

munication and networking, and distributed and embedded system processing

architectures. Thus, the design complexity involves finding the best trade-off be-

tween performance and different aspects of these networks. These aspects are de-

fined through a set of operational parameters, which reflect different technologies

used in the design of a visual network and can be adjusted for the particular ap-

plication. According to Hengstler and Aghajan [59] the design of a camera-based

network involves mapping application requirements to a set of network operation

parameters that are generally related to the field of network topology, sensing,

processing, communication and resources.

Due to its interdisciplinary nature, the research directions in visual sensor net-

works are numerous and diverse. In the following sections we present an overview

of the current progress in several research directions of visual sensor networks.

Camera Calibration and Localization

The calibration of cameras can be done in a centralized manner, by sending the

images from all cameras to one processing center. However, this method is ex-

pensive in terms of bandwidth and energy due to the required transmission of

large amounts of data. Therefore, distributed and energy-efficient algorithms for

camera calibration are required in resource-constrained visual sensor networks.

Devarajan et al. [60] present a distributed algorithm for camera calibration,

which is performed on a vision graph formed by drawing the edges between the

cameras that observe the same scene points from different perspectives. As a result

of calibration, each camera estimates its local parameters (location, orientation

and focal length), parameters for each of its neighbors in the vision graph, and

3D positions of the scene points that correspond to the matched image features.

The cameras that share a sufficient number of scene points form clusters and

perform local calibration – estimation of camera parameters and unknown scene

points based on 2D image correspondences. For local calibration purposes, each

cluster needs to have a minimum of three cameras, and they all need to observe

at least 8 corresponding points. After the initial estimation, the local calibration

results are refined using a nonlinear minimization method called bundle adjust-

ment, which minimizes the Mahalanobis distance between the real and estimated
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2D correspondences (obtained based on the estimated cameras’ parameters) over

each cluster of cameras. Finally, to ensure that correspondences between the

camera parameter estimates are accurate, the authors remove outliers using a

RANSAC-type algorithm. The performance of the calibration algorithm is evalu-

ated through simulation and using real data sets. The results of simulations show

the advantages of using the distributed method over centralized calibration, since

the average error in the estimated parameters is similar in both cases, but the

distributed estimation requires less time since it performs the optimization over a

smaller number of estimating parameters.

Funiak et al. [61] propose a fully distributed approach for camera calibra-

tion based on the scenario where multiple cameras collaboratively track a moving

target and probabilistically decide about the cameras’ poses (direction and orien-

tation) based on the observed images. The simultaneous localization and tracking

(SLAT) problem is modelled using a linear dynamic system, where the system

variables include the object’s location and motion as well as the camera’s pose

at each time step. However, due to the nonlinearity of the projective transfor-

mation, the camera’s observations (which are presented as points in the image

coordinates) are not linear-Gaussian, meaning that camera calibration based on

SLAT cannot be performed using standardized probabilistic propagation methods.

This problem is then addressed in two techniques that produce accurate solutions

(in terms of pose estimates and the uncertainty of the estimates) to the SLAT

problem based on the BK (Boyen and Koller) distributed filtering algorithm (an

approximation of a Kalman filter solution).

Occlusion Handling and Occupancy Reasoning

Many applications (object tracking or counting the number of people in a room,

for example) require the extraction of data about the objects present in the mon-

itored space and possibly the reconstruction of a full 3D view of the object/scene.

One of the toughest and unavoidable problems in image/video processing of real

scenes is the handling of occlusions that commonly appear when the scene con-

tains static/moving object(s). In visual sensor networks, a moving or static object

can be in the field of view of several cameras, and each of them can see the object

from a different position. The object(s) present in the field of view of several cam-
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eras make the problem of scene reconstruction hard, since each camera provides a

unique view of the object and the scene behind the object. With moving objects

in the monitored space, the reconstruction of the scene view is even harder, due

to the inability to predict the object movements.

In [62] Yang et al. study the problem of managing (tasking) a set of the

cameras to reason about the occupancy of the monitored area by several moving

objects. The goal is to minimize the area that is potentially occupied by the

moving objects. The cameras first execute a background substraction algorithm

in order to segment the areas on the image that are potentially occupied by the

object. The background subtracted image is then compressed by summing the

columns to get 1-D scan-lines that describe the foreground objects. The object

is then presented as the visual hull obtained by the intersection of 1-D scan-

lines from images of the cameras that jointly observe this object. Using the

Monte-Carlo method, the authors in [62] find the number of cameras necessary

to provide a visual hull area for one object. The authors observe that in the

case of multiple objects in the scene, the visual hull area does not converge to

the actual area covered by the objects, due to occlusions. They compare several

heuristic approaches (uniform, greedy, clustering, optimal) for finding a subset

of the cameras that minimize the visual hull area for the scenario with multiple

objects in the scene.

Sensor Management

Oftentimes visual sensor networks are redundantly deployed, meaning that there

are more cameras available to perform the monitoring task than is necessary.

Sensor management polices are needed for the selection of camera-nodes for the

particular task, and for their scheduling (determining the duration of their activ-

ity), so that nodes that are not needed can enter a low-power mode, and thus

conserve their energy. These polices aim to minimize the redundancy in image

data from cameras with overlapped views, and thus to avoid unnecessary data

processing and data transmissions. Although the energy-efficient organization of

nodes is one of the main problems addressed by sensor management polices, in

visual sensor networks the quality of the collected image data is oftentimes the

main concern. In the case of multi-hop routing of data through the network, sen-
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sor management polices must also assign the routing roles to the particular nodes

and handle the problem of choosing data routing paths.

Dagher et al. [63] analyze the problem of finding the optimal strategy for the

transmission of image data from the cameras back to the sink, in order to maxi-

mize the battery lifetime of the sensor nodes. Dagher et al. assume that cameras

capture images of 2D scenes, without occlusions and perspective effects. Spa-

tial redundancy is considered by dividing the overall network field of view into

a number of non-overlapping regions. The authors of this work formulate the

region allocation problem, which optimally allocates parts of the regions to dif-

ferent nodes with the goal of maximizing the minimum expected lifetime across

the network. Furthermore, the authors provide experimental results to show that

network lifetime can be further increased by compressing the images before trans-

mission. The base station computes the optimal fractions of regions that are

allocated to the cameras. The cameras use JPEG2000 to encode the allocated

region such that the cost per bit transmission is reduced according to the fraction

received from the base station.

Finding the best set of cameras that most efficiently execute some task is

oftentimes the research focus. Park et al. [64] use distributed look-up tables to

rank the cameras according to how well they image the specific location, and

based on this they choose the best candidates that provide images of the desired

location. The viewing volume of the camera is rendered to a viewing frustum,

which is bounded by the closest and furthest plane. Since cameras have limited

depth of field, all points that are too close or too far from the optical center cannot

be clearly captured by the camera. Park et al. use the fact that as the object gets

further away from the center of the viewing frustum, the error in the captured

image increases. The frustum of each camera is then divided into smaller unit

volumes (subfrustums). Then, based on the Euclidian distance of each 3D point

to the centers of subfrustums that contain this point, they can sort the cameras

and find the most favorable camera that contains this point in its field of view.

The look up table entries for each 3D location are propagated through the network

in order to build the sorted list of favorable cameras.

Zamora et al. [65] explore several methods for distributed power management

of camera-nodes based on coordinated node wake-ups, in order to reduce their
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energy consumption. The first proposed policy assumes that each camera-node is

awake for a certain period of time, after which the camera-node decides whether it

should enter the low-power state based on the timeout statuses of its neighboring

nodes. Alternatively, camera-nodes can decide whether to enter the low-power

state based on voting from other neighboring cameras. In further analysis of

distributed power management (DPM) polices, the authors use a two-state finite

state model, and show that this model can accurately predict the performance of

DPM polices.

In visual sensor networks, the sensor management polices aim to balance dif-

ferent requirements, such as those related to energy conservation and the quality

of the obtained data. The optimization methods for sensor node role assignment

that are oftentimes used in wireless sensor networks are hard to apply in visual

sensor networks. One of the reasons for this lies in the fact that visual sensor net-

works are mostly event-driven, where the camera-nodes produce large amounts of

data at particular time instances when an event is registered. Also, depending

on processing, the cameras may inject different amounts of data to the network.

Thus, distributed sensor management polices polices, which combine the stringent

resource constraints with the data quality requirements, are needed.

More research is needed to further explore sensor management for visual sen-

sor networks. In particular, work is needed to compare asynchronous with syn-

chronous sensor management polices. Furthermore, sensor management policies

that support cooperative operations among the camera-nodes are needed.

Energy Consumption

Energy usage is the most important factor in determining the lifetime of a vi-

sual sensor network. The lifetime of a camera-node is determined by its energy

consumption profile and by its working regime.

A number of camera-based network testbeds have been described in the litera-

ture, where cameras range from very low-power, low-resolution camera-nodes [66,

67], to web cameras [68, 69] to advanced, high-resolution cameras. These cam-

eras are combined with different types of radio circuitry and processors in various

camera-nodes architectures, which are characterized with different energy con-

sumption profiles.
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In [69] Margi et al. present the results of a power consumption analysis ob-

tained for a camera network testbed that consists of camera nodes built using

a Crossbow Stargate [70] board and a Logitech webcam. In order to come up

with effective resource management policies and to predict the node’s lifetime,

the authors monitor the node’s energy consumption while executing a number of

elementary tasks, such as image acquisition, processing and transmission. Each

task has an associated power consumption cost and execution time. Measurements

of the current for different steady and transient states are obtained. Several inter-

esting results are reported in [69]. For example, in their setup the time to acquire

and process an image takes 2.5 times more than transmission of the compressed

image. The energy cost of analyzing the image (via a foreground detection algo-

rithm) and compression of a portion of the image (when an event is detected) is

about the same as compression of the full image. The authors also showed that

reception consumes about the same amount of energy as transmission. Finally,

they found that transition states can be expensive in terms of energy and time.

Another interesting work is detailed in [71], where Ferrigno et al. address the

problem of reducing energy consumption by balancing the processing and trans-

mission tasks. Starting from the fact that transmission is the most expensive

operation in terms of energy, the authors aim to find the most suitable compres-

sion method that will provide the best compromise between energy consumption

and the quality of the obtained image. Their analysis is drawn from the results

of measurements of the current consumption for each state: standby, sensing,

processing, connection, communication. The authors compare several lossy com-

pression methods, including JPEG, JPEG2000, Set Partitioning in Hierarchical

Trees (SPIHT), Sub Sampling (SS) and Discrete Cosine Transform (DCT). The

choice of the most suitable compression technique was between SPIHT, which

gives the best compression rate and SS, which requires the smallest execution

time, has the simplest implementation and assures the best compromise between

the compression rate and processing time.

In [72] Jung et al. analyze the lifetime of camera-nodes when used in differ-

ent operation modes – duty-cycle driven and trigger-driven modes. The power

consumption specifications of the camera-node (which consisted of an iMote2 [73]

wireless node coupled with an Omnivision OV7649 camera) consider the power
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consumptions profiles of the main components (CPU, radio, camera) in different

operational modes (sleep, idle, working). This generic power consumption model

can be used for the comparison of different hardware platforms and to determine

the most appropriate hardware solution/working mode for the particular applica-

tion.

The variety of hardware, processing algorithms and networking protocols used

in testbed visual sensor networks makes the comparison of existing camera-nodes

and networking testbeds difficult. Today, there is no systematic overview and

comparison of different visual sensor network testbeds from the energy consump-

tion perspective. Therefore, further research should focus on comparing different

camera-nodes architectures and visual sensor network testbeds, in order to explore

the energy-performance trade-offs.

Visual Sensor Network Architectures

Panoptes

Panoptes [68] is among the first video-based sensor network systems, and it

includes video sensors built from COTS and software that supports different func-

tions including capture, compression, filtering, video buffering and streaming. The

system supports a priority-based streaming mechanism, where the incoming video

data is mapped to a number of priorities defined by the application. The authors

implemented a video surveillance system based on Panoptes sensors, which are

managed through video aggregation software. This system is responsible for the

storage and retrieval of video data from sensors, it handles queries from users, and

it controls the streaming of events of interest to the user. However, the system

does not have real-time support — a user can only select to see already captured

events. Also, there is no interaction between the cameras.

SensEye

In [74], Kulkarni et al. present SensEye – a heterogeneous multi-tier cam-

era sensor network where the nodes’ and cameras’ types change across the tiers.

As the number of node platforms and cameras increases, it becomes possible to

design visual sensor networks with different types of devices, which reduces the

resources requirements (such as energy and bandwidth) and decreases the cost of

the system while providing high functionality and reliability. The SensEye system
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was designed for a surveillance application, which comprises the tasks: object de-

tection, recognition and tracking. These tasks are performed across three layers,

where, as the number of the layer increases, the imaging, processing and network-

ing improves, and the energy consumption increases. The lowest layer, designed

for object detection (using simple frame differencing) and object localization, is

comprised of Mote nodes [75], and low-fidelity CMUCam camera sensors. The

second tier contains Stargate nodes [70] equipped with web cameras, which are

woken up on demand by the camera-nodes from the lower tier to continue the

object recognition task. The third tier contains sparsely deployed high-resolution

pan-tilt-zoom cameras connected to a PC, which perform the object tracking. The

SensEye platform shows that task allocation across tiers achieves a reduction in

energy compared with a homogeneous platform, while the latency of the network

response is close to the latency achieved by an always-on homogeneous system.

Communication Protocols

Vision processing is a well established research area and vision processing algo-

rithms are well represented in the current literature of visual sensor networks.

However, data communication among the cameras and data routing protocols in

visual sensor networks are still not fully explored. More precisely,research is still

needed to explore the most suitable routing strategies and methods for collabora-

tive data communication in visual sensor networks.

There are several differences in communication between the nodes in “tradi-

tional” sensor networks and in visual sensor networks. The main difference comes

from the amount of data that has to be routed through the network. Visual sen-

sor networks are usually evert-driven networks, where the captured event triggers

the routing of large amounts of data from several sources. The amount of data

sent by a camera-node depends on the processing algorithm used (for example,

the camera-node may send only information about extracted edges, segments, or

the whole image), which makes it harder to predict the best ways to route data

and to balance energy consumption through the network. Also, the differences be-

tween “traditional” sensor networks and visual sensor networks exist in many QoS

requirements, such as those related to delays, priority of concurrent data flows,

fault tolerance, etc. Therefore, the main question remains: how can we adapt
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the existing communication (MAC and routing) protocols developed for wireless

sensor networks for use in visual sensor networks?

When deployed over large areas, multi-hop routing is preferred for routing

data in a visual sensor network, since it is more energy-efficient compared with

direct transmission. To avoid frequent route updates and route maintenance, in

wireless sensor networks reactive routing is often used. However, reactive routing

introduces additional delays, since the information about the routes is obtained

on demand.

In visual sensor networks, due to the strict demand for small delays, the routes

must be updated continuously, which requires frequent exchanges of route infor-

mation between the cameras on current route states.

The cameras with overlapped FoVs can collaborate by exploring spatial-temporal

redundancy among their images in order to reduce the total amount of data that

is routed through the network [76]. The image data from the cameras that detect

an event of interest should have higher priority over the image data from other

cameras.

Several works discuss the existence of concurrent data flows in visual sensor

networks. In [77] the routing of real-time video steams over multiple disjoint paths

is considered. The multiple-paths transmission scheme is chosen over the conven-

tional single-path routing due to the insufficient channel bandwidth of wireless

networks, which cannot support the needs of video transmission. Multiple rout-

ing paths are established based on the proposed directional geographical routing

(DGR) algorithm, which combined with FEC coding, provides more reliable data

transmissions compared to single-path routing, and it achieves better performance

in overall delay and quality of video data at the sink.

Object tracking in a network organized into clusters of sensor nodes has been

analyzed extensively in the current literature on wireless sensor networks [78]. In

[79] Medeiros et al. describe a model for organizing the camera-node into clusters

for collaborative tracking of a moving target. The formation of multiple clusters

is triggered by the detection of objects. The cluster head node tracks the object,

and the cluster head role is assigned to another cluster member once the object

is out of the viewing field of the current cluster head.

Rather than establishing links between the sensors based on radio connectiv-
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ity, in [80] Ko and Berry use information-based links, where cameras that share

information about the tracked target communicate and exchange information on

target features. The information links are established between the nodes that first

detect a target in their FoVs (initiators) and neighboring nodes (responders) that

continue to track the target.



Chapter 3

Energy Balanced Clustered

Sensor Network Architectures

One of the most restrictive factors on the lifetime of sensor networks is the limited

energy resources of the sensor nodes. In most applications the sensor network

must operate unattended for a long period of time. In order for the network to

maintain the same level of functionality over this period, the energy consumption

of the sensor nodes has to be controlled.

The energy consumption of a sensor node, and therefore its lifetime, is de-

termined by the node’s role in the network as well as by its location within the

network. For applications where all sensors are equally important non-uniform en-

ergy consumption of sensor nodes degrades the overall performance of the network

over time, leading to the appearance of “hot spot” areas where sensor nodes die

much earlier than the nodes in the rest of the network. Besides loosing data from

this part of the network, hot spot areas may further cause network partitioning,

inducing the loss of data from the rest of the network. In order to preserve the

desired functionality of the sensor network for longer periods of time, rather than

trying only to minimize the energy consumption of the sensor nodes, the sensor

network has to balance energy consumption among the nodes as well.

Sensor nodes can be organized hierarchically, by grouping them into clusters.

If the network is homogeneous, sensor nodes can be simply randomly deployed

over the area of interest. In the case of heterogeneous networks, deterministic

deployment of the sensor nodes enables better control of the network’s topol-

47
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ogy obtained by placing the nodes and/or super-nodes at exact predetermined

positions. Since the super-nodes serve as the cluster-head nodes, predetermined

placement of these nodes allows us to control the size of their clusters.

In both heterogeneous and homogeneous cluster-based sensor networks, the

cluster head roles are assigned to the most suitable nodes (those with the most

remaining energy, highest processing speed, etc.). However, this is not sufficient

to prevent the appearance of hot-spot areas in the network. Cluster head nodes

usually form the network backbone and use multi-hop routing to transfer data to

the sink. In such a scenario, the cluster head nodes close to the sink are the nodes

in the hot-spot area, since they are used more frequently to route data from the

rest of the network to the sink. Therefore, by controlling the amount of data that

every cluster head node processes and transmits, we can prevent the premature

loss of the most critical cluster head nodes—those that are close to the sink.

In this part of the dissertation, we explore the problem of unbalanced energy

consumption in clustered wireless sensor networks, with special attention paid to

the energy consumption of the cluster head nodes in deterministically deployed

heterogeneous sensor networks. As one way to overcome this problem, we in-

troduce a novel clustering technique, by which the cluster sizes are determined

such that more balanced energy consumption is achieved among the cluster head

nodes [81]. In contrast to existing clustering methods [45], [46], which provide

clusters of similar sizes across the network, our novel clustering technique pro-

duces clusters of unequal sizes within the network. Furthermore, we show that

the proposed clustering approach can be efficiently extended to homogeneous sen-

sor networks as well. Following this approach, we explore the benefits of using the

“unequal cluster size” method in homogeneous sensor networks with static and

dynamic clusters.

3.1 Unequal Clustering Approach

In cluster-based wireless sensor networks, cluster head nodes spend energy on

inter-cluster and intra-cluster communication. The energy spent by a cluster head

node in intra-cluster communication (within its cluster) changes proportionally to

the number of nodes in the cluster. The energy required for inter-cluster commu-
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nication (communication with other cluster heads and with the data sink) by a

cluster head node is a function of the expected amount of data that this cluster

head routes toward the sink. By placing the cluster head nodes deterministically

in the monitored area, we can change the sizes of the clusters (and by this, the

number of sensor nodes within the clusters, assuming a uniform deployment of

sensor nodes), as well as the expected relay load of every cluster head. By this, we

can achieve more uniform energy consumption among the cluster head nodes and

prevent the premature appearance of “holes”— uncovered parts of the network,

that are the result of the loss of cluster head nodes. Therefore, we deal with the

problem of unbalanced energy consumption particularly among the cluster head

nodes in a heterogeneous network, assuming that these nodes have the highest im-

portance in the network among all sensor nodes, since loss of one of these nodes

can cause the loss of data from the entire area under their supervision.

3.2 System Scenario

We consider a sensor network of N nodes randomly deployed over a circular area

of radius Ra. In addition to sensor nodes that collect data, a smaller number

of more powerful nodes are deployed to serve as cluster head nodes with pre-

determined locations. The base station is located in the center of the observed

area, and it collects data from the network. The data from all sensors in the cluster

are collected at the cluster head, which aggregates the data and forwards the

aggregated data toward the base station. The forwarding of aggregated packets is

done through multiple hops, where every cluster head chooses to forward its data

to the closest cluster head in the direction of the base station.

As stated previously, the positions of the cluster head nodes are determined

a priori, with all cluster head nodes arranged symmetrically in concentric circles

around the base station. Every cluster is composed of nodes in the Voronoi region

around the cluster head. This represents a layered network, as shown in Fig-

ure 3.1a for a two layer network, where every layer contains a particular number

of clusters. We assume that the inner layer (layer 1) has m1 clusters and the outer

layer (layer 2) has m2 clusters. Furthermore, in order to simplify the analysis of

this model, we approximate the Voronoi regions as pie shaped regions (Figure
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(a) The Voronoi tessellation of a network where

cluster heads are arranged circularly around the

base station.

(b) Pie shaped clusters arranged in two layers

around the base station. Note that this model,

used for analytic simplicity, approximates the

Voronoi tessellation of the network.

Figure 3.1: An example of the network topology and its approximation.
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3.1b). Due to the symmetrical (circular) organization of cluster head nodes, all

clusters in one layer have the same size and shape, but the sizes and shapes of

clusters in the two layers are different. We introduce the parameter R1, which is

the radius of the first layer around the base station. By varying the radius R1,

while assuming a constant number of clusters in every layer, the area covered by

clusters in each layer can be changed, and therefore the number of nodes contained

in a particular cluster is changed.

Many authors in the literature assume that cluster heads have the ability to

perfectly aggregate multiple incoming packets into one outgoing packet. Although

this scenario is highly desirable, it is limited to cases when the data are all highly

correlated. When this is not the case, or in cases when higher reliability of collected

data is desired, the base station can simply demand more than one packet from

every cluster head. In such a case, every cluster head will send more than one

packet of aggregated data in each round. Therefore, we consider two cases of data

aggregation: perfect aggregation, when every cluster head compresses all the data

received from its cluster into one outgoing packet, and non-perfect aggregation,

when every cluster head sends more than one packet toward the base station. We

do not deal with the particular data aggregation algorithm, but only with the

amount of data generated in the aggregation process. We assume that all cluster

heads can equally successfully compress the data, where this efficiency is expressed

by the aggregation coefficient α.

Time is divided into communication rounds, where one round comprises the

time for inter-cluster and intra-cluster communication. The final amount of data

forwarded from every cluster head to the base station in one round is α ·Nc, where

Nc is the number of nodes in the cluster and α is in the range [1/Nc, 1]. Thus

α = 1/Nc represents the case of perfect aggregation, while α = 1 represents the

case when the cluster head does not perform any aggregation of the packets.

The model for energy dissipation is taken from [43], where, for our multi-hop

forwarding model we assume a free space propagation channel model. The energy

spent for transmission of a p-bit packet over distance d is:

Etx = p · (eamf + efs · dn) (3.1)
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and the energy spent on receiving a p-bit packet is:

Erx = p · eamf . (3.2)

The parameters eamf and efs are the parameters of the transmission/reception

circuitry, given as eamf = 50nJ/bit and efs = 10pJ/bit/m2 [43]. We assume the

free space propagation model [7], therefore the path-loss coefficient n is set to

2. We assume that the medium is contention free and error free and we do not

consider the control messages exchanged between the nodes, assuming that they

are very short and do not introduce large overhead.

The position of a cluster head within the cluster boundaries determines the

overall energy consumption of nodes that belong to the cluster. To keep the total

energy dissipation within the cluster as small as possible, every cluster head should

be positioned at the centroid of the cluster. In this case, the distances of cluster

heads in layer 1 and layer 2 to the base station are given as [82]:

dch1 =

∫ R1

0
r · 2 · r · sin(β1

2
) · dr

R2
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where β1 and β2 are the angles determined by the number of cluster heads in each

layer, as βi = 2π
mi

, i ∈ [1, 2].

In this scenario the network has been divided into clusters during an initial set-

up phase, and these clusters remain unchanged during the network lifetime. It is

desirable that all cluster heads last as long as possible and die at approximately the

same time to avoid network partitioning and loss of sensing coverage. Therefore,

we define network lifetime as the time when the first cluster head exhausts its

energy supply.

The energy consumed by cluster head nodes in layer 1 and layer 2 in one round

is described by the following equations:

Ech1 = p · eamf (Ncl1 − 1) + p · efNcl1 + αp ·Ncl2
m2

m1

eamf +

+ p · α(Ncl2
m2

m1

+ Ncl1)(eamf + efsd
2
ch1) (3.5)
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Ech2 = p · eamf (Ncl2 − 1) + p · efNcl2 + αp ·Ncl2(eamf + efsd
2
ch21), (3.6)

where dch21 is the distance from a cluster head in layer 2 to a cluster head

in layer 1 and dch1 is the distance from a cluster head in layer 1 to the base

station. The energy spent for data aggregation is expressed by the parameter

ef = 5nJ/bit/signal. Ncl1 is the number of nodes for clusters in layer 1, and Ncl2

is the number of nodes for clusters in layer 2, which is proportional to the area

covered by the cluster:

Ncl1 = N
R2

1

R2
am1

(3.7)

Ncl2 = N
R2

a −R2
1

R2
am2

. (3.8)

The factor m2

m1
in equation 3.5 comes from the fact that all packets from the outer

layer are equally split on m1 cluster heads in the inner network layer.

3.3 Analysis of the Unequal Clustering Model

We present the evaluation of energy consumption for two hierarchical (clustered)

network models. The first model is one commonly used in the literature, where

the network is divided into clusters of approximately the same size. We call

this model Equal Clustering Size (ECS). For the second model, we use the two-

layered network model described previously, where the cluster sizes in each layer

are different. We want to find, based on the amount of energy every cluster head

spends during one round of communication, how many nodes each cluster should

contain so that the total amount of energy spent by all cluster head nodes is equal.

We call our approach Unequal Clustering Size (UCS). The variable that directly

determines the sizes of clusters in every layer is the radius of the first layer R1,

shown in Figure 3.1b. For ECS, the radius of the first layer is obtained from the

fact that the area covered by a cluster in layer 1 is approximately equal to the

area of a cluster in layer 2:
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R2
1 · π
m1

=
(R2

a −R2
1)π

m2

(3.9)

From this, we can obtain the radius of the first layer for the ECS model, Req:

Req = Ra

√
m1

m1 + m2

. (3.10)

In the case of UCS model, there is no closed form solution for the radius of

the first network layer.

3.3.1 Cluster Sizes in UCS and ECS Models

Assuming that all cluster head nodes in the UCS model spend the same amount of

energy in one communication round, based on equations 3.5 and 3.6 we determine

the value of radius R1 for different numbers of clusters formed in each layer (which

is controlled by the parameters m1, m2) and for different aggregation efficiency of

the cluster heads (controlled by the aggregation coefficient α). For each value of

R1 we calculate the number of nodes that clusters in layer 1 and layer 2 should

contain using equations 3.7 and 3.8.

The ratio of the number of nodes for a cluster in layer 1 and a cluster in layer

2 for UCS is shown in Figure 3.2. This result shows that clusters in layer 1 should

contain fewer nodes than the clusters in layer 2. The ratio of the number of nodes

varies with the number of clusters in each layer, as well as with the aggregation

coefficient. The difference in cluster sizes increases as the network less efficiently

aggregates the data. We note that this ratio is always less then one, which is the

characteristic for ECS. This confirms our intuition, that cluster heads located near

the base station and burdened with relaying traffic from the rest of the network,

should support fewer cluster members.

When cluster heads compress data more efficiently, meaning that they send

fewer packets to the base station, the difference between R1 obtained for UCS with

Req for ECS gets smaller. This leads to the conclusion that when the aggregation

is close to “perfect aggregation,” the cluster sizes for UCS should converge to the

same size, as in ECS. However, even in the case when cluster heads send only

one packet (i.e., perfect aggregation), we find that there should be a difference

in cluster sizes in layer 1 and layer 2, as shown in Figure 3.2a. Therefore, the
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(a) Every cluster head sends 1 aggregated packet.
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(b) The cluster heads perform aggregation with

efficiency α = 0.1.
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(c) The cluster heads perform aggregation with

efficiency α = 1.

Figure 3.2: The ratio of the number of nodes in clusters of layer 1 and 2 for the

UCS network model.
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amount of load that burdens every relaying cluster head strongly influences the

actual number of nodes that should be supported in the cluster in order to balance

energy usage in the network.

3.3.2 Battery Dimensioning for Nodes in the UCS and

ECS Network Models

We compare the amount of energy spent by cluster head nodes in both models.

Let the amount of energy that one cluster head in UCS spends in one round be

Ech. In ECS, the cluster heads in both layers do not spend the same amount of

energy during one round. Let the energy spent in one round by a cluster head in

layer 1 and layer 2 for ECS be Eech1 and Eech2. Then, if the network is dimensioned

to last at least T rounds, the cluster head nodes in ECS should be equipped with

enough energy to satisfy EBech
= T ·max{Eech1, Eech2} Joules, assuming that all

cluster head nodes have the same batteries. For UCS, cluster head nodes should

have batteries with EBuch
= T ·Ech Joules. We noticed that cluster head nodes in

UCS need smaller capacity batteries than cluster head nodes in ECS.

The more balanced energy consumption among the cluster head nodes in UCS

comes at a price of more unbalanced energy consumption for the rest of the sensor

nodes in the network. In the simplest case, when the network consists of one-hop

clusters, the nodes furthest from the cluster head will drain their energy much

faster than those closer to the cluster head.

All deployed sensor nodes are of the same type, regardless of the layer to

which they belong, and they are equipped with batteries of the same capacity.

So, in order that all sensor nodes last during the network lifetime T , with the

constraint of equal batteries for all sensors, the batteries of the sensor nodes must

be dimensioned as: Esn = T · Efn, where Efn is the energy spent in one round

by the node in the network that is furthest from its cluster head. Sensor nodes

spend energy only to transmit their data to the cluster head, which is equal to:

Efni = c1 + c2 · d2
fni, i ∈ {1, 2}, where dfni is the distance of the furthest point

to the cluster head in a cluster for both layers. In order to assure the lifetime

T for all sensor nodes, every node has to be equipped with a battery of size

Efn = max{Efn1, Efn2}. The batteries obtained in this way, for both UCS and
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(a) Every cluster head sends 1 aggregated packet.
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(b) The cluster heads perform aggregation with

the efficiency α = 0.1.
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(c) The cluster heads perform aggregation with

the efficiency α = 1.

Figure 3.3: The ratio of the total energy of batteries for the sensor network

organized by the UCS and ECS models.
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ECS, are labeled as EBusn and EBesn .

We compare the overall energy required for batteries of all nodes in the net-

work, for both UCS and ECS. The total energy needed to assure a lifetime T for

all nodes is:

EUCSBT
= (m1 + m2) · EBuch

+ (N −m1 −m2) · EBusn (3.11)

EECSBT
= (m1 + m2) · EBech

+ (N −m1 −m2) · EBesn (3.12)

for UCS and ECS, respectively. The ratio of EUCSBT
and EECSBT

for different

aggregation efficiency parameters is shown in Figure 3.3. On average, the UCS

network needs less energy than the ECS network to last during period T without

losses. Again, when the network aggregates the data less efficiently, the difference

in total energy for ECS and UCS is larger.

3.4 Simulation Results

To validate the analysis from the previous section, we simulate the performance

of the proposed UCS for clustering sensor nodes in a network. Assuming TDMA

communication for inter-cluster and intra-cluster communication, we measured

the time when the sensor network starts loosing the sensor nodes. The simulations

are performed on a network with 400 nodes, randomly deployed over a circular

area of radius Ra = 200m. We perform simulations for two cases: pie shaped

clusters, for which the theoretical analysis was performed in the previous section,

and the more realistic case of Voronoi clusters, where cluster heads are placed

in two layers around the base station. The energy that every node spends to

transmit a p-bit packet is:

Etx =

{
p · (eamf + efs · d2) d <= do

p · (eamf + etg · d4) d > do

(3.13)

where do is determined based on the given energy model as do =
√

efs

etg
, with

etg = 0.0013pJ/bit/m2 [50].
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3.4.1 Performance of UCS in Heterogeneous Networks

Network Lifetime for UCS and ECS

In the first set of simulations we simulate UCS and ECS in a heterogeneous net-

work. As there are too many parameters to simulate all possible scenarios, for

these simulations, we keep the number of cluster heads in layer 1 (m1) constant

while changing the number of clusters in layer 2 (m2) and varying the radius of

the first layer (R1) in small values from the range R1 ∈ [0.2, 0.9]Ra. The cluster

heads are positioned at the centroids of the clusters, as determined by equations

3.3 and 3.4. The goal is to find, for every pair (m1, m2) the maximum number of

rounds before the first cluster head in the network dies, and we measure the radius

R1 in that case. This value of R1 determines the clusters’ sizes in layers 1 and 2

that assures the longest lifetime for a particular (m1, m2) pair. This algorithm is

explained in Figure 3.4.

In these simulations, all cluster head nodes have batteries with the larger en-

ergy compared to the batteries of other nodes. Therefore, during the simulations,

the sensor nodes start dying after they exhaust their batteries, which affects the

number of alive sensors in each cluster over time. Therefore, the simulations pro-

vide the more realistic results for the proposed clustering scheme compared to

the previous analysis, where we looked into the lifetime of cluster head nodes

assuming that all sensor nodes are always alive.

The same set of simulations is repeated for different in-network aggregation

coefficients. The final results are obtained by averaging the results of simulations

for ten different random scenarios. The results of these simulations are then

compared with the simulations of ECS, where the clusters cover approximately

the same area and have approximately the same number of nodes.

Figure 3.5 shows the maximum number of rounds the network can last until the

first cluster head node in the network dies, for UCS and ECS, when cluster heads

forward 10%, 50% and 100% of the cluster load (α = 0.1, 0.5, 1). The number

of cluster head nodes in the first layer (m1) is 6 (Figures 3.5a and 3.5c) and 10

(Figures 3.5b and 3.5d). Using UCS, the sensor network always achieves longer

lifetime than with ECS. In most cases, when the maximum number of rounds is

reached, the cluster heads spend their energy uniformly over the network. With
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For number of clusters in the first layer m1

For number of clusters in the second layer m2

For radius R1, R1 = [0.2 : 0.05 : 0.9]Ra

Divide network into m1 + m2 clusters

Sizes of clusters are determined by R1

Find the positions of cluster head nodes in

inner and outer layer using equations 3.3 and 3.4

Run simulation

Measure t - the maximum number of rounds until the first CH dies

T (m1, m2, R1) = t

end

end

end

For number of clusters in the first layer m1

For number of clusters in the second layer m2

Find the radius R1 for which

Tlifetime(m1,m2) = max(T (m1, m2, :))

end

end

Figure 3.4: Algorithm used for finding the radius R1, which determines the sizes

of clusters in both layers for which the network achieves the longest lifetime.
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more clusters closer to the base station, the lifetime of the network improves,

as can be seen from Figures 3.5b and 3.5d. For example, when the number of

clusters in the first layer is 6, the improvement in lifetime for UCS with the pie

shaped scenario is about 10-20%, while when the number of clusters in the first

layer increases to 10, the improvement in lifetime is 15-30%, depending on the

aggregation efficiency. The improvement with the Voronoi clusters is even higher:

17-35% for m1= 6, and 15-45% for m1 =10. Also, the improvement in lifetime

increases as the cluster heads perform less aggregation, which confirms that UCS

can be useful for heterogeneous networks that perform nonperfect aggregation.

We compare the results for network lifetime obtained in simulations with the

network lifetime obtained by considering analysis presented in Section 3.2. Con-

sidering different network scenarios we calculated time when the first cluster head

in the network dies, while assuming that all sensor nodes are still alive. The net-

work lifetime obtained in this way is shown in Figure 3.6. Figures 3.6a and 3.6b

present the network lifetime obtained in the case when the number of the cluster

head nodes in the first layer is m1 = 6 and m1 = 10, respectively. These results

show that UCS model provides longer network lifetime over ECS model. The

network lifetime obtained in this analysis is shorter compared to network lifetime

obtained in simulations (given in Figure 3.5), due to the fact that in simulations

the sensor nodes start to die after some time. Thus, the cluster head nodes serve

less nodes over time, which results in longer network lifetime.

Number of Nodes in UCS Clusters

Figure 3.7 shows the ratio of the average numbers of sensor nodes in the clusters

from layers 1 and 2, found by simulations of UCS, for the case when the maximum

lifetime of the network is achieved. When the number of cluster head nodes in

layer 2 increases, it is observed that the ratio of the number of nodes in the clusters

in layer 1 and 2 is slightly smaller. The cluster heads in layer 1 forward more load

from the upper layer, so they must support a relatively smaller number of nodes

in the cluster.

In general, by comparing the results obtained with pie shape clusters and with

Voronoi shaped clusters, we observe similar behaviors. Both scenarios show that

UCS can provide the benefit of more uniform energy dissipation for the cluster
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(a) Pie shape clusters with m1 = 6 (b) Pie shape clusters with m1 = 10

(c) Voronoi shape clusters with m1 = 6 (d) Voronoi shape clusters with m1 = 10

Figure 3.5: Maximum number of rounds achieved by the UCS and ECS models.

heads. Also, these results justify our approximation of Voronoi-shaped clusters

by pie-shaped clusters used in the previous section to ease the analysis.

Energy Consumption of Sensor Nodes in UCS and ECS

However, as stated previously, the unequal cluster sizes lead to unequal energy

consumption of sensor nodes in a cluster. The average energy consumed by a

sensor node per one round in ECS is less than in UCS. Although it is favorable

to have less energy consumption of sensor nodes, their ability to send useful data

to the base station is determined by the functionality of cluster heads. To assure

that no sensor node runs out of energy before the first cluster head in the network
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(b) Pie shape clusters with m1 = 10

Figure 3.6: Maximum number of rounds that can be obtained by UCS and ECS

model. These results are calculated based on analysis presented in Section 3.2

and averaged for ten different simulation scenarios.

dies, the battery of all sensor nodes should be of size T · Efn, where Efn is the

energy spent in one round by the node furthest away from its cluster head, and T

is the desired number of rounds (network lifetime). Also, for cluster head nodes,

the battery should be dimensioned as: T ·max(Ech), where Ech is the energy spent

by a cluster head node in one round.

Using the results from simulations, we dimensioned the batteries of sensor

nodes and cluster head nodes, for both ECS and UCS. To achieve the same lifetime

in both clustering schemes, the cluster head nodes in UCS should store about 20%

less energy than the cluster head nodes in ECS, while the sensor nodes should be

equipped with batteries that are about 10-15% larger. Overall, the total energy

the network should contain is always smaller for UCS than ECS for the same

network lifetime.

These results provide intuition about the use of UCS in a network where all

nodes (sensors and cluster heads) have fixed transmission ranges and hence fixed

energy dissipation for transmitting data. In this case, the energy consumption

of all sensors is the same during one communication round, regardless of their

position in the cluster, and thus UCS will always outperform ECS.
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(c) Voronoi shape clusters with m1 = 6
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(d) Voronoi shape clusters with m1 = 10

Figure 3.7: Ratio of the average number of nodes in clusters in layer 1 and layer

2, for the UCS model.
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Heterogeneous Networks with 3 Layers

As a final result for heterogeneous networks, we simulate the same network but

now divided it into 3 layers of clusters around the base station. We perform the

same type of simulations, where we keep the number of cluster heads in the first

layer constant while we change the number of clusters in the second and third

layer. Also, we vary the radius of the first and second layers, R1 and R2, changing

by this the actual cluster sizes in every layer. For every triple (m1, m2, m3) we

find the maximum lifetime of the network and the sizes of clusters in that case.

Also, we measure the number of rounds the network can last for the cases when

the ratio of the number of nodes in clusters of layer 1 and 2, and the ratio of

the number of nodes in clusters of layer 2 and 3 is approximately equal to 1. We

repeat several simulations on different scenarios, and for different values of the

aggregation coefficient α. On average, the improvement in network lifetime when

α = 0.1 is about 15%, and when α = 0.5 and α = 1, the improvement is about

26% over ECS.

3.4.2 Performance of UCS in Homogeneous Networks

In this section, we show the performance of the UCS model applied to a homo-

geneous sensor network. Since in homogeneous networks all nodes have the same

characteristics, in each communication round a certain number of sensor nodes is

selected to perform the cluster head roles. The cluster heads route the data over

shortest hop paths to the cluster heads closer to the base station.

We perform simulations on two scenarios: first, the network is divided into

static clusters, where the nodes are grouped into the same cluster during the

network lifetime, and second, when the clustering is dynamic, such that clusters

are formed around the elected cluster heads.

3.4.3 Static Homogeneous Clustering

In the first set of simulations, static clusters are formed initially in the early phase

of the network, so that every node belongs to one cluster during its lifetime.

In every cluster, the role of cluster head is rotated among the nodes, and the
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Figure 3.8: Maximum number of rounds achieved by UCS and ECS model, for a

network with static clusters.

cluster head is elected based on maximum remaining energy. Here, we assume

that in the initial phase the network is divided into Voronoi-shape clusters, formed

around the selected cluster heads and aligned in two layers around the base station.

These static clusters with cluster heads that rotate among the cluster nodes can

actually be seen as a hybrid solution between the heterogeneous and homogeneous

networks. In static clustering, the large overhead that occurs every time clusters

are re-formed can be avoided, which is similar to heterogeneous networks. On

the other hand, as in homogeneous networks, the rotation of the cluster head

role among the nodes within every cluster contributes to more uniform energy

dissipation in the network.

Again, as in the case of heterogeneous networks, we vary the number of clus-

ters in layer 2 (m2) and the radius of the first layer (R1) while keeping the number

of clusters in layer 1 (m1) constant. For every set of parameters (m1, m2), we

measure the maximum network lifetime until 10% of the nodes die, and we deter-

mine for which sizes of clusters in both layers this maximum network lifetime is

achieved. This network lifetime is compared with the case when all clusters are

of approximately the same size (ECS). Figures 3.8a and 3.8b show the maximum

number of rounds obtained in simulations of both clustering models, for different

numbers of clusters in the inner network layer.

UCS achieves, on average, an 8-28% improvement in network lifetime over
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Figure 3.9: The ratio of the average number of nodes in clusters in layers 1 and 2

measured for the UCS model applied to homogeneous sensor networks with static

clusters.

ECS, depending on the aggregation efficiency. The improvement is slightly lower

than in the case of a heterogeneous network, which is the result of utilizing a static

clustering scheme. Although the nodes balance energy better among themselves,

all nodes on average perform longer transmissions to the cluster head than in the

case when the cluster head is in the middle of the cluster.

It is interesting to observe that for homogeneous networks with static cluster-

ing, as the number of clusters in the outer layer increases, the ratio of sizes of

clusters of both layers significantly changes, with clusters in layer 1 larger than

clusters in layer 2 (Figures 3.9a and 3.9b). Because cluster heads in layer 1 receive

more packets, they drain their energy faster. Thus, larger clusters in layer 1 as-

sures that there is sufficient energy stored by the larger number of nodes in those

clusters, so that one node is not frequently elected for the cluster head position

and it does not drain its energy on cluster head activities.

3.4.4 Dynamic Clustering

Finally, we discuss the use of UCS for homogeneous networks utilizing cluster

head rotation and dynamic clustering. For these simulations, clusters are formed

as Voronoi regions around the elected cluster head nodes.

We compare two clustering models, as the representatives of ECS and UCS.
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In the first model, all nodes have an equal probability po to become cluster head

in the next round, where po is in the range (0, 0.5]. The sizes of the clusters

formed in this manner are not fixed, but the expected number of nodes in every

cluster is 1
po

. We call this model Equal Probability Election Model (EPEM). For

the second case, we again assume that, because of higher energy consumption

due to extensive relay activity, the cluster head nodes closer to the base station

should support smaller clusters. To obtain smaller clusters in the region around

the base station, the nodes in this region have a higher probability of being elected

as a cluster head. We call this the Unequal Probability Election Model (UPEM),

where the probability of becoming a cluster head for every node depends on the

distance d between the node and the base station as:

pi(d) = C · Ra − d

Ra

, (3.14)

where C is a positive constant.

We compare EPEM and UPEM when the average number of cluster heads

elected in every round is the same. In EPEM, the average number of cluster

heads elected in every round is simply ko = po · N , so the average number of

cluster heads in UPEM should be:

N

R2
a · π

∫ 0

Ra

C
Ra − r

Ra

· 2πrdr =
N · C

3
= ko. (3.15)

From equation 3.15 the constant C is found as C = 3 · po.

The probability of node election as a cluster head should satisfy the basic

probability condition: 0 ≤ po ≤ 1, from which we can find a condition for the

distance d:

d ≥ Ra · (1− 1

3po

). (3.16)

Since d is in the range 0 ≤ d ≤ Ra, po is bounded as:

0 ≤ po ≤ 1

3
. (3.17)

When this is not the case, then some nodes closest to the base station should

have a probability of being elected as a cluster head equal to 1. This does not,
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however, mean that they will necessarily serve as a relay station in every round

to cluster head nodes further away, because now the nodes further away will have

the possibility to choose among more nodes as their next relay station.

The radius Rs, within which all the nodes will have to be chosen as cluster

heads with the probability 1, can be determined from the condition that the total

number of nodes elected as cluster heads has to be equal to ko, or:

N

R2
aπ

( ∫ Rs

0

2πrdr +

∫ Ra

Rs

3po
Ra − r

Ra

2πrdr
)

= k0, (3.18)

which gives the value of threshold radius:

Rs = Ra
3po − 1

2po

. (3.19)

Therefore, the probability of cluster head election in UPEM should change as:

pi(d) =





3po
Ra−d

Ra
0 ≤ d ≤ Ra po ≤ 1

3

1 0 ≤ d ≤ Rs
1
3
≤ po ≤ 1

3po
Ra−d

Ra
Rs ≤ d ≤ Ra

1
3
≤ po ≤ 1

.

We compare EPEM and UPEM for several scenarios, changing the probability

of cluster head election for EPEM (po) and adjusting the probability of cluster

head election for UPEM accordingly, for different aggregation coefficients α. Fig-

ure 3.10 shows the number of dead nodes during the simulation time.

For the case when po is small (Figure 3.10a) and when data is more efficiently

aggregated, there is no noticeable difference between EPEM and UPEM. The net-

work has large clusters, and the relay load is not dominant in energy consumption

over the energy spent for serving the nodes within the cluster. However, with an

increase in relay traffic (α = 0.5 and α = 1) UPEM performs better than EPEM

in terms of the number of nodes that die over the simulation time. The improve-

ment in time until the first node dies in UPEM over EPEM is 23% when α = 0.5

and 32% when α = 1. The energy spent on load relaying is now dominant, and

smaller clusters around the base station can contribute to more uniform energy

dissipation.
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(a) po = 0.1

(b) po = 0.3

(c) po = 0.5

Figure 3.10: The number of lost nodes over time for UPEM and EPEM, for

different values of probability po.
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With an increase in po (Figures 3.10b) we can see a difference in the results

compared with the case when po = 0.1. The time until the first node dies is

increased with UPEM by 35% for α = 0.1, and by 75% for α = 0.5 and α = 1.

With a further increase in po (Figures 3.10c), the network is overloaded with

clusters, and with so many data flows the network loses energy quickly. Therefore,

the nodes start to die sooner than in the previous cases, but still UPEM achieves

significantly better results than EPEM.

3.5 Summary

In this chapter, we have reviewed our model for hierarchical network organization

based on unequal size clusters. We analyzed and compared the performance of

this model with the model where the sensor network is divided into equal size

clusters. Our unequal size clustering model is designed to better balance the

energy consumption of the cluster head sensor nodes, and therefore prolong the

lifetime of the network and to prevent the appearance of “hot-spot” areas in the

early stages of network lifetime.

Through the analysis and the extensive simulations of different scenarios for

both heterogeneous and homogeneous sensor networks, we showed that our Un-

equal Cluster Size model can achieve large improvements in network lifetime over

the Equal Cluster Size model. A summary of the results of the simulations for

different network scenarios is provided in Table 3.1. We notice that the UCS

model is especially beneficial in networks where cluster head nodes do not aggre-

gate incoming data significantly, thereby routing large amounts of data through

the network.

The general model of having clustered network with clusters of unequal sizes

can be applied to other network scenarios. For example, if the base station is

further away from the network and in the case of multi-hop inter-cluster routing,

the network can be partitioned so that the clusters closer to the base station

are much smaller compared to the clusters further away from the base station.

However, in the case of direct transmission of data from the cluster head nodes to

the base station, the clusters further away should be smaller compared to those

clusters closer to the base station, since they spend larger amounts of energy on
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the direct data transmission to the base station compared to cluster head nodes

that are closer to the base station.
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Type of Network Definition of

Lifetime

Network Sce-

nario

Improvement

of UCS over

ECS

Heterogeneous First cluster

head dies

Pie shaped

clusters,

m1 = 6

10-20%

Pie shaped

clusters,

m1 = 10

15-30%

Voronoi

shaped clus-

ters, m1 = 6

17-35%

Voronoi

shaped clus-

ters, m1 = 10

15-45%

Homogeneous Static

Clusters

Time until 10%

of nodes die

Voronoi

shaped clus-

ters

8-28%

Homogeneous Dy-

namic Clusters

Time until first

node dies

po = 0.1 23% (α = 0.5)

32% (α = 1)

po = 0.3 35% (α = 0.1)

75% (α = 0.5)

75% (α = 1)

Table 3.1: Summary of simulations results for UCS.



Chapter 4

Coverage-preserving Methods for

Cluster Head Selection

The previous chapter discussed ways to balance energy dissipation among the

cluster head nodes for heterogeneous sensor networks, or among all the sensor

nodes for homogeneous sensor networks. While this is an important goal in many

sensor network applications, this approach may not provide maximum lifetime for

coverage preservation applications, especially when the sensors are deployed in a

nonuniform manner. In applications that require that the monitored region be

fully “covered” throughout the network lifetime, it is important to choose cluster

head nodes, as well as active sensor and router nodes, so as to preserve coverage

as long as possible.

Coverage preservation is one of the basic QoS requirements of wireless sensor

networks, yet this problem has not been sufficiently explored in the context of

cluster-based sensor networks. Specifically, it is not known how to best select

candidates for the cluster head roles in applications that require complete coverage

of the monitored area over long periods of time. Oftentimes, the sensor nodes

are deployed nonuniformly, so the sensor nodes have different importance to the

network coverage task, enabling sensors in redundantly covered areas to sleep

more often than nodes in scarcely covered areas without compromising network

coverage. In this chapter, we take a unique look at the cluster head election

problem, specifically concentrating on applications where the maintenance of full

network coverage is the main requirement. Our approach for cluster-based network

74
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organization is based on a set of coverage-aware cost metrics that favor nodes

deployed in densely populated network areas as better candidates for cluster head

nodes, active sensor nodes and routers. Compared with using traditional energy-

based selection methods, using coverage-aware selection of cluster head nodes,

active sensor nodes, and routers in a clustered sensor network increases the time

during which full coverage of the monitored area can be maintained anywhere

from 25% to 4.5x, depending on the application scenario [83].

4.1 Introduction

Sensor networks oftentimes must provide persistent coverage of the entire moni-

tored area. There are numerous applications where the ability to provide informa-

tion from each part of the monitored area at any moment is essential for meeting

the application’s quality of service (QoS). Among these applications are sensor

networks for intruder detection and tracking, camera-based surveillance networks,

sensor networks for industrial monitoring or actuator sensor networks, for exam-

ple. In many cases sensors are deployed with much greater density than is needed

to satisfy coverage requirements, which enables the redundantly covered nodes to

conserve their energy by entering a low-power sleep mode.

While both cluster-based sensor network organization and coverage-maintenance

protocols have been extensively studied in the past, these have not been integrated

in a coherent manner. Existing techniques for the selection of cluster head nodes

base this decision on one of the following: maximum residual energy [45, 84], lo-

cation of the cluster head candidate relative to the other nodes [85], topology

information [86–88], or previous activity of the sensor node as a cluster head [43].

Although all these approaches contribute to more balanced energy dissipation

among the sensor nodes, they do not guarantee coverage for extended periods of

time. In other words, energy-balanced clustered network organization does not

ensure that the wireless sensor network is able to provide persistent coverage of

the entire monitored area. However, sensor coverage is one of the basic network

QoS metrics, as it expresses the network’s ability to provide constant monitor-

ing/sensing of some area of interest [38, 89]. Therefore, in this Chapter we explore

the differences between energy-balanced and coverage-aware sensor network orga-
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nization, specifically concentrating on clustered wireless sensor networks.

Intuitively, all sensor nodes do not equally contribute to network coverage. The

loss of a sensor node deployed in a densely populated area is not as significant

for network coverage compared to the loss of nodes from regions that are scarcely

populated with sensor nodes. The importance of each sensor node to the coverage

preserving task can be quantitatively expressed by a coverage-aware cost metric,

which is a metric originally introduced in [34]. This cost metric considers the

node’s remaining energy as well as the coverage redundancy of its sensing range,

thereby measuring the contribution of this node to the network’s coverage task.

In this chapter we analyze how different coverage-aware cost metrics, some of

which were defined in [34], can be utilized in the periodic election of cluster head

nodes, ensuring that sensors that are important to the coverage task are less likely

to be selected as cluster head nodes. Furthermore, the same coverage-aware cost

metrics are used to find the set of active sensor nodes that provide full coverage,

as well as the set of routers that forward the cluster head nodes’ data load to

the sink. We show the benefits of using this coverage-aware approach compared

to traditional energy-based clustering by comparing our approach with HEED

[45] for coverage-preserving applications. Our results show clearly that clustering

in sensor networks should be directed by two fundamental requirements—energy

conservation and coverage preservation.

4.2 Family of Coverage-Aware Cost Metrics

The DAPR (Distributed Activation with Predetermined Routes) protocol pro-

posed in [34] is the first routing protocol designed to avoid routing of data through

areas sparsely covered by the sensor nodes. The idea behind this approach is that

the use of nodes in sparsely deployed areas, as well as the use of nodes with small

remaining energies, as data routers should be minimized, so that these nodes can

collect data for longer periods of time. To accomplish this goal, the importance

of every sensor node for the coverage preserving task is quantified by a coverage-

aware cost metric, which combines the information about the node’s remaining

energy with information about how redundantly this node’s sensing area is covered

by its neighboring nodes’ sensing areas.
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To explore the benefit of this approach in cluster-based sensor networks, we

introduce several coverage-aware cost metrics. We assume that Ns sensor nodes

from a set S, si ∈ S, i = 1..Ns are scattered randomly over a rectangular mon-

itored area A. We assume the application requires that every part of the scene

be covered by the sensors throughout the network lifetime. Each sensor performs

reliable sensing within its sensing area C(si), which is approximated by a circular

area around the node with radius Rsense. Note that this is a simple model for sen-

sor coverage. Other techniques such as utilizing a learning phase where sensors

learn their sensing area C(si) based on training data can be used as well.

For every sensor node si we define a group of neighboring nodes N(i) that

includes all nodes with sensing areas either partially or fully overlapped with the

sensing area of node si. Using our model for sensing area, we obtain:

N(i) = {sj | d(si, sj) ≤ 2 ·Rsense}, (4.1)

where d(si, sj) is the Euclidean distance between nodes si and sj.

To reduce the number of active nodes while ensuring that every point (x, y)

of the monitored region is covered by at least one sensor, each node needs to

determine the overlap of its sensing area with the sensing areas of its neighbor-

ing nodes. For this, we assume that sensor nodes have localization capabilities.

Considering each node’s position and its residual energy, for each point (x, y) of

the monitored area A we define the total energy Etotal(x, y) that is available for

monitoring that location:

Etotal(x, y) =
∑

sj :(x,y)∈C(sj)

E(sj), (4.2)

where E(sj) is the remaining energy of node sj.

The first two cost metrics presented below, and defined in [34], are based on

the total energy Etotal(x, y) available for monitoring each location in the sensor

field.
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4.2.1 Minimum Weight Coverage Cost

The minimum-weight coverage cost is defined as:

Cmw(si) = max
1

Etotal(x, y)
, (x, y) ∈ C(si) (4.3)

This cost metric measures node si’s importance for the network coverage task by

considering the energy of the most critically covered location (x, y) within the

sensing area of the node.

4.2.2 Weighted Sum Coverage Cost

The weighted-sum coverage cost is defined as:

Cws(si) =

∫

C(si)

dxdy

Etotal(x, y)
=

∫

C(si)

dxdy∑
sj :(x,y)∈C(sj)

E(sj)
. (4.4)

This cost metric measures the weighted average of the total energies of all points

that are covered by the sensing area of node si.

4.2.3 Coverage Redundancy Cost

The coverage redundancy cost metric does not depend on a node’s remaining

energy nor on the remaining energies of its neighbors. Instead, this cost considers

only the coverage redundancy of the overlapped sensing areas between the sensor

and its neighboring nodes. Similarly to the previously defined Etotal(x, y), we

define a total coverage Ototal(x, y), which reflects the number of nodes that cover

each point (x, y) of the area A:

Ototal(x, y) =
∑

sj :(x,y)∈C(sj)

1. (4.5)

Then, the coverage redundancy cost of sensor si is:

Ccc(si) =

∫

C(si)

dxdy

Ototal(x, y)
=

∫

C(si)

dxdy∑
sj :(x,y)∈C(sj)

1
. (4.6)

Figure 4.1 provides an example that illustrates the minimum-weight, weighted-

sum and coverage redundancy cost metrics. This example considers three nodes
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A1

A2

A3

A12

A13

A23
A123

S1

S2

S3
Sensors’  remaining energies:

E(S1)=2

E(S2)=4

E(S3)=1

E(A1) = E(S1) = 2

E(A2) = E(S2) = 4

E(A3) = E(S3) = 1

E(A12)=6

E(A13)=3

E(A23)=5

E(A123)=7

O(A1)=O(A2)=O(A3)=1

O(A12)=O(A13)=O(A23)=2

O(A123)=3

Minimum Weight Cost:

Cmw(S1)=min(2,3,6,7)=2

Cmw(S2)=min(4,5,6,7)=4

Cmw(S3)=min(1,3,5,7)=1

Weighted Sum Cost:

Cws(S1)=A1/2+A12/6+A13/3+A123/7

Cws(S2)=A2/4+A12/6+A23/5+A123/7

Cws(S3)=A3/1+A13/3+A23/5+A123/7

Coverage Cost:

Cca(S1)=A1/1+(A12+A13)/2+A123/3

Cca(S2)=A2/1+(A12+A23)/2+A123/3

Cca(S3)=A3/1+(A13+A23)/2+A123/3

Figure 4.1: Illustration of the coverage-aware cost metrics.
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s1, s2 and s3 with remaining energies E(s1), E(s2) and E(s3). The parameters Ai,

Ai,j and Aijk, i, j, k ∈ {1, 2, 3} are the areas of overlapped portions of the nodes’

sensing areas.

4.2.4 Energy-aware Cost

The energy-aware cost function evaluates the sensor’s ability to take part in the

sensing task based solely on its remaining energy E(si):

Cea(si) =
1

E(si)
. (4.7)

4.2.5 Coverage-aware Routing Cost

The cost metrics introduced in the previous subsections are the basis for coverage-

aware routing, where the minimum cost routing paths are determined such that

high cost nodes are excluded from the routing task. The cost of a link between two

nodes si and sj is equal to the energy spent by these nodes to transmit (Etx(si, sj))

and to receive (Erx(si, sj)) one data packet, weighted by the costs of these nodes:

Clink(si, sj) = Caa(si) · Etx(si, sj) + Caa(sj) · Erx(si, sj), (4.8)

where Caa represents any of the cost metrics described above. Therefore, the

minimum cumulative cost path from each node to the sink is found as:

Cfinal(si) =
∑

sj ,sk∈p(si,Sdst)

Clink(sj, sk), (4.9)

where p is the minimum cost path from node si to the sink Sdst. The cost defined

by equation 4.9 is called the coverage-aware routing cost.

Data routing from every cluster head to the sink is done over multi-hop paths,

which are found by minimizing Cfinal in equation 4.9. More details about routing

from the cluster head nodes to the data sink are provided in Section 4.3.
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4.3 Coverage Preserving Clustering Protocol

(CPCP)

To ensure balanced energy consumption among the cluster head nodes through-

out the network lifetime, many clustering protocols favor uniformly distributed

clusters with stable average cluster sizes. However, obtaining the same number of

well distributed clusters over time is a real challenge in clustered sensor networks.

In coverage-based applications, the best candidates for cluster head roles should

be the redundantly covered nodes in densely populated areas with high remaining

energy. These nodes can support clusters with a large number of members. While

the excessive energy consumption of the cluster head nodes makes these nodes

die before the other nodes, since they are located in densely populated areas,

their death should not affect the overall network coverage. Using our approach,

which considers the application’s requirements for full network coverage, the set

of cluster head nodes can be selected based on the cost metrics defined in Section

4.2. However, cluster head selection based solely on any of the proposed cost

metrics using existing clustering techniques will lead to an undesirable situation:

the densely populated parts of the network will be overcrowded with cluster head

nodes, while the scarcely covered areas will be left without any cluster head nodes.

In such a situation, it is likely that the high cost sensors from poorly covered ar-

eas will have the additional burden of performing expensive data transmissions to

distant cluster head nodes, further reducing their lifetime.

In order to avoid this situation, we propose the clustering method called Cov-

erage Preserving Clustering Protocol (CPCP). CPCP spreads cluster head nodes

more uniformly throughout the network by limiting the maximum cluster area.

Thus, clusters in sparsely covered areas are formed as well as clusters in densely

covered areas, which prevents the high cost nodes from having to perform costly

packet transmissions to distant cluster head nodes. Also, nodes from the sparsely

covered areas elected to serve as cluster head nodes support clusters with a smaller

number of nodes compared to cluster head nodes in dense areas.

We define the cluster radius Rcluster as a tunable parameter that determines the

minimum distance between any two cluster head nodes in the network. Using this

parameter, CPCP prevents the appearance of nonuniformly distributed clusters
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within the network. Rcluster can be easily tuned by changing the transmission

power of the cluster head nodes.

In CPCP the sensor nodes communicate directly with their elected cluster

head nodes, while data routing from the cluster head nodes to the sink is done

over multi-hop paths using the sensors. CPCP consists of six phases: information

update, cluster head election, route update, cluster formation, sensor activation

and data communication, as described below.

4.3.1 Phase I: Information Update

The first phase of CPCP is reserved for updating information on the remaining

energies of the nodes. Each sensor node broadcasts an update packet with infor-

mation about its remaining energy to all its neighbors in the range 2 · Rsense. In

order to reduce packet collisions, the nodes use random back-offs before sending

the update packets. Upon receiving the update information from all neighbors,

each node calculates its coverage-aware cost, as described previously. Assum-

ing that the sensor nodes are static, the neighboring nodes must exchange their

location information only once, at the beginning of the network lifetime.

If the coverage redundancy cost or the energy-aware cost are used, then this

Information Update phase can be skipped, since these cost metrics do not depend

on the neighboring nodes’ remaining energies.

4.3.2 Phase II: Cluster Head Election

At the beginning of this phase every sensor determines its “activation time”—an

amount of time proportional to its cost. Each sensor has to wait for the expiration

of its “activation time” before deciding weather or not it should announce itself

as a new cluster head for the upcoming communication round. If during the

“activation time” a node does not hear an announcement message from any other

sensor node, then, upon expiration of its “activation time” it declares itself a new

cluster head, by sending an announcement message to all the nodes within the

Rcluster range. The announcement message contains information about the node’s

location.

After receiving an announcement message from a new cluster head node, all

nodes in Rcluster range exclude themselves from further consideration for the clus-
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ter head role. Each sensor node maintains a table of all cluster head nodes from

which it has received the announcement message so far, as well as the distance

to each cluster head node. This information is used later by the node to decide

about its cluster membership. Rarely it may happen that two nodes with the same

costs and within each other’s Rcluster range simultaneously declare themselves to

be new cluster head nodes — this conflict can be solved by giving priority to the

node with the higher remaining energy.

When cost metrics Cmw, Cws or Ccc are used, it can happen that a node with

low remaining energy is elected to serve as a cluster head. This may cause the

loss of the cluster’s data during the communication round. This outcome can be

avoided by preventing those nodes that have remaining energy below a certain

threshold Eth from taking part in the cluster head election process. If, after

the cluster head election phase, these nodes do not belong to any of the elected

cluster head nodes, they find the nearest sensor node to which they forward their

data. The pseudo code for the cluster head election phase of CPCP is provided

in Algorithm 1.

4.3.3 Phase III: Route Update

The cluster head nodes send their data over multi-hop paths to the sink. To

obtain these routes, the sink node first generates a Route Discovery message that

is broadcasted throughout the network. Upon receiving the broadcast message,

each node introduces a delay proportional to its cost before it forwards the Route

Discovery message. In this way a message arrives at each node along the desired

minimum cost path. The cumulative cost of the routing path from the sink to the

node obtained in this phase is called the coverage-aware routing cost of the node,

as described in equation 4.9.

4.3.4 Phase IV: Cluster Formation

In the fourth phase of CPCP, each node decides to join the closest cluster head

node. The nodes send short JOIN messages to their selected cluster head nodes.

These JOIN messages serve as an acknowledgement that a node will become a

member of the cluster for the upcoming round. In this way, selected cluster head
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Algorithm 1 The cluster head election and cluster formation phases of CPCP.

1: S = {s | E(s) > 0}, E(s) −residual energy of node s

2: SCH = {}
3: Tch(i) = {}, i = 1..N

4: while S /∈ {} do

5: (sk −node with minimum cost) & (E(sk) > Eth)

6: SCH = SCH ∪ sk

7: N(k) = {s | dist(s, sk) < Rcluster}
8: ∀s ∈ N(k), Tch(s) = Tch(s) ∪ sk

9: S = S \N(k)

10: end while

11: ∀s | SCH ∩ s = {∅}
12: s sends JOIN message to cluster head sCH for which dist(s, sCH) =

min(dist(s, si)), ∀si ∈ Tch(s)

13: Sun = {s | (Sch(s) = {∅}) & (SCH ∪ s = {∅})}
14: if Sun /∈ {} then

15: ∀s ∈ Sun, f ind sn | dist(s, sn) = min(dist(s, si)),∀si ∈ N(s)

16: s sends data packet to sn

17: end if

nodes form Voronoi-shaped clusters as shown in Figure 4.2.

4.3.5 Phase V: Sensor Activation

In the fifth phase, a subset of sensor nodes is selected to perform the sensing task

for the upcoming round, while the rest of the nodes go to sleep. The selected active

nodes provide full coverage over the monitored field during this communication

round.

In the Sensor Activation phase, each sensor node assigns itself an activation

delay that is inversely proportional to its current application cost. Each node

then waits for this period of time before deciding whether it will stay awake

during the next communication round. If, after its activation delay time expires,

the sensor node determines that its sensing area is completely covered by its

neighboring nodes, it turns itself off for the upcoming round. Otherwise, the sensor
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node broadcasts an acknowledgement message to inform its neighbors about its

decision to remain active. In this way, the higher cost nodes have priority to decide

whether they should be active. All nodes in the network jointly take part in the

activation phase, regardless of the cluster to which they belong. This eliminates

the redundant activation of sensor nodes on the borders of the clusters, which

may happen when the activation of nodes is done in each cluster independently.

4.3.6 Phase VI: Data Communication

Once clusters are formed and active sensors are selected, the Data Communication

phase begins where the active sensor nodes periodically collect data and send it

to the cluster head nodes. The cluster head nodes aggregate the data from the

cluster members, and route the aggregated data packets over the pre-determined

multi-hop paths to the sink.

4.4 Simulation Set-up

In this section we discuss the set-up for our simulations that measure the per-

formance of CPCP. In all the simulations we measure the percentage of the area

covered by the active sensor nodes over time. Since active nodes selected in the

Activation Phase of CPCP maximally cover the monitored area, the measured

coverage provided by these active nodes is the same as the coverage that would

be provided by all alive nodes in the network.

We perform two sets of simulations. In the first set of simulations, we compare

the performance of CPCP using the different cost metrics introduced in Section

4.2 for the selection of cluster head nodes, active sensors and routers. In the

second set of simulations, we compare CPCP with the HEED clustering protocol

as a representative of the many energy-aware clustering protocols. Furthermore, in

our simulations we vary the amount of data aggregation and the network scenario,

as described next, to determine the performance of CPCP over a wide range of

conditions.
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4.4.1 Data Aggregation

In many applications, the cluster head nodes aggregate the received data, thereby

reducing the total energy required for transmitting data back to the sink. The

amount of aggregated data produced by the cluster head nodes depends on the

data aggregation algorithm as well as on the application requirements and the

type of sensor data. In our simulations, we provide results for scenarios when the

cluster head nodes aggregate their received data more or less efficiently, meaning

that they provide different numbers of aggregated data packets. In particular,

we present results of simulations where the cluster head nodes aggregate all data

into a single outgoing packet, as well as when they reduce the amount of collected

data by half, and when the aggregated data is 80% of the total data load collected

within the cluster.

4.4.2 Network Scenario

We conduct simulations for two scenarios: a network with 200 nodes deployed over

an area of size 100× 100m2, and a network with 400 nodes deployed over an area

of size 200× 200m2. The nodes are deployed either randomly or nonuniformly. In

the case of the random deployment, the locations of sensor nodes are randomly

chosen based on the random-uniform distribution. For simplicity, we call this

deployment the random deployment. The nonuniform deployment corresponds to

the case when nodes in certain parts of the network are more “grouped” together,

meaning that they provide higher redundancy in coverage than the nodes located

in scarcely covered areas of the network. We call this deployment the nonuniform

deployment. The data sink is fixed and located in the center of the network. The

simulations are conducted with Rcluster = 2 · Rsense. The simulation parameters

are summarized in Table 4.1.

4.4.3 Energy Model

We assume that the sensor nodes have the ability to adjust their transmission

power according to the distance of the receiving node. We use the free-space

energy model defined in [43], where the energies required to transmit and to receive
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Parameter Acronym Value

Tx/Rx electronics con-

stant [43]

Eamp 50nJ/bit

Amplifier constant [43] εfs 10pJ/bit/m2

Path-loss exponent n 2

CH energy threshold Eth 10−4J

Packet size p 30bytes

Packet rate B 1packet/s

Maximum transmission

range

rtx 70m

Sensing range Rsense 15m

Cluster range Rcluster 30m

Communication Phase Tcomm 300 s

Table 4.1: Simulation parameters.

a p-bit packet are given by equations 3.1 and 3.2, respectively. All simulation

parameters are listed in Table 4.1.

4.4.4 Clusters Created Using CPCP

Simulations show that CPCP disperses cluster head nodes uniformly, as shown

in Figure 4.2, thereby producing small variations in the number of cluster head

nodes elected in successive communication rounds. Thus, in the case of the random

deployment scenario (Figure 4.2a), the data load produced in the network is more

uniformly distributed across the cluster head nodes over time. In the case of the

nonuniform scenario (Figure 4.2b) the cluster head nodes in redundantly covered

areas serve clusters with a higher number of nodes than the cluster head nodes

in sparsely covered network areas. However, sensor nodes in densely populated

network areas are less critical to the coverage task, which enables these nodes

to spend more energy by serving clusters with larger numbers of nodes, without

degrading network coverage.

Figure 4.3 shows the average number of cluster head nodes per round as well
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Figure 4.2: Examples of random and nonuniform deployment scenarios. CPCP

achieves uniform distribution of the cluster head nodes.

as the standard deviation of the average number of active nodes per cluster over

the time period during which the network provides full coverage of the monitored

area. For both scenarios (random and nonuniform) the variations in the number

of cluster head nodes per round over time are small. The number of cluster head

nodes is lower in the nonuniform deployment scenarios due to the existence of

larger areas with very low densities of sensor nodes. Also, when the network is

deployed in a nonuniform manner, the standard deviation in the average number

of active nodes is slightly higher than in case of random deployment, as shown in

Figures 4.3b and 4.3d.

4.5 Case I: Performance of CPCP Using Differ-

ent Cost Metrics

Our goal with this first set of simulations is to show the effects of the different

cost metrics on the performance of the network, specifically focusing on coverage-

time. These costs are used to select cluster head nodes, active sensors and routing

nodes. The cluster head nodes aggregate the data packets received from the active

sensors within the cluster into one outgoing packet, and this packet is routed to

the sink via shortest-cost routes determined in the Route Update phase.
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Figure 4.3: Performance of CPCP: the average number of cluster head nodes

per round and the standard deviation of the average number of active nodes per

cluster when the network is operating at 100% coverage.
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Figure 4.4: Coverage-time for a network of size 100 × 100m2 with 200 nodes

utilizing CPCP with different cost metrics.
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(b) Nonuniform deployment.

Figure 4.5: Coverage-time for a network of size 200 × 200m2 with 400 nodes

utilizing CPCP with different cost metrics.
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4.5.1 Time vs. Coverage as the Network Scales

First we find the coverage-time using the different cost metrics as the network

scales from 100 × 100m2 with 200 sensor nodes to 200 × 200m2 with 400 sensor

nodes for both random and nonuniform deployment scenarios. The results for

the network of size 100 × 100m2 with 200 sensor nodes are shown in Figure 4.4.

When the selection of cluster head nodes, active nodes and routers is done using

the minimum-weight cost (Cmw) and the weighted-sum cost (Cws), the improve-

ment in the time during which the randomly deployed network can provide full

coverage (100%) over the energy-aware cost (Cea) is 30% and 22%, respectively

(Figure 4.4a). For the nonuniform scenario, these improvements of coverage-time

increase to 38% and 25%, respectively (Figure 4.4b). After the network coverage

drops below 95%, Cmw and Cws improve the coverage-time by 15−20% in the case

of random deployment, and by 20 − 25% in the case of nonuniform deployment.

Overall, these two metrics are able to provide longer coverage-time over Cea in

both the random and nonuniform network deployment scenarios.

Figure 4.5 shows the results of the simulations for the larger network (200 ×
200m2 with 400 nodes). Again, the Cmw and Cws metrics provide longer coverage-

time compared to the Cea metric. The improvement in the coverage-time is higher

in the nonuniform deployment scenario, with an improvement in coverage-time for

100% coverage of 28% using Cmw and 26% using Cws. The minimum-weight cost

Cmw again provides the longest time during which 100% of the network is cov-

ered compared to all the other cost metrics in both the random (Figure 4.5a)

and nonuniform (Figure 4.5b) network deployments. This is expected, since the

minimum-weight cost assigns a high cost to the nodes that are critical to main-

taining 100% coverage.

Compared with the other metrics, the coverage redundancy cost metric (Ccc)

provides the worst time during which the network is able to monitor the entire

(100%) area, which is the main QoS requirement of the coverage-preserving appli-

cation. However, in the case of smaller networks (100×100m2), after the coverage

starts to drop below 80%, Ccc shows slightly better performance than the other

cost metrics. In the larger network (200×200m2), Ccc always performs worse than

Cws cost metric. The difference in the results obtained with the coverage redun-



92

0 50 100 150 200
20

30

40

50

60

70

80

90

100

Number of dead nodes

C
ov

er
ag

e 
[%

]

C
ea

C
ws

C
mw

C
cc

(a) Network 200× 200m2.

0 50 100 150 200 250 300 350 400
20

30

40

50

60

70

80

90

100

Number of dead nodes

C
ov

er
ag

e 
[%

]

C
ea

C
ws

C
mw

C
cc

(b) Network 400× 400m2

Figure 4.6: Network coverage as a function of the number of dead nodes.

dancy metric for both simulated scenarios (small and large network) illustrates the

importance of applying the same coverage-aware approach in the selection of not

only cluster head nodes, but also in the selection of data routers as well. With the

increase of network size, routing is done over a larger number of hops; therefore,

there is a greater need to avoid the critical nodes (non-redundantly covered nodes

or nodes with low energy). Although the coverage-redundancy cost metric selects

redundantly covered nodes, it does not consider the node’s remaining energy, re-

sulting more often in the loss of nodes compared with the other metrics. In the

case of smaller networks, this is less evident than in the case of larger networks,

which is one reason that the coverage-redundancy cost metric never outperforms

the other metrics.

To explain these simulation results further, we performed further experiments

to provide more details about the clusters and routes that are found using the

different cost metrics, described next.

4.5.2 Loss of Sensor Nodes

Figure 4.6 shows how the network coverage decreases as the number of dead

nodes increases for the two network scenarios (100 × 100m2 with 200 nodes and

200 × 200m2 with 400 nodes). The Cea cost metric contributes to uniform en-

ergy dissipation among the sensor nodes, resulting in the highest amount of lost
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coverage for a given number of dead nodes compared to the other three metrics.

On the other hand, the coverage redundancy cost metric has the least amount of

coverage loss for a given number of dead nodes. This shows that the energy-aware

cost metric treats all nodes equally, while the coverage redundancy cost metric

preserves nodes that are critical for the coverage task. As the coverage redun-

dancy cost metric does not consider a node’s remaining energy, a node’s cost only

changes when one of its neighboring nodes dies. This infrequent change in node

cost results in non-balanced energy consumption, with the result that redundantly

covered sensors that are not critical to the coverage of the network, are used first.

Coverage as a function of the number of dead nodes using the other two cost

metrics (Cmw and Cws) is in between that of Cea and Ccc. Note, however, that

Cmw and Cws provide the longest coverage-time compared to the other two metrics.

This clearly demonstrates the fact that it is important to look at both minimizing

or balancing energy dissipation and preserving critical nodes to maintain high

levels of coverage for a longer time.

Figure 4.7 shows the average energy of the selected cluster head nodes over

time. When Cea is used, sensor nodes with the highest remaining energy are

selected as cluster head nodes. Compared to using the Cea cost, using the Cmw and

Cws cost metrics prevent non-redundantly covered nodes from being selected as

cluster head nodes at the beginning of the network lifetime, resulting in rotation of

cluster head roles among the most redundantly covered sensor nodes. The frequent

selection and excessive energy consumption of elected cluster head nodes using the

Cmw and Cws costs lead to loss of the most redundantly covered nodes. At that

point, the low redundantly covered sensor nodes resume the cluster head roles

and, since they have not yet served as cluster heads previously, these nodes still

have relatively high remaining energies. This is the reason why at a certain point,

after the network coverage using the Cea cost drops below 95% (by comparing

Figures 4.4b and 4.7a, and Figures 4.5b and 4.7b) the average energy of elected

cluster head nodes using Cmw and Cws is larger than the average energy of cluster

head nodes elected using the Cea metric.
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Figure 4.7: Remaining energy levels of selected cluster head nodes over time.
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(b) 400× 400m2 network.

Figure 4.8: Average number of hops in the routes from the cluster head nodes to

the sink.
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4.5.3 Coverage-aware Routing

Figure 4.8 shows the average number of hops in the routes from the cluster head

nodes to the sink as the network coverage changes. These results show that the Ccc

cost metric finds routes with the smallest number of hops compared with the other

cost metrics. On the other hand, the weighted-sum (Cws) and minimum-weight

(Cmw) metrics route data packets over the the longest paths, since these metrics

try to avoid the high cost nodes (those with low remaining energy and/or with low

redundancy in coverage). In the case of the smaller networks (100×100m2, shown

in Figure 4.8a), data packets are routed over a relatively small number of hops (1

to 2), so the differences in the average path lengths for the various cost metrics

are not significant. Therefore, the choice of routing paths does not significantly

affect the network performance.

However, in the case of the larger networks (200 × 200m2), the differences in

the lengths of the routing paths are more evident for different costs, as shown in

Figure 4.8b. As network coverage decreases, the minimum-weight and weighted-

sum metrics further increase the number of hops in their routing paths, trying to

avoid critical nodes. When the coverage of the network starts to decrease as a

result of losing nodes, the energy-aware metric also increases the average number

of hops in order to balance energy dissipation throughout the network, whereas

the coverage redundancy cost keeps route lengths fairly constant.

As a result of the increased lengths of the routing paths, the average energy

dissipated to route packets from each cluster head node to the sink also increases

for the Cmw, Cws and Cea cost metrics, as illustrated in Figure 4.9. Again, in

the large networks, this increase in average energy dissipation per path is more

evident than in the case of the smaller networks.

The coverage redundancy cost Ccc does not prevent routing over the low-

energy nodes, which speeds up the loss of these nodes. The average number of

hops used for data routing is small, and it stays relatively constant throughout

the network lifetime (Figure 4.8). Using Ccc the average energy spent per route is

smaller compared to other cost metrics, once the network starts loosing coverage

(Figure4.9). The reason for this is that the network loses a significant number of

nodes, which reduces the total data load routed through the network. In the case
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Figure 4.9: Average energy dissipated per route from the cluster head nodes to

the sink.

of the smaller networks, where data are routed over a small number of hops, this is

the reason that Ccc starts to outperform the other cost metrics when the network’s

coverage starts to decrease significantly. However, when data are routed over a

larger number of hops, Ccc shows an inability to choose “good” routing paths,

which is the reason this cost metric does not perform well. This again illustrates

the importance of considering both energy and coverage in the selection of routing

paths for coverage-preserving applications.

4.5.4 Increasing the Number of Nodes

Figure 4.10 shows the time during which the 200× 200m2 networks provide 100%

coverage when the number of nodes increases from 200 to 600, for both the random

and nonuniform deployments. In all cases the Cws and Cmw cost metrics provide

longer network coverage-time compared to the Cea cost metric. The improvements

in network coverage time obtained with the Cws and Cmw cost metrics compared

with the Cea cost metric in the nonuniform network deployment scenarios is always

larger than in the random network deployments. Therefore, the advantages of

using minimum-weight and weighted sum cost metrics over energy-aware cost are

even more evident in the nonuniform sensor network deployment scenarios.
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(b) Nonuniform deployment.

Figure 4.10: Time during which the network preserves 100% coverage of the mon-

itored area as a function of the number of nodes in the 200× 200m2 network.

4.5.5 Impact of Aggregation

When cluster head nodes perform less efficient data aggregation, meaning that

they send more than one packet to the sink, the differences in coverage-time

obtained by the coverage-aware cost metrics and the energy-aware cost metric

increase. Figure 4.11 shows the coverage-time obtained with different cost metrics

when the cluster head nodes forward 50% and 80% of all packets received from

the cluster members in one communication round. In both cases the Cmw and Cws

cost metrics perform even better compared to the Cea metric than in the case when

the cluster head aggregates all incoming data into one packet. The improvement

in the time during which the network provides 100% coverage using Cws and Cmw

compared with using Cea is 2.5x and 3.2x, respectively, when the cluster heads

forward half of the total received data. When the cluster heads forward 80% of

the total received load, these improvements are even higher—3.6x using Cws and

4.5x using Cmw compared with using the Cea cost metric.
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Figure 4.11: The effect of aggregation efficiency on coverage-time for the 200 ×
200m2 network with 400 nonuniformly deployed nodes.

4.6 Case II: Performance of CPCP Compared

with HEED

As mentioned previously, many clustering protocols are mainly focused on achiev-

ing balanced energy consumption in the network in order to prolong the lifetime

of the individual sensor nodes, without regard to the network’s ability to cover the

region of interest. In order to illustrate the difference between coverage-preserving

and energy balancing approaches to cluster organization, we compare CPCP with

the HEED protocol [45]. HEED is a scalable protocol that achieves balanced en-

ergy consumption among the sensor nodes, and it provides uniform distribution

of cluster head nodes throughout the network, which significantly prolongs the

network lifetime.

4.6.1 Overview of HEED

HEED (Hybrid Energy-Efficient Distributed clustering) is an iterative clustering

protocol that uses information about the nodes’ remaining energy and their com-

munication costs in order to select the best set of cluster head nodes. During the

clustering process, a sensor node can be either a tentative cluster head, a final
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cluster head, or it can be covered (meaning that it has heard an announcement

message from a final cluster head node). At the beginning of the clustering phase,

a node with higher remaining energy has a higher probability CHprob of becoming

a tentative cluster head. If the node becomes a tentative cluster head, it broad-

casts a message to all sensor nodes within its cluster range to announce its new

status. All nodes that hear from at least one tentative cluster head choose their

cluster head nodes based on the costs of the tentative cluster head nodes. For

this purpose, the authors in [45] define the average reachability power (AMRP ),

which is a cost metric used to “break ties” in the cluster head election process.

The AMRP of a node u is defined as the mean of the minimum power levels

required by all M nodes within the cluster range to reach the node u:

AMRP (u) =

∑M
i=1 MinPwr(i)

M
(4.10)

During each iteration, a node that is not “covered” by any final cluster head can

elect itself to become a new tentative cluster head node based on its probability

CHprob. Every node then doubles its CHprob and goes to the next step. Once

the node’s CHprob reaches 1, the node can become a final cluster head, or it

can choose its cluster head as the least cost node from the pool of final cluster

head neighbors. If the node completes HEED execution without selecting its final

cluster head, then it considers itself uncovered and becomes a final cluster head

for the upcoming round.

Once the clusters are formed, all sensors send their data to the cluster head,

where the data are aggregated into a single packet. The cluster head nodes form

a network backbone, so packets are routed from the cluster head nodes to the sink

in a multi-hop fashion over the cluster head nodes.

4.6.2 Simulation Results: All Sensors Active

We compare our CPCP with HEED in scenarios where 400 sensor nodes are

deployed either randomly or nonuniformly over a 200×200m2 region. In HEED the

elected cluster head nodes form a spanning tree for inter-cluster communication

in each iteration, and thus we follow this approach for CPCP in these simulations.

We assume that each cluster head node aggregates its received data packets into
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(b) Nonuniform deployment.

Figure 4.12: Comparison of HEED and CPCP in terms of coverage-time.

one packet that is sent to the data sink located in the middle of the area.

In HEED, all sensor nodes continue their sensing task after the clusters are

formed. Therefore, we adopt the same approach in CPCP for these simulations,

and hence all sensor nodes remain in the active state during the Communication

Phase of CPCP. In contrast to the previous set of simulations, where the intra-

cluster communication was established among a small number of active sensor

nodes and their cluster heads, here the cluster head nodes spend a much larger

amount of energy in communicating with their cluster members.

HEED is a distributed clustering protocol that does not depend on the synchro-

nization of sensor nodes in the network. However, the subsequent broadcasting of

announcement messages from the tentative cluster head nodes in each clustering

phase requires quite a bit of energy. In CPCP however, the nodes using cost

Cmw and Cws need to periodically broadcast their remaining energy, which is an

additional burden on the limited energy resources. Both clustering algorithms

generate uniformly dispersed cluster head nodes. However, in applications where

the sensor network has to maintain full coverage, the choice of cluster head nodes

significantly impacts the network’s coverage-time.

Figure 4.12 shows the network coverage over time for HEED and for CPCP

using different cost metrics. As shown in this figure, the results for CPCP from

these simulations are quite similar to the results presented in Section 4.5. The

minimum-weight cost metric Cmw provides 100% coverage for the longest time and
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S S

Figure 4.13: Two situations where sensor node S has the same AMRP cost but

different coverage redundancy.

the weighted-sum cost metric Cws provides almost full coverage for the longest pe-

riod of time. The improvement of CPCP over HEED in terms of 100% coverage-

time is noticeable using all the cost metrics. Compared with HEED, the time

during which the randomly deployed network provides full coverage of the mon-

itored area on average increases by 67% and 125% using Cws and Cmw, respec-

tively. In the nonuniformly deployed network this time of full coverage increases

even more—by 1.8× and 2.6× using Cws and Cmw, respectively, compared with

HEED.

HEED gives priority to the nodes with higher remaining energy to be elected

as cluster heads. In the case when nodes can manage variable transmission power,

the AMRP cost metric (used by the nodes to decide among the best cluster head

candidate) depends on the distance between the potential cluster head and its

neighboring nodes. However, AMRP does not provide any information about

the nodes’ spatial distribution and therefore about the redundancy in coverage

provided by the nodes. For example, Figure 4.13 shows a node S with three

neighboring nodes that are all at the same distance from the node S. In both cases

node S had the same AMRP cost since it needs the same transmission power to

reach all three neighboring nodes. However, in the first case the sensing area of

node S is completely covered by the sensing areas of its neighboring nodes, while

in the second case this is not true. Therefore, node S will have higher Cmw or

Cws costs in the second case. This shows that in coverage-preserving applications

the information about the coverage redundancy is crucial to maintaining complete

coverage for long periods of time.

Furthermore, CPCP and HEED produce similar numbers of clusters, as illus-

trated in Figure 4.14a, which shows the number of cluster head nodes during the
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Figure 4.14: Comparison of HEED and CPCP in terms of the number of cluster

heads per round and the number of dead nodes over time.

time in which the network provides up to 90% coverage. The cost for extended

coverage-time using coverage-aware cluster head selection is paid by more dead

nodes compared to HEED, as shown in Figure 4.14b. However, while the network

loses fewer nodes using HEED, the network is not able to provide coverage as long

as it can using CPCP.

4.6.3 Hybrid HEED: HEED Combined with Coverage-

preserving Sensor Activation

Finally, we measure the coverage-time obtained using a hybrid version of

HEED. In the hybrid HEED protocol, the clusters are formed according to the

original HEED algorithm, and this cluster formation stage is followed by the se-

lection of active sensor nodes that are able to maximally cover the network. The

Cws and Cmw cost metrics are used for the selection of active sensors, while the

rest of the nodes are put to sleep. We compare hybrid HEED with two cases of

CPCP. The first case corresponds to CPCP described in Section 4.5. The second

case corresponds to CPCP where the routing of cluster head packets is done using

the cluster head nodes rather than the sensor nodes.

Figure 4.15 shows the lifetime of the network, defined as time for which 100%

and 90% network coverage is preserved. Both variants of CPCP significantly
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Figure 4.15: Comparison of Hybrid HEED and CPCP in terms of coverage-time

for random and nonuniform deployment scenarios.

outperform the “hybrid HEED” protocol, which again illustrates the importance

of making suitable choices for the cluster head nodes for coverage-preserving sensor

network applications.

4.7 Which Cost Metric to Use?

In all of our simulations, both coverage-aware cost metrics Cmw and Cws outper-

form the energy-aware cost metric Cea in terms of coverage-time. The minimum-

weight Cmw cost metric provides the best results (longest coverage-lifetime) in all

scenarios where the sensor network has to provide complete (100%) coverage of

the monitored area. However, the maintenance of full coverage over the moni-

tored area is extremely expensive, since it requires that non-redundantly covered

nodes are always turned on, which shortens their lifetime. The weighted-sum cost

metric Cws shows better performance than the minimum-weight cost metric after

coverage drops a few percentages, since it provides a more balanced relationship

between the node’s coverage redundancy and its remaining energy. Therefore, in

applications that require the maintenance of full coverage, the minimum-weight

cost is the best choice, while for applications that can relax this requirement

slightly, the weighted-sum cost is the best choice.

Although the coverage redundancy cost metric Ccc depends only on the sensor’s
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coverage, it does not perform well when full coverage is required. This cost metric

can potentially be used in small size networks, where data routing is not needed

or is done over very small numbers of hops. Finally, Cea performs worse than any

other cost metric, and it should not be the choice for any application that requires

persistent coverage of the monitored area.

4.8 Summary

In this chapter we explored different coverage-aware cost metrics for the selec-

tion of the cluster head nodes, active nodes and routers in wireless sensor net-

works whose aim is to maintain coverage of a monitored space. In such coverage-

preserving applications, both the remaining energy of the sensor nodes as well as

the redundancy in their coverage have to be jointly considered when determining

the best candidates for cluster head nodes, active nodes and data routers. Through

extensive simulations we illustrated the shortcomings of using remaining energy

or coverage redundancy as the only criteria for the decision about the nodes’ roles

in cluster-based wireless sensor networks. Instead, using the coverage-aware cost

metrics prolong coverage-time over the monitored area, by minimizing the use of

sensors in sparsely covered areas and those with low remaining energy.



Chapter 5

Impact of Routing on Coverage

in Visual Sensor Networks

Next we turn our attention to a specific type of wireless sensor network, namely

visual sensor networks. In recent times, there has been increased interest in video

surveillance and monitoring applications. The reasons for this interest are diverse,

ranging from security demands and military applications to scientific purposes.

Visual sensor networks were initially devised as a collection of small, inexpensive,

battery operated nodes equipped with very low power cameras with the ability to

communicate with each other wirelessly over a limited transmission range. These

camera-nodes have the ability to capture images of observed areas at variable

rates, to process the data on-board and to transmit the captured data to the

user/main processing center.

As an area with potentially many applications, visual sensor networks impose

many new challenges for research. Because the computer vision research area has

experienced rapid development in recent years, research on visual sensor networks

has been mainly focused on the visual aspects of the network, namely algorithms

for image data extraction and analysis. Very little research has been done in order

to integrate this knowledge from the vision area and wireless networking for these

kinds of systems.

Over the past few years, research efforts in wireless sensor networks have been

directed toward the development of efficient routing protocols that minimize en-

ergy consumption of the sensor nodes, while meeting certain QoS requirements
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(such as delay, bandwidth consumption, maximized coverage, etc.) required by

the particular application. However, routing in visual sensor networks is still an

unexplored field. It may appear that routing protocols developed for wireless

sensor networks should behave in a consistent manner regardless of the type of

sensors in the network. However, we reveal that due to the unique characteristics

of visual sensors (i.e., cameras), existing routing protocols applied to visual sensor

networks do not necessarily provide the same outcome as when they are used in

traditional sensor networks [90].

In many applications visual sensor networks must ensure that a monitored area

is maximally covered by the cameras in order to provide the required visual infor-

mation. When a visual sensor network is deployed over a large area, image data

captured by the camera-nodes can be routed over multi-hop paths through the

network, similarly to the routing of data through “traditional” sensor networks.

Since the camera-nodes are powered by batteries, multi-hop routing should help

to reduce the overall energy needed for data transmission from the camera-nodes

to the data sink. The selection of routing paths through the visual sensor network

affects the lifetime of the sensor nodes. Specifically, there are some nodes that

are more important to the application than others, such as those cameras that

solely monitor some part of the scene. Since the loss of these cameras affects the

coverage of the monitored area provided by the camera-network, the selection of

routing paths has to be done carefully.

In the previous chapter, we have shown that sensor nodes may not always be

equally important for the particular application. For example, when the applica-

tion requires maximum coverage over the monitored field, the energy expensive

roles should be assigned to the most redundantly covered sensor nodes, so that

their eventual loss does not significantly degrade the network’s coverage.

We use the knowledge gained about utilizing application-aware role assign-

ment described in the previous chapter, and we apply it here to visual sensor

networks. In the following chapters we explore the use of application-aware costs

for the selection of cameras to transmit data and for the scheduling of sensors to

provide full coverage. Specifically concentrating on the routing problem, in this

chapter we analyze how an existing application-aware routing protocol [34] that

was initially designed for wireless sensor networks behaves when it is used in a
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visual sensor network. In particular, we explore two problems essential to visual

sensor networks:

• We compare application-aware routing in traditional and in visual sensor

networks, for the case when the application requires full coverage of the

monitored area.

• We introduce a new cost metric for routing in visual sensor networks, which

improves the network’s coverage-time compared to the existing application-

aware routing cost metrics.

5.1 Application-Aware Routing Metrics in Vi-

sual Sensor Networks

Among the many applications for visual sensor networks, the interest in telep-

resence applications has grown significantly in recent times. As we mentioned in

Section 2.5.4, a telepresence system is a system that enables the user to take a

virtual tour over a physically remote real world site. For example, the goal of the

multidisciplinary project named “Being There” at the University of Rochester is

to develop a telepresence system that will enable a user to virtually visit some

public area, for example a museum or a gallery.

The “Being There” telepresence system is a network of wireless nodes equipped

with very low power cameras. The camera-nodes are mounted at random locations

in the room to be monitored. All cameras are identical and static, without the

possibility of pan, tilt and zoom. Each camera monitors a finite part of the

scene, and the cameras’ field of views (FoVs) can overlap, so that images taken

from different cameras can be integrated into a complete global view of the scene.

Using a control console, a user can navigate and virtually “move” around in the

monitored space. Over time, the user expresses a desire to see different parts of the

monitored area. Based on the user’s requests, the main processing center queries

the network in order to retrieve the necessary image data. The query contains

the coordinates of the “user request window” (URW) — a part of the scene that

is requested by the user.
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Figure 5.1: Visual sensor network.

This application requires three-dimensional coverage of the space. However,

this problem is extremely hard to analyze, and some pioneering work has been

done in this direction [91]. In order to simplify this problem, initially we assume

the task of floorplan monitoring, i.e., monitoring of a scene in one plane. In this

task, all camera nodes are mounted in one plane (at the ceiling of the monitored

room, for example), and they capture the images of the scene from a parallel

plane, as illustrated in Figure 5.1.

We assume that in the first phase of system operations, all cameras with

overlapped FoVs are jointly calibrated [60]. Because cameras monitor the scene,

which is in one plane, we simplify the problem of volumetric coverage, and consider

the coverage of the scene that lies on the plane π1, as shown in Figure 5.1.

We assume that the camera-nodes si are deployed at random locations on the

plane π. The physical location of every node on the plane π is represented by

coordinates (x, y), and the points of the scene plane π1 are marked as (xm, ym).

All cameras are directed toward the π1 plane, so that the FoV of every camera

intersects with plane π1. Therefore, we can consider that plane π1 is covered if all

points of this plane are covered by the intersection the cameras’ FoVs and plane

π1.

Instead of sensing and collecting information only from the environment in

its vicinity, cameras capture images of distant scenes from a particular direction.

Thus, there is a mismatch between the positions of the camera-nodes on the plane

π and the positions of the intersections of their FoVs with the observed plane
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π1, caused by the different cameras’ directions. As a result, it can happen that

several cameras that observe the same part of the monitored scene are actually

located at distant places from each other. Since the application-aware cost metrics

introduced in the previous chapter for traditional sensor networks are defined with

respect to the positions of the sensor nodes and the positions of their sensing

ranges, the displacement of the cameras and their FoVs changes the nature of

application-aware routing.

Considering this difference between the sensing abilities of traditional sensors

and the cameras, we re-define the application-aware cost metrics introduced in

the previous chapter in order to adjust them to the case of visual sensor networks.

5.1.1 Application-Aware Cost Metrics for Visual Sensor

Networks

Every location (xm, ym) on the monitored plane π1 is characterized by the total

energy available for viewing this location:

Etotal(xm, ym) =
∑

sj :(xm,ym)∈C(sj)

E(sj) ∀(xm, ym) ∈ π1, (5.1)

where sj represents a camera-node, and C(sj) represents the intersection area of

camera sj’s FoV and plane π1.

Considering the application-aware cost metrics introduced in the previous

chapter, namely minimum-weight cost (4.3) and weighted-sum cost (4.4), here

we define these cost metrics for the case of visual sensor networks.

The minimum-weight cost metric for a camera-node si is defined as:

Cmw(si) = max
1

Etotal(xm, ym)
(xm, ym) ∈ C(si). (5.2)

The weighted-sum cost metric for a camera-node si is defined as:

Cws(si) =

∫

C(si)

dxmdym

Etotal(xm, ym)
(xm, ym) ∈ C(si). (5.3)

The energy-aware cost metric Cea (4.7) remains the same in visual sensor

networks. Note that up to now, we have defined the Cmw and Cws costs using the



110

coordinates (xm, ym) on the scene plane π1. However, the cost of a link between

the nodes will depend on the physical positions of the nodes in plane π, assuming

that energy spent for packet transmission Etx is a function of the distance between

the nodes.

Clink(si, sj) = Caa(si) · Etx(si, sj) + Caa(sj) · Erx(si, sj), (5.4)

where Caa stands for either the minimum-weight, weighted-sum or energy aware-

cost metrics. So, the total cost for routing a data packet from each camera-node

si to the sink is found as a minimum cumulative cost path from this camera node

to the central processing center Sdst:

Croute(si) =
∑

si,sj∈p(si,Sdst)

Clink(si, sj) si ∈ π, sj ∈ π. (5.5)

5.1.2 Selection of Active Cameras

At the beginning of every round, the coordinates of the URW are arbitrarily chosen

on the monitored plane π1. Then, all cameras that cover that part of the scene

are determined, as illustrated in Figure 5.1.

For “traditional” wireless sensor networks, the URW area can be covered by

several sensor nodes, or for visual sensor networks, with several cameras. Since few

nodes can cover the URW completely, the system finds the subsets of the most

suitable camera-nodes (those with smallest total costs) that provide the image

information from the monitored plane covered by the URWs. The set of active

camera-nodes that cover the requested part of the scene with the minimum cost is

found by taking into consideration the cumulative costs defined by equation 5.5.

The selection of the camera-nodes is done in the following way. At the begin-

ning of camera selection, all nodes are in the active state. The nodes with higher

total routing cost have priority to decide if they will remain in the active state, or

they will turn off. The decision is made based on whether all points covered by

the camera-node’s FoV are covered by other nodes’ FoVs with lower cumulative

cost.
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Parameter Value

Size of the network 100× 100m2

Size of monitored scene 100× 100m2

Bit rate 500 bit/s

Number of nodes 100

Initial energy 2 J

Path loss exponent k 2

Sensing range of a node in traditional sensor network 15 m

Camera’s FoV radius 15 m

Table 5.1: Simulation parameters.

5.2 Comparison of an Application-Aware Rout-

ing Protocol in Wireless Sensor Networks

and Visual Sensor Networks

As shown in [34], application-aware routing achieves significant improvement

in coverage time, which is the time during which the network is able to preserve full

coverage of the monitored area, over energy-aware routing for traditional sensor

networks, as shown in Figure 5.2a. However, in visual sensor networks, this routing

protocol based on coverage-preserving cost metrics does not preserve the coverage

for a longer time compared to energy-aware routing. The results of simulations

for visual sensor networks are shown in Figure 5.2b. The simulation parameters

are listed in Table 5.1. For example, the Cea metric provides longer time of full

coverage compared with Cws, and it outperforms both coverage-preserving metrics,

in the case when the network provides almost full coverage (96%). This leads us

to believe that this application-aware protocol, which was designed for traditional

wireless sensor networks, is not completely applicable to the coverage preserving

task in visual sensor networks.

The reason for this result lies in the mismatch between the cameras’ physical

positions and the cameras’ FoVs. For the sake of explanation, we examine the

case when a user requests to see a part of the scene on scene plane π1, as shown
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(a) Coverage of a wireless sensor network.
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(b) Coverage of a camera-based sensor net-

work.

Figure 5.2: Coverage over time for a traditional sensor network and for a camera-

based sensor network for different cost metrics.

in Figure 5.1. The camera-nodes that monitor the requested part can be located

anywhere on the camera plane π. Among all the possible camera-nodes that

monitor the area of interest, the application-aware algorithm selects the minimum

set of camera-nodes with the smallest cumulative cost. Thus, the set of active

nodes that cover the part of the area for a minimum cost is chosen from a set of

camera-nodes placed at random locations in the network plane π. In the case of

traditional wireless sensor networks, the requested part of the scene determines

the locations of all sensors that take part in coverage of that part of the scene.

In order to preserve coverage, the distance between any two neighboring active

nodes can be at most twice the sensing range, which means that the active nodes

are grouped together, which is not the case for visual sensor networks.

In application-aware routing, the cost of a node is a function of the available

energy of the node, and also of other nodes whose FoVs (sensing ranges) overlap

with the nodes FoV. In the case of a traditional sensor network, this cost function

tells us how redundantly a sensor is covered, but also evaluates the sensor from

the routing perspective. For example, a sensor with low cost is usually a sensor

deployed in a dense area, surrounded by many nodes that are equally important

as routers and which redundantly cover its sensing area. Therefore, the loss of

this sensor will not influence the coverage, nor will it mean the loss of important
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relaying nodes. In visual networks, however, this cost function values the nodes

importance only from the coverage perspective. Although this cost function selects

as active nodes the nodes that are more redundantly covered, this selection does

not take into consideration the nodes roles as potential routers. For example, it

can happen that a camera-node is located in a scarcely-deployed area, so that it

is far away from its closest neighbors, but its FoV is overlapped with the FoVs

of several other cameras. In an early stage of the network, this camera-node can

have an important role as a router, and its energy should not be spent on the

sensing task. However, because its FoV is already redundantly covered with that

of many other cameras, its cost according to equations 5.2 or 5.3 will be relatively

small, which makes it suitable for selection as an active camera for the coverage

task.

Among all nodes that cover the requested part of the scene, the application-

aware protocol selects those nodes that have the smallest total cumulative path

cost, which is a sum of all the link costs from the node to the sink. On other

hand, it is well known that nodes close to the base station are frequently used

as routers of data from the other nodes toward the base station and therefore

lose their energy much faster compared to the nodes in the rest of the network.

However, it is still possible that their FoVs are redundantly covered with the FoVs

of other cameras throughout the network, which makes their cost relatively small.

Because they are closer to the base station, their total cumulative path cost is in

many cases smaller then that of nodes further away from the base station. This

makes them suitable for selection as active sensing nodes very frequently. As a

result, the loss of these important routers is unavoidable. This speeds up the loss

of energy of the rest of the network and makes the “hot spot” problem worse.

Therefore, although application-aware routing selects the nodes in the right man-

ner from the coverage perspective, it overlooks the fact that the cameras’ FoVs

are displaced relative to the camera locations. Thus, when used in a network

equipped with cameras, application-aware routing makes energy-inefficient selec-

tion of nodes, which leads to loss of a large number of nodes in the early stages

of network operation.

In camera-based networks, the energy-aware routing cost surprisingly outper-

forms the application-aware routing cost in coverage-time. This cost function does
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not measure a particular node’s importance to the coverage application, it only

determines the node’s ability to be active, based solely on its remaining energy.

Although this cost function does not have control over coverage directly, coverage

is maintained for a longer time thanks to two factors: the more balanced energy

spent among the nodes and the uncontrolled positions of the cameras’ FoVs over

the monitored area. A node will be selected as an active node if it has more

energy than the other potential active nodes, which directly prolongs the lifetime

of every node. Over time, the nodes at random locations die across the area, and

not necessarily close to the sink, as in the case of the application-aware cost. Due

to the unpredicted positions of the cameras’ FoVs, the lost coverage due to the

death of nodes will also be more or less randomly distributed across the area.

Also, it is interesting to notice that energy-aware routing not only outperforms

application-aware routing in the time during which the coverage is preserved, but

it also gives, for the same simulation parameters, longer coverage-time when it is

used in visual sensor networks compared to the coverage-time in traditional sensor

networks. This result can also be explained as a consequence of the uncontrolled

positions of the cameras FoVs, and the fact that in each round the active camera-

nodes are chosen from a set of nodes that are dispersed over the whole area. This

allows the algorithm to choose among nodes with different routing and coverage

capabilities, which in turn leads to even more balanced energy spending and more

consistent coverage preservation than in the case of traditional sensor networks.

5.2.1 Combined Application and Routing Cost

The simulation results from the previous subsection indicate that the problem of

application-aware routing in visual sensor networks is hard to manage in an inte-

grated manner. The results point out that every camera-node should be validated

by two separate costs: coverage cost and routing cost. The first cost is related

to how important the camera is for covering some part of the monitored area,

and the second cost evaluates the importance of the node to act as a possible

router of data toward the base station, with the goal of achieving more balanced

energy spending over the network. The combined cost for every camera-node can

be expressed as a weighted sum of these two cost functions:
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Figure 5.3: Coverage-time of the visual sensor network with the tunable Ccombined

cost metric.

Ccombined(sj)(α1, α2) = α1 · Cea(sj) + α2 · Cmw(sj)

=
α1

E(sj)
+ max

α2

Etotal(xm, ym)
, (xm, ym) ∈ C(sj), (5.6)

where α1 and α2 are tunable parameters {α1, α1} ∈ [0, 1] that add weights to the

node’s routing and coverage capabilities. The lifetime of the visual network with

Ccombined cost used and for different values of α1 and α2 parameters is shown in

Figure 5.3. The comparison of the results for all cost metrics in coverage-time

is shown in Figure 5.2b. The combined cost Ccombined provides slightly improved

results in coverage-time compared with other application-aware costs. It is notice-

able that total cost Ccombined(0.8, 0.2) gives slightly better results than the other

cost metrics. With the change in density of the camera-nodes in the network, the

relationship between the results obtained for different cost metrics remains the

same, as illustrated in the Figure 5.4. This figure shows the time for which 95%

of the monitored area is still covered by using different cost metrics.

5.2.2 Direct Transmission of Data Packets to the Sink

Although multi-hop transmission of the image data reduces the overall energy

consumption of the camera-nodes, it increases the chances for the loss of data due

to packet collisions, and it may produce longer packet delays. In scenarios where
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the sensor network covers smaller indoor areas, in [92] it has been shown that direct

transmission of packets to the sink can be a better choice when combined with

the appropriate error correction techniques, compared with multi-hop routing.

Figure 5.5 shows the network’s coverage-time obtained for the case when the

active camera-nodes send their data directly to the sink. Since the data trans-

mission is done over single-hop links, the camera-nodes are chosen based solely

on the application cost metrics and energy metrics without considering routing

through the other camera-nodes. The results show that when multi-hop routing

is not involved, the application-aware metrics outperform the energy aware met-

ric in coverage-time, as is the case for traditional sensor networks. Therefore, in

visual sensor networks deployed over small areas (such as in a room, for example),

where direct packet transmission is a reasonable choice over multi-hop routing,

the coverage preservation metrics introduced in the previous chapter can still be

used. Once data routing over multi-hop paths becomes necessary, new routing

metrics have to be explored.
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Figure 5.5: Coverage of the camera-based sensor network when active camera-

nodes send data directly to the data sink.

5.3 Summary

In this chapter we have analyzed the case when a coverage preserving routing

protocol, which avoids routing through sparsely covered network areas, is used

for data routing in a visual sensor network. We found that the camera’s unique

sensing features can affect the outcome of this routing protocol, which in the case

of visual sensor networks does not necessarily provide prolonged coverage over the

monitored area compared with the energy-aware routing approach.

The results in this chapter provide the same conclusion as the results in the

previous chapter, that sensor management and role assignment must be dictated

by two goals, coverage preservation and energy balance. In Chapter 4 we saw the

importance of considering both coverage and energy when selecting cluster head

nodes, active sensors and routers for traditional sensor networks, while in this

chapter we see the importance of considering both coverage and energy in visual

sensor networks where the sensing area is disparate from the camera location. In

both these cases, the sensors are important to sense the environment (e.g., provide

coverage) and to route date (e.g., provide connectivity). Thus, both coverage and

connectivity need to be considered in application-aware resource management to

extend overall coverage-time of the network.

This work provides only general research directions, and it has room for im-

provement. For example, we assume that cameras are used as the routers of data
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through the network. Another interesting scenario would be a heterogeneous net-

work, consisting of camera-nodes that capture images and sensor nodes that act

as data routers in the network. In this scenario, an open problem becomes how

to decide about the best routing strategy over sensor nodes, such that network

resources (bandwidth, energy) are optimally utilized. Also, we assume that every

camera-node sends the entire captured image of the monitored area. Since in

general several cameras can monitor the same part of the scene, the redundancy

in the data collected by these cameras with overlapped FoVs can be very high.

In order to reduce the network’s demand for energy and bandwidth, each active

camera can send to the sink only a part of its captured image, assuming that the

main processing center can reconstruct the whole monitored scene from the image

parts received from the different cameras. Such an approach that aims to reduce

the transmission of redundant data is further investigated in the next chapter of

this dissertation.



Chapter 6

Camera Selection in Visual

Sensor Networks

In this chapter, we examine the selection of camera-nodes in a visual sensor net-

work used in an application whose goal is to provide visual information about a

monitored space from any arbitrary viewpoint. The visual sensor network we con-

sider here consists of a large number of randomly placed cameras with overlapped

fields of views, which provide images that are synthesized into the user’s desired

view at a processing center. The selection of a set of the most suitable cameras

that jointly provide the user’s desired view is one of the basic problems in visual

sensor networks. As shown in the previous chapter, this selection must consider

both the energy constraints of the battery operated camera-nodes as well as the

application’s requirement for constant coverage of the monitored space. There-

fore, in this chapter, we propose and compare several methods for the selection of

camera-nodes whose data should be sent to a processing center for reconstruction

of the user’s desired view.

6.1 Collaboration of Cameras

In an energy-constrained and randomly deployed visual sensor network, the choice

of the camera-nodes that jointly provide a view of the monitored scene from

any viewpoint can greatly affect the network’s lifetime and the quality of the

reconstructed images [93]. In order to provide images from arbitrary viewpoints

119
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over a long period of time, the cameras must cover the entire 3D monitored space

as long as possible. The definition of coverage in traditional sensor networks, where

a point in 2D space is considered covered if it belongs to the sensing range of at

least one sensor node, has to be adapted for the case of visual sensor networks. In

a visual sensor network, we assume that a 3D point is covered if it is contained in

the view volume of at least one camera. When the monitored space is fully covered

by the cameras with overlapped views, the images from several cameras can be

combined together in order to generate a view from any arbitrary viewpoint.

Similarly to the scenario described in the previous chapter, we consider here

again a visual sensor network based telepresence system that enables the user to

take a virtual tour of the place being monitored by the cameras. Each time a

user changes position and/or viewing direction, update information is sent back

to the system (main processing center), which determines the part of the scene

that should be displayed to the user.

In order to generate the images of a scene requested by the user from an

arbitrary viewpoint, the main processing center requires the images captured si-

multaneously by several cameras. In response to a query from the main processing

center, each selected camera sends a different part of the user’s requested image.

There are several reasons why the cameras should provide only parts of the

captured images, instead of the entire images. First, transmission of the redundant

parts is avoided, which reduces energy consumption of the camera-nodes. Also,

with the currently achievable data rates of the sensor nodes, the transmission of

the entire image from each camera-node takes a long time. Therefore, sending only

the necessary part of the image from each selected camera reduces the total time

needed for obtaining all the image parts at the main processing center. Finally,

wireless nodes usually have limited storage space, which may not be sufficient for

storing the entire captured image before transmission.

The selection of cameras and the reconstruction (mosaicing) of the user’s view

from several received image parts requires knowledge of the cameras’ character-

istic parameters, which can be estimated in the system start-up phase through

camera calibration. As described in Chapter 2, camera calibration refers to the

process of obtaining the cameras’ extrinsic parameters (positions and orientations

of the cameras relative to a reference coordinate system) and the cameras’ in-
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Figure 6.1: Gallery monitoring by a visual sensor network.

trinsic parameters. Here, we assume that the relative positions and directions of

all cameras are known in advance. Therefore, the quality of the final (mosaiced)

image depends on the choice of cameras, the precision of the camera calibration

and the algorithm used for image mosaicing.

In this chapter, we focus on the problem of selecting multiple camera-nodes

and combining their images in order to reconstruct a complete view of a part of

a planar scene, which corresponds to the user’s desired view. Camera selection is

performed in two ways. The first camera selection method minimizes the angle

between the users’s desired view direction and the camera’s direction. The second

camera selection algorithm is based on a cost metric that measures the camera’s

contribution to the 3D coverage of the monitored space.

6.2 System Scenario

The camera-based network in our scenario consists of the camera-nodes cm, m ∈
1..N , mounted on the vertical walls of a room (e.g., an art gallery, as illustrated

in Figure 6.1). The locations of the cameras on the four walls, as well as their

directions, are chosen randomly. The direction of a camera c is represented by a

vector in 3D space ~nc = (ncx, ncy, ncz) that is the camera’s optical axis.

We assume that a user is able to “move” through the room, meaning that

the user can change position and viewing angle in the room over time. As the

user virtually moves through the monitored space, the system periodically receives
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queries with requests from the user to see a particular view. These queries provide

the user’s desired 3D location in the room and the direction of the field of view

(represented by ~nu = (nux, nuy, nuz)). From the system perspective, a user can

be replaced by a virtual camera that has the same intrinsic parameters as the

cameras used in the system, and an additional ability to change its location and

direction (i.e., its field of view) over time.

Our initial scenario assumes that the room monitored by the camera-node

system does not contain objects that could partially or fully occlude the view

of some cameras. Such a scenario is a simplified version of the more realistic

case, when objects appear in the monitored scene. In the absence of objects that

occlude the scene, the user’s view of an arbitrary scene is just the view of the

planar scene from the desired viewpoint. The planar scene is projected onto the

user’s image plane according to the perspective projection model of the pinhole

camera described in Chapter 2, forming the user’s requested view.

For a given position and direction of the user’s desired view, there is a group

of camera-nodes that partially share their views with the user’s desired view and

therefore can provide images of the scene in response to the user’s query. We label

this group of cameras as a set of candidate cameras (CC). Even when a camera

observes the same part of the planar scene as the user’s desired view, the image

data captured by the camera can be very different from the image data requested

by the user, if the two cameras see the scene under very different viewing angles.

To prevent the selection of these cameras, we only include in the CC set cameras

for which the angle between their optical axis ~nc and the user’s directional view

~nu is smaller than some threshold angle αth. We label the angle between the user’s

and camera c’s optical axis δcu (δcu = ∠(~nc, ~nu)).

6.3 Camera Selection Metrics

As the angle between the directions of a selected camera and the user’s desired

view δcu becomes larger, it is expected that the difference in the image obtained

by this camera and the desired user’s image (ground truth image) is larger. In

order to evaluate this intuition, we conducted an experiment with several cameras

aligned as illustrated in Figure 6.2. Each camera captures an image of the planar
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Figure 6.2: Experiment with aligned cameras.

scene in front. The angle between each camera’s direction and the user’s direction

(camera 0) increases with the distance of the camera to the user. We aligned

the images taken from each camera to the image taken by the user camera, by

finding the homography mapping [52] between the user’s image and each camera’s

image, and we measured the peak signal-to-noise ratio (PSNR) of the rendered

images. We use the same sets of feature points, the projective model and bilinear

interpolation of any missing pixels in the reconstruction of the warped images

from all cameras. We found that the PSNR of the aligned images does in fact

decrease with an increase in the angle between the user’s and the camera’s viewing

directions. Therefore, the angle between the user’s and the camera’s directions δcu

can be used as an approximate measure of the quality (PSNR) of the reconstructed

image.

If the camera-nodes are not constrained by limited energy, the preferable way

to select cameras that jointly provide the user’s desired image is by choosing those

cameras that contain different parts of the scene a user is interested in, and that

have the smallest angle between their directions and the user’s direction. However,

since the camera-nodes are battery-operated, this camera selection method should

be modified so that it considers the remaining energy of the camera-nodes as

well. Also, another constraint for camera selection comes from the fact that the

monitored space is non-uniformly covered (monitored) by the cameras.

The non-uniform coverage of the 3D space is the result of the random place-

ment of the camera-nodes on the walls, which results in parts of the 3D space

being out of reach of any camera, and parts that are monitored by a number of

cameras at the same time. The cameras’ visible volumes are overlapped, so that
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the volume of one camera can be partially or fully contained in the visible volume

of other cameras. In the absence of objects, the scene viewed by a camera may

be recovered from the images taken by the cameras with overlapping views. Such

a camera is redundantly covered, and its loss will not prevent a user from seeing

the part of the scene that is covered by this camera.

On the other hand, the situations when the system loses the “important”

cameras, those that solely monitor some part of the space, can be prevented

(delayed) when the selection of the active camera-nodes is done based on a metric

that combines information about the remaining energy of the camera-node with

information of how redundantly each camera’s visible volume is covered by the

rest of the cameras. Since this metric does not consider the angle between the

directions of the selected camera and the user, it is expected that the images from

the cameras selected based on this metric differ more from the image expected by

the user, compared to images obtained from the cameras selected based on the

“minimum angle” method.

Based on these observations, we introduce two methods for the selection of

cameras: camera selection based on the smallest angle between the user’s and the

camera’s direction, and camera selection based on a 3D coverage cost metric, which

considers the remaining energy of the camera nodes as well as the redundancy in

the coverage of the 3D space that belongs to the camera’s view volume. This last

cost metric is similar to the application-aware cost metrics used in the previous

chapters.

6.3.1 Camera Selection Based on Minimum Angle

In this minimum angle selection approach, the most suitable cameras to provide

the desired image are chosen by minimizing the angle δcu between the camera’s

axis and the user’s view direction. Although this method is straightforward and it

minimizes the distortion between the reconstructed image and the desired image,

there is a drawback — it does not consider the importance of the camera-node

to the task of coverage preservation over the monitored space. Thus it causes a

premature loss of the nodes important to the monitoring of areas that are not

redundantly covered by other camera-nodes’ viewing volumes.
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Figure 6.3: Voxels — basic elements for volumetric representation of the monitored

space.

6.3.2 Camera Selection Based on Volumetric Camera Cost

(VCC)

In order to define this cost metric, we use a volumetric description of the scene,

which is a concept commonly used in 3D computer graphics for the reconstruction

of a scene or an object based on joint consideration of all cameras’ available views.

In the simplest case, the monitored space is divided into small equidistant cubical

elements called voxels [94], as shown in Figure 6.3. Each voxel can belong to

the visible volume of several cameras, or it may not be included in any camera’s

visible volume, in which case the 3D space represented by this voxel is considered

uncovered by the visual network.

Knowing the positions and the directions of the cameras and their fields of

view, for each voxel we can find the group of cameras that contain this voxel in

their view volumes. If each camera-node has remaining energy Er(cm), m ∈ 1..N ,

we can find the total energy of each voxel as the sum of the remaining energies of

all the cameras that contain this voxel:

Etotal(v(i, j, k)) =
∑

{cm|v(i,j,k)∈V V (cm)}
Er(cm) (6.1)

where v(i, j, k) is the center of the voxel, and V V (cm) is the visible volume of

camera-node cm.

The volumetric camera cost (VCC) measures the camera’s importance to the
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monitoring task, and it is defined as the sum of the energies of all voxels (defined

in equation 6.1) that belong to this camera’s viewing volume:

CV CC(cm) =
∑

v(i,j,k)∈V V (cm)

1

Etotal(v(i, j, k))
(6.2)

6.3.3 Direction Based Volumetric Camera Cost (DVCC)

The information captured in the image depends on the camera’s direction. Al-

though the cameras can share the same 3D space, the information content of their

images may be completely different. For example, two cameras on opposite walls

can have overlapped visible volumes, but they image completely different scenes.

Based on this observation, we can define a direction dependent volumetric camera

cost metric (DVCC), which considers not only the fact that the cameras share

the same visible volume, but also whether or not they view the scene from similar

viewing directions. In other words, the volumetric cost metric of a camera cm

can be modified so that the new cost metric considers only those cameras that

share the same 3D space with this camera and for which the angle between their

direction and this camera’s direction is smaller than 90◦.

For every camera cm, m ∈ 1..N , we can find a subset of the cameras that

satisfy these requirements, labeled as Sc(m). Now, each camera’s cost depends

only on the remaining energy of the cameras from Sc(m), and not on the remaining

energies of the nodes from the entire network. Therefore, as seen from camera cm,

the total energy of the voxel v(i, j, k) is equal to the energy of all cameras from

the subset Sc(m) that contain this voxel:

Etotal(v(i, j, k)){m} =
∑

{ct|v(i,j,k)∈V V (ct),ct∈Sc(m)}
Er(ct) (6.3)

The direction based volumetric cost of the camera is thus:

CDV CC(cm) =
∑

v(i,j,k)∈V V (cm)

1

Etotal(v(i, j, k)){m} (6.4)
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6.4 Algorithms for Camera Selection

The low-power camera-nodes are envisioned to have the ability to send only a part

of the captured image instead of the entire image. Using inputs from the user

about the desired view’s position and direction, the main processing center runs

a camera selection algorithm and determines the set of active cameras along with

the specific image parts needed from each active camera. The main processing

center then queries each selected camera-node for that part of the image, which

represents communication overhead. However, this additional communication is

in turn paid off by a significant reduction in the energy needed for the transmission

of only the required image part, instead of the entire image.

In order to determine the required parts of the image from each camera, the

image plane of each camera is projected onto the plane (wall) in front of the

camera, bounding the part of the planar scene that can be observed by the camera,

as illustrated in Figure 6.4. These visible scene parts from each camera are labelled

as Bm, m ∈ {1..N}. Visible regions of the scene are found only once, at system

start-up, since the cameras do not change their direction and location over time.

The image plane of the user is divided by a grid into equal size blocks of pixels.

Based on the current position and direction of the user, the system calculates the

3D coordinates of the grid points located on the user’s image plane, as well as the

coordinates of the user’s image plane projections onto the plane (wall) that the
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user currently sees. The cells of the projected user’s grid onto the wall are labelled

as GPu. For each cell from GPu the system can find a set of camera-nodes from

CC that contain this grid cell in their visible region Bm.

We provide an algorithm that selects the final set of cameras together with

the parts of their images that must be sent back to the main processing center.

Additionally, we modify this algorithm for the case when the selection is made

based on the “minimum angle” criteria, considering the changes in the viewing

angles of the camera and the user across the planar scene.

6.4.1 Region Based Camera Selection Algorithm (RBCS)

Using any of the proposed cost metrics as a criteria for camera selection, the main

processing center determines the set of cameras that take part in the reconstruc-

tion of the user’s desired view. From all cameras in CC that see a part of the scene

the user is interested in, the region based camera selection (RBCS) algorithm first

chooses the camera c with the smallest cost. Then, RBCS determines all the grid

cells from GPu that are contained in the viewing region Bc of this camera. This

subset of grid cells from GPu is then mapped back to the camera image plane,

determining the region of the image captured by camera c that will be transmit-

ted back to the main processing center. All cells from GPu that belongs to the

viewing region Bc of this camera are mapped as covered. For the rest of the still

uncovered cells from GPu, RBCS repeats the same procedure. The algorithm

stops once when either all the cells of the user’s projected grid GPu are covered

or there are no more cameras from CC that can be considered by this algorithm.

6.4.2 Block Based Camera Selection Algorithm (BBCS)

The camera selection algorithm described in the last section is simple to imple-

ment, but when the cameras are chosen based on the “minimum angle” criteria,

the camera selection algorithm described in the last section has to consider a per-

spective projection of the scene onto the cameras’ image planes. According to

this model the angle between a ray from the camera to some point on the user’s

projected grid and a ray from the user to the same point changes over the planar

scene (wall), as illustrated in Figure 6.5.
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Figure 6.5: A change in the viewing direction of the camera and the user across

the planar scene, considered for the BBCS algorithm.

The block based camera selection (BBCS) algorithm determines the parts of

the images needed by taking this fact into account. BBCS finds the best camera

from the set of candidate cameras CC for each cell from GPu individually. Among

all cameras that contain this cell from GPu in their field of view, BBCS chooses

the camera-node with the smallest angle between the ray that passes from the

camera through the center of this cell and the ray from the user to this cell’s

center.

6.5 Simulation Results

We preformed simulations for 10 different scenarios with the proposed camera

selection metrics and for both camera selection algorithms (RBCS and BBCS).

Each scenario uses a visual network of 40 camera-nodes, mounted on the four

vertical walls of a room of size 10×10×4 meters. The positions and directions of all

cameras are chosen randomly. We assume in the simulations that the selection of

the camera-nodes, which together reconstruct the user’s desired view, is repeated

in every iteration, where in each iteration the user moves to a different position

in the room. The cameras provide images with a resolution of 320 × 240 pixels,

and the horizontal viewing angle (field of view) for all cameras is equal to 40◦.

The image plane of the user is divided into blocks of 8×8 pixels. We assume that

the energy needed for transmission of an image part from the camera node to the
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processing center is proportional to the size of the transmitted image part.

Figure 6.6a shows how the coverage of the monitored 3D space changes over

time for different cost metrics using the block based camera selection (BBCS)

algorithm. This figure shows the percentage of all voxels that are in the view

volume of at least one camera-node and therefore are considered covered according

to our definition of coverage in 3D space introduced in Section 6.1. The simulations

show that over time, a larger part of the 3D monitored space is considered covered

when the VCC or the DVCC costs are used to find the set of cameras, compared

with using the “minimum angle” metric. Since both the VCC and the DVCC

metrics consider whether the view volume of a camera is covered by the view

volumes of other cameras, these metrics direct the camera selection algorithm to

avoid the selection of cameras that are not redundantly covered, thus prolonging

the lifetime of these high cost camera-nodes. Also, as the camera-node’s remaining

energy gets smaller, the cost of the camera-node increases significantly, again with

the purpose of keeping the camera-node from being selected as an active node

whenever the selection algorithm can find another suitable camera.

In order to estimate the quality of the reconstructed image, we measured the

average angle δcu between the user’s direction and the direction of the selected

cameras. This is plotted in Figure 6.6b. Using “minimum angle” as a criteria for

camera selection the images are on average less warped compared to the images

from the cameras selected based on the VCC or the DVCC metrics. The smaller

angle δcu between the user’s direction and the selected cameras’ directions means

there will be a smaller difference in the images provided by these cameras com-

pared to the ground truth image. Thus, by combining the results provided in

Figures 6.6a and 6.6b, we can see that there is a clear trade-off in the time during

which the monitored space is completely covered by the visual network, and the

quality of the reconstructed images requested by the user of this system.

Figure 6.7 shows the results of the simulations performed for the case when

camera selection is done by using the region based (RBCS) algorithm. The sim-

ulation results for the RBCS algorithm are similar to the results for the BBCS

algorithm. Both the VCC and DVCC metrics outperform the “minimum an-

gle” metric in terms of prolonging coverage of the 3D space over time, but the

“minimum angle” metric chooses cameras that provide images closer to the user’s
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Figure 6.6: Simulation results for the different cost metrics used for camera selec-

tion based on the BBCS algorithm. αth = 90◦

desired image, as can be seen from 6.7b. Although RBCS requires less computa-

tion than BBCS, BBCS provides more accuracy in determining the set of required

cameras based on the “minimum angle” criteria.

6.5.1 Influence of αth on 3D Coverage

The simulation results discussed in the previous section are obtained for the case

when the set of cameras CC is chosen based on threshold angle αth = 90◦. For

smaller values of αth, the average angle between the cameras’ and the user’s di-

rection gets smaller, as can be seen by comparing Figure 6.6b with Figure 6.8b

where the angle αth is set to 60◦. By comparing these figures, we can see that the

3D coverage is preserved for a longer period of time when αth has a smaller value.

To explain these results, we compare the total amount of data obtained at the

main processing center. We find that once the coverage drops below 100%, for

smaller αth it happens more often during the simulations that the user’s image

cannot be fully reconstructed, since the camera selection has fewer choices of

cameras among which it selects a set of active cameras. In the case of smaller αth

the cameras on average send less data to the main processing center, as can be

seen from Figure 6.9, which shows the total number of pixels of the reconstructed
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Figure 6.7: Simulation results for the different cost metrics used for camera selec-

tion based on the RBCS algorithm. αth = 90◦

image at the main processing center, for the BBCS camera selection algorithm and

for different values of the threshold angle αth. Since the selected cameras produce

less data, on average they spend less energy over time, which is the reason for the

prolonged coverage over time compared with the case when αth is equal to 90◦.

6.5.2 Camera Direction Dependent Coverage

The previous results show that the DVCC metric achieves slightly better perfor-

mance in terms of prolonged coverage over the 3D space compared to the VCC

metric. The DVCC metric is derived from the VCC metric, but it only considers

those cameras whose visible volumes’ share the same 3D space and also point in

a similar direction in the space. This metric more specifically determines the cost

of the camera-node, since it considers the fact that the information content from

the camera’s image depends on the camera’s direction, so that cameras that share

the same information content should have smaller cost, and vice versa.

Following this logic, every camera-node can measure the 3D coverage of the

space in its view volume from its direction. Since the measurement of the 3D

coverage from each camera’s direction is complex, we measure the direction de-

pendent 3D coverage in the following way. The directional coverage represents the
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Figure 6.8: Simulation results for different cost metrics used for camera selection

based on the BBCS algorithm. αth = 60◦
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Figure 6.10: The cameras are divided into the four groups, depending on their

directions.

percentage of the space (in terms of voxels) that is seen by at least one camera-

node from a certain direction. We choose four directions in the room, which

correspond to the normals of the four walls of the room. All cameras are thus

divided into four groups, where each group is represented by one direction, as

shown in Figure 6.10. The cameras choose their groups according to the angle be-

tween their directions and the group direction. Each group of cameras observe the

monitored space from a different direction, and each of them see different facets

of the voxels. Remember that for the purpose of calculating the VCC and DVCC

cost metrics, the 3D space of the room is divided into voxels, and each of the four

vertical facets of the voxel can be best seen by the cameras from one group. We

measured the percentage of the voxels’ facets contained in the field of view of at

least one camera from each group of cameras, and for the purpose of comparison,

we performed the same simulations for the case when camera selection is done

based on the VCC cost and the “minimum angle” criterion.

The results for this directional based 3D coverage are shown in Figure 6.11,

for two arbitrarily chosen groups of cameras (the cameras from each group see the

3D space from one main direction). Since the information content of the images

depends on the cameras’ directions, the 3D coverage can be seen as a measure of

the amount of 3D space covered by the cameras from certain directions. Therefore,

the 3D space not only needs to be covered by the cameras, but it also has to be

covered uniformly from all possible directions, and the DVCC metric can be used

to achieve this.
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(a) Coverage from the first direction.
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(b) Coverage from the second direction.

Figure 6.11: Directional coverage: coverage measured for two arbitrarily chosen

directions and with different cost metrics and the BBCS algorithm.

6.5.3 Comparison of 2D and 3D Coverage

We measured the percentage of covered area of the walls in the monitored room

over time for the different cost metrics, which actually corresponds to the coverage

of the 2D area. This represents the case when we are interested only in prolonging

the time during which the visual network can fully monitor the walls, which is

a special case of the coverage of the 3D space. In Figure 6.12 we present results

for 2D coverage, i.e., coverage of the planar scenes, with various cost metrics. As

is the case for 3D coverage, we see that both the VCC and the DVCC metrics

achieve better results in prolonging coverage time compared with the “minimum

angle” metric.

6.6 Reconstruction of the User’s Desired Image

Upon reception of the image parts from the selected camera-nodes, the main pro-

cessing center maps these image parts to the virtual image plane of the user, and

it stitches the image parts together. There are several types of error that can

occur in the final image. There is geometric error due to the mis-alignment of

the pixels from the camera images compared to the pixels in the desired image.

This mis-alignment error depends on the precision of the camera’s estimated pa-
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Figure 6.12: 2D coverage measured over the monitored planes, for different cost

metrics.

rameters. Differences in the intensity of the pixels across the final image can also

occur due to the variance in the intensity levels of the images taken by cameras

from locations in the room with different lighting conditions. Another type of

error that can occur is due to the different distances of the cameras to the user’s

desired planar scene, which basically affects the resolution of the final image. The

cameras that are close to the requested plane provide images of higher resolution

compared to those that are further away.

In this section, we present the results of an experiment with 7 cameras. The

goal of this experiment is to mosaic the image parts obtained from the cameras

that are chosen based on different camera selection metrics into the final image.

The cameras are placed in one plane, and they point toward the observed plane.

We use the BBCS algorithm to select the set of active cameras.

Figure 6.13a shows the mosaiced image from the cameras that have the most

similar directions with the user. Figure 6.13b shows the same reconstructed user’s

view, generated from the cameras that have the smallest volumetric cost. By

visually comparing these two images with the reference image obtained from the

user’s position (Figure 6.13c), we can notice that the second image (Figure 6.13b)

has more distortion than the image in Figure 6.13a, due to different lighting

conditions of the chosen cameras that lie further away from each other. However,

this result is provided for illustrative purposes only, and it presents only a rough
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estimation of the quality of the final images obtained by both metrics.

6.7 Quality Estimation of the Reconstructed

Images

Results in the previous section show us that there is a clear trade-off in the

network coverage-lifetime and the quality of the reconstructed images. Therefore,

in this section we address this lifetime-quality trade-off by measuring the PSNR

(peak signal-to-noise ratio) of the reconstructed images obtained in simulations

with the different camera selection metrics introduced in Section 6.3.

This set of simulations is performed with 36 cameras that monitor a 3m ×
4m plane. The VCC metric introduced in equation 6.2 is adapted to the case of

plane scene monitoring, such that it depends only on the coverage of the moni-

tored planar scene. This cost metric is already provided in equation 5.3 in the

previous chapter, and here it is labelled as the maxCOV metric. The PSNR of

the reconstructed images obtained for the maxCOV and “minimum angle” costs

are compared with the PSNR of the image that is reconstructed by using the

maxPSNR metric, defined next.

The maxPSNR metric is defined in the following way [95]. For each block of

the user’s viewpoint (defined in Section 6.4), the views from the cameras that

contain this block are transformed and compared with the ground truth image.

The camera that provides the highest PSNR of this block is then selected to send

this part of the final image to the processing center. The maxPSNR cost cannot

be used in a real camera system, since the ground truth image is not available.

However, maxPSNR gives us an upper bound on the PSNR of the reconstructed

image that can be achieved by the cameras in the system.

The coverage-time obtained by the different cost metrics is shown in Figure

6.14c, while the corresponding PSNR of the reconstructed images is shown in

Figure 6.14a. As expected, at the beginning of the simulations, the maxPSNR

cost provides the highest PSNR among all the metrics, outperforming the coverage

cost by about 3dB and the “minimum angle” cost by about 1dB. However, with

the “minimum angle” and maxPSNR costs, the network loses the ability to provide
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(a) Cameras selected based on the “mini-

mum angle” criteria.

(b) Cameras selected based on the volumet-

ric camera cost (VCC).

(c) Reference image—the user’s desired im-

age.

Figure 6.13: The user’s desired image obtained by mosaicing the images parts

from the cameras selected by the “minimum angle” and the volumetric camera

cost metrics.
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full coverage compared with the coverage cost metric. The drop in coverage (after

around 40 simulation rounds for “minimum angle” and around 65 rounds for

maxPSNR) is followed by a sharp drop in PSNR, leaving the coverage cost to

provide better coverage and better PSNR after this point.

Figure 6.14b shows the PSNR values of the reconstructed images in a scenario

when all cameras have infinite sources of energy. The cameras selected by the

three metrics provide full coverage of the monitored plane. Here, maxPSNR pro-

vides the best quality images, as expected, with a PSNR that is about 3dB larger

than the coverage cost and about 1dB larger than the “minimum angle” cost.

Figure 6.14 clearly demonstrates the trade-off in the quality of the reconstructed

images and the coverage-time obtained by different camera selection methods. Fi-

nally, a snapshots of the reconstructed images obtained using the different camera

selection methods are shown in Figure 6.15.

6.8 Energy Distribution in Visual Sensor Net-

works

Here we explore the impact of allocating a fixed amount of energy (108J) among

different numbers of camera-nodes (18, 36, 54 and 108) on network lifetime. We

measure the time for which the camera-network covers at least 95% of the target

plane. Figure 6.8 shows the network lifetime obtained for different allocations of

the energy in the network.

By increasing the number of cameras, the energy is more evenly distributed

throughout the monitored space, and thus the network lifetime is prolonged. The

coverage metric (maxCOV) outperforms the other two metrics in all cases. The

variances in network lifetime for all three metrics decrease when more cameras

are used. Thus, by increasing the number of cameras, the network lifetime is not

only prolonged, but the uncertainty in lifetime obtained by the different metrics

is reduced.
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Figure 6.14: Coverage-time and PSNR obtained through simulations.
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(a) Real image. (b) Mosaiced image using

“minimum angle” cost, PSNR

= 43.956dB.

(c) Mosaiced image using

coverage cost, PSNR =

43.432dB.

(d) Mosaiced image using

maxPSNR cost, PSNR =

45.053dB.

Figure 6.15: Snapshots of images rendered in the simulations.
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Figure 6.16: The total energy of 108J is allocated to different numbers of camera-

nodes.
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6.9 Camera Selection in the Presence of Objects

In the previous sections we assumed that the monitored space does not contain

any objects, which simplifies the camera selection problem. However, in many real

situations it is common to have objects in the scene. In such cases the problem

of camera selection becomes much more complicated. The problem is how to deal

with occlusions since the view of some cameras may be occluded and therefore

they cannot contribute to the reconstruction of the desired view.

In this section we extend our work on camera selection for the case when

the monitored space contains a moving/static object. Our approach for the re-

construction of a full image of this non-planar scene assumes separate image re-

construction of the object and its background [96]. Depending on the particular

application, we can use different methods to select the cameras that provide the

desired view of the object and its background, which affects the lifetime of the

camera network.

Camera selection in the presence of occluding objects has already been studied

in the literature. An heuristic approach for camera selection that minimizes the

visual hull of the objects is shown in [62], for example.

We assume that a network of fully calibrated cameras is able to detect and

to locate an object present in the monitored scene [94]. In the simplest case,

the detected object can be approximated by a bounding box around the object.

The network provides a view of the scene from a certain direction by combining

(mosaicing) [52] images from several cameras into one output image The goal of

such a visual sensor network is to reconstruct the full view of the room monitored

by the cameras, by providing a complete view of the room’s walls as well as each

side (plane) of the bounding box around the object.

Such a camera-based network can be used for different surveillance tasks, such

as object tracking or object recognition, for example. As illustrated in Figure 6.17

these tasks may require images of an object and the background taken with dif-

ferent resolution. For example, for object recognition, the network should provide

high quality (high resolution) images of the captured object, while the image

quality of the background can be reduced. This is similar to the foveated vision

phenomena, where human eyes focus on the details of a specific object, thereby
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providing less information about the object’s background.

In the previous sections we defined two methods for selecting cameras that

provide images used for reconstructing an image captured from a user-specified

view point and direction. The minimum angle selection method provides images

of higher quality compared to DVCC. We concluded that these two camera selec-

tion methods provide a trade-off between the quality of the reconstructed image

(measured as peak-signal-to-noise ratio - PSNR) and the network’s ability to cover

the monitored space for an extended period of time. Our aim now is to show how

these camera selection methods can be utilized for the reconstruction of a view of

a monitored space in the presence of occluding objects.

Object detection

(low PSNR image)

Object classification

(medium PSNR)

User-requested

 high PSNR Image

TASKS

Camera 

Selection

Image

Reconstruction

Processing Center (PC)

USER

Camera 

Network

Figure 6.17: Task-specific selection of cameras in a visual sensor network.

6.9.1 Reconstruction of Scene View

Since an object in the scene is approximated by its bounding box, each side of the

box is a plane. Therefore, the reconstruction of the full view of the room includes

the reconstruction of the view of every plane (box side) and the reconstruction

of the object’s background. Depending on the application-specific task, the MPC

uses different methods for selecting cameras to cover the box’s sides and visible

parts of the object’s background. For object recognition, for example, selection of

cameras that provide images of the object can be done by using the minimum angle

selection method, since it provides images of higher PSNR compared to DVCC. On

the other hand, selection of cameras that provide images for reconstruction of the
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background can be done based on DVCC. Cameras selected by this method usually

provide lower resolution images, but at the same time this method prevents early

loss of cameras that non-redundantly cover some part of the monitored space.

6.9.2 Simulation Results

In order to analyze how these combined camera selection methods affect the time

during which the camera network provides (almost) full coverage of the monitored

space (measured as a percentage of the monitored space covered by at least one

camera’s viewing frustum), we simulate a camera-based network consisting of 40

cameras randomly placed on the walls of a room of size 10× 10× 4m. An object

(approximated by a bounding box) is placed in the middle of the room. We used

several combinations of the two selection methods (listed in Table 6.1) to obtain

images of the bounding box planes (object) and the background scene. In each

simulation round a complete view of each side of the room with the captured

object is reconstructed with respect to the user’s position and direction that was

chosen at the opposite side of the room. Each selected camera spends energy that

is proportional to the part of the image it provides.

As shown in Figure 6.18, coverage-time of a visual sensor network changes

when using different combinations of camera selection methods. In the case when

the application does not require high quality images (e.g., when object and back-

ground images are reconstructed by using images from cameras selected using

DVCC) coverage-time of the visual sensor network can be up to 30% longer com-

pared to the coverage-time of a network that always has to provide the highest

quality reconstructed (mosaicked) images (e.g., when both the object and the

background are reconstructed from images of cameras chosen by the minimum

angle selection method).

6.10 Summary

In this chapter, we reviewed our work on different camera selection methods in

visual sensor networks. Cameras are selected to provide the image data necessary

for the reconstruction of the planar scene from any arbitrary viewpoint. Also, we
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Application/Method Object Background

Highest resolution Min. angle Min. angle

Object recognition Min. Angle DVCC

Object detection DVCC DVCC

Table 6.1: Combined camera selection methods.
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Figure 6.18: Coverage-time of the camera network.

analyze the way to reconstruct the final view in the case when an object is present

in the monitored area. Our proposed metrics for selecting cameras provide a trade-

off between the network lifetime and the quality of the reconstructed images.



Chapter 7

Camera Scheduling in Visual

Sensor Networks

Sensor scheduling is one of the dominant strategies for effectively using the limited

sensor battery power in wireless sensor networks. The aim of sensor scheduling is

to decrease redundant sensing in the network, and therefore to minimize the energy

spent by the sensor nodes. In the case of visual sensor network, the capturing

and transmitting of images taken by a number of cameras requires a significant

amount of energy. However, continuous monitoring of a physical space can often

be successfully performed by using only a subset of cameras, while allowing the

other cameras to enter a low power sleeping mode. These subsets of active cameras

should be changed over time in order to balance the energy spent among all the

nodes in the network. Therefore, in this Chapter we discuss the advantages of

using scheduled sets of camera-nodes in a visual sensor network for providing full

coverage of the monitored space.

First, we will provide an overview of the scheduling problem of sensor nodes in a

wireless sensor networks, and then, we will continue with exploring the scheduling

problem of camera-nodes in a visual sensor network used for a specific user-centric

application.

146
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Algorithm 2 The Garg-Könneman algorithm applied to sensor networks.

1: Initialize : δ = (1 + ε)((1 + ε)N)−
1
ε for i = 1, .., N y(i) ← δ

E(i)
, D ← Nδ,

j = 0

2: while D < 1 do

3: j ← j + 1,

4: Find the column j, the cover set with the minimum lengthy(j)

5: Find row p, the index of the sensor si with the minimum E(p)
PA(p,j)

6: t(j) ← E(p)

PA(p,j)log1+ε
1+ε

δ

7: ∀i = 1, .., N, y(i) ← y(i)(1 + ε E(p)
PA(p,j)

\ E(i)
PA(i,j)

)

8: D ← ET y

9: end while

7.1 Energy Efficient Scheduling of Sensor Nodes

The formal definition of the problem of how to find energy-efficient schedules was

first introduced in [97]. Given a monitored region R, a set of sensor nodes s1, .., sn,

sensing regions of the sensor nodes Rs1, .., Rsn and their energy supply b1, .., bn the

problem is to find a monitoring schedule (CS1, t1)..(CSk, tk) where CSi is a sensor

cover set and ti is the time associated with CSi, such that
∑k

i=1 ti is maximized,

while the energy consumption of each sensor node si does not exceed its battery

reserves bi.

The scheduling problem can be formulated as a linear packing problem, defined

by the linear program:

max
{
cTx|Ax ≤ b,x ≥ 0

}
. (7.1)

Since the number of columns of A (which corresponds to the number of cover

sets) increases exponentially with the number of sensors, the approximative solu-

tion of this problem is based on the (1 + ε) Garg-Könemann [98] algorithm. This

algorithm finds the column j of A by minimizing the so-called length defined as

lengthy(j) =
P

i A(i,j)y(i)

c(j)
for any positive value of vector y (shown by Algorithm 2).

Finding the cover sets and time schedule of sensor nodes using the Garg-

Könemann algorithm requires that elements of matrix A be set as:
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A(i, j) =

{
PA if sensor si ∈ CSj

0 if sensor si /∈ CSj

(7.2)

where PA is the power spent by a sensor node while active. Vector xT represents

the time schedule t1, .., tk of cover sets CS1, .., CSk, vector bT contains sensor

nodes’ initial battery energies and vector c, in the case of equally weighted sensor

nodes, is set to the vector of positive constants.

The Garg-Könemann algorithm solves the scheduling problem by using a sub-

set of all columns (cover sets) of matrix A, thereby extending the sensor network

lifetime close to the optimal solution (within a factor of (1 + ε) from the optimal

solution). Parameter ε controls the fidelity of the solution since with a decrease

in ε the number of cover sets grows fast, which enables the network lifetime to

more closely approximate the optimal solution.

7.2 Power Management through Camera Schedul-

ing

Solutions to many application-specific tasks of visual sensor networks assume that

all cameras are always ready for capturing images and communicating data. How-

ever, this approach limits the lifetime of battery-operated camera-based networks,

since such information rich networks consume enormous amounts of energy over

time.

The energy consumption of a camera-node is dominated by the energy con-

sumption of three hardware components: processor, image sensor (camera) and

radio. Depending on its current task, the camera-node enters different opera-

tional modes – active, idle and sleep, while spending different amounts of energy

in each mode. To reduce energy consumption while still providing coverage of the

monitored space, we consider the case when different sets of cameras Cs ∈ CS,

which provide full coverage of the monitored region, are used over time. In such

a scenario the cameras from the currently active set Cs(m) monitor the space of

interest while the remaining cameras enter the low-power sleep mode.

There are several reasons for using scheduled camera sets for a continuous
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monitoring task:

• In this dissertation, we deal with user-centric visual sensor networks, where

the network’s response (image data sent from the camera-nodes) depends

on the user’s query (defined by the user’s virtual position and direction in

the monitored space). Users’ requests can arrive to the network at any

moment (for example, the arrival of a user’s requests can follow a Poisson

distribution). Since the moment when a user’s request arrives cannot be

predicted, the network needs to have cameras ready to respond to the request

at any time.

• Visual sensor networks designed for applications that require images from

any viewing direction (such as target tracking or event-triggered applica-

tions) should continuously monitor the space of interest. In this case a

group of cameras should be able to provide images at every time instance.

• Some applications may require that a camera-network continuously collect

and store the images over time – in this case using a minimum number of

cameras that provide full coverage significantly reduces the required storage

space compared to the case when all cameras are always turned on.

7.2.1 Camera Scheduling in Visual Sensor Networks

There are several differences between the scheduling of cameras in a user-centric

visual sensor network and the scheduling of nodes in a traditional sensor network:

• The sensing model has to be adapted from a 2D model in the case of sensor

networks to a 3D model in the case of visual sensor networks.

• In order to reduce energy consumption image sensors can be designed to

select a part of the captured image [99], which is then transmitted wirelessly.

Thus, depending on the cameras’ activity, the camera-nodes in different

working modes spend different amounts of energy over time.

• Based on the current user’s request to see some part of the scene, a group of

cameras from the currently active camera set Cs will be chosen to reply to
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d

Figure 7.1: The cameras cover the monitored space starting from a distance d

from the wall.

the user’s query. It is not possible to predict the user’s requests (a part of

the scene that the user is interested to see) over time in a user-centric visual

sensor network. Thus, we cannot find the optimal schedule for the camera

sets. However, using cameras organized in multiple cover sets still provides

significant energy savings compared to the case when all cameras are always

turned on over time.

Therefore, we discuss a heuristic approach for camera scheduling in a visual

sensor network and provide results of camera-node scheduling in the case when

the network serves multiple users over time.

7.2.2 Scheduling Model

In the previous Chapter we emphasized the importance of having the monitored

space covered by the cameras from all directions for the longest period of time.

Assuming that the monitored room is rectangular, the cameras should cover the

monitored space from each direction toward the opposite wall. However, since

each wall of the room has a finite number of attached cameras, space very close

to the cameras is not fully covered by the cameras’ fields of view. Therefore,

considering the cameras’ FoVs (as illustrated in Figure 7.2) we assume that the

space from each direction should be covered by the cameras’ FoVs starting from

some distance d from each wall.
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Since the cameras mounted on different walls monitor the space from different

directions, the scheduling of the four groups of cameras is performed separately.

To find the cover sets for each group of cameras, we divide the monitored space into

cubical elements (voxels) of the same size. Using the Garg-Könemann algorithm

we find a finite number of camera cover sets CSi, i = 1, .., 4 for each group of

cameras. Each camera set Cs from CSi covers all voxels that are at a distance d

or greater from this group of cameras.

Time is divided into scheduling frames. On every wall the cameras from one

cover set Ci
s(m) ∈ CSi, i = 1, .., 4 monitor the space during one scheduling frame.

Each scheduling frame has the same duration, equal to Tsf .

The main processing center (MPC) manages the network’s resources. It re-

ceives information from the camera-nodes on their remaining energies, and based

on this information the MPC updates the cameras’ coverage costs (given by equa-

tion 6.4) and selects the cameras that should provide images as a response to the

user’s query. The group of cameras that are selected from the currently active

cover set Ci
s is labelled as Ci

a.

To assure collision-free transmission of the data packets, the communication

between the selected cameras and the MPC is organized according to a TDMA

model. Time is divided into communication rounds called response frames (as

illustrated in Figure 7.2), where during each response frame the selected cameras

send image data to the MPC. The response frame begins with a control packet

broadcast by the MPC that informs all cameras in currently active camera sets

Ci
s, i = 1, .., 4 about the selected cameras Ci

a that have to send their image data

back to the MPC. The control packets from the MPC carry information about

the order in which selected cameras must reply back to the MPC, as well as

information about the parts of the images that each camera-node has to transmit.

After the control packets are broadcast, the uplink communication begins, where

selected cameras transmit their images back to the MPC.

The duration of one response frame Trf varies over time, as it depends on the

number of selected cameras and the amount of data that each selected camera

transmits back to the MPC. Thus, Trf corresponds to the time needed to send

Ncp control packets from the MPC to the cameras plus the time needed to send

data packets from all selected cameras to the MPC over a wireless channel.
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Tsf TsfTsf

Trf1 Trf2 Trf3 Trf4

Ttx(1) ...                      ... Ttx(k)

Scheduling frames

Response frames

Selected cameras transmit 

their data within one Trf

Tsch TschTschTsch

Figure 7.2: Scheduling of the camera-nodes in a visual sensor network. One cover

set Ci
s is used during one scheduling frame. Selected cameras Ci

a transmit their

image in one time slot of Trf .

Mode CPU Radio Camera

Tx [mA] (0 dB) 2 17.4 20

Rx [mA] 2 19.7 20

Idle [mA] 2 0.365 20

Sleep [µA] 1 1 10

Table 7.1: Current consumption of a camera-node at 0dB Tx power. The camera-

node consists of a Tmote Sky mote with an Omnivision OV6130 camera.

7.2.3 Energy Model

We use a simplified energy model that accounts for the energy consumption of

three main sensor node components: CPU, radio and image sensor. The camera-

node consists of a Tmote Sky [23] wireless sensor node coupled with an Omnivision

OV6130 image sensor [100]. Depending on its activity over time, each camera-

node changes between different states, where the main components (CPU, radio,

image sensor) enter different working modes (active, idle, sleep). Each working

mode is characterized by the current consumption given in Table 7.1.

The MPC selects a group of cameras from the current set Ci
s based on a user’s

request. The MPC then assigns to each selected camera cj a duration Ttx(j) during

which the selected camera should transmit its data back to the MPC. All other

cameras from the current cover set Ci
s remain in idle mode. The cameras that

do not belong to the current cover set Ci
s are in sleep mode during the time Tsf .

The energy consumption of sensor nodes that are selected to capture images (EA),
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those in idle mode (EI) and those in sleep mode (ES) during one communication

round are:

EA(j) = PrxTsch + PtxTtx(j) + (Trf − Ttx(j))Pidle,∀j ∈ Ci
a (7.3)

EI(j) = PrxTsch + TrfPidle, ∀j /∈ Ci
a (7.4)

ES(j) = (Tsch + Trf )Psleep,∀j /∈ Ci
s, (7.5)

where Tsch is time required to send the control packets from the MPC, and Trf =∑
∀ck∈Ci

a
Ttx(k).

Parameter Name Symbol Value

Number of cameras N 80

Room size A 10× 10× 4 m

Scheduling frame Tsf 30 s

Number of control packets/size Ncp 2/30 bytes/packet

Initial battery energy E 50 J

Data rate R 250 kb/s

Data/payload size of packet 74/64 bytes

Image sensor QCIF resolution SR 288× 352 pixels

Image resolution IR 8 bits/pixel

Table 7.2: Parameters used in the simulations.

The camera sets Ci
s ∈ CSi are changed over time either after time Tsf or in the

case when any of the cameras in the currently active set dies. Further explanation

regarding the camera set scheduling is provided in Figure 7.3.

7.2.4 Camera Selection based on Minimum Cover Cost

The camera selection procedure for this visual sensor network application is de-

scribed in the previous Chapter, Section 6.4.1. The user’s image plane is divided
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1 Initialize: Find set of feasible cover sets CSi, i = 1, .., 4.

using Garg-Könemann algorithm.

T i
s = 0, i = 1, .., 4

2 Start simulations:

WHILE number of dead nodes < Ndead tx

Select set of cameras Ci
a to respond to user’s query

(for each room’s side i).

T i
s = T i

s + T i
rf, i = 1, .., 4

Selected cameras Ci
a transmit data to MPC.

For each side i, i = 1, .., 4 check:

If some node ck ∈ Ci
a dies from currently active

cover set Ci
s

Remove all sets that contain ck from CSi

If all sets are removed from CSi

Find new group of sets CSi using

Garg-Könemann algorithm.

If T i
s > Tsf

Change currently active set of cameras Ci
s

T i
s = 0

END

Figure 7.3: Scheduling algorithm applied to the camera-nodes.
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Figure 7.4: The requested image part contains useful pixels and pixel overhead.

into blocks of equal sizes. The MPC selects for each block one camera with the

smallest coverage cost (defined by equation 6.4) that contains this block in its

FoV. The block is then perspectively projected onto the selected camera’s im-

age plane. This determines the part of the image that the selected camera must

transmit back to the MPC.

In order to simplify communication between the MPC and the selected cam-

eras, the required image part from the selected camera is determined by two

coordinates: the upper left pixel (Pstart) and the lower right pixel (Pstop) of the

requested image part, as illustrated in Figure 7.4. For each selected camera these

coordinates are broadcast in the control packets at the beginning of each schedul-

ing frame. Therefore, the part of the image transmitted to the MPC contains

pixels that are required for the reconstruction of the user’s view as well as over-

head pixels. This overhead can be arbitrarily large, and it increases with the

number of cameras. Therefore one of the tasks of the MPC is to minimize this

overhead by selecting fewer cameras while still selecting cameras with small cov-

erage costs. Beside energy efficiency, smaller communication overhead results in

a shorter time needed to respond to the user’s request.

Therefore, we modify the camera selection algorithm presented in Section 6.4.1

so that it aims to select the set of cameras based on the total minimum cost. We

call this algorithm Minimum Cover Cost (MCC). The algorithm is presented in

Figure 7.5.

7.2.5 Simulation Results

The results of our simulations confirm the advantage of using the MCC algorithm

over the case when the selection of cameras is based only on the cameras’individual
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For each group of cameras i, i = 1, .., 4:

1 Find all cameras from the currently active camera set Ci
s that cover

some part of the user’s requested image (label them as Ci
m).

2 Find all camera sets (labelled as MSi) from Ci
m that maximally cover

the user’s requested view (using Garg-Könemann algorithm).

3 Assign the cost sCosti(m) to each cover set ksm ∈ MSi calculated as:

sCosti(m) =
∑
∀c(j)∈ksm

C(j), ∀ksm ∈ MSi

where C(j) is the current coverage cost of camera c(j)

4 Select the set of cameras that has the smallest cost sCosti among all

sets. These cameras will provide the user’s requested image.

Figure 7.5: Minimum Cover Cost (MCC) algorithm.
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(b) Selected cameras transmit the en-

tire captured image to the MPC.

Figure 7.6: The average number of selected cameras in one communication round

for each room side, for the CSS and MCC algorithms. The camera network serves

one user during its lifetime.

costs denoted as Cost-based Camera Selection (CCS).

Using the MCC algorithm, the number of selected cameras over time is smaller

than by using CCS, as shown in Figure 7.6a. This results in a smaller amount of

overhead data transmitted by the selected cameras. Additionally, this results in

shorter query response time (shorter Trf ), as illustrated in the Figure 7.7a.

Since the time needed to respond to a user’s query is shorter, the cameras

from Ci
s spend less time in idle mode and thus they waste less energy. Therefore,

using the MCC algorithm the cameras are able to respond to more queries over

the network lifetime. Figure 7.8a presents the number of reconstructed images at

the MPC from data received from the cameras that are selected using the CCS

and MCC algorithms. Here we assume that camera-nodes transmit the image

parts requested by the MPC. The total number of reconstructed images (which

corresponds to the number of user’s query responses) until the network loses 95%

of the nodes is 15− 20% higher using MCC compared to using CSS.

We also compared the MCC and CCS algorithms in the case when camera-

nodes do not have the ability to select the image part but instead have to transmit

the entire captured image to the MPC. The improvement provided by MCC over

CCS is even better. The number of selected cameras (given in Figure 7.6b) is sim-
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Figure 7.7: The average duration of one response frame Trf . The camera network

serves one user during its lifetime.
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Figure 7.8: The total number of reconstructed user’s views until 95% of all cameras

in the network die.
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ilar to the case when cameras transmit image parts (Figure 7.6a), but the average

query response time is much longer than in the previous case (Figure 7.7b). Since

the selected cameras transmit more overhead data with CCS, MCC improves the

total number of responded queries by around 45% compared to CCS (Figure 7.8a).

7.3 Query-Merging for Multiple Users

The user-centric visual sensor networks we consider should be accessible on-line

by multiple users at the same time. Thus the system should be able to process

multiple users’ queries simultaneously.

The network’s response time (the time for which the network provides the

images needed for reconstruction of the desired users’ views) is bounded by the

maximum achievable data rate in the network. In order to prevent long queues

of users, requests from multiple users should be merged together in order to serve

them efficiently. Therefore, a high QoS for such a network assumes that all users

are provided with the desired view with a small delay while the network spends

minimum resources (energy, bandwidth) to reply to all users.

Let us assume that there are Nu users who simultaneously request images from

different arbitrarily chosen view points. The MPC divides the users’ image planes

into blocks that are projected on the walls. For each projected block the MPC

finds all cameras from the currently active camera set Cs that contain this block

in their FoV.

The MPC then “merges” all queries in the following way: it finds all feasible

sets of cameras that cover all users’ blocks. Then, it chooses the set of cameras

with minimum total cost using the MCC algorithm. The cameras from the chosen

set Ci
a provide image data that is used for reconstruction of the final images for

multiple users. This is basically the MCC algorithm used in the case of multiple

users (MCC-MU).

We compared MCC-MU with the case when the set of active cameras Ci
a is

chosen only based on the cameras’ costs (CCS-MU). In this case, we are still using

data from one camera in the reconstruction of multiple users’ views, but we do

not try to minimize the number of cameras in the chosen set Ci
a.

We simulate the cases when the system serves 1,3,5,7, and 10 users simulta-
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Figure 7.9: Simulation results for the case of a network that serves multiple users’

queries simultaneously.

neously. Figure 7.9a shows the total number of reconstructed users’ images for

different numbers of users in the system. A smaller amount of overhead data, as

in the case of the MCC algorithm, results in a higher number of reconstructed

users’ views at the MPC over time. Also, the performance of MCC-MU depends

on the overlap of the users’ views – higher redundancy (overlap) in the users’

views enables that fewer cameras be used to transmit all image data to the MPC.

Figure 7.9b shows the average Trf for different numbers of users. As expected,

the time needed to receive all image data from all selected cameras is always

shorter with MCC-MU compared with CSS-MU.

7.4 Summary

In this Chapter we analyzed the scheduling problem of the camera-nodes in a user-

centric visual sensor network. This analysis is application-specific considering the

fact that the system has to provide images from some predetermined part of the

scene. We concluded that in order to minimize the time of the network’s response

to the user and to minimize energy consumption, it is necessary to engage the

minimum number of cameras that support all requests. Such an approach leads
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to a higher number of satisfied users’ queries in a visual sensor network that serves

either a single user or multiple users.



Chapter 8

Precise Positioning via WSN and

Image Data Integration

Localization, which provides a sensor node with information about its physical

position in a network, is one of the most fundamental services that has to be sup-

ported by a wireless sensor network for almost any application. Simply, collected

data from the sensor nodes becomes meaningless without the information about

where this data comes from. The location information is not only required for

characterizing collected data, but it is needed for other purposes as well. For ex-

ample, many routing algorithms are based on the assumption that the locations of

the sensor nodes are already known, or that these locations can be easily obtained

(for example, with the help of GPS, or by some localization algorithm). Coverage

preserving algorithms and metrics, such as those presented in this dissertation, are

also dependent on information about the location of the nodes in the network. In

many applications, including those for tracking moving objects, monitoring an in-

truder’s attack or responding to alarm situations, information about the location

of the sensor nodes is crucial for the correct performance of the application.

Although location information is essential in many sensor network applications,

obtaining highly precise location information is extremely hard due to several

reasons, such as unreliable signal strength measurements (caused by unpredictable

changes in the wireless channel’s condition), changes in the network’s topology

caused by the loss of nodes, etc. Various location estimation methods have been

proposed so far, such as those based on measurements of received signal strength

162
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(RSS), angle of arrival, and time of flight. Also, different technologies, such as

infrared and ultrasound technology, have been explored to be used alone or in

combination with RF signals for positioning systems.

In this chapter, we present a prototype of a positioning system that provides

precise coordinates of a moving object. The system utilizes information from a

set of beacon nodes with known locations and, by measuring the signal strength

of the received signal, it finds a rough position of the moving object. Using the

information extracted from a camera’s images of the moving object, the system

is able to refine the estimated coordinates of the object. However, in order to

recognize the object from the image, the object has to be marked with a visible

marker. Once the object is captured by the camera, the marker is detected and

the fine-scale position of the object is obtained, the system is able to track the

moving object as long as the marker is visible to the camera. This positioning

system for high precision location estimation is very robust, and it can be used in

many applications, such as robot localization, control and navigation or tracking

of the assets in warehouses or hospitals.

8.1 Related Work on Localization Systems

Localization assumes finding the distance of a node with an unknown location rel-

ative to nodes located at known positions. There are several common approaches

for estimating the distance between two nodes. Time-based methods record the

time of arrival (ToA) or time-difference-of-arrival (TDoA). Knowing the prop-

agation speed of the signal (such as RF, acoustic, infrared or ultrasound), the

propagation time can be translated into the distance between the two nodes.

Angle-of-arrival (AoA) methods use the angle at which the signal is received and

geometry to estimate the node’s position.

A common approach used to find the positions of the sensor nodes in a network

is based on measurements of the strength of the received signal (RSS) from several

reference nodes placed at known locations (we refer to these nodes as beacons).

After receiving messages from at least three beacon nodes, the moving node can

use tri-lateration and easily calculate its current position, as illustrated in Figure

8.1. Tri-lateration is a basic localization mechanism that uses the distances be-
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Figure 8.1: Localization based on tri-lateration.

tween three points with known locations and the point at the unknown location to

calculate the unknown position as the point on the intersection of circles centered

at the known points [101]. This approach is based on the fact that an RF sig-

nal propagates through an isotropic environment, with signal strength decreasing

with distance from the sender. However, in real situations, the signal is usually

attenuated on its way from the sender to the receiver, due to many factors, such

as diffraction from objects, shadowing, scattering, etc. Such a received signal does

not obey the model by which the RSS is simply a function of the distance from

the sender. The environmental influence on the strength of the received signal is

hard to model, and it is almost impossible to predict the signal strength at the re-

ceiver. However, many localization methods assume an RF signal travels through

an ideal medium and arrives at the receiver unchanged. This becomes a source of

error in the positions estimates. Therefore, solutions that incorporate some sort

of statistics about the error in estimated distances to the point with unknown co-

ordinates, or solutions that consider the measurements from more reference points

have been explored as well. Positioning algorithms usually give better results in

outdoor environments than in indoor environments, since the signal in an indoor

environment is exposed to many changes due to diffraction from objects and walls

on its way to the receiver.

Since almost all applications of sensor networks require location information,
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this research area is very attractive and it has been the center of interest for a

while. The proposed solutions are numerous and versatile since each solution is

built for a particular application. In this section, we give a short overview of

several interesting location systems based on different technologies and methods

used for location calculations.

GPS (Global Positioning System) [102] is among the first location systems to

make a breakthrough in industry and the consumer market, but due to its high

cost and inability to provide precise position information in indoor environments,

it is not a viable solution for localization within a sensor network.

The RADAR system [103] is a localization system designed for an indoor

environment. It uses RF signal strength measurements from three base stations

in order to track the location of a user. The measurements of the signal strength

are first collected across multiple positions within a room in the offline phase

to produce a set of signal strength maps. In the second phase, these maps are

used for comparison with the signal strength from the user station, which should

alleviate the multipath effects.

Another indoor localization system is Cricket [104], which uses the difference

in the arrival times of RF and ultrasound signals to determine the position of the

node in the space.

SpotOn [105] is another location system that is based on measurements of sig-

nal strength to provide the localization of the wireless devices. The positions of the

nodes are estimated relative to each other rather than to any fixed infrastructure

of beacon nodes.

AHLoS (Ad Hoc Localization System) [101] provides a distributed localization

method that requires only a limited fraction of nodes (beacons) to know their exact

locations, while other nodes can dynamically discover their locations through a

two-phase process, ranging and estimation. During the ranging phase each node

estimates its distance from its neighbors, while in the estimation phase, nodes use

the ranging information and known beacon locations to estimate their position.

Once a node estimates its position, it becomes a beacon node and it assists other

nodes in estimating their positions.

MoteTrack [106] is a robust, decentralized RF-based location system, which

we use in our work, discussed later. Location estimation in this system is based on
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empirical measurements of the radio signal from multiple transmitters, similar to

the RADAR location system. The difference between them is that MoteTrack is

a signature-based localization system, which means that the position estimate of

a tracked node is done by acquiring signatures, messages from beacon nodes with

known positions, and by comparing these signatures with a reference signature

database. In general, the system consists of a set of beacon nodes that periodi-

cally broadcast beacon messages, which consist of tuples in the form (sourceID,

powerLevel). SourceID is a unique identifier of a beacon node, and powerLevel is

the transmission power level used to broadcast the message. The system has to be

installed and calibrated before use. In the offline phase, a collection of reference

signatures is acquired manually by a user with a laptop and a radio receiver. The

reference signature is collected by the node at a known location and consists of

a set of signature tuples in the form (sourceID, powerLevel, meanRSSI), where

meanRSSI is the mean received signal strength collected from a set of beacon

messages. For robustness of the system, the database with collected reference sig-

natures is replicated across the beacon nodes. In the online phase of the system, a

moving node receives periodic beacon messages and computes its signature, which

it sends to the beacons, thereby requesting information on its location. One or

more of the beacon nodes compute the signature difference between the node’s

signature and their reference signature database, and they send the signature

difference back to the node, which then computes its location information.

Some initial work that utilizes a camera’s information to find the precise posi-

tion of a target has already been reported. For example, [107] describes a system

architecture that provides location information and tracking of a moving target

that carries a tag that emits near infrared signals, which can be received by the

camera module. An FPGA connected to a camera is used for processing the rough

data from the cameras and for implementation of the real-time tracking algorithm.

Easy Living [108] is a system developed by Microsoft for tracking multiple

people in a room. The system uses Triclops stereo cameras that provide the

positioning capability in a home environment, and the color images are used to

maintain the people’s identities. A background substraction algorithm and depth

estimation using the stereo vision is used to locate 3D blobs in each camera’s

field of view, which are then merged to provide the people’s shapes. However,
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Figure 8.2: Positioning system based on a WSN and a single camera.

with more than three people moving around, the system is not able to provide

good results, since the frequent occlusions cause poor maintenance of the coherent

tracks of the people.

In this chapter we present a positioning system that obtains precise locations

of a moving object by integrating information from a network of wireless nodes

with known locations and one camera. The prototype of the system described

here has been developed and fully tested at Siemens Corporate Research Center,

Princeton NJ.

8.2 System Description

The proposed system for fine position estimation and tracking of a moving target

in an indoor environment [109] is shown in Figure 8.2. The system consists of

several parts, which communicate to the central server that collects the data,

controls the system operations and estimates the precise position of a tracked

object.

As illustrated in Figure 8.2, the main components of the system are:
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• Real time wireless sensor network based positioning system — this system

consists of a set of reference wireless sensor nodes (beacons), which are

mounted on the ceiling of a room at known locations. We have used MoteIV

TMote Sky wireless nodes [110] for the implementation of a testbed with the

MoteTrack location system, which is described in Section 8.1. However, any

location system based on a wireless sensor network can be used here as well.

Prior to system start up, we collect information about the signal strength

(called radio signatures) from the beacon nodes across multiple positions

within the room. The radio signatures are then stored on the beacon nodes,

forming a distributed signature database. Since the radio signatures are

collected over many positions, the reliability of the estimated coordinates of

the moving target increases.

• Pan-Tilt-Zoom IP camera — we used a Sony EVID-30 IP camera, which

was connected to the server. The central server periodically receives position

information from the sensor node attached to the object, and it transforms

this to pan-tilt-zoom coodrinates for the camera, which will be described

later.

• The moving object — this is an object marked with a visible marker and

with an attached wireless node. A set of square shaped markers developed at

Siemens Corporate Research Center [111] is used to mark each of the moving

objects. An example of such a marker is shown in Figure 8.3. Visual markers

are already widely used in many object tracking, motion tracking and pose

estimation applications. Most commonly used markers are square shaped

visual markers, since they provide at least 4 co-planar corresponding points

that can be used for camera calibration. Further, every marker is determined

by its unique ID number. Any type of marker can be used without restriction

with this system.

• Central server — this is a PC that collects the position data from the sensor

node attached to the moving object, as well as the images obtained from the

camera. The server runs the marker detection algorithm which, in case the

marker of the object is captured on the image, extracts the information of
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Figure 8.3: An example of the marker used in this system.

the marker. There are many marker detection algorithms available based on

the popular OpenCV library [112], any of which can be used here. In this

project we have used the marker detection algorithm developed at Siemens

Corporate Research [111].

8.3 Object Detection Through a WSN-based Po-

sitioning System

The moving object in this system has a wireless node attached, which continuously

collects data about the received signal strength from the beacon nodes (given as

the RSSI field in TinyOS packets), and based on this information it finds its

position in the room. The estimated coordinates are labelled as (Xw,Yw,Zw), as

shown in Figure 8.4. These coordinates, as well as the real coordinates of the

object (Xm,Ym,Zm) are defined with respect to the reference coordinate system.

Due to the propagation of the signal in an indoor environment, the RSSI value

is actually a poor indicator of the received signal strength, which in most cases

produces a difference between the estimated and the real coordinates of an object

on the order of one meter or even more. Although roughly estimated, these
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Figure 8.4: Scenario for high precision location system.

coordinates can be used to point a camera in the proximity of the moving target.

The coarse coordinates (Xw,Yw,Zw) are used as input information to the central

server, which transforms them to the coordinates in the camera coordinate system,

presented as the angle values of the camera (pan and tilt) and the camera’s zoom

parameter. The camera is then pointed toward the direction of the estimated

coordinates (Xw,Yw,Zw). The camera continuously captures images from that

area, and it sends them back to the central server. The server runs the marker

detection algorithm, which processes the captured images and tries to detect the

visible marker on the input images.

Depending on the size of the error between the estimated and the real values

of the object’s coordinates, two situations are likely to occur: either the marker

attached to the object is within the camera’s field of view and therefore captured

on the image, or the marker is absent from the camera’s field of view.

In the latter case, the system will not be able to improve the accuracy of the

object’s location provided by the set of beacon nodes during this update interval,

and it has to wait for the next position information from the node attached to

the tracked object. This update period is an adjustable parameter of the system,

and its minimum value is equal to the period between two successful receptions of

data packets from the node on the object. Since this period is on the order of a

hundred milliseconds, we assume that this period does not introduce large delays
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to the system. The camera continues to pan and tilt in this neighborhood until

the object with the marker is detected as described below.

In the case when the marker is within the camera’s field of view, the marker

detection algorithm will detect the marker when analyzing the incoming image

frames from the camera. In order to be detected from the image, every marker

captured on an image by the camera should be of reasonable size (20×20 pixels at

least). The marker detection algorithm provides the following information about

every detected marker:

• four corners’ coordinates of a marker (labelled as (x1, y1), (x2, y2), (x3, y3),

(x4, y4))

• the coordinates of the middle point of a marker (labelled as (xmiddle, ymiddle))

• the unique ID number of the detected marker

In the following, we assume that the coordinates of the marker’s middle point

(xmiddle, ymiddle) correspond to the position of the object and thus should be esti-

mated by this system.

In general, the marker detection algorithm is able to detect multiple mark-

ers from one image, in the case when more than one marked object is present

(available) for tracking. In such situations, the positioning system is designed to

provide precise positions of every object that has a detectable marker, assuming

that every object is labelled with a different marker (which has a unique ID num-

ber). For the purpose of identifying each object based on the marker captured on

an image, the system has a database in place, where the ID’s of all moving sensor

nodes (objects) and related markers are stored. The system repeats the algorithm

for precise position estimation for every detected object.

In general, information from only one camera is not sufficient to detect com-

plete information about the 3D location of a tracked object. The relationship

between the coordinates of an object in 3D space and coordinates of the same

object captured on the camera’s image can be simply expressed by the transfor-

mation matrix [113]. This information, however, does not reveal any information

about the “depth” or distance of this object from the camera, and we can only

define a ray that passes from the camera through the object. Using at least
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Figure 8.5: Estimation of the exact position of a tracked object.

two cameras that simultaneously capture the same object is sufficient to estimate

the object’s exact position, but this is more expensive in terms of hardware and

communication cost.

8.4 Precise Object Localization Through Maker

Detection

In our case, to localize the moving object with finer precision we have to find the

distance between the marker attached to the object and the camera as well as the

values of the horizontal and vertical angle of the object (δH and δV in Figure 8.5)

by utilizing the marker’s information obtained by only one camera.

First, note that the camera can detect the marker attached to an object with-

out zooming only when the marker is close to the camera (on the order of 2-3

meters). In case the marker is further away, the camera has to zoom toward the

marker in order to be able to detect it. When the camera zooms in, some intrinsic

parameters such as the focal length of the camera change, which basically affects

the size of the object (marker) captured on the image.

The variation in the size of the object’s marker captured in the image for

different values of the camera’s ZOOM parameter is first examined. For this

purpose the marker is placed normally at a distance of 1 meter from the camera,
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Figure 8.6: Change in marker’s length with a change in ZOOM parameter.

and we measured the length of one marker’s edge, as the value of the ZOOM

parameter linearly increases in the range [0, 1000]. The length of the marker’s

edge is measured in pixels on the image taken by the camera. As shown in Figure

8.6, for a linear increase in the ZOOM values, the length of the marker’s edge

changes in a nonlinear fashion.

Considering the format of the image provided by the camera (in this case, the

images were 640x480 pixels) and the full angle of the camera’s field of view (angle

that corresponds to the image when ZOOM = 0), we define the following camera

parameter — the horizontal angle centered at the camera that corresponds to one

pixel in the image plane (see Figure 8.7):

pixelAngle =
∠FOV

imagewidth

rad

pixel
(8.1)

The marker detection algorithm determines the coordinates of the marker’s

corners and the middle point with respect to the upper left corner of the image.

For simplicity, we express the position of the marker’s middle point with respect

to the image coordinate system that is centered in the middle of the image plane:

xm =
imagewidth

2
− xmiddle (8.2)
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Figure 8.7: Calculation of the pixelAngle parameter.

ym =
imageheight

2
− ymiddle (8.3)

Given the pan and tilt angles of the camera, we calculate the horizontal

(angleH) and vertical (angleV ) angles of the middle marker’s point (xmiddle,

ymiddle) measured with respect to the camera’s coordinate system. The parameter

angleH is measured in the same plane as the pan angle, and angleV is measured

in the same way as the tilt angle.

From Figure 8.5 it can be seen that the horizontal angle (angleH) under which

the marker’s middle point is seen in the XY plane is equal to the value of the

camera’s pan angle plus angle δH measured between the camera’s optical axis and

the ray that passes through point (xm, 0). The δH angle can be simply found as:

δH = xm · pixelAngle (8.4)

However, the camera’s zoom has to be considered as well, since larger values

of the camera’s ZOOM parameter has the same effect as taking the image of

an object from a smaller distance, which changes (makes bigger) the angle δH.

Therefore, the angle δH has to be scaled to correspond to the horizontal angle

taken for the case when ZOOM = 0:

δH(zoom = ZOOM) =
xm · pixelAngle

markerSize(zoom=ZOOM)
markerSize(zoom=0)

(8.5)

The total horizontal angle is then:
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angleH = PAN + δH (8.6)

Similarly, the vertical angle can be calculated as:

δV (zoom = ZOOM) =
ym · pixelAngle

markerSize(zoom=ZOOM)
markerSize(zoom=0)

(8.7)

angleV = TILT + δV (8.8)

Thus, equations 8.6 and 8.8 completely determine the horizontal and vertical

angles of the marker with respect to the camera coordinate system. In order to

obtain the 3D coordinates of the tracked object, the distance from the camera

to the marker has to be found. For the purpose of distance estimation, we use

the coordinates of the marker’s four corners that are detected earlier. First, we

calculate the distance between any two adjacent corner points of the marker. By

this, we get the lengths of the four edges of the marker. Then we take the length

of the longest marker’s edge as a reference distance:

refDistance = max
(i,j)∈EDGE

√
((xi − xj)2 + (yi − yj)2) (8.9)

This reference distance (size of marker’s edge) is now used to determine the

real distance of the marker from the camera. Given the fact that an object that

is further away from the camera appears smaller on the image, and taking into

account the zoom of the camera, the distance from the camera can be found as:

distance(marker, camera) =
markerSize(zoom = ZOOM)

refDistance
(8.10)

Finally, the last step in the object localization involves transformation of the

object’s coordinates (given as angleH, angleV , distance) calculated in the camera

coordinate system to a 3-dimensional Cartesian reference system. This step as-

sumes that the position of the camera in the reference coordinate system is known

and given as (Xc, Yc, Zc). Based on simple trigonometric calculations, the exact

position of the object with respect to the reference coordinate system is found as:

X = Xc + distance(marker, camera) · sin(π − angleV ) · sin(angleH) (8.11)
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Y = Yc + distance(marker, camera) · sin(π − angleV ) · cos(angleH) (8.12)

Z = Zc + distance(marker, camera) · cos(π − angleV ) (8.13)

8.5 Results

In this section we present results showing estimated coordinates of an object

obtained by the described system. We compare the estimated coordinates with

the real coordinates of the tracked object, when the object is moving within a room

of size 12 x 6 meters. In Figure 8.8 we plot the values of the estimated coordinates

for every dimension (X, Y and Z) versus the real coordinates of the object, for

the case when the object moves to different positions in the room. As shown in

the figures, the difference between the values of the coordinates obtained by our

camera-based position estimation system and the real values of the coordinates

X, Y, and Z is not significant, and in most cases is at most a few tens of cm.

Figure 8.9 presents a snapshot of the distances estimated by the WSN-based

positioning system. The system receives an update packet on the estimated co-

ordinates from the node attached to the moving object every 200ms. The errors

between the real and estimated distance of the object to the coordinate system

were on the order of a few meters, which clearly demonstrates the advantage of a

camera-based positioning system.

8.6 Summary

In this chapter we described a system that estimates the locations of marked

objects with high precision. The proposed system presents an enhancement of

existing solutions for real-time positioning based on wireless sensor network tech-

nology. In existing systems for real-time positioning, a wireless sensor node es-

timates its position based on measurements of the received signal strength from

static reference (beacon) nodes. Our solution utilizes the fusion of data obtained

from sensor nodes and a camera. With the proposed system, the accuracy of the
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Figure 8.8: Estimated values vs. real values for X, Y and Z coordinates of the

moving object.
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Figure 8.9: The error between the real distance of the object to the center of coor-

dinate system and the distance estimated by the WSN-based positioning system.

estimated positions of tracked objects can be drastically improved by an order of

magnitude, which means that the error between the estimated positions and real

positions of an asset is less than 50 cm. In the proposed solution, the object is

required to carry a visible marker and it has a wireless sensor node attached that

receives data from beacon nodes to determine a rough estimate of its position

based on RSS.

The system presented here uses one camera, but the number of cameras in

our system is not a limitation. Increasing the number of cameras increases the

probability that the system can detect markers attached to the assets in a shorter

period of time. However, it opens new questions related to the design and orga-

nization of such a system — for example, how to decide which camera is active

at a certain moment, or which camera is responsible for detection and position

estimation of some object.



Chapter 9

Conclusions and Future Work

In recent years we have witnessed an increasing number of sensor network appli-

cations, as a consequence of rapid progress in sensor networking technology that

that is a result of recent developments in CMOS and MEMS technologies. How-

ever, battery technology is still not developing fast enough to follow the increasing

needs of these new applications, so the problems of minimizing energy consump-

tion in sensor networks will be present for the foreseeable future. Therefore, the

main focus of this dissertation is directed toward energy-efficient organization of

sensor networks in a number of application-specific scenarios.

In Chapter 3 of this dissertation we investigated the use of unequal size cluster-

based sensor network architectures that provide balanced energy spending of the

sensor nodes. Heterogeneous sensor networks are more sensitive to unbalanced

energy consumption since the loss of the more important nodes (such as cluster

head nodes) can lead to network partitioning and loss of data. Therefore, in

these types of networks energy balancing is achieved by changing the sizes of

clusters formed throughout the network. In homogeneous sensor networks energy

balancing is additionally supported by rotating the cluster heads’ roles among the

nodes in the network.

Further analysis of sensor networks in different application-specific scenarios

reveals that the importance of sensor nodes to the overall task is determined by

the network’s application. In Chapter 4 we analyzed this phenomena by looking

into a cluster-based sensor network designed to provide maximized coverage over

the monitored area. The nodes’ importance to this particular task was defined
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through its application cost, which combines node energy constraints with the

application QoS requirement (coverage, in this case) in an integrated manner.

We concluded that such an integrated approach for characterizing the cost of the

sensor nodes provides a better solution in terms of application QoS requirements

– in this application, it provides longer coverage-time of the network.

We continued our work on application-specific resource balancing by concen-

trating on a specific type of sensor network – visual sensor networks.

Since the area of visual sensor networks is a relatively young research area, we

started our work in this area by examining the problems common to wireless sensor

networks in this type of network. In Chapter 5 we applied a routing protocol

developed for wireless sensor networks to a visual sensor network. We showed

that although both types of networks are constrained with the same resource

limitations (in terms of energy) and with the same QoS requirements (in terms

of coverage), there is no simple mapping of routing strategies from one type of

network to the other.

In Chapter 6 we discussed methods for selecting camera-nodes in a visual

sensor network. We started with a scenario when objects are not included in

the scene, so that the problem is simplified to the coverage of planar scenes. We

proposed several camera selection methods that provide the trade-off between a

network lifetime and the quality of the reconstructed images. Finally, we provide

input on how the camera selection problem can be approached in the case when

objects appear in the monitored scene.

Further analysis of resource utilization in visual sensor networks was performed

in Chapter 7, where we discussed the camera scheduling problem. Considering

the energy constraints of the camera-nodes, we developed a camera scheduling

model, where in every instance of time only a subset of the cameras is active. We

provided directions for how multiple user queries can be merged in order to serve

them in a minimum time.

In Chapter 8 we described the implementation of a localization system that

provides the coordinates of a sensor nodes with fine precision by fusing the location

information obtained from sensor nodes and position information obtained from

images.
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9.1 Future Work

In the first part of this dissertation, we presented guidelines for the design and

management of wireless sensor networks. This work is simulation-based. How-

ever, many factors, such as environmental conditions, unreliable wireless channels

or sensor node imperfections will affect the performance of real sensor network.

Recently, the research in wireless sensor networks has started to be evaluated by

implementing the communication protocols on real sensor network test-beds. Fur-

ther development of large scale test-beds will enable the comprehensive testing of

a sensor network’s scalability, and it will validate the communication protocols

developed so far. Considering this, the next step is to implement and test the

behavior of our proposed cluster-based architectures for balancing energy and

preserving coverage.

Application-aware cost metrics used throughout this dissertation for the sensor

nodes’ roles assignment assume that the exact positions of sensor nodes are known.

In the case when the location estimation error is comparable with the nodes’

sensing range, this error can produce the inaccurate estimation of nodes’ cost

metrics. Thus, our future work will be directed toward exploring the impact of

inaccurate location estimate on the application cost-based approach for sensor

management in wireless sensor networks.

In this dissertation we analyzed several problems in a specific user-centric ap-

plication of visual sensor networks, namely remote tele-presence. Since in this

application the user determines which portion of the monitored area is of inter-

est, all decisions related to network management (such as selection of cameras,

camera scheduling for data transmission, etc.) are determined at a central server.

This design is a consequence of the harsh constraints placed on the system by

the limited network resources and the application requirements. A more generic

approach for the design of visual sensor networks can be developed considering a

broad range of possible applications of visual sensor networks.

The design and resource utilization in a user-centric visual sensor network is

constrained in several ways. First, there is the constant requirement for the reduc-

tion of energy consumption – this problem was addressed several times throughout

this dissertation. Also, the maximum achievable data rate is limited by the com-
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monly used IEEE 802.15.4 standard, but this data rate is insufficient to obtain

image data in real-time. One solution to this problem would be to use radios with

higher data rates, such as those that support IEEE 802.11g or IEEE 802.11n, but

this comes at the cost of increasing the energy consumption as well as the price

of the camera-nodes devices.

Further improvements in in camera-node hardware design introduce new pos-

sibilities for optimizing the performance of application-specific visual sensor net-

works. In this dissertation we assume that camera-nodes have only small data

storage that is incapable of holding one image frame. However, if the camera-

node is equipped with enough memory to store at least one image, the sensor

node can perform more complex processing tasks on board, before the data is

transmitted. For example, the node can decide if the captured image data is

“worth” transmitting or not. For this, the sensor nodes can apply simple back-

ground substraction of the captured image from the previous image stored in the

memory. Also, having more memory space enables sensor nodes to perform on

board image compression, further reducing the transmitting load.

Future research should focus on higher-level on-board processing of the image

data. For example, based on the content of the captured image a sensor node

could determine appropriate compression gains for different parts of the image.

For example, if the basic task of the visual network is to capture and track a

target, then, depending on whether or not a sensor node views a target, it can

separate the less relevant image parts from the image of the target and compress

the less relevant image parts with higher compression gain.

Although in this work we provided an analysis of network lifetime and image

quality, we did not explicitly consider the relationship between the resolution of

the captured images and the achievable resolution of the final reconstructed image.

A camera can capture images of some arbitrary scene/object either from a larger

distance (thereby covering a lager portion of the scene with low resolution) or

from a smaller distance to the scene/object (providing thereby a high resolution

image while capturing a smaller part of the scene). Therefore, this work can be

further extended by looking into the trade-offs obtained using different numbers

of cameras and images with different resolution in order to obtain multi-resolution

reconstructed images.
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As we conclude this dissertation, we would like to point out that visual sensor

networks will continue to attract much attention as a new type of surveillance

network with the ability to reason intelligently based on captured images. Thus,

the main trend in the development of new camera-node architectures is to sup-

port embedded processing and higher level reasoning. Therefore, future work on

protocols and algorithms for visual sensor networks should be aimed at exploiting

these new features to provide further benefit to visual sensor networks.
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