
Enabling and Optimizing Resource Constrained
Ad-Hoc Mobile Clouds

by

Colin F. Funai

Submitted in Partial Fulfillment of the

Requirements for the Degree

Doctor of Philosophy

Supervised by Professor Wendi Heinzelman

Department of Electrical and Computer Engineering

Arts, Sciences and Engineering

Edmund A. Hajim School of Engineering and Applied Sciences

University of Rochester

Rochester, New York

2017

ii

To Yuka Miura, the love of my life.

iii

Contents

Biographical Sketch vii

Acknowledgments ix

Abstract x

Contributors and Funding Sources xi

List of Tables xii

List of Figures xvi

Chapter 1: Introduction 1

1.1 Challenges for Mobile Cloud Computing . 3

1.2 Contributions to Mobile Cloud Computing . 5

Chapter 2: Related Work 7

2.1 Classification of Parallel Computing . 7

2.1.1 Cluster Computing . 8

2.1.2 Distributed Computing . 9

2.1.3 Volunteer Computing . 9

2.1.4 Parallel Computing on Mobile Devices . 10

2.2 Mobile Distributed Computing Architectures . 11

2.2.1 Server Driven Mobile Distributed Computing 12

2.2.2 User Driven Mobile Distributed Computing 17

2.2.3 Mobile Volunteer Computing . 21

Chapter 3: Extending Mobile Cloud Computing with Device-to-Device Communications 26

3.1 Introduction . 26

CONTENTS iv

3.2 Application Scenarios . 27

3.2.1 Server Driven Mobile Computing . 28

3.2.2 User Driven Mobile Computing . 29

3.3 Background on Device to Device Communication 30

3.3.1 Bluetooth . 31

3.3.2 WiFi Direct . 32

3.4 System Architecture . 33

3.4.1 Task Distribution Point . 34

3.4.2 Task Execution Point . 37

3.4.3 Complexity Considerations . 37

3.4.4 Implementation . 39

3.5 Analytical Model . 40

3.5.1 Communication Energy Model . 41

3.5.2 Computation Energy Model . 42

3.5.3 Task Distribution Energy Model . 43

3.5.4 TEP and TDP Energy Model . 43

3.5.5 Total Task Time Model . 45

3.5.6 TEP Modeling . 46

3.5.7 Task Distribution Considerations . 47

3.6 Experimental Results . 48

3.6.1 Test Environment . 48

3.6.2 Results . 49

3.7 Conclusions . 57

Chapter 4: Enabling Multi-Group Communications in D2D Networks 61

4.1 Introduction . 61

4.2 WiFi Direct . 62

4.2.1 Single-group Communications . 62

4.2.2 Multi-group Communications . 63

CONTENTS v

4.3 Multi-group Networking on Android Devices . 64

4.3.1 WiFi Direct on Android . 65

4.3.2 Limitations of Stock Android . 66

4.3.3 Proposed Solutions . 67

4.4 Performance Evaluation . 70

4.4.1 Test Environment . 70

4.4.2 Numerical Results - Time Sharing . 73

4.4.3 Numerical Results - Simultaneous Connections 74

4.5 Conclusions . 76

Chapter 5: Mobile Computational Offloading in Multi-hop Ad Hoc Networks 78

5.1 Introduction . 78

5.2 Motivation . 79

5.3 System Model . 81

5.3.1 Task Time Model . 81

5.3.2 Task Energy Model . 82

5.3.3 Routing Metric . 83

5.4 Task Distribution . 85

5.4.1 General Assignment Problem (GAP) . 85

5.4.2 Linear Bottleneck Assignment Problem (LBAP) 86

5.4.3 Augmented Form of LBAP . 88

5.5 Maximizing the Number of Tasks . 89

5.6 Results . 91

5.6.1 Performance Evaluation: Homogenous Tasks 91

5.6.2 Performance Evaluation: Heterogeneous Tasks 101

5.7 Conclusions . 104

Chapter 6: Visualizing Mobile Computing in Ad Hoc Networks 109

6.1 Introduction . 109

6.2 Implementation . 111

CONTENTS vi

6.2.1 Android . 112

6.2.2 Web Application . 112

Chapter 7: Conclusions and Future Work 113

7.1 Conclusions . 113

7.2 Future Work . 114

7.3 Proof of Theorem 5.4.1 . 123

7.4 Proof of Theorem 5.4.2 . 124

vii

Biographical Sketch

The author was born in Evanston, IL. He attended the University of Rochester and graduated with

a Bachelor of Science degree in Electrical and Computer Engineering in 2012. He began graduate

studies in the Department of Electrical and Computer Engineering at the University of Rochester in

2012 and received a Master of Science degree in 2013.

The following publications were a result of work conducted during doctoral study:

C. Funai, C. Tapparello, and W. Heinzelman, "Mobile to Mobile Computational Offloading in

Multi-hop Cooperative Networks," In Preparation.

C. Funai, C. Tapparello, and W. Heinzelman, "Enabling Multi-hop Ad Hoc Networks Through

WiFi Direct Multi-group Networking," Proc. of IEEE ICNC 2017.

C. Funai, C. Tapparello, and W. Heinzelman, "Mobile to Mobile Computational Offloading in

Multi-hop Cooperative Networks," Proc. of IEEE GLOBECOM 2016.

C. Funai, C. Tapparello, H. Ba, B. Karaouglu, and W. Heinzelman, "Extending Volunteer Com-

puting through Mobile Ad Hoc Networking," Proc. of IEEE GLOBECOM 2014.

C. Tapparello, C. Funai, and W. Heinzelman, "Exploring the Impact of Extending Mobile Volun-

teer Computing through D2D Communications," In Preparation.

BIOGRAPHICAL SKETCH viii

C. Tapparello, C. Funai, S. Hijazi, A. Aquino, B. Karaouglu, H. Ba, J. Shi, and W. Heinzelman,

"Volunteer Computing on Mobile Devices: State of the Art and Future Research Directions," Appears

in Enabling Real-Time Mobile Cloud Computing through Emerging Technologies, IGI Global, 2015

ix

Acknowledgments

I would like to thank my advisor, Professor Wendi Heinzelman, and Dr. Cristiano Tapparello for

the opportunity to work with them, and their mentorship over the past few years. During my time

in the Wireless Communication and Networking Group, both spent endless amounts of time proof-

reading my papers and providing excellent suggestions and insights for my projects. In particular, I

would like to thank Dr. Tapparello for his mentorship and patience when teaching me how to model

and develop technical proofs. As well, Professors Mateos, Heinzelman from the department of Elec-

trical and Computer Engineering, and Shen from the department of Computer Science, for acting as

members of my committee.

I would like to thank all of my lab-mates and colleagues in the WCNG lab, especially Yizhe

Cheng, Aaron Faulkenberry, Michael Nolan, Jeremy Warner, Abner Aquino, Shurouq Hajazi, Mo-

hammed Ahmed, Jon Aho, Justin Fraumeni, Theodore Reiss, and Yukun Chen for their work and

contributions to my projects. I would also like to thank all of my colleagues at the University of

Rochester for their support, as well as Harris Corporation for funding this project.

Finally, I would like to thank my family and girlfriend for their love and support.

x

Abstract

Recent years have seen a rapid adoption of mobile devices, and an increased reliance on them,

which has lead to increasingly computationally complex mobile applications. As a result, there have

been several proposed systems that offload computationally intensive workloads from mobile devices

to other computing resources, such as remote servers or local cloudlets. Although these proposed

systems have been shown to provide benefits to the mobile applications, there are situations where

the high latency communication to reach a remote server cannot be tolerated, or where there is no

network connectivity to such resources. In these situations, offloading to other local devices is the

only option. To this end, I have proposed a system that utilizes ad hoc communication protocols to

create a local cloud that can be used for computational offloading.

By extending an existing mobile computing platform, I show the the viability of offloading com-

putation to devices within one hop, and model the cost in terms of time and energy for this hybrid

system. Additionally, I have designed and developed several approaches to enable multi-hop com-

munication within a network of mobile devices utilizing the WiFi Direct communication protocol.

By doing so, I have further enhanced mobile computing by enabling the necessary infrastructure to

facilitate multi-hop ad hoc computational offloading. With an implemented system, I was able to

model the performance of this multi-hop computational offloading system, as well as model the task

distribution problem as a linear bottleneck assignment problem and thus provide a provably optimal

task distribution.

In summary, by providing the infrastructure for enabling multi-hop ad hoc computational offload-

ing with off the shelf devices, and providing a provably optimal task distribution scheme, I have

enabled and optimized the performance of ad hoc mobile clouds.

xi

Contributors and Funding Sources

This work was supported by a disseration committee consisting of Professor Wendi Heinzelman

(advisor) from the department of Electrical and Computer Engineering, Professor Gonzalo Mateos

from the department of Electrical and Computer Engineering, and Professor Kai Shen from the de-

partment of Computer Science. The GEMCloud architecture, described in this disseration, was de-

veloped by Dr. He Ba in conjunction with UCB Pharmaceutical. Additionally, the model presented

in Chapter 3 was developed by Dr. Cristiano Tapparello. All other work in this dissertation was

completed independently by the author. This work was funded by Harris RF and the University of

Rochester Center for Emerging and Innovative Sciences (CEIS).

xii

List of Tables

2.1 Server driven mobile distributed computing implementations. 18

2.2 User driven mobile volunteer computing implementations. 22

2.3 Mobile volunteer computing implementations. 25

3.1 System parameters for the analytical model. 52

xiii

List of Figures

1.1 Quarterly worldwide shipments of smartphones and operating systems market share

from the first quarter of 2011 to the second quarter of 2014. Data source: IDC world-

wide quarterly mobile phone tracker and Gartner Inc. [1, 2]. 2

1.2 Benchmark scores of different mobile processors. Data source: Primate Labs Geek-

bench 4 [3]. 2

2.1 Example of a mobile distributed computing architecture where the job coordinator

assigns tasks to the participating mobile devices. 11

3.1 A traditional mobile computing topology. Users are connected to a remote computing

server through a 3G/4G Base Station (BS) or a WiFi Access Point (AP). 27

3.2 Example of a traditional mobile volunteer computing architecture where users are

connected to the remote server through a WiFi Access Point (AP) or a 3G/4G Base

Station (BS). 34

3.3 Example of ad hoc mobile computing topology with corresponding functional role

assigned to each of the clients. Task distribution point (TDP), task execution point

(TEP), and task distribution and execution point (TDEP). 35

3.4 Task distribution flowcharts for the TDP operating according to the Proxy (a) and

Batch (b) methods. 36

3.5 Result collection flowcharts for the TDP operating according to the Proxy (a) and

Batch (b) methods. 38

3.6 Communication links between TEP, TDP and remote server. 40

LIST OF FIGURES xiv

3.7 Experimental Measurements. Energy per bit for different transmitted (and received)

data sizes for WiFi Direct and Bluetooth. 49

3.8 Experimental Measurements. Total energy consumption vs. total time for computing

50 tasks, when k ∈ {1, 2, 6} nodes are allowed to execute the tasks. For the proxy and

batch methods, the case refers to a system where the TEPs are connected to a single

TDP. 51

3.9 Experimental and Analytical Measurements. Total energy consumption vs. total time

for computing 50 tasks, when k ∈ {1, 2, 6} nodes are allowed to execute the tasks.

For the batch method, the case refers to a system where the TEPs are connected to a

single TDP. 53

3.10 Analytical Results. Total energy consumption vs. result data size for a system where

only one node is able to connect to the remote server and only one node is allowed to

compute 50 tasks. 54

3.11 Analytical Results. Total time vs. result data size for a system where only one node is

able to connect to the remote server and only one node is allowed to compute 50 tasks. 56

3.12 Analytical Results. Total energy consumption vs. total time for computing 50 tasks

for different result data size, when a single TEP, connected to the remote server

(GEMCloud) or to a local TDP Batch via WiFi Direct or Bluetooth, to compute 50

tasks. Each pair of values for energy and time to compute is obtained for a different

value of r, from 1 KB to 10000 KB, with step length 500. 58

3.13 Analytical Results. Total time vs. total energy consumption for computing 50 tasks,

when k ∈ {1, 2, . . . , 49} nodes are allowed to execute the tasks. For the Batch

method, the case refers to a system where the TEPs are connected to a single TDP. . 59

4.1 Multi-group communication scenarios where the gateway node acts as a client in two

groups. 64

4.2 Multi-group communication scenarios where the gateway node acts as the GO in one

group and as a client in the other. 65

LIST OF FIGURES xv

4.3 Experimental Measurements. Time required to switch between two groups for the

different scenarios described in Section 4.2.2. 72

4.4 Experimental Measurements. Energy required to switch between two groups for the

different scenarios described in Section 4.2.2. 72

4.5 Experimental Measurements. Time required to transfer 10 MB of data between two

groups for a gateway node acting as LC and GM. 75

4.6 Experimental Measurements. Energy required to transfer 10 MB of data between two

groups for a gateway node acting as LC and GM. 76

5.1 Experimental measurement of the percent gain over offloading to only a single neigh-

bor of a simple greedy and uniform task distribution scheme. 79

5.2 A representation of how Dijkstra’s algorithm is used to solve the LBAP. 87

5.3 A representation of an individual stage, K, in Figure 5.2 87

5.4 Implementation and simulation results for different computation/communication ra-

tios. Result size is 1 MB. 92

5.5 Implementation and simulation results for different computation/communication ra-

tios. Result size is 100 KB. 94

5.6 Implementation and simulation results for different computation/communication ra-

tios. Result size is 10 KB. 95

5.7 Task distribution for the Greedy and Iterative approaches with result size fixed to 1 MB. 96

5.8 Simulated measurement indicating the percent speed up over offloading to only a

single neighbor. 97

5.9 The effect α has on the iterative algorithm’s ability compute the maximum number of

tasks before network partition. 98

5.10 The effect α has on the iterative algorithm’s ability compute the maximum number of

tasks before network partition. 99

5.11 The effect α has on the iterative algorithm’s ability compute the maximum number of

tasks before network partition. 100

LIST OF FIGURES xvi

5.12 Percent speed up when distributing 150 tasks with varying heterogeneity and low

communication cost (10s). The homogeneous case is a set of tasks requiring 10s to

compute and the heterogeneous case has tasks ∈ [10s, 1500s]. 106

5.13 Percent speed up when distributing 150 tasks with varying heterogeneity and high

communication cost (1500s). The homogeneous case is a set of tasks requiring 10s to

compute and the heterogeneous case has tasks ∈ [10s, 1500s]. 107

5.14 Performance when distributing tasks in an “online” scenario. 108

6.1 Screen shot displaying two groups and various link qualities. 110

6.2 Screen shot displaying last known location of a node that has lost connection with the

network. 111

1

Chapter-1

Introduction

Mobile Cloud Computing has been used to describe a variety of techniques for offloading com-

putation from mobile devices, including offloading to a remote cloud as well as offloading to local

resources such as a cloudlet or other mobile devivces. The growing popularity of mobile devices, the

increase in computing power of mobile devices, and their support for device to device communication

protocols have made mobile to mobile offloading an increasingly viable option. According to the In-

ternational Data Corporation (IDC) and Gartner Inc. [1, 2], in 2013 the worldwide smartphone market

shipped one billion units in a single year for the first time, representing a 38.4% increase with respect

to the 725.3 million units shipped in 2012. Moreover, [1, 2] recently reported that in the fourth quarter

of 2016, 431.5 million smartphones were shipped. The progressive increase in worldwide shipments

of smartphones, from the first quarter of 2011 to the fourth quarter of 2016, is presented in Figure 1.1.

Additionally, some smartphones are being equipped with processors that have capabilities rivaling

desktop processors, as shown in Figure 1.2. Finally, Google and Apple smartphones come equipped

with device to device support through their developer APIs. This alone has enabled an estimated 99%

of the mobile device market [1, 2] to participate in ad hoc networks.

As a result, with the sheer number of mobile devices and their ever advancing computational and

device to device communication capabilities, ad hoc mobile clouds not only have the necessary re-

sources needed to be viable, but it is now possible to consider mobile clouds that offload computation

not just to a mobile device’s nearest neighbor, but also to other devices in the network connected

through multi-hop communication, creating a multi-hop ad hoc mobile cloud. As a result, one of

the key advantages that ad hoc mobile clouds provide is an independence from infrastructure based

CHAPTER 1. INTRODUCTION 2

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2011 Q1

2011 Q2

2011 Q3

2011 Q4

2012 Q1

2012 Q2

2012 Q3

2012 Q4

2013 Q1

2013 Q2

2013 Q3

2013 Q4

2014 Q1

2014 Q2

2014 Q3

2014 Q4

2015 Q1

2015 Q2

2015 Q3

2015 Q4

2016 Q1

2016 Q2

2016 Q3

2016 Q4

Sm
ar

tp
ho

ne
 S

hi
pm

en
ts

(M
ill

io
ns

 o
f U

ni
ts)

Android
iOS

Symbian
BlackBerryOS

Linux
Windows Phone

Others

Figure 1.1: Quarterly worldwide shipments of smartphones and operating systems market share from
the first quarter of 2011 to the second quarter of 2014. Data source: IDC worldwide quarterly mobile
phone tracker and Gartner Inc. [1, 2].

Be
nc

hm
ar

k
Sc

or
e

0

1000

2000

3000

4000

“ST Ericsson NovaThor U8420 1G
Hz”

“Ti O
M

AP 4430 1G
Hz”

“A5 1G
Hz”

“Q
ualcom

m
 Snapdragon S4 Plus M

SM
8227 972M

Hz”
“Ti O

M
AP 4430 1.2G

Hz”
“NVIDIA Tegra 3 T30 1.5G

Hz”
“Sam

sung Exynos 3470 1.4G
Hz”

“Ti O
M

AP 4460 1.2G
Hz”

“Q
ualcom

m
 M

SM
 Snapdragon 400 1.2G

Hz”
“Q

ualcom
m

 Snapdragon 400 1.2G
Hz”

“Sam
sung Exynos 4210 1.4G

Hz”
“Q

ualcom
m

 M
SM

8226 Snapdragon 400 1.4G
Hz”

“Sam
sung Exynos 4212 1.5G

Hz”
“Q

ualcom
m

 Snapdragon S4 M
SM

8960 1.5G
Hz”

“Ti O
M

AP 4470 1.5G
Hz”

“Q
ualcom

m
 M

SM
8916 Snapdragon 410 1.2G

Hz”
“Q

ualcom
m

 Snapdragon 410 1.2G
Hz”

“Sam
sung Exynos 4412 1.4G

Hz”
“Q

ualcom
m

 Snapdragon S4 pro APQ
8064 1.5G

Hz”
“Q

ualcom
m

 M
SM

8916 Snapdragon 410 1.4G
Hz”

“Q
ualcom

m
 M

SM
8939 Snapdragon 615 1.5 G

Hz”
“Sam

sung Exynos 4412 1.6G
Hz”

“Sam
sung Exynos 7580 1.6G

Hz”
“Q

ualcom
m

 M
SM

8937 Snapdragon 430 1.4G
Hz”

“Q
ualcom

m
 M

SM
 8939V2 Snapdragon 616 1.5G

Hz”
“Q

ualcom
m

 Snapdragon 400 1.7G
Hz”

“Q
ualcom

m
 M

SM
8952 Snapdragon 617 1.5 G

Hz”
“Q

ualcom
m

 Snapdragon S4 Pro APQ
8064 1.5G

Hz”
“Exynos 5 octa 5410 1.7G

Hz”
“Sam

sung Exynos 5260 1.3G
Hz”

“A6 1.3G
Hz”

“Q
ualcom

m
 Snapdragon S4 M

SM
8960T 1.7G

Hz”
“Huawei HiSilicon Kirin 920 HI3630 1.3G

Hz”
“Q

ualcom
m

 Snapdragon 600 1.9G
Hz”

“Q
ualcom

m
 Snapdragon S4 M

SM
8960 Pro 1.7G

Hz”
“M

ediatek M
T6795 2.2G

Hz”
“Sam

sung Exynos 5430 1.3G
Hz”

“Q
ualcom

m
 Snapdragon 800 1.9G

Hz”
“NVIDIA Tegra 4 1.8G

Hz”
“Sam

sung Exynos 5250 1.7G
Hz”

“A6x 1.4G
Hz”

“Exynos 5 O
cta 5420 1.9 G

Hz”
“Nvidia Tegra 4 1.9G

Hz”
“Intel Atom

 z3745 1.9G
Hz”

“Q
ualcom

m
 snapdragon 800 2.3G

Hz”
“Q

ualcom
m

 M
SM

8974ab snapdragon 801 2.3G
Hz”

“Sam
sung Exynos 5433 1.3G

Hz”
“Q

ualcom
m

 Snapdragon 800 2.1G
Hz”

“NVIDIA Tegra K1 2.2G
Hz”

“Q
ualcom

m
 M

SM
8974ab snapdragon 801 2.5G

Hz”
“Q

ualcom
m

 M
SM

8974ac snapdragon 801 2.5G
Hz”

“Q
ualcom

m
 APQ

8084 Snapdragon 805 1.4G
Hz”

“Q
ualcom

m
 M

SM
8992 Snapdragon 808 1.4G

Hz”
“Q

ualcom
m

 M
SM

8994 Snapdragon 810 1.6G
Hz”

“A7 1.4G
Hz”

“Sam
sung Exynos 7420 1.5G

Hz”
“Q

ualcom
m

 M
SM

 8956 Snapdragon 650 1.4G
Hz”

“Q
ualcom

m
 M

SM
8996 pro-ab snapdragon 821 1.6G

Hz”
“A8 1.5G

Hz”
“NVIDIA Tegra K1 Denver 2.5G

Hz”
“Q

ualcom
m

 M
SM

8996 Sanpdragon 820 1.6G
Hz”

“HiSilicon Kirin 955 1.8G
Hz”

“A8x 1.5G
Hz”

“Sam
sung Exynos 8890 1.6G

Hz”
“A9 1.8G

Hz”
“A9x 2.3G

Hz”
“A10 Fusion 2.3 G

Hz”

2857
Intel i5-2300

Figure 1.2: Benchmark scores of different mobile processors. Data source: Primate Labs Geekbench
4 [3].

CHAPTER 1. INTRODUCTION 3

communication. By using device to device (D2D) communication protocols, ad hoc mobile clouds

are able to quickly form a network. This is in contrast to remote cloud offloading systems, where

a mobile device offloads computations to a remote server through an Internet connection. Take for

instance CloneCloud [4], which relies on virtual machines, typically hosted by a cloud provider such

as Amazon Web Service (AWS) [5], to receive computationally intensive tasks from a mobile de-

vice. While such remote clouds provide incredibly powerful servers for performing the computation,

the only way this offloading can be achieved is through an Internet connection to the remote server.

If such a connection to the Internet is not available, or if the latency to reach the server is too long,

offloading to a powerful remote server is not an option.

In situations where there is no Internet connection, other approaches for offloading computation

must be utilized. This is where ad hoc mobile clouds can provide the necessary resources to enable

a mobile device to offload computations. The lack of fixed infrastructure for establishing Internet

connectivity is common in military communication scenarios as well as in scenarios where the existing

infrastructure has been damaged. In these cases, offloading computation to an ad hoc mobile cloud

can be extrememly valuable to enable the completion of computationally-intensive tasks.

1.1 Challenges for Mobile Cloud Computing

In general, ad hoc mobile clouds have a few defining features. As the devices are mobile, main-

taining reliable communication is paramount to the cloud’s operation. Device mobility also implies

that the devices are powered by battery, meaning that it is crucial to focus on techniques that are

optimized for energy savings.

There are two cases to consider when designing a mobile cloud: 1) a cooperative network such that

all mobile devices are cooperating to achieve a common goal, as is the case in military and disaster

relief scenarios; and 2) a non-cooperative network such that the mobile devices are volunteering their

services if they so choose, to help other devices in the network, possibly with the goal of gaining

something in return, such as the ability to offload their own computation at a later time. Each of these

cases provides additional challenges that must be considered in the design of an ad hoc mobile cloud.

CHAPTER 1. INTRODUCTION 4

For instance, when using ad hoc mobile clouds in a non-cooperative network, the biggest factor to

consider is that the devices are personal mobile devices. This means that their availability to provide

services for the mobile cloud can fluctuate. On the other hand, in cooperative networks, such as those

designed for military and disaster relief scenarios, the devices are part of the network in order to

achieve a certain goal. As a result, an ad hoc mobile cloud deployed in these scenarios can distribute

computational tasks and develop communication schemes without having to consider the impact to

the user.

In both of these cases, appropriately routing and assigning computation is important, meaning that

the closest or most available node is not necessarily the best choice. In general, most nodes will try

to route data over the shortest path; however, if every node participating in the network is trying to

send data through the same node, this node becomes a bottleneck. These bottlenecks can adversely

impact the overall performance of the network, by causing communication time-outs or forcing nodes

to retransmit data. Both of these would put additional strain on each of the node’s batteries.

In addition to the challenges pertaining to routing data through an ad hoc mobile cloud, the as-

signment of tasks must also be approached carefully. Although ad hoc mobile clouds already make

efforts to balance between computational power and energy efficiency, the methods when doing so are

not straight forward. Consider the above scenario where there are one or two nodes that are crucial

for facilitating communication in the cloud, the impact of each task assigned to these crucial nodes

arguably impacts the overall cloud more than if a leaf node were to perform said computation. Both of

these issues can cause one of these intermediate nodes to die earlier than other nodes in the network.

As a result, the network would become segmented, ultimately reducing the cloud’s overall computa-

tional capabilities. Therefore, it is pertinent not only consider what paths are used to route data, but

also what the status of the intermediate nodes are, as well as any other transient effects that different

routing decisions have.

CHAPTER 1. INTRODUCTION 5

1.2 Contributions to Mobile Cloud Computing

This thesis aims to address the issues associated with enabling ad hoc mobile clouds by explor-

ing the infrastructure used to facilitate communications, as well as optimizing the longevity of the

cloud through the use of a variety of task distribution and communication schemes. The specific

contributions of my work include the following:

• I developed the concept and explored the benefits of extending volunteer computing platforms

through the use of ad hoc mobile clouds. In particular, I have developed and analyzed the trade-

offs for two task distribution schemes named Proxy and Batch. This work has been described

in [6] and is detailed in Chapter 3.

• As a follow up to the work presented in [6], I developed a closed form model of our system.

This models enables us to simulate larger networks as well as simulate the impact that device

mobility has on network performance. This work is described in Chapter 3.

• I have designed and provided an in-depth analysis of different approaches for implementing

multi-group WiFi Direct networks to enable multi-hop communication in ad hoc mobile clouds.

My approaches include designs that will work with off-the-shelf mobile devices as well as

optimized communication solutions that require modifying the Android operating system. This

work is described in Chapter 4.

• I have developed a task distribution algorithm and a routing heuristic in order to investigate

the effect that computational offloading has on a multi-hop wireless network. I have found and

proved that this task distribution algorithm is optimal under certain conditions. This work is

described in Chapter 5.

• I have developed a system to visualize basic parameters of an ad hoc mobile cloud. This system

is able to control the network topology as well as track the location and movement of the

participating nodes. By doing so, administrators are not only able to tailor routes and topologies,

to avoid communication bottlenecks, but they can also anticipate and avoid network partitions,

by monitoring the status of crucial relay nodes. This work is described in Chapter 6.

CHAPTER 1. INTRODUCTION 6

This thesis is organized as follows. Chapter 2 provides related work on mobile cloud computing,

as well as related topics such as grid computing. Chapter 3 describes and models the implementation

of a nearest neighbor ad hoc mobile cloud, using WiFi Direct and Bluetooth. In Chapter 4, techniques

for enabling multi-group WiFi Direct networks are presented, and this is followed by Chapter 5, which

presents a description of different task distribution techniques for multi-hop ad hoc mobile clouds.

Chapter 6 presents a visualization system used to monitor the network throughput, device battery

level, and device location in a user friendly manner. Finally, Chapter 7 presents an overview of my

contributions to the development and optimization of ad hoc mobile clouds, as well as suggestions for

future work.

7

Chapter-2

Related Work

2.1 Classification of Parallel Computing

High performance parallel computing has been an approach used to increase the speed of compu-

tation by dividing the computational problem into simultaneously computable sections and processing

each section on different processing units. Traditionally, these independent processing units reside on

the same device (multiprocessor computing), or even on the same chip (multicore computing). On the

other hand, researchers have explored new computational architectures where the processors of multi-

ple devices are connected by a communication network and cooperate in the computational job. These

architectures can be classified according to the geographical distance between the devices that perform

the computation: the parallel execution of computational jobs using a group of co-located computers

is typically called cluster computing, while the cooperation among distant computers communicating

over the Internet is typically referred to as distributed computing. While the former relies on a reliable

local area network and can be used to solve distributed computing problems that require communi-

cation among the devices executing the tasks, the latter, due to the unpredictability of the Internet,

typically deals only with what are termed “embarrassingly parallel problems,” where there exists no

dependency (or communication) between the parallel tasks. Both of these approaches consider that

the computation is distributed across dedicated devices that either require direct management or the

payment of a fee for accessing the processing power. As a result, the concept of volunteer comput-

ing has been proposed as an alternate parallel computing system that exploits computing resources

donated by general-purpose computer owners.

CHAPTER 2. RELATED WORK 8

In what follows, we first briefly describe these three classes of parallel computing, namely cluster

computing, distributed computing, and volunteer computing, and then discuss how mobile devices

can provide benefit to the distributed computation.

2.1.1 Cluster Computing

Computing clusters are built linking groups of computers through a high-bandwidth low latency

local area network. These computers each run their own instance of an operating system, but work

together to perform a common task so that they can be viewed as a single system. The computing clus-

ters are developed for a variety of purposes such as load balancing on web servers, computationally

intensive scientific calculations, and failure safe operation on critical commercial applications.

Attached Resource Computer (ARCNET) [7] was the first commercial computing cluster, devel-

oped in the late 70s, supporting both parallel computing as well as sharing file systems.

Beowulf clusters utilize standard commodity grade computers with specialized libraries and pro-

grams that allow job sharing among them. Beowulf clusters normally run Unix like operating systems,

such as BSD, Linux, or Solaris and, potentially, any PC capable of running a Unix like operating sys-

tem can be used in this configuration. The cluster is organized as multiple computers serving as the

worker nodes and one or more computers taking the responsibility of the server. The server controls

and coordinates the computing cluster and serves as a gateway between the computing cluster and the

outside world. Stone Soupercomputer1 [8] built by Oak Ridge National Laboratory was one of the

large scale successful applications of the Beowulf concept.

Due to the dependency of the physical location of the hardware, computing clusters are built to

serve a limited set of users located at a particular geographical region. Hence, the demand for compu-

tational resources on these systems have a high variance due to the correlation between usage patterns.

Combined with the high cost of building computing clusters, this leads to both underutilization and

outage of computational resources.

1The Stone Soup is an old folk story in which hungry strangers persuade local people of a town to give them food. It
is usually told as a lesson in cooperation, especially in situations of resource scarcity.

CHAPTER 2. RELATED WORK 9

2.1.2 Distributed Computing

Distributed computing overcomes the geographical limitation of cluster computing by allowing

distant computers to cooperate in the execution of computational tasks. By integrating geographically

diverse multiple computing clusters or individual computers, distributed computing architectures can

serve a larger group of consumers with less correlated usage patterns. Although distribution and

scheduling of the computing jobs across the distributed computing resources adds another layer of

complexity, with the introduction of the Internet, distributed computing systems provide a fairly low

cost and high performance solution to large computing problems.

Through distributed computing, computational capabilities can be offered to users as a service. In

this new model of computing, also referred to as utility computing, customers can acquire large com-

puting capabilities as needed. The computational tasks are offloaded to the service providers’ com-

puting platform, and the results are downloaded back after completion of the tasks. Many commercial

instantiations of distributed computing exist today, including Amazon Elastic Compute Cloud [5].

One intrinsic drawback of this approach is that the users’ performance is negatively affected by the

network delay, since the entire user data and the result of the computation need to be exchanged back

and forth with the distributed computing system.

More recently, a new subclass of distributed computing named cloud computing has also been

proposed, and it is receiving considerable attention. Distributed computing architectures have evolved

into cloud computing systems that not only undertake computational tasks but also serve as data

storage systems and provide online access to computer services or resources. These resources are

shared by multiple users but are usually dynamically reallocated per demand, thus maximizing the

effectiveness of the shared infrastructure. Microsoft’s OneDrive [9] and IBM Cloud [10] are two of

the many commercial examples of this paradigm.

2.1.3 Volunteer Computing

Although distributed computing systems increase the efficiency of parallel computing, they still

require a large investment for both hardware and software as well as incurring significant operational

CHAPTER 2. RELATED WORK 10

costs (i.e., maintenance, direct power consumption and cooling infrastructure). Several studies have

shown that many computing devices (i.e., personal computers, tablets and mobile devices) under

utilize their processing capabilities for the majority of their operational time. The potential of these

resources exceeds any centralized computing system. This is the basis for volunteer computing.

The first volunteer computing project, Great Internet Marsenne Prime Search [11], was started in

1996 with the objective of using freely available software on volunteers’ computers working in paral-

lel to find prime numbers. Starting from this project, volunteer computing emerged as a result of the

wide spread adoption of personal computers and the Internet. With volunteer computing, volunteers

can dedicate the unused computer cycles on their personal computers to the distributed computation.

This is made possible by middleware systems such as JXTA [12], XtremeWeb [13], and Berkeley

Open Infrastructure for Network Computing (BOINC) [14]. BOINC was originally developed to pro-

vide support and increase security for the SETI project [15] and later extended as a platform for other

distributed applications. It is now one of the most popular volunteer computing platforms with over

1,000,000 active participants [16].

2.1.4 Parallel Computing on Mobile Devices

The idea of connecting mobile devices into a parallel computing system was proposed in 2002 [17],

when both their computational capabilities and diffusion where still highly limited. With the increase

in mobile device computational capabilities, different system architectures have been proposed to ex-

ploit their resources for parallel computing. The classification of parallel computing presented in this

section can be extended to the case in which the mobile devices are performing the actual compu-

tations. In this regard, solutions that group nearby mobile devices using a device to device commu-

nication technology such as Bluetooth [18] and WiFi Direct [19], and distributed systems that link

together distant devices through an Internet connection have both been investigated. Many traditional

distributed computing architectures have recognized the widespread usage, significant computing ca-

pabilities and energy efficiency of mobile devices and have attempted to extend their operation over

mobile computing platforms. For example, Hyrax [20] ports Hadoop Apache, an open-source im-

CHAPTER 2. RELATED WORK 11

!
"

"
"

#$

!
" !

Mobile Devices

%
Job

&
Tasks

Job Coordinator

Figure 2.1: Example of a mobile distributed computing architecture where the job coordinator assigns
tasks to the participating mobile devices.

plementation of MapReduce, to execute jobs on networked Android smartphones. A client version

of BOINC was ported to an ARM/Linux platform [21] to evaluate the processing power of mobile

devices, and an Android client [16] to include mobile devices in the distributed computations has also

been released by the BOINC project.

2.2 Mobile Distributed Computing Architectures

Modern mobile devices, such as smartphones and tablets, have become powerful and energy ef-

ficient computing architectures, that are both widely available and underutilized for long periods of

time. As a result, multiple approaches for integrating mobile devices into a parallel computing infras-

tructure have been proposed and are currently receiving considerable attention. These studies can be

broadly classified in two main categories, depending on the particular entity that is responsible for the

management of tasks that need to be executed by the participating devices. This element can either be

a remote specialized server that communicates with the mobile devices through an Internet connec-

tion, or it can be a mobile device itself, that exploits the presence of other geographically close devices

to solve computationally intensive tasks. According to this division, we refer to the first scenario as

“Server Driven Mobile Distributed Computing,” while we call the latter scenario “User Driven Mo-

bile Distributed Computing.” We note that the server driven approach is, in fact, an extension of a

traditional distributed computing architecture, where mobile devices can participate in the distributed

CHAPTER 2. RELATED WORK 12

computation alongside standard PCs. The user driven case, instead, represents a viable way to perform

intensive computing when an Internet connection is not available or it is undesirable because of com-

munication delay. For example, many applications in the area of tactical military communications,

search and rescue operations, and sensor network operations require computing intensive algorithms,

such as image and signal processing, at remote or isolated locations that frequently neither have direct

access to the Internet nor are in the vicinity of other devices with Internet access. In both cases, the

device that “drives” the computation is considered to be the job coordinator, since it is in charge of

the task distribution process and is responsible for the reception and organization of the results of the

tasks’ execution. An example of such a mobile computing architecture is presented in Figure 2.1.

In what follows, we provide a literature review of the different frameworks that have been pro-

posed to use mobile devices for executing tasks in distributed computing. All of these systems follow

a similar architecture and communication protocol: a mobile device is connected through a suitable

radio communication technology to the job coordinator, it receives the tasks to be computed and,

after the execution is completed, the mobile device sends the result of the computation back to the

job coordinator. It is important to note that the idea of enabling the execution of rich applications on

mobile devices by offloading the computation (or part of it) and storage to a distributed architecture

composed of traditional computers has also been proposed. This type of service is typically referred

to as mobile cloud computing [22].

2.2.1 Server Driven Mobile Distributed Computing

Mobile OGSI.NET [23]

Mobile OSGI.NET was one of the first attempts to connect mobile devices to a distributed com-

puting architecture. The goal of this framework is to provide a way for mobile and non-mobile devices

to collaborate in the execution of resource-demanding applications. The OGSI architecture consists

of three components: the Mobile Web Server that handles the message exchanges between the de-

vice and the remote server, the Grid Services Module that implements the core processing necessary

to execute applications, and the Grid Services, that represent the particular applications that will be

CHAPTER 2. RELATED WORK 13

executed by the device. In addition, the Grid Services Module monitors the resources of the mobile

devices (like, e.g., the battery level) and decides if the mobile device is able to perform the computa-

tion, or if it is better to pass the task to another device. Experimental results show that the total time

required to compute a set of tasks decreases as the number of devices increases. Moreover, they show

that the energy consumption can be efficiently distributed between the devices.

Hyrax [20]

Hyrax is a platform derived from Hadoop Apache, an open source implementation of MapRe-

duce2, that supports distributed computing on Android devices. The basic idea behind Hyrax is to

allow a heterogeneous network of smartphones and servers to cooperate in the execution of comput-

ing jobs. The framework has been designed to provide an abstraction of the available resources, thus

being able to scale with the number of devices and tolerating node connection and departure. The per-

formance of Hyrax in terms of both execution times and resource usage was evaluated with a testbed

of 12 Android smartphones. Although the performance of Hyrax is poor for CPU-intensive tasks, it

demonstrates the feasibility and scalability of the proposed framework. In addition, the advantages of

using Hyrax as an infrastructure for applications that use mobile data have been investigated through

the implementation of a distributed multimedia search and sharing application. The authors of [20]

stated that Hyrax had not been optimized for battery efficiency, but in several tests it was shown to

use significantly less power than a video recording and downloading application.

Computing While Charging [24]

Computing While Charging (CWC) describes and evaluates a scenario in which a company uses

the mobile devices provided to its employees for the execution of parallelizable tasks. The main

idea behind CWC is that using mobile devices for work-related computing can potentially reduce not

only the capital investment in servers but also the cost of energy, since a smartphone can be up to

20x more efficient than a standard server. Thus, the authors of [24] propose a framework where the

2MapReduce is a programming framework for data-intensive cloud computing on commodity clusters developed by
Google.

CHAPTER 2. RELATED WORK 14

phones are used for the computation only while being charged, so that the user is not disturbed by

the computations. Moreover, while charging the phone has a high probability of being connected to

the Internet through a WiFi Access Point. The application monitors the user interactions with the

phone and, if a user uses the phone while it is computing a task, the task is interrupted and migrated

to a different phone so that the task computation does not have any impact on the user. Moreover,

the application incorporates an algorithm that monitors the charging patterns: a test performed on

15 volunteers showed that the users charge their phones predominantly during the night and for an

uninterrupted period of several hours. They also ran other experiments to evaluate the impact of the

network connectivity on the task completion time, showing that simply accounting for the CPU clock

speed results in poor task completion times. CWC also includes an algorithm to predict the time it

takes for the tasks to be completed and three task distribution methods with different complexity. The

main experiment involved 18 Android phones with different CPU clock speeds and different network

connectivity technologies, and it showed that a greedy scheduler is approximately 1.6 times faster

than the other tested schedulers.

jUniGrid [25]

jUniGrid is a lightweight framework that allows the integration of mobile devices into hetero-

geneous desktop distributed computing systems to solve high complexity computational problems.

jUniGrid introduces two separate applications, that correspond to two functional roles: the Task-

Submitter (TS) and the Node-Application (NA). The node application is installed on the devices that

execute the tasks, while the task submitter runs on the device that creates the tasks, stores them in a

task queue and assigns them to the nodes according to a First In First Out policy. Moreover, jUniGrid

works based on a split/merge algorithm. It provides the user with the flexibility to split the job and

merge the results according to the requirement of the particular job. This split and merge is accom-

plished by TS, that also implements all the functionalities for job allocation, monitoring and result

aggregation. Thus, the TS is installed on the device that creates task queues and sends them to the

nodes in a FIFO fashion, where the first device to be connected receives the first task output, while

the node application is installed on the devices that execute the tasks. The paper shows the gains

CHAPTER 2. RELATED WORK 15

in term of job execution times that can be achieved by allowing mobile devices to participate in the

distributed computation. However, the focus of the paper is to provide a basic generalized grid mech-

anism for cooperative multi-platform processing and does not provide any detail about the specific

implementation.

Ocelot [26]

Ocelot is a distributed mobile computing platform that leverages mobile devices to execute lightweight

computational tasks generated from a Wireless Sensor Network (WSN). Ocelot is modeled after

the Berkley Open Infrastructure for Network Computing (BOINC) with the exception of employing

smartphones and tablets rather than workstations and server machines, as they reduce the maintenance

costs and the power usage. For testing purposes, Ocelot was integrated with a WSN that is deployed to

monitor indoor environmental conditions in a building. More specifically, Ocelot was used to monitor

and analyze the electrical power consumption and the environmental emissions within the building.

In this setting, Ocelot’s clients (the mobile devices) are attached to sensors that exchange data through

WiFi Direct and/or Bluetooth. Although the clients themselves cannot gather sensory data, they can

partition and efficiently process the data through parallel computing. Ocelot’s clients serve as nodes

that request and receive tasks from a server through XML files. One of Ocelot’s main features is hav-

ing multiple servers to insure an efficient task distribution, as one of the servers is consistently storing

the battery status of the nodes to make sure that the scheduling server sends tasks to only those nodes

with sufficient power. Once a node receives a task, it will execute the code, which is usually written

in Java or C. Currently, Ocelot allows the mobile devices to act only as clients that execute tasks, but

allowing the mobile devices to also become servers for the task distribution is considered as future

work.

To prove its advantage in reducing energy consumption, Ocelot has been compared against tra-

ditional computers. Results show that, while laptops and desktops were 5 times faster than mobile

devices, mobile devices consume up to 86% less energy. In addition, adding more devices to the client

pool dramatically lowers the total task completion time. As a result, Ocelot proves that it is feasible to

distribute tasks among mobile devices and provides considerable energy and cost savings with respect

CHAPTER 2. RELATED WORK 16

to a system that uses standard computers.

CANDIS [27]

CANDIS is a framework that distributes computing tasks to mobile devices as well as normal

desktop or server hardware and provides an efficient method of reducing costs by taking advantage

of the fluctuating energy market prices. The authors in [27] recognized that distributing computing

tasks to mobile devices has been extensively studied. Thus, they focus on devising a computational

infrastructure that is able to further reduce the computation costs and energy consumption. CANDIS

is a Java-based framework and is thus able to run existing Java code, and desktop, server and Android

mobile devices that support Java can be easily connected in the cloud. In such a hybrid cloud, the

server compiles the tasks and constructs a scheduler to allocate and distribute the tasks. The paper

shows that, while equally dividing the tasks among the available devices might be easier to implement,

distributing much smaller tasks results in faster execution times but increases the communication

overhead. Thus, CANDIS implements a more efficient allocation method where the server, before

assigning the actual tasks, estimates the capability of each client by assigning a benchmarking task

and using the results to improve the task allocation scheme. In addition, CANDIS uses information

about the price of electricity, which fluctuates dramatically throughout the day (on average, prices

are usually much lower late at night and early in the morning). The authors in [27] conclude that

using CANDIS on a large scale not only allow to save money but can also stabilize the electric energy

consumptions.

ANGELS [28]

ANGELS is a framework that allows mobile devices and computers to cooperatively participate

in the computation of analytical data. This framework allows the parallel execution of jobs on a set of

nodes that can be either mobile devices or standard PCs. For the evaluation of the framework, a “text

search” application, in which mobile devices and servers had to find a specific word in a large text file

and an algorithm to estimate the value of π have been considered. Experimental results show that the

tasks’ latency can be substantially reduced when the tasks are distributed among the mobile devices.

CHAPTER 2. RELATED WORK 17

The framework does not consider the impact of the computation on the user experience. Moreover,

the task distribution process considers a simple distribution scheme, in which tasks are assigned as

soon as a device becomes available.

2.2.2 User Driven Mobile Distributed Computing

Serendipity [29]

Serendipity enables a mobile computation initiator to use the computational resources of nearby

mobile devices to speed up the computation and preserve some energy. Serendipity improves the

mobile device’s computational experience by applying optimizing algorithms that minimize local

power consumption and/or decrease the computation completion time, while taking into account the

constraints of the intermittent communication links such as limited contact duration, limited transfer

bandwidth, and completion-time unpredictability. Serendipity follows what is called a “PNP block

paradigm”: the job is pre-processed and divided into n parallel task programs, and the results of

the execution of the tasks are finally merged by a post-process algorithm. The goal of this design

is to have an initiator disseminate a task (pre-process) to the computational nodes (task programs) it

encounters based on the estimated completion time or energy consumption, and finally coalesce the

data it receives (post-process).

To do so, three algorithms have been presented: 1) a WaterFilling method where the initiator

knows when to contact the nodes and has access to the nodes’ profiles in order to predict the number

of tasks a node can execute and the time required to process them; 2) a Computing on Dissemination

(COD) method, where the initiator does not know the contact time but has access to the nodes’ pro-

files; and 3) the Unpredictable Computing on Dissemination (upCOD), where both the contact time

and the nodes’ profiles are unknown.

Serendipity has been implemented on Android and showed substantial performance gains when

compared to executing tasks locally on the initiator’s mobile device. While in all the experiments,

the WaterFilling method performed better than COD and upCOD, experimental results show the clear

benefit of disseminating tasks on Serendipity rather than executing them locally, especially when

CHAPTER 2. RELATED WORK 18

Name Year Contributions Task Distribution
Operat-

ing
System

Applications

Mobile
OSGI.NET 2004

Porting of
OGSI.NET to
mobile devices

Homogeneous
tasks. FIFO

queue

Mi-
crosoft
Pock-
etPC
2003

Prime numbers
search

Hyrax 2009
Porting of Hadoop
to Android devices

Homogeneous
tasks. FIFO

queue
Android

Distributed
multimedia

search; Content
sharing

Computing
While

Charging
2012

Profiling charging
behaviors,
scheduling

algorithm, migration
of tasks across

phones

Heterogeneous
tasks. Greedy

algorithm based
on the Minimum

Makespan
Scheduling

problem with
task migration.

Android

Prime numbers
search; Word

searching;
Photo pixels

blurring

JUniGrid 2013
Generic framework
API for developing
grid applications

Homogeneous
tasks. FIFO

queue
JAVA

DNA sequence
matching

Ocelot 2013

Distributed
computing system
that uses mobile

devices as
computing
resources.

Homogeneous
tasks. FIFO

queue.

Android,
iOS

Dynamic life
cycle

assessment of a
building

CANDIS 2013

Distributed
computing system
that uses mobile

devices and
traditional computer

as computing
resources.

Heterogeneous
tasks. Scheduler

based on the
device

computational
capability and the

energy market
prices.

Android

Distributed
brute force

hash-cracking;
XML to JSON

conversion

ANGELS 2014

Framework that
allows the remote

execution of
programs within

mobile devices. The
focus is on the

processing of IoT
analytical data.

Heterogeneous
tasks. Tasks are

assigned
according to the

device
computational

capability.

Android
Text search; π

value estimation

Table 2.1: Server driven mobile distributed computing implementations.

CHAPTER 2. RELATED WORK 19

the number of tasks exceeds 100. Moreover, Serendipity was able to speed up computation up to 3

times compared to local conventional computing. In addition, Serendipity increases the battery life of

mobile devices and allows the saving of a significant amount of energy by distributing the computation

between different devices.

Honeybee [30]

Honeybee is a framework that deals with both human and machine computation, where human

computation represents a set of operations that require human interaction, like filling out a personal

survey form, while machine computation is a generic computer algorithm, like word searching or

number sorting. The Honeybee framework distributes a computational intensive task, like a face

detection algorithm, among several mobile devices. Honeybee’s focus is on keeping the smartphone

busy, in the sense that, as soon as one computation is completed, the device is allowed to steal tasks

from another slower device. The proposed implementation also focuses more on getting as many tasks

done as possible and does not provide a customizable, user friendly interface. Moreover, to each task

is assigned a deadline that the mobile device has to satisfy in order to continue getting tasks. If the

deadline is not met, the task is passed to another device. Honeybee has been implemented on Android,

using Bluetooth as a local communication technology. Experimental results show that managing local

connections severely impacts the delegator throughput. As future work, the authors are planning to

support different types of D2D communication technologies, e.g., WiFi Direct.

Unity [31]

Unity represents a system architecture that allows a group of mobile devices to share the workload

required to download a data file from the Internet. With this approach, each device downloads small

parts of the file and then shares those parts with the other members of the group so that every device

will eventually get the complete content. Leveraging short-range technologies such as WiFi and

Bluetooth, Unity allows a coordinator to communicate with its peers to split the download as well as

restarting it from the point where it stopped in case of a failure.

Unity has been implemented on Android smartphones that have either WiFi or Bluetooth capabil-

CHAPTER 2. RELATED WORK 20

ities. Unity employs WiFi HotSpot, an Android utility that uses 802.11 infrastructure mode to allow

the coordinator to act as a WiFi AP and all other peers to be connected as clients. As a result, the WiFi

HotSpot functionality allows the coordinator to stay awake for the entire duration, while peers are in

power saving mode, consuming a negligible amount of energy. After an initial connection phase,

where the devices connect to the coordinator, the coordinator determines the size of the file through

an HTTP request, divides the load, and then sends a control message containing the file URL to its

peers. Subsequently, each peer starts to download its share of the file using its own data connection

and sends the data blocks to the coordinator, which collects all the blocks, reconstructs the entire file

and distributes it to all the peers. Unity also includes a task distribution scheme that takes into account

the variability of the peers’ cellular network conditions for better distributing the workload between

the mobile devices. Experimental results show an improvement in download speeds up to 27%. In

addition, a variations of Unity called Unity-Cloud has also been presented. In Unity-Cloud, a remote

server coordinates the formation of the peer to peer group and assigns to each device the part to be

downloaded according the relative cellular conditions. As soon as the peers are geographically close,

the cloud coordinates the local blocks sharing for reconstructing the original file.

DRAP [32]

DRAP proposes a mechanism to group volunteer mobile devices into high performance decen-

tralized computing systems. The idea behind this work is to create an infrastructure where mobile

devices in close geographical proximity can form a cloudlet, and share resources with each other and

with other nearby devices. The concept of a cloudlet has been introduced in [33], and represents

a trusted, resource-rich computer or cluster of computers that is well-connected to the Internet and

available for use by nearby mobile devices. In DRAP, the cloudlet is represented by a cluster of mo-

bile devices that provides storage capability and computational resources to the other devices in the

network. The framework monitors the movement of the participating nodes and implements all the

functionalities required to connect the nodes in the network and enable the communications. For rout-

ing the communications between the devices, DRAP uses a modified version of the Ad Hoc Distance

Vector (AODV) routing protocol. DRAP also includes an algorithm that uses the mobile devices’

CHAPTER 2. RELATED WORK 21

resources to determine the subset of nodes that should be selected to become part of the cloudlet.

Computer simulations prove the feasibility and performance gain of the proposed architecture, for

different types of applications. The implementation of DRAP in real life mobile devices is considered

as future work.

2.2.3 Mobile Volunteer Computing

The architectures presented in the previous sections can all be adapted to allow volunteer users to

participate in the parallel computation. However, architectures explicitly designed with the objective

of realizing a volunteer computing system by interconnecting personal mobile devices through the

Internet have also been developed.

BOINC on Mobile Devices

The first attempt to extend the participation in volunteer computing to mobile devices dates back to

2007 [21], with researchers working on getting the application SETI@home [15] (and other scientific

programs) to run efficiently on ARM processors [34]. Starting from this feasibility study, different

Android applications [16, 35, 36, 37] and a prototype implementation for iOS [38] have been proposed

to extend the participation in BOINC projects to mobile devices. In February 2014, the integration

of Android devices into the BOINC system has been extensively promoted with the campaign HTC

Power to Give [39], an initiative that aims to create a supercomputer by harnessing the collective

processing power of Android smartphones. As of September 2014, the HTC Power to Give application

has been installed on 1.7 million devices [40].

CrowdLab [41]

The idea of creating testbeds by interconnecting volunteer mobile devices has also received con-

siderable attention [41, 42, 43]. In particular, CrowdLab [41] is a testbed architecture that utilizes

volunteer mobile resources to offer features common to infrastructure-based testbeds. CrowdLab al-

lows the execution of guest code on participating mobile devices through hardware virtualization, it

CHAPTER 2. RELATED WORK 22

Name Year Contributions Task Distribution
Operat-

ing
System

Applications

Serendipity 2012

Distributed
computing system

that exploits nearby
mobile devices

Heterogeneous
tasks. Three

schemes with
different

complexity.

Simula-
tions on
Emulab

Speech-to-text
application

Honeybee 2013

Framework API to
support job sharing
and crowd-sourcing

among mobile
devices. Work

stealing to achieve
load balancing

Heterogeneous
tasks. Tasks
assigned at

random.
Scheduler that

attempts to
minimize the idle

time

Android

Face detection;
Mandelbrot set

generation,
Collaborative
photography

Unity 2013

System architecture
that enables
collaborative

downloading across
co-located mobile

devices.

Heterogeneous
tasks. Tasks (data

to be
downloaded) are

assigned
according to the
cellular network

conditions

Android
Collaborative
file download

DRAP 2014

Cluster formation of
volunteer mobile

devices for
distributed

computation. The
focus is on how to

best group the
devices based on
their capabilities.

High level
description of a

Cloudlet
Manager that
handles task

distribution. The
details about the
task distribution
process are not

provided

Simula-
tions on

ns-3

Testing of the
cloudlet

formation
algorithm

Table 2.2: User driven mobile volunteer computing implementations.

CHAPTER 2. RELATED WORK 23

supports low-level access to the radio device and the concurrent scheduling of co-located applications.

Volunteers contribute resources to CrowdLab in the same way that users contribute spare resources

to BOINC. The CrowdLab architecture uses a centralized remote server for tracking the experiments

and the current available volunteer resource contributors, and a decentralized local task coordinator

that is responsible for the scheduling and task distribution to nearby devices. CrowdLab includes an

algorithm to limit the amount of energy that each application can consume in a certain time period.

According to this scheduling scheme, a device will not participate in the distributed computation if the

owner is actively using it, and it allows the user to set a daily resource budget for running experiments

as a percent of battery capacity or as a period of participation.

Seattle [44]

Seattle [44] has been proposed as a distributed computing platform that exploits heterogeneous

volunteer devices for educational and research purposes, that supports different operating systems

and architectures. Seattle is a general purpose learning platform based on the Python programming

language that allows users to develop and test different types of applications ranging from network-

ing to cloud computing. The objective of this platform is to provide researchers and educators the

ability to create application prototypes and to evaluate their performance on a wide range of devices

distributed around the world. Seattle follows an open source philosophy, and it embraces the hetero-

geneity of today’s end user environment, thus providing a unique environment that is not available on

other testbeds. A recent study showed that more than 20,000 devices are currently contributing their

resources to Seattle, with more than 500 being mobile devices [45].

GEMCloud [46]

More recently, GEMCloud (Green Energy Mobile Cloud) [46] has been proposed as a distributed

system that utilizes energy efficient personal mobile devices as computing resources instead of desk-

top computers. Mobile devices are considered to be particularly appealing because of their increasing

computing capabilities, great popularity and diffusion as well as for the fact that they can potentially

provide energy savings with respect to standard computers. The vision of GEMCloud is to adapt

CHAPTER 2. RELATED WORK 24

the traditional distributed computing infrastructure by shifting the load of the computation to mobile

devices. GEMCloud follows a traditional volunteer computing architecture, where a remote server

distributes the tasks to participating devices through an Internet connection. The task distribution is

based on the device characteristics and customizable user preferences. In GEMCloud, the user expe-

rience is particularly important, and the user is allowed to finely control how much and when to con-

tribute to the distributed computation, including settings on battery level, charging vs. not charging,

WiFi vs. 3G/4G communication, and device temperature. Experimental results show a comparison

between the completion time and relative energy consumption of different types of tasks and different

computing devices. While the mobile devices are always slower than a high performance workstation,

GEMCloud shows that some mobile devices have performance comparable to a standard computer,

while always consuming much less energy. The GEMCloud application is available for download in

the Google Play store.

Starting from the GEMCloud implementation, the authors in [6] presented a computational in-

frastructure that extends the ability of mobile devices to participate in volunteer computing through

ad hoc networking. The architecture presented in [6] overcomes the intrinsic requirement of Inter-

net connectivity to participate in volunteer computing by introducing decentralized job coordinators.

These job coordinators, referred to as task distribution points, are mobile devices directly connected

to the Internet that are able to invite other devices to join the computation via device to device commu-

nication. Experimental results show that allowing for additional devices without Internet connectivity

to participate in the computation reduces significantly the overall time required for the execution of

the tasks, with only minor additional energy consumption at the decentralized job coordinators.

CHAPTER 2. RELATED WORK 25

Name Year Contributions Task Distribution
Operat-

ing
System

Applications

Seattle 2009

Distributed
computing and
general purpose

learning platform

Application
specific tasks

Maemo
Linux

Multiple
applications

BOINC 2011
Porting of the

BOINC client to
Android devices

Project specific
tasks

Android

Multiple
scientific
research
projects

CrowdLab 2011
Testbed architecture
based on volunteer
mobile resources

Application
specific tasks

Android
Multiple

applications

GEMCloud 2013

Distributed
computing system
that uses mobile

devices as
computing
resources.

Evaluation of
computing power

and energy
efficiency of mobile

devices

Heterogeneous
tasks assigned at
random. FIFO

queue subject to
user preferences.

Android
Protein structure

predictions

Table 2.3: Mobile volunteer computing implementations.

26

Chapter-3

Extending Mobile Cloud Computing with Device-to-Device
Communications

3.1 Introduction

While the aforementioned systems provide a variety of viable and energy efficient mobile comput-

ing architectures, there exist scenarios where a mobile device’s connectivity to the Internet is limited

or non-existent, resulting in devices being unable to utilize these aforementioned systems. As a result,

we have proposed and implemented an architecture that extends the existing mobile cloud computing

systems by offloading computation to a device’s nearest neighbors. In particular, we present an ex-

tension to a volunteer computing system in which a device with Internet capabilities, either WiFi or

3G/4G, can elect itself as a local task distribution point, inviting other users to join the computation

via existing Device to Device (D2D) communication methods.

Starting from the existing implementation of GEMCloud [46], we design and develop an experi-

mental system where local task distribution is performed using different D2D technologies. Besides

the implementation, our focus is on the evaluation of the computing capabilities and energy efficiency

of the system, as well as to prove the feasibility of the system for an existing D2D technology. In

this regard, WiFi Direct [19] is considered. For the local task distribution points, two methods for

distributing the computation tasks to the devices connected through D2D communication, Batch and

Proxy, are also proposed. Using Batch mode, a set of N tasks are cached at the task distribution point

and are then distributed to the ad-hoc network as they are requested. In Proxy mode, instead, the

task distribution point acts as a gateway to the Internet-based source of the data. The remainder of

CHAPTER 3. EXTENDING MCC WITH D2D 27

SERVER

WiFi AP3G/4G BS

INTERNET

Figure 3.1: A traditional mobile computing topology. Users are connected to a remote computing
server through a 3G/4G Base Station (BS) or a WiFi Access Point (AP).

the chapter highlights the energy consumption and evalutates the performance of the task distribution

methods over a single hop.

3.2 Application Scenarios

Traditional mobile computing systems use the Internet as the communication architecture, as

shown in 3.1. This limits the effective use of mobile computing due to (i) the fact that some de-

vices may not have access to the Internet for some time periods, and (ii) the cost of accessing the

Internet might deter some participants from fully sharing the idle cycles of their devices. In this sec-

tion, we present some reference scenarios in which having an ad hoc task distribution method will

extend the total resource utilization, enabling more users to contribute their spare cycles.

CHAPTER 3. EXTENDING MCC WITH D2D 28

3.2.1 Server Driven Mobile Computing

Most mobile devices use WiFi as the primary method of accessing the Internet due to the fact

that it provides an affordable and fast connection. However, considering a user’s typical mobility

pattern, mobile devices do not have access to a WiFi access point during a significant portion of the

day, such as time spent on transportation (e.g., buses, subways); and shopping centers as well as

during time spent in remote areas away from the coverage of WiFi hot spots. Although having a

cellular data connection does allow a mobile device to participate in a mobile computing platform

such as GEMCloud, the cost associated with this connection type often times deters the end-users

from participating.

On the other hand, during periods of non-regular mobility patterns such as vacation times, the

connectivity of the devices becomes the bottleneck factor limiting the effective use of mobile com-

puting. Although WiFi is quite widespread, aside from some hotels and coffee shops that offer it as a

complementary service, Internet connectivity through WiFi hot spots generally requires a subscription

fee. In addition, the fact that the connection to these hot spots is not seamless and often requires the

user intervention, further limits the connectivity of mobile devices, thus decreasing their utilization in

the mobile computing architecture.

A standard mobile computing system, like GEMCloud and BOINC, would not be able to utilize

users who do not have an active data connection or who are not willing to use their data connection.

These users would then be forced to wait until they are back “on the grid” to resume their participation.

In order to address these shortcomings, we propose the introduction of two functional roles for

each client of the system: (i) task execution points (TEPs), and (ii) task distribution points (TDPs).

TEPs are devices that have compatible computational platforms and are willing to participate in the

computing platform. TEPs compute the tasks assigned to them and send the results back to the device

that requested the computation. TDPs, instead, are responsible for receiving sets of tasks from the

cloud and then distributing them to the TEPs through peer to peer connections, e.g., Bluetooth or

WiFi-Direct. In our proposal, a TDP could be a dedicated device that only distributes the tasks, or

it could be a generous user that is willing to share its Internet connection, established either via a

CHAPTER 3. EXTENDING MCC WITH D2D 29

cellular network or through a WiFi hot spot. It is important to note that these roles can both be

taken simultaneously, and in such case, we refer to this client as task distribution and execution point

(TDEP). Therefore, rather than being fixed, the TDP and the TEP are roles that can change over

time. After the computation, the task results are returned either directly to the server that requested

the computation if a preferred connection becomes available, or to a distribution point that will be

in charge of sending them back to the requesting server. We note that the results do not have to be

returned to the same distribution point that assigned the tasks.

We want to further emphasize that the proposed system could be enhanced with further economical

incentives. For example, some reward could be offered to the clients acting as TDP in exchange for

distributing the tasks to the TEPs that cannot receive the tasks directly. These economical incentives

could form the foundation of a new business model and enhance the efficient use of computational

devices. A particular scenario is the utilization of ad hoc mobile computing in public transportation.

The introduction of a task distribution point in a bus would allow the passengers with mobile devices to

participate in computing. While dedicated TDPs could be installed on public transportation, users who

are willing to use their data connection can also take the role of a TDP and connect the mobile devices

on the bus to the cloud. In this case, participation could be encouraged with economic incentives such

as discounted bus tickets.

3.2.2 User Driven Mobile Computing

Often times the devices running distributed computing algorithms reside outside of traditional

networks and away from nodes that are capable of intensive computing. For instance, sparsely pop-

ulated remote locations oftentimes neither have direct access to the Internet nor are in the vicinity of

other devices with access. For example, ad-hoc distributed computing can help many applications

in the area of tactical military communications, first responder networks, search and rescue opera-

tions, and sensor network operations. In these application areas, there are many computing intensive

algorithms ranging from image processing to target detection that can be parallelized. Using a coop-

erative distributed computational architecture, these algorithms can be computed in a shorter amount

CHAPTER 3. EXTENDING MCC WITH D2D 30

of time using a higher accuracy and with less impact on the energy resources of critical nodes, thereby

increasing the network lifetime.

Some central solutions have been proposed for this purpose, in which the computing jobs are

offloaded to a central server [47]. However, due to the high latency of the communication architecture,

such central solutions are infeasible for jobs with tight bandwidth limitations. One solution includes

deploying a Cloudlet [48] to help accelerate battlefield applications; however, this approach does not

completely eliminate the latency problem and creates a single point of failure where the system could

collapse if the Cloudlet were to go down. Distributed computing addresses these problems by dividing

the jobs and distributing them to the nodes in the network. The results are collected and fused for a

final decision. This approach minimizes the latency by decreasing the distance between the point of

the job request and the point of computation and eliminates the dependency on a specific node in the

network.

In our proposed system, the node that creates the jobs also takes the role of a TDP and distributes

the tasks to the nodes in the ad hoc network. This system can be optimized to maximize the computa-

tional power available to the nodes in need, and to maximize the lifetime of the network by letting jobs

be executed where energy resources are abundant and limiting the energy consumption on bottleneck

devices.

Finally, the system can be extended to work on multi-hop networks by letting the recipients of the

tasks take the role of a TDP and further distribute the tasks to the nodes around themselves. However,

we limit the scope of this chapter and only consider single hop ad hoc networks over which TDPs are

responsible for distributing the jobs.

3.3 Background on Device to Device Communication

The distributed computing architecture proposed in this work is based on the availability of Device

to Device (D2D) communication, which is an emerging paradigm that addresses end-to-end commu-

nication between devices, without any human intervention.

Although many protocols have been proposed over the years, IEEE 802.11 DCF, IEEE 802.11s,

CHAPTER 3. EXTENDING MCC WITH D2D 31

IEEE 802.11z, Zigbee, SMAC, WiFi Direct, and Bluetooth, are a few that we have chosen to list and

provide a brief description below. It is also worth mentioning that each of the aforementioned have

their individual application areas.

IEEE 802.11 DCF has a basic method that provides ad hoc D2D communication and is widely

available. However, it has been shown that this protocol suffers from low performance in real life

implementations [49] and has a high energy consumption due to the requirement of maintaining the

listening state on the radios. WiFi Direct, on the other hand, has recently been proposed to address

the shortcomings of IEEE 802.11 DCF and has been designed with energy saving mechanisms lead-

ing to higher energy efficiency. IEEE 802.11s and IEEE 802.11z add mesh networking and direct

communication on top of the IEEE 802.11 family. These additions are only relevant in a multi-hop

network. SMAC and ZigBee are energy efficient protocols that are designed for sensor networks. The

data rates supported by these protocols are very low and thus not suitable for large tasks. Moreover,

their availability are limited to low power sensor nodes that have very low computational capacity.

Bluetooth is a widely available technology designed to support low power communications between

nearby devices (Bluetooth low energy), but with the possibility of reaching high data rates (Bluetooth

high speed) [18].

Given the above, we focus our attention on two D2D protocols, namely WiFi Direct and Bluetooth.

This is because we believe that WiFi Direct is the most promising technology, while Bluetooth is an

incumbent technology widely deployed. Moreover, both protocols are commonly available off the

shelf in several mobile devices. In the remainder of this section, we present a brief overview of these

two protocols.

3.3.1 Bluetooth

Bluetooth is a popular standard primarily used for Wireless Personal Area Networks (WPAN) [50].

Bluetooth uses the 2.4 GHz band for transmission, and it uses the Frequency Hop Spread Spectrum

(FHSS) technique for channel access. Devices inside a WPAN are divided into master and slaves,

where the master node is essentially a node that is in charge of advertising, authenticating and allowing

CHAPTER 3. EXTENDING MCC WITH D2D 32

other nodes to join the network. Bluetooth authentication primary steps are Inquiry and Paging [50].

The inquiry procedure is done by sending requests, and responses are sent from nodes that have

discovery enabled [50]. This is done completely at the physical layer and it is during this step that QoS

commitments are made [50]. Additionally, there is an extended Inquiry phase in which information

such as data type, local name, and services can be made exchanged between devices [50]. Connection

requests are made on a special channel, and each node can only handle one connection request at a

time.

The master is responsible for coordinating the transmissions inside the group, and each master

can manage up to seven slaves. The master can transmit during the even slots, and all the slaves are

allowed to transmit during the odd slots. A message can last for several slots, and during transmission,

the hopping sequence does not advance.

3.3.2 WiFi Direct

WiFi Direct [19] is a standard released by the WiFi alliance that enables D2D communication

without requiring a wireless access point. During D2D communication, devices forms a group were

one of them is the Group Owner (GO) and all the others are considered Group Members (GMs). It is

important to note that these roles are not fixed and can change dynamically.

Additionally, WiFi Direct groups can also consist of nodes that do not support WiFi Direct, but

do support the IEEE 802.11 standard that the group is operating. WiFi Direct utilizes IEEE 802.11

a/b/g/n infrastructure mode, and can transmit either at 2.4GHz or 5GHz.

Since WiFi Direct utilizes the IEEE 802.11’s infrastructure mode, all of the QoS, power saving,

and security protocols of IEEE 802.11 are also inherited. Similar to a typical IEEE 802.11 network,

where nodes find and connect to APs, the GO also acts as a soft AP, advertising and allowing nodes

to join the group. Group advertisement is performed using beacon packets, just like a typical IEEE

802.11 AP, and the GO is responsible for giving control of the channel to nodes in its network as well

as routing data through its group. Nodes that have WiFi support but do not support WiFi Direct can

still connect to a WiFi Direct group [19, 51] and are referred to as legacy clients. GMs are the nodes

CHAPTER 3. EXTENDING MCC WITH D2D 33

that support WiFi Direct and hence can capitalize on the WiFi Direct power saving options.

The nodes that support WiFi Direct go through a group formation process in order to determine

the roles of the GO and the GMs. There are three group formation processes: standard, persistant

and autonomous [19, 51]. In the standard group formation, typically done when nodes meet for the

first time, nodes listen on channels 1, 6, and 11 in the 2.4 GHz band [19, 51]. After finding another

device, the devices negotiate as to which will act as the group owner (GO) [19, 51]. This is done in

the handshake process, where the devices exchange an intent value, and the device with the highest

value become the GO [19, 51]. Persistent group formation occurs if the persistent flag has been set in

the first encounter, this allows for the nodes to take up the roles that they had previously [19, 51]. This

method also enables a quicker handshake, allowing the devices to skip Phase 1 of WiFi Protected

Setup (WPS) [19, 51]. In autonomous group formation, a node assigns itself the role of GO and

creates its own group [19, 51].

After finding a group, by responding to probe requests, or after the negotiation phase of group for-

mation, nodes will establish a secure connection using WPS and receive an IP address using Dynamic

Host Configuration Protocol (DHCP) exchange [19, 51].

3.4 System Architecture

The traditional mobile computing platform, as considered in [20, 46, 47], is presented in Fig-

ure 3.2.

Our goal is to extend the range of computation devices of a traditional mobile computing system

via ad hoc communications. In Figure 3.3, we show an example of this type of system, where certain

users are allowed to become local Task Distribution Points (TDPs and TDEPs in Figure 3.3) and pro-

vide access to the distributed computing system to other clients or task execution points, using an ad

hoc communication method (e.g., D2D communication). Thus, each TDP is in charge of requesting

tasks from the server, and then it distributes these tasks to its clients. Moreover, the TDPs are respon-

sible for organizing the results, resolving any failures, and returning the results back to the remote

server.

CHAPTER 3. EXTENDING MCC WITH D2D 34

SERVER

WiFi AP3G/4G BS

INTERNET

Figure 3.2: Example of a traditional mobile volunteer computing architecture where users are con-
nected to the remote server through a WiFi Access Point (AP) or a 3G/4G Base Station (BS).

The general idea behind our approach is similar to the one proposed in [23], that considers a

manager/worker model, in which the manager receives requests from the workers and responds to

these requests by assigning tasks. The system presented in [23] considers the manager to be a remote

server that the workers (either traditional computers or mobile devices) can reach through the Internet.

3.4.1 Task Distribution Point

In our system, a central role is played by the devices that act as TDPs and, for this reason, the

way in which the TDP operates will affect the performance of the complete system. In particular, the

TDP is required to receive tasks from a remote server, distribute the tasks to the TEPs through D2D

communication, receive the results of the computations from the TEPs and then send the results back

to the remote server.

The TDPs can receive the tasks from the server following different approaches. In general, the

different methods can be classified based on when the actual request happens: 1) following a proactive

CHAPTER 3. EXTENDING MCC WITH D2D 35

SERVER

Wifi AP
3G/4G BS

TDP
TDEP

INTERNET

TEP TEPTEP

TDEP

TEP

Figure 3.3: Example of ad hoc mobile computing topology with corresponding functional role as-
signed to each of the clients. Task distribution point (TDP), task execution point (TEP), and task
distribution and execution point (TDEP).

CHAPTER 3. EXTENDING MCC WITH D2D 36

Forward Task
to TEP

Receive Task
from Server

Wait for Task
Request from

TEP

Request Task
from Server

(a)

Send Task
to TEP

Tasks
Queue
empty?

YES NO

Wait for Task
Request

Get Task from
Tasks Queue

Receive N
Tasks from

Server

Request N
Tasks from

Server

(b)

Figure 3.4: Task distribution flowcharts for the TDP operating according to the Proxy (a) and Batch
(b) methods.

approach, meaning that the task requests to the server are made before the actual requests from the

TEPs, or 2) following a reactive approach, thus requesting the task from the server at the time of the

actual TEP requests. Following a similar idea, the TDP can send the results back to the remote server

either immediately, at the time of the reception from the TEP, or delayed, after collecting multiple

results. To this end, we propose two different TDP modes of operation: a simple Proxy method,

that considers a reactive task distribution technique and an immediate forwarding of the results, and

a more involved Batch approach that, instead, implements a combination of proactive task requests

with a delayed results transmission.

Proxy: This method represents a basic mode of operation and requires little intelligence to be

added to the device that will act as TDP. In particular, a Proxy TDP acts as a gateway and forwards

all requests and responses directly between the remote server and its clients. Figure 3.4(a) shows the

CHAPTER 3. EXTENDING MCC WITH D2D 37

flow diagram of the Proxy task distribution procedures, while Figure 3.5(a) presents the flow diagram

for the collection of the results.

Batch: In this method, the TDP proactively requests a set of N tasks from the server and caches

them so that, when it receives a request from the TEPs, the TDP will promptly respond with one of

the cached tasks. After completing the task, the TEP returns the result to the TDP, and the TDP stores

these results before sending them back to the server. Figure 3.4(b) shows the flow diagram of the

Batch task distribution procedures, while Figure 3.5(b) presents the flow diagram for the collection of

the results.

3.4.2 Task Execution Point

In the proposed system, we assign the role of task execution point (TEP) to all the devices that

participate in the distributed computation, regardless of the connection used for receiving the task and

sending the results of the computation. Thus, a traditional client of the mobile computing system

that receives the tasks directly from the server and a client connected through D2D communications

are both considered TEPs. Moreover, the way in which the TEPs receive tasks and send results back

to the server are completely transparent, and the protocol used for the communication is exactly the

same in both cases.

3.4.3 Complexity Considerations

The objective of our work is to extend the mobile computing architectures by introducing local

TDPs, whose operation is completely transparent to both a standard client (i.e., TEP) and the remote

server. Thus, the additional complexity of our system when compared to an existing mobile computing

architecture, resides on the requirements of the D2D communication technology, on the ability to

advertise and discover local TDPs, and on the intelligence necessary for the local task distribution

procedure.

In particular, the Proxy implementation simply forwards all the requests to and from the server to

the ad hoc network clients. Thus, a Proxy TDP acts as a local gateway, and it performs a translation

CHAPTER 3. EXTENDING MCC WITH D2D 38

Forward Result
to Server

Wait for
Result from

TEP

Receive Result
from TEP

(a)

Send all
results to
Server

Results
Queue
Full?

YES

Wait for
Result from

TEP

Put Result
in Results

Queue

NO

Receive Result
from TEP

(b)

Figure 3.5: Result collection flowcharts for the TDP operating according to the Proxy (a) and Batch
(b) methods.

between the Internet interface and the D2D domain. We consider the Proxy method to be the simplest

mode of operation that can be implemented in a TDP. It simply forwards every communication to and

from the server, thus introducing additional delay due to the additional communication hop. However,

it is considered as a reference implementation for evaluating the performance of other task distribution

techniques. The Batch task distribution approach, instead, overcomes the inefficiency in the network

utilization of the Proxy method by caching a set of N tasks at the TDPs for faster distribution to the

local TEPs. Moreover, a Batch TDP stores a set of M results before sending them to the server. Thus,

some additional computation and data storage is required in order to handle the task requests and the

caching operations.

In section 5.6.1 we provide some experimental results that show the impact in terms of time delay

and energy consumption of the proposed task distribution methods.

CHAPTER 3. EXTENDING MCC WITH D2D 39

3.4.4 Implementation

Given that the idea behind our work is to enhance the performance of a mobile computing sys-

tem, we extend the GEMCloud [46] architecture to support TDPs that can distribute tasks to TEPs

connected through D2D communication. GEMCloud provides us with a platform, and an Android

application, to evaluate the benefits of extending volunteer computing through ad hoc networking.

In GEMCloud, the server acts as a central point by coordinating and distributing tasks to the

connected clients. The client connects to the server using either 3G/4G or WiFi. After connecting,

the server checks to see if the client requires an updated version of GEMCloud [46]. The server then

authenticates the client using a set of parameters that are exchanged and, after that, it assigns tasks

to the client. Due to the unpredictability of the Internet, the typical job executed in an architecture

like GEMCloud are termed “embarrassingly parallel problems,” where there exists no dependency (or

communication) between the parallel tasks. Thus, the tasks are stored in a list, and they are assigned

in a first in first out order. Each of these tasks are independent and do not need to be all returned to

the server for the overall job to complete. However, the quality of the final results will depend on the

number of tasks that are actually returned after the distributed computation.

In our implementation of the Proxy and Batch distribution methods, the server is the same as in

GEMCloud, and the client takes the role of TEP. Using our system, we can extend the devices that can

participate in the GEMCloud computations by connecting additional TEPs through the TDPs. The

Proxy task distribution method provides operation very close to GEMCloud: the TDP behaves as a

proxy, and it forwards any requests between the TEP and the server. In the Batch implementation,

instead, the TDP requests and caches a set of tasks from the server. The TDP still goes through the

same process as in GEMCloud, where the server checks for updates and authenticates before sending

a task; however, the TEPs that connect to a TDP running our Batch implementation will have their

version checked against the local version that the TDP is running. The TDP then will send tasks from

its tasks queue. It is important to note that in both task distribution methods, in addition to the role of

a TDP, the device may also act as a TEP. In the Proxy method, devices that serve as TDPs connect and

request tasks from the server also for themselves, similar to the original GEMCloud operation. In the

CHAPTER 3. EXTENDING MCC WITH D2D 40

TDPTEP
SERVER

INTERNET
D2D

D2S

TEP

Figure 3.6: Communication links between TEP, TDP and remote server.

Batch method, devices acting as TDPs take tasks from their own queue rather than requesting them

from the server. In other words, these devices can be modeled by combining the TDP and TEP roles,

and we note these devices as TDEPs.

3.5 Analytical Model

Our system is composed of four elements, namely TEP, TDP, server and database. Since we

assume that the TDP-TEP interactions are transparent to the remote server and database, and that the

remote server and database have the same operations as in traditional distributed computing systems,

in our performance evaluations we focus on the performance of the TDPs and the TEPs.

For the purpose of deriving an analytical model of the system under consideration, in what follows

we refer to the scenario presented in Figure 3.6, where we label the communication link between

the TDP and the TEPs as D2D, and the communication link between a device, acting either as a

TDP or TEP, and the remote server as D2S. We note that the communication link determines the

communication technology that can be used for the communication. In particular, this work considers

the communication over the D2D links, we analyze the impact of WiFi Direct and Bluetooth, while

for the D2S link that requires Internet connectivity, we consider WiFi and LTE1.

As described in Section 3.4, both the TEP and the TDP require the transmission and reception of
1Our experimental results have been obtained using a device that supports WiFi, WiFi Direct and Bluetooth. The

results for LTE are obtained through the analytical model presented in [52].

CHAPTER 3. EXTENDING MCC WITH D2D 41

the tasks and results of the task execution over the D2D or D2S link, thus entailing communication

energy consumption. Additionally, the TEP needs to execute the task, which will require computa-

tional energy consumption, while the TDP is required to manage the task distribution process and wait

and reply to requests from the TEPs. Finally, an additional energy overhead due to standard operating

system operations is consumed at both the TEP and TDP. The details of the different components are

presented in the following sections and are integrated with the experimental results of Section 5.6.1

for evaluating the performance of our system.

3.5.1 Communication Energy Model

The communication model follows a standard framework, e.g., [52, 53], that relates the power

consumption of different radio technologies to the mode of operation of the radio technology. While

different communication states can be identified for each short range technology, such as WiFi, WiFi

Direct and Bluetooth, in this chapter our interest is on the energy spent by the device in the trans-

mission, reception and idle phases. This is particularly reasonable for the TEP participating in our

mobile computing system, since we assume that each TEP participates in the distributed computation

for several tasks, thus making the impact of the other states, like connection to the Access Point or

Bluetooth discovery phase, a one time energy consumption with negligible impact on the steady state

operation of the system. We note that the TDP, instead, needs to continuously advertise its presence

to the incoming TEPs, and invite and accept connections through D2D links. However, for simplicity

we incorporate the energy consumptions for these operations into the energy consumption of the task

distribution process.

Given the above, we define PX
tx and PX

rx , to be the transmission and reception power consumption

of technology X , respectively, and PX
idle as the relative idle power consumption. Moreover, we refer

to the transmission and reception throughput of each technology as TXtx and TXrx . Since the throughput

on wireless networks fluctuates due to the signal strength and channel impairments, assigning values

to them only serves as an example of the achievable performance of a network. However, [52, 54],

as well as our measurements presented in Section 5.6.1, show a constant transmission (and reception)

CHAPTER 3. EXTENDING MCC WITH D2D 42

energy consumption per bit, for the transmission/reception of a fixed data size. Moreover, both our

results and [52] show an inverse relationship between the energy per bit and the data size (see Fig. 3.7).

As a result, we define the energy required for sending s bits of information using technology X ∈

{WiFi Direct, Bluetooth, WiFi, LTE} as

EX
tx(s) = αXtx(s)s, (3.1)

where αXtx(s) = f
(
PX

tx , T
X
tx , s

)
represents the energy consumption per transmitted bit, and f(·) is a

function that depends on the particular radio chipset. Similarly, we define the energy required for

receiving s bits as

EX
rx(s) = αXrx(s)s, (3.2)

where αXrx(s) = g
(
PX

rx , T
X
rx , s

)
represents the energy consumption per received bit, and g(·) is a

function that depends on the particular radio chipset.

3.5.2 Computation Energy Model

As the name suggests, the main components of a distributed computing system are represented by

the execution of the tasks assigned to the client. Thus, when modeling the energy consumption of a

mobile computing architecture, the energy requirements of the computation are the most important

and predominant part. To this end, we define the energy consumption per task execution as

Eex(tex) = texPex, (3.3)

where Pex represents the power consumption of the mobile device during task computation, while tex

represents the time required to execute the assigned task. We note that the time tex depends on both

the CPU characteristics of the mobile device and on the complexity of the task to be executed. While

a detailed evaluation of the relationship between device process capability and task complexity is out

of the scope of this chapter, we consider the ratio between the task total number of floating-point

operations and the CPU FLOPS (FLoating-point Operations Per Seconds) to be a reasonable lower

CHAPTER 3. EXTENDING MCC WITH D2D 43

bound (alternatively number of instructions / CPU Instructions per second, IPS).

3.5.3 Task Distribution Energy Model

In order to completely characterize the energy consumption of our proposed architecture, we need

to define the energy overhead introduced by the task distribution process. It can be noticed that while

the energy consumption of the different communication technologies are defined by the technology

itself, the overhead introduced by the task distribution depends on the particular authentication and

communication protocol used to route the tasks and results between the D2D and the D2S links. In

Section 3.4.1 we described two different task distribution algorithms, Proxy and Batch, that rely on a

different communication scheme.

We define PD2D,D2S
td,proxy (k) and PD2D,D2S

td,batch (k), to be the power requirement to handle the Proxy and

Batch task distribution processes, respectively, when the TDP is not transmitting nor receiving data

through the D2D and D2S links and it is serving k different TEPs. As stated earlier, we consider that

PD2D,D2S
td,batch (k) and PD2D,D2S

td,proxy (k) include the power required to maintain the D2D connections with

the associated TEPs, as well as the advertising of the link availability and the eventual invitation

and connection of new TEPs. The energy consumption of the Proxy task distribution process is thus

represented by

ED2D,D2S
td,proxy (i, k) = iPD2D,D2S

td,proxy (k), (3.4)

where i represents the time in which the TDP is not serving any of its TEPs, nor communicating with

the server. Similarly, for the Batch task distribution method we have

ED2D,D2S
td,batch (i, k) = iPD2D,D2S

td,batch (k). (3.5)

3.5.4 TEP and TDP Energy Model

In this section, we combine the different energy models in order to derive the total energy con-

sumption of a mobile device operating either as a TEP or TDP. Moreover, we consider the energy

model of a TDEP, i.e., a device that simultaneously executes tasks and distributes tasks to others, to

CHAPTER 3. EXTENDING MCC WITH D2D 44

be the superposition of the TEP and TDP energy models.

For the communication between the TDP and the server, and between the TEP and the TDP we

assume the existence of a simple authentication protocol that requires the exchange of additional in-

formation before the actual data exchange2. By considering that this authentication process requires

the transmission of aXclient bits from the device acting as a client (this includes also the information

required to request a task or to prepare the server for the reception of the result) and the transmis-

sion of aXserver bits from the server (or the TDP for local D2D task distribution), we define the client

authentication energy as

EX
auth,C = EX

tx(aXclient) + EX
rx(aXserver), (3.6)

where X ∈ {WiFi Direct, Bluetooth, WiFi, LTE}, and the TDP authentication energy when acting as

a server for the TEPs as

ED2D
auth,S = ED2D

tx (aD2D
server) + ED2D

rx (aD2D
client), (3.7)

with D2D ∈ {WiFi Direct, Bluetooth}. We note that the authentication with the server can, in gen-

eral, be different than the authentication method used for the D2D network, and that the authentication

method can also depend on the particular radio technology used for the communication.

In order to derive the energy of the different devices participating in the mobile computing system

we additionally need to define the system parameters. To this end, we consider that assigning a task

to a TEP requires the transmission/reception of t bits, the computation associated with the task has a

complexity of c seconds, and the result of the task execution to be reported back to the server entails

the transmission of r bits. Moreover, for the TDP energy model, we define k to be the number of

TEPs connected to the TDP. Given the above, the total energy consumption per task for a generic TEP

is

EX
TEP(t, c, r)=EX

rx(t) + Eex(c) + PX
idlec+ EX

tx(r) + 2EX
auth,C, (3.8)

where X ∈ {WiFi Direct, Bluetooth, WiFi, LTE} represents the communication technology used for

receiving the task and sending back the result after the relative execution. The total TDP energy

2The extension to a more complicated authentication process that requires local computation can be easily be included
in the model by adding an additional computational cost.

CHAPTER 3. EXTENDING MCC WITH D2D 45

consumption for handling a single task to be executed at one of the TEPs is, instead:

ED2D,D2S
TDP (t, c, r, k) = ED2S

rx (t) + ED2S
tx (r) + ED2D

tx (t)

+ED2D
rx (r) + ED2D,D2S

td

(
c
k
, k
)

+ 2(ED2S
auth,C + ED2D

auth,S), (3.9)

where D2D ∈ {WiFi Direct, Bluetooth} and D2S ∈ {WiFi, LTE}.

3.5.5 Total Task Time Model

The main focus of our analysis is to evaluate the impact on the energy consumption of extending

mobile computing through D2D communications. However, in certain time sensitive applications, the

total time to complete a set of tasks is also an important parameter to consider. In what follows, we

consider the total time required to compute a task at the TEP as the time between the task request and

the end of the transmission of the result of the task execution. As stated in Section 3.5.2, the time

required to execute a single task depends on the CPU of the mobile device and on the complexity

of the task to be executed, which, without loss of generality, can be considered a fixed parameter.

Therefore, the total time required to compute a single task depends on the radio technology used for

the data exchange and, for the extension with D2D communications, on the task distribution algorithm

implemented at the TDP.

For a TEP directly connected to the remote server, or for a TEP connect to a TDP Batch, the total

delay experienced for each task is given by

DX(t, c, r) =
t

TXrx
+

r

TXtx
+ 2DX

auth + c, (3.10)

where DX
auth = aXclient/T

X
tx + aXserver/T

X
rx . For a TEP connected to a TDP operating according to the

Proxy task distribution method, instead, the total delay between the task request and the delivery of

CHAPTER 3. EXTENDING MCC WITH D2D 46

the task result is given by

DD2D,D2S
proxy (t, c, r) =

t

TD2D
rx

+
t

TD2S
rx

+
r

TD2D
tx

+
r

TD2S
tx

+ 2
(
DD2S

auth +DD2D
auth

)
+ c,

(3.11)

where DD2D
auth and DD2S

auth are derived from DX
auth. It can be noticed that the tasks assigned to a TEP

connected to a TDP Proxy experience an increased delay due to the additional communication hop.

This is because according to the Proxy task distribution, all the communication to and from the TEP

are forwarded to the remote server. This is not the case for a TEP connected to a TDP Batch, since

according to the Batch task distribution algorithm, both the tasks and the results are cached at the TDP

in order to minimize the delay experienced by the TEPs.

Given the above, from the server perspective, the total time required with a single TEP to compute

a set of J tasks, each one of data size t, complexity c and that generates a result data size r, is given

by J ×DD2S(t, c, r) for a standard TEP, J ×DD2D,D2S
proxy (t, c, r) for a TEP connected to a TDP Proxy

and J ×DD2D(t, c, r) +N t
TD2S
rx

+M r
TD2S
tx

+ (N +M)DD2S
auth , for a TEP connected to a TDP Batch3.

We note that a substantial contribution on the timing derived in this section is represented by the

throughout achievable by the different radio technologies. Since the achievable throughput depends

on the instantaneous channel conditions and thus varies over time, the results obtained through the

model presented here represents a bound on the actual time required for completing the tasks.

3.5.6 TEP Modeling

The TEP dynamics are captured by a continuos-time Markov chain with 4 states XTEP ∈ S =

{Idle,Task,Computation,Result}, where Idle refers to the state when the TEP is neither communi-

cating nor computing, Task refers to the state where the device requests and then receives a task

either from the remote server or from a local TDP, Computation refers to the state where the de-

vice is computing the task and Result refers to the state where the TEP sends the result of the

3The extension to multiple TEPs and non homogeneous tasks (i.e., having different values of t, c and r) is straightfor-
ward.

CHAPTER 3. EXTENDING MCC WITH D2D 47

computation back to the task distributor. We refer to Tj , with j ≥ 0, as the time instant at which

the TEP transitions between states and ∆j = Tj − Tj−1 as the time elapsed between two subse-

quent transitions. Between Tj−1 and Tj , the TEP is said to be in stage j, and its duration ∆j is

described by a random variable τXTEP
∈ [Tmin(XTEP), Tmax(XTEP)], depending on the TEP state

XTEP during stage j. τXTEP
has an associated probability distribution function (pdf) fτ (T |XTEP),

which determines the distribution of the duration ∆j within the relative range. Moreover, during

stage j, the TEP consumes a power Pj , which depends on the state XTEP, and is assumed to re-

main constant until the next transition, occurring at time Tj . This power consumption is described

by the random variable PXTEP
∈ [Pmin(XTEP), Pmax(XTEP)], with pdf fP(P |XTEP). The prob-

abilities ph,k = Prob{XTEP(j) = k|XTEP(j − 1) = h}, with h, k ∈ S are the associated em-

bedded Markov chain transition probabilities, are invariant with respect to j, and are defined as

pIdle,Task = pTask,Computation = pComputation,Result = pResult,Idle = 1, and equal to 0 otherwise.

3.5.7 Task Distribution Considerations

The different components of the continuous-time Markov chain described in Section 3.5.6 can

be obtained by carefully determining the different components of the analytical model described in

the previous sections. In this regard, ∆jPj represents the TEP energy consumption at stage j, while∑i+4
j=i ∆j , with i = Idle, represents the total delay of a particular task. This model can be used to

finely profile the behavior of the different TEPs present in the network (this includes both the mobile

device intrinsic characteristics and the user behavior) in order to optimize the system performance.

In particular, the remote server or the local TDP can use this Markov chain model for finding the

best task assignment for a particular TEP. Finally, we note that this particular formulation is useful

for improving the task distribution process when either the devices or the task to be distributed are

heterogeneous. In case of homogeneous tasks and TEPs, instead, performance gains can only be

achieved by efficiently choosing between the available communication technologies (e.g., switching

between Bluetooth and WiFi Direct) and by reducing the time required for assigning the tasks and

transmitting back the results by locally batching the tasks and results, respectively.

CHAPTER 3. EXTENDING MCC WITH D2D 48

3.6 Experimental Results

Unlike [6], we have developed our own experimental platform. We argue that our method used to

measure the energy is more accurate to the scenario where D2D communication would be used, since

the method used in [6] measures the energy drawn from the electrical outlet. We provide a description

of our experimental setup below.

Our system was implemented using seven second generation Asus Nexus 7s (N7), which were

released in 2013. The 2013 N7 has 16 GB of storage, 2 GB of memory, and a 1.5GHz quad-core

Snapdragon S4 Pro 8064 CPU produced by Qualcomm [55]. Each of our devices are running Google’s

Android 4.4 operating system.

3.6.1 Test Environment

Similar to the work in [54], we also measured the current from the battery for each of our experi-

ments using an Arduino Uno [56]. This was done by placing a .005Ω ±1% resistor in series with the

battery and measuring the voltage across this resistor to obtain the current. However, the voltage drop

across this resistor was too small to be read by the Arduino Uno [56]. Thus, we configured an op-amp

to act as a non-inverting amplifier with a gain of 977. This allowed the Arduino’s analog input to read

the voltage across the resistor throughout the tests. Additionally, due to the non-linear properties of

lithium-ion batteries [57, 58], like the ones used in the Nexus 7, we restricted our experimental mea-

surements to battery level above 70%. This is because, as shown in [58], for battery levels between

60% and 100%, the internal impedance of lithium-ion batteries scale almost linearly with regards to

the state of charge, while below 40% the behavior is highly non-linear, thus providing a non negligible

additional energy consumption to our experiments.

All of the measurements were taken in an indoor workspace, and the nodes were stationary during

these experiments. We acknowledge that in real life, nodes generally are mobile, and may enter

or leave a network, but to determine the impact that D2D communication has on traditional mobile

computation offloading architectures, we kept the nodes stationary in our experiments. Moreover,

all the experimental results presented in this section have been obtained over 50 runs of the same

CHAPTER 3. EXTENDING MCC WITH D2D 49

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 5000 10000 15000 20000

En
er

gy
 p

er
 b

it
[µ

J/b
it]

Data size [KB]

WiFi Direct - TX
WiFi Direct - RX

Bluetooth - TX
Bluetooth - RX

Figure 3.7: Experimental Measurements. Energy per bit for different transmitted (and received) data
sizes for WiFi Direct and Bluetooth.

experiment, with the device screen turned off.

3.6.2 Results

To measure the impact that D2D communication has on our system, we performed isolated tests

to gauge the impact that WiFi Direct and Bluetooth have on the mobile devices. By using Iperf [59],

we were able to send various amounts of data between the WiFi Direct Group Owner (Bluetooth

master) and the WiFi Direct Group Member (Bluetooth slave), and we measured the relative power

consumptions as well as the throughput achieved for different tests. In order to remove any additional

operating system related energy consumption, we were able to use “adb shell” to gain a shell session

on the N7. From there, we were able to execute a one line script that would run, as a background

process, several Iperf TCP tests.

CHAPTER 3. EXTENDING MCC WITH D2D 50

Figure 3.7 shows the measured energy per bit as a function of the transmitted (and received) data

size. As previously shown in [52] for WiFi, 3G and LTE, the energy per bit decreases as the data

size transmitted, and received, increases, mainly because for small values of data size the achieved

throughput is low with respect to the link capacity, due to the TCP slow start mechanism. It is

important to note that while the N7 supports Bluetooth 4.0, we were only able to achieve the same

performance as Bluetooth Enhanced Data Rate (EDR). We speculate that this is due to the fact that

the Google Android APIs do not allow for high speed (HS) operation, since data rates up to 24 Mbps

are achieved by utilizing the 802.11 Alternate MAC and PHYs (AMPs) [18]. Following a similar

approach as the one in [52], we also evaluated the impact of a controlled transmission throughput on

the energy consumption of WiFi Direct and Bluetooth by running different UDP tests with fixed data

size through Iperf. Results show an (almost) linear relationship between transmission and reception

power consumption and end-to-end throughput.

After evaluating the performance of the considered D2D communication technologies, we mea-

sured the energy consumed by a TEP connected to a TDP by either WiFi Direct or Bluetooth, and

compared the relative energies with the energy consumed by a TEP connected to a wireless AP. More-

over, we measured the energy consumption at the TDP when serving multiple TEPs simultaneously.

For all the considered scenarios, we measured the time and the energy consumption required for the

system, a single TEP connected directly to the Internet or one TDP operating according to the Batch

and Proxy task distribution processes and serving 1 or more TEPs, to compute a given set of tasks.

In Figure 3.8 we present the performance, in terms of both energy and time, required for a system

with 1, 2 and 6 TEPs to compute a set of 50 tasks, when only one device is able to connect to the

remote server. As expected, the overall time required for the computation of the tasks decreases

significantly as the number of TEPs that are allowed to participate in the computation increases, since

the system can take advantage of a greater degree of parallelism. It is also interesting to note that the

impact in terms of overall system energy is small when allowing for a device to act as TDP and to

distribute the tasks via D2D communication. Moreover, the energy overhead with respect to a single

TEP connected to the Internet decreases as the number of TEPs increases. This is because, while the

energy consumption of a local TEP (i.e., without Internet connectivity) is comparable to the energy

CHAPTER 3. EXTENDING MCC WITH D2D 51

 620

 625

 630

 635

 640

 645

 650

 655

 660

 665

 670

 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l e
ne

rg
y

fo
r 5

0
ta

sk
s [

J]

Total time for 50 tasks [s]

GEMCloud
Batch - WiFi Direct

Batch - Bluetooth
Proxy - WiFi Direct

Proxy - Bluetooth

k = 6

GEMCloud

Increasing k

Figure 3.8: Experimental Measurements. Total energy consumption vs. total time for computing 50
tasks, when k ∈ {1, 2, 6} nodes are allowed to execute the tasks. For the proxy and batch methods,
the case refers to a system where the TEPs are connected to a single TDP.

CHAPTER 3. EXTENDING MCC WITH D2D 52

WiFi WiFi Direct Bluetooth
Pidle [mW] 20 20 18
Ttx [MBits/s] 20 40 3
Trx [MBits/s] 20 40 3

Table 3.1: System parameters for the analytical model.

of a standard TEP, the energy spent at the TDP decreases with increasing TEPs due to a reduction in

the total operation time of the device. In fact, our measurements show that the number of TEPs has a

negligible impact on the average power consumption at the TDP which, combined with the decreasing

operational time, lowers the total energy consumption of the device.

In addition, we ran several experiments in order to determine the impact of the different compo-

nents, as presented in Section 5.3, on the distributed computing system. This allows us to combine our

experimental measurements for the different radio technologies presented in Table 3.1 with the analyt-

ical model presented in Section 5.3. In addition, for the computation power consumption, instead, we

measured an average of Pex = 335 mW, PBluetooth,WiF i
td,proxy (k) ≈ PBluetooth,WiF i

td,batch (k) ≈ PBluetooth
idle +PWiFi

idle

and PWD,WiFi
td,proxy (k) ≈ PWD,WiFi

td,batch (k) ≈ PWiFi
idle for k ∈ {1, 2, 6}. We note that this results in a very low

average TDP idle power consumption that range between 20 mW and 38 mW, which is achieved by

the combination of the high energy efficiency of the radio components and the duty cycle imposed by

the communication protocol (i.e., alternation between periodic beaconing and sleeping). Moreover,

our findings suggest that the simultaneous operation of WiFi and WiFi Direct does not entail a signifi-

cant additional energy consumption, since both protocols share the same physical radio device. These

results are in line with previous investigation like, e.g., [54, 60].

In what follows, using the analytical model presented earlier, we evaluate the performance of the

proposed system under different settings. In particular, we also include an evaluation of the energy and

time required for a system to compute 50 tasks, when an LTE connection to the Internet is available

(the LTE parameters considered here are taken from [52]).

We first validate the proposed analytical model by comparing our experimental results with the

relative results that can be obtained using the analytical model. To this end, in Figure 3.9 we compare

the experimental results presented in Figure 3.8 with the results provided, for the same scenarios, by

CHAPTER 3. EXTENDING MCC WITH D2D 53

 620

 625

 630

 635

 640

 645

 650

 655

 660

 665

 670

 675

 680

 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l e
ne

rg
y

fo
r 5

0
ta

sk
s [

J]

Total time for 50 tasks [s]

Batch (WiFi - WiFi Direct) - Experimental
Batch (WiFi - WiFi Direct) - Model
Batch (WiFi - Bluetooth) - Experimental
Batch (WiFi - Bluetooth) - Model
GEMCloud - Model
GEMCloud - Experimental

Increasing k

GEMCloud

Figure 3.9: Experimental and Analytical Measurements. Total energy consumption vs. total time for
computing 50 tasks, when k ∈ {1, 2, 6} nodes are allowed to execute the tasks. For the batch method,
the case refers to a system where the TEPs are connected to a single TDP.

CHAPTER 3. EXTENDING MCC WITH D2D 54

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 2000 4000 6000 8000 10000

To
ta

l e
ne

rg
y

fo
r 5

0
ta

sk
s [

J]

Result size [KB]

WiFi - WiFi Direct
WiFi - Bluetooth
LTE - WiFi Direct
LTE - Bluetooth
GEMCloud - WiFi
GEMCloud - LTE

Figure 3.10: Analytical Results. Total energy consumption vs. result data size for a system where
only one node is able to connect to the remote server and only one node is allowed to compute 50
tasks.

CHAPTER 3. EXTENDING MCC WITH D2D 55

the analytical model. Figure 3.9 shows that both the experimental and analytical model results follow

a similar trend when increasing the number of TEPs that participate in the distributed computation.

Moreover, the analytical model error in estimating the energy consumption is, in the worst case, less

than 2.5% and less than 8% for the total computation time. We note that the difference between the

experimental and the analytical model results increases as the number of TEPs increases. This is due

to the fact that the analytical model assumes that all the TEPs operations are completely synchronized

(e.g., they start all the computations at the same time), thus reducing the total computational time and,

as a consequence, the energy consumption of the TDP.

We then evaluate the impact of a larger result data size on the overall system performance. To this

end, Figures 3.10 and 3.11, show the impact of the result data size on the total system energy and time,

respectively, when only one device is able to connect to the Internet and is either acting as a standard

GEMCloud TEP or as a TDP that distributes the tasks to a local TEP via WiFi Direct or Bluetooth.

Figure 3.10 shows the substantial additional energy and time required for a system that uses the LTE

technology with respect to WiFi for Internet connectivity. This is explained by the high idle power

of LTE (i.e., 1288 mW [52]) and the lower throughput, when compared to WiFi. Regarding the D2D

technology, instead, it is interesting to note that Bluetooth entails a lower energy consumption when

compared to WiFi Direct, when the result data size is greater than 1000 KB, which is due to the lower

energy consumption per bit of Bluetooth when compared to WiFi Direct (see Figure 3.7). However,

the low throughput of Bluetooth severely impacts the total time required for the computation. When

comparing the different task distribution policies, the analytical results show that allowing for a local

caching of the tasks and results in the Batch method allows for a substantial reduction in the total

computation time, allowing the Batch method combined with WiFi Direct, to outperform the total

time required by a standard TEP directly connected to the remote server.

While Figures 3.10 and 3.11 show the impact of a larger result data size on the overall system

performance, to better evaluate the benefits of local task distribution via D2D communications we

focus our attention to the energy consumption of the TEP. To this end, in Figure 3.12 we plot the

total energy consumption vs. the total time for computing 50 tasks at a single TEP, which has either

direct Internet access through a WiFi AP or uses a D2D communication technology to reach a Batch

CHAPTER 3. EXTENDING MCC WITH D2D 56

 1800

 1850

 1900

 1950

 2000

 2050

 2100

 0 2000 4000 6000 8000 10000

To
ta

l d
el

ay
 [s

]

Result size [KB]

Batch (WiFi - WiFi Direct)
Batch (WiFi - Bluetooth)
Batch (LTE - WiFi Direct)
Batch (LTE - Bluetooth)
Proxy (WiFi - WiFi Direct)
Proxy (WiFi - Bluetooth)
Proxy (LTE - WiFi Direct)
Proxy (LTE - Bluetooth)
GEMCloud - WiFi
GEMCloud - LTE

Figure 3.11: Analytical Results. Total time vs. result data size for a system where only one node is
able to connect to the remote server and only one node is allowed to compute 50 tasks.

CHAPTER 3. EXTENDING MCC WITH D2D 57

TDP, for different values of the result data size. Figure 3.12 shows that different trade-off can be

achieved by the different communication technology. In particular, for small result data size (< 500

KB), the three type of TEPs attain similar performance. As the result data size increases, we note that

the TEP that uses Bluetooth for communicating with the TDP entails the lower energy consumption

at the expense of a larger communication delay, which is due to the reduced data rate supported by

Bluetooth4. At the same time, both the TEP connected to the remote server via WiFi and the TEP

connected to a local TDP via WiFi Direct achieve similar total time (with a difference of 7 seconds,

in the worst case), while the TEP that uses WiFi Direct always consumes less energy. These results

suggest that, whenever possible, using a D2D communication technology can provide a substantial

reduction up to 41% in term of energy consumption at the expense of up to a 7.5% delay increase

when using Bluetooth, or a slightly lower reduction up to 33.5% of the energy consumption when

using WiFi Direct. We note that similar conclusions as the one presented for Figures 3.10-3.12 can

be drawn for increasing task data size.

Finally, we investigate the impact of the number of TEPs on the system performance. Figure 3.13

shows the trade-off between energy and time to compute 50 tasks when multiple TEPs are invited

to participate in the distributed computation via D2D communications. As expected, allowing for

additional TEPs substantially decreases the total computation time. Figure 3.13 also shows the intrin-

sic limitations in performance achievable when using Bluetooth for the local task distribution when

compared to WiFi Direct. This is due to the fact that the Bluetooth protocol only allows a TDP to

serve a maximum of 7 TEPs [18], while WiFi Direct allows for the creation of a group of up to 49

devices [19].

3.7 Conclusions

In this chapter, we explored the impact of extending a traditional mobile computing system

through D2D communications. In order to evaluate the impact of the different system components,

we combined experimental results with an analytical model that allows us to infer the performance

4We consider further investigations into the possibility of achieving higher data rate, as supported by the Bluetooth
specification [18], as future work.

CHAPTER 3. EXTENDING MCC WITH D2D 58

 600

 700

 800

 900

 1000

 1100

 1200

 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

To
ta

l e
ne

rg
y

fo
r 5

0
ta

sk
s [

J]

Total time for 50 tasks [s]

TEP (WiFi Direct)
TEP (Bluetooth)
GEMCloud (WiFi)

Increasing Result Size

Figure 3.12: Analytical Results. Total energy consumption vs. total time for computing 50 tasks for
different result data size, when a single TEP, connected to the remote server (GEMCloud) or to a local
TDP Batch via WiFi Direct or Bluetooth, to compute 50 tasks. Each pair of values for energy and
time to compute is obtained for a different value of r, from 1 KB to 10000 KB, with step length 500.

CHAPTER 3. EXTENDING MCC WITH D2D 59

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l e
ne

rg
y

fo
r 5

0
ta

sk
s [

J]

Total time for 50 tasks [s]

Batch (WiFi - WiFi Direct)
Batch (WiFi - Bluetooth)
Batch (LTE - WiFi Direct)
Batch (LTE - Bluetooth)
GEMCloud (WiFi)
GEMCloud (LTE)

k = 7

k = 49
Increasing k

Figure 3.13: Analytical Results. Total time vs. total energy consumption for computing 50 tasks,
when k ∈ {1, 2, . . . , 49} nodes are allowed to execute the tasks. For the Batch method, the case refers
to a system where the TEPs are connected to a single TDP.

CHAPTER 3. EXTENDING MCC WITH D2D 60

of the system under different settings. Our experimental results show that, when considering WiFi

Direct and Bluetooth for D2D communication, the additional energy consumption required at the task

distribution point is small, while substantial gain in term of energy consumption can be achieved at

the device that is performing the computation. Analytical results provide a promising estimate of the

performance of the system under different settings, showing that a large reduction in the total com-

putation time with a negligible energy overhead can be achieved by parallelizing the computation to

multiple TEPs connected through D2D communications. These results motivate future extensions of

mobile computing to multi-hop and heterogeneous networks, as will be described in the following

chapters.

61

Chapter-4

Enabling Multi-Group Communications in D2D Net-
works

4.1 Introduction

The previous chapter demonstrated the feasibility of offloading computation to nearby neighbors;

however, in order to fully realize an ad hoc mobile computational offloading system, it is pertinent

to understand how ad hoc networks scale and incorporate additional nodes, which may exist multiple

hops away. To this end, multi-hop wireless networks have been largely developed to meet the needs

of a variety of applications where infrastructure-based wireless networks are difficult to deploy and

maintain. Most applications require the participating nodes to be able to route data to help extend

network connectivity. These protocols have mainly been used for tactical military communications,

first responder applications and sensor network operations.

In this chapter, we explore different methods for enabling multi-group WiFi Direct communi-

cation. Starting with stock Android and its implementation of WiFi Direct, we shed some light on

the limitations and design considerations for realizing multi-group communication on mobile devices

running Android 4.4.2. To overcome these limitations, we first propose and analyze a TCP-based

time sharing mechanism where the device that connects multiple groups, referred to as the gateway

node, is required to iteratively switch between different WiFi Direct groups in order to relay data

from one group to the other. We then exploit a particular configuration that allows for a device to

be simultaneously connected to two different groups, to implement and analyze the performance of a

UDP-based broadcast technique as well as a UDP/TCP hybrid solution. In addition, we consider how

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 62

to implement intergroup communication when not limited to a stock version of Android and present

a few changes that can be made to the current WiFi Direct implementation in order to facilitate inter-

group communication. We discuss the tradeoffs in terms of both energy and time when implementing

these different approaches. Our approaches can be used as building blocks for realizing a WiFi Direct

based Mobile Ad Hoc Network by interconnecting Android devices.

4.2 WiFi Direct

4.2.1 Single-group Communications

WiFi Direct [19] is a standard released by the WiFi alliance that enables ad hoc communication

between nearby devices, without requiring a wireless Access Point (AP). WiFi Direct utilizes IEEE

802.11 a/b/g/n infrastructure mode, and can transmit either at 2.4 GHz or 5 GHz.

During ad hoc communication, devices form a group were one of them is the Group Owner (GO)

and all the others are considered Group Members (GM). It is important to note that these roles are

not predefined but are negotiated during the construction of the group and remain fixed for the entire

duration of the group. Additionally, WiFi Direct groups can also include standard IEEE 802.11 nodes

that do not support WiFi Direct and are referred to as Legacy Clients (LC).

The nodes that support WiFi Direct go through a group formation process in order to determine

the roles of the GO and the GMs. There are three group formation cases: standard, persistent and

autonomous [19, 51]. During the standard group formation, the nodes listen on channels 1, 6, and

11 in the 2.4 GHz band and, after finding another device, they negotiate as to which will act as

the GO. This is done in a handshake process, where the devices exchange an intent value, and the

device with the highest value becomes the GO. After the roles have been established, the devices

go through a WiFi Protected Setup (WPS) Provision phase and, after completion, the GO assigns an

IP address using the Dynamic Host Configuration Protocol (DHCP). The persistent group formation

process allows for a faster reconstruction of previous groups. During the persistent group formation,

the GO negotiation phase is replaced by an invitation exchange, and the WPS Provisioning process

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 63

is significantly reduced by reusing the stored network credentials. In autonomous group formation, a

node assigns itself the role of GO and creates its own group.

According to the standard [19], the GO represents an AP-like entity that provides basic service

set (BSS) functionality and services for the associated clients. Acting as a soft AP, the GO advertises

and allows nodes to join the group. The advertisement and group maintenance are performed through

beacon packets, just like a typical IEEE 802.11 AP, and the GO is responsible for giving control of

the channel to nodes in its network as well as routing data through clients in its group1. As a result,

the group topology is a 1 : N hierarchical structure, where multiple clients (i.e., GMs and LCs) are

connected to one GO.

WiFi Direct devices can operate concurrently with an infrastructure wireless network, through

multiple physical or virtual MAC entities. Moreover, the specification [19] does not preclude a WiFi

Direct device from simultaneously operating as a member of more than one group. However, both the

multiple MAC functionalities and the simultaneous operations in multiple groups are out of scope of

the standard.

4.2.2 Multi-group Communications

Our focus is to investigate the feasibility and relative performance of different techniques for al-

lowing communication between different WiFi Direct groups. In this regard, in order to act as a

gateway between two (or more) WiFi Direct groups, a device can use the MAC virtualization func-

tionality described earlier. Thus, the physical radio interface can be shared by multiple separate MAC

entities that independently use the hardware. Following the same principle, a device can act as a

gateway between a local ad hoc network and the Internet, through the simultaneous connection to an

infrastructure AP. We note that, when connected to a standard WiFi AP, the device is in fact acting as

a LC since it is not leveraging the WiFi Direct protocol.

Given the above, we envision two possible scenarios in which a device can act as a gateway

between two separate groups: the first where the gateway node acts as a client in both groups (see

Figure 4.1), and the second scenario in which the gateway is the GO of one group and a client in the
1Routing data between clients in a group is allowed but not defined by the standard.

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 64

GM

GMGO

GO

GOGM

LC GO

LCGO LC GO

Node A Gateway Node B

a)

b)

c)

Figure 4.1: Multi-group communication scenarios where the gateway node acts as a client in two
groups.

other (see Figure 4.2). Extensions of these scenarios to more than two groups or the case in which the

GO hosts more than one group are also possible. However, the case in which the GO hosts more than

one group only allows for an increase in the number of clients that the GO can simultaneously serve.

4.3 Multi-group Networking on Android Devices

As described in the previous section, a traditional WiFi Direct network topology is represented

by a hierarchical structure, where the GO is at the center of all the communications, but multi-group

communications are allowed by the standard specification. In principle, it is therefore possible to

realize a multi-group wireless network where some of the devices are clients, or simultaneously a

GO and a client, of more than one group. However, the MAC virtualization and the simultaneous

operations in multiple groups are not required by the standard, and thus their availability depends on

the actual implementation.

In what follows, we first provide a high level description of the Android implementation of WiFi

Direct, we then present the limitations of using stock Android, and we finally describe our proposed

methods for realizing intergroup communications with stock and non-stock Android devices.

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 65

GO GM

GO LCGM GO

GOLC

GO GMGM GO

GO LC GOLC

Node A Gateway Node B

a)

b)

c)

d)

Figure 4.2: Multi-group communication scenarios where the gateway node acts as the GO in one
group and as a client in the other.

4.3.1 WiFi Direct on Android

Android has included support for WiFi Direct since version 4.0 (API level 14), within the An-

droid’s Wi-Fi P2P framework [61]. This framework complies with the WiFi Alliance’s WiFi Direct

certification program. Using the Android APIs, a developer can discover and connect to other devices

that support WiFi Direct and then communicate over an ad hoc connection. The WifiP2pManager

class provides all the methods that allow the interaction with the WiFi hardware, like discover, connect

and disconnect to peers. Due to the interaction with the hardware, all these methods are asynchronous,

and the framework uses listeners to notify the application of the status of a call.

In order to use the WifiP2pManager functionalities, an Android application needs to have access to

the hardware and run on a device that supports the WiFi Direct protocol. If both these conditions are

satisfied, the WifiP2pManager undergoes an initialization process, where all the WiFi Direct related

services are started. This allows the device to react to WiFi Direct events, like client discovery and

connection.

For establishing an ad hoc connection, a device needs to discover nearby peers that support WiFi

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 66

Direct and are available for connection. After a device is discovered, the actual connection can be

made. If one of the two devices is already a GO of an existing group, the other joins the group as a

GM, while if none of them is a GO or a GM, according to the WiFi Direct protocol described earlier,

the devices negotiate their role within the group. Moreover, if a GO sends a connection request to

the GM of another group, the connection is refused, and if a device sends a request to a GM, the GM

forwards the request to its GO. We note that a device can be a GO of a group without any connected

clients.

After the connection, the GO acts as a DHCP server and assigns an IP address to the clients. The

DHCP scope is fixed by the framework and cannot be modified by the developers. As a result, GOs of

different groups always have the same IP address (192.168.49.1), while the connected clients receive

an IP address at random from the same range (192.168.49.2-254).

The GO advertises its group through a unique Service Set ID (SSID), that can be used by devices

that do not support the framework (i.e., LC) to join the group. In Android, standard WiFi operations,

like scanning for available networks and the connection to infrastructure APs, are handled by the WiFi

framework. Developers can use the WifiManager class to perform WiFi specific functionalities.

For a detailed description of the WiFi and WiFi Direct frameworks and the relative APIs, we refer

interested readers to the Android API guides [62].

4.3.2 Limitations of Stock Android

Even though Android is an open-source operating system, it provides a certain set of limitations

in the way in which the developer can interact with the different services and hardware. We acknowl-

edge that these limitations can be removed by reprogramming the operating system (e.g., rooting the

device). However, this operation is non trivial for an average user and its legality is still controversial

in several countries. Thus, we first focus on devices that run stock Android so that we can provide a

general methodology for allowing WiFi Direct multi-group networking on a broader set of devices.

Using stock Android, intergroup communications need to be handled at the application layer, and

all the transport and network layer functionalities, like setting the IP address and managing the routing

table, cannot be performed natively. Moreover, the developer is not allowed to create either custom

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 67

virtual network interfaces nor multiple virtual MAC entities. As a result, the methods described in

Section 4.2.2, where a device simultaneously operates in multiple WiFi Direct groups either as a GO

or a GM, cannot be implemented directly.

Nevertheless, our experiments show that the WiFi Direct functionalities are able to concurrently

operate with an infrastructure wireless network2, through the simultaneous utilization of the WifiP2pManager

and WifiManager. In this case, we infer that the OS is in fact virtualizing the network interface (or

the MAC). Following the same rationale, we exploited the GO group advertisement process and con-

nected a device participating in a WiFi Direct group to a second group as a LC, using the WiFi-

Manager. While this operation was allowed and the connection between the devices was correctly

established, we were not able to create a unicast communication to and from the gateway node. In

particular, for the scenario b) of Figure 4.1, the gateway was able to receive data from both Node A

and Node B, but was not able to communicate with either one of them; for the scenarios a) and d)

of Figure 4.2, instead, the gateway was able to communicate with Node A, while the communication

with Node B was not allowed. According to our experiments, this is due to the fact that the DHCP

protocol assigns the same IP address to multiple GOs, thus creating routing problems. A flooding like

UDP-based communication protocol can overcome this limitation, as described in Section 4.3.3.

4.3.3 Proposed Solutions

Time Sharing. Given the limitations of the current Android implementation of WiFi Direct and

the restrictions on implementing routing functionalities at the application layer, we propose a time

sharing mechanism in which the gateway node switches between two (or more) groups. In this way,

all the scenarios presented in Figures 4.1 and 4.2 can be successfully implemented. We note that

there is no built in switching functionality, rather switching is comprised of a disconnection from the

current group, a request to scan for active nodes, and a request to connect to a new group. In what

follows, we describe the main differences between the different scenarios.

We start by analyzing the scenarios in Figure 4.1. In these cases, the gateway node acts as a client

in both groups and iteratively connects to and disconnects from the two groups. Scenarios a) and b)

2We note that this functionality is not described in the Android APIs [62].

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 68

are limited to devices that support WiFi Direct: while in case a) the gateway can fully exploit the WiFi

Direct protocol, case b) can potentially provide some gains in terms of switching time since it is using

both the WiFiManager and the WiFiP2pManager. A special case is represented by case c), where the

gateway is a LC in both groups. This method relies solely on the WiFiManager, thus allowing devices

that do not support WiFi Direct to take on the role of routing information between different groups.

By acting as a LC, the gateway cannot capitalize on the WiFi Direct power saving mechanisms, but

it follows the same process required for switching connections between traditional WiFi APs. While

methods described in a) and b) have the potential for a faster and seamless bridging of groups, the

method in c) allows for any device to act as a gateway node, allowing for a more inclusive network.

The scenarios in Figure 4.2, instead, consider the situation in which the gateway node is a client

in one group and acts as a GO of the other. In these cases, the switching process potentially requires

more time then the methods described in Figure 4.1 because all of the operations required to create

one of the groups need to be performed every time the gateway node ceases to be the GO. The

role and responsibilities of being a GO are negotiated during the group formation and cannot be

transferred [19]. Scenarios b) and c) in Figure 4.2 fully exploit the WiFi Direct protocol, while

scenarios a) and d) use both WiFi Direct and the standard WiFi functionalities.

Simultaneous Connections. As described in Section 4.3.2, by combining standard WiFi and WiFi

Direct functionalities into the gateway node, it is possible for the gateway node to simultaneously

maintain a physical/MAC layer connection to two groups. However, this imposes some restrictions on

the actual application data exchange. We thus explored the different scenarios presented in Figures 4.1

and 4.2 that utilize both WiFi Direct and WiFi, with the objective of finding a suitable configuration

and communication protocol that allow for intergroup data exchange.

To this end, we ran several experiments by implementing the different scenarios from Figures 4.1

and 4.2 with the different network sockets (e.g, stream, datagram and multicast sockets) provided by

Android. We found that when combining a LC/GM (or, equivalently, GM/LC) gateway node with a

multicast socket, a specific implementation of the UDP datagram socket, the gateway node is able to

forward data between the two groups. This is because the multicast socket allows the node to specify

the particular interface to be used by the socket for receiving and transmitting data packets. We note

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 69

that this functionality is not available for a traditional datagram or stream socket, and Android follows

a weak end system model (i.e., routing decision are based only on the destination IP address and type

of service) [63]. Moreover, it is important to note that the multicast socket encapsulates a one-to-many

unicast communication and, as a result of this, cannot fully utilize the total available WiFi and WiFi

Direct bandwidth.

From our experiments, the same gateway configuration allows the gateway node to receive and

send data over the LC link (i.e., the standard WiFi) while simultaneously connected to both groups

also with a unicast socket, while no data can be routed with a unicast socket over the WiFi Direct link.

This is due to the fact that Android prioritizes the WiFi link over the WiFi Direct link. We thus propose

a simple protocol, referred to as Hybrid, that exploits this functionality and uses the multicast socket

as a control channel that, if necessary, triggers a gateway node configuration change. According to

this protocol, the group that has data to send to the other group, uses the control channel to notify the

gateway node. After the reception of the control message, the gateway node checks if it is connected

to this group as a LC or a GM. In the first case, the gateway is allowed to receive data, thus it notifies

the source and it starts receiving data. After receiving the data, the gateway disconnects from the first

group and forwards the data to the second group using a TCP connection. In the second case, instead,

the gateway node is not allowed to receive data from the WiFi Direct link. Thus, it notifies the source,

disconnects from both groups and connects back with the right configuration (i.e., it switches from

GM/LC to LC/GM). At this point the communication continues as in the previous case. We note that

this change in configuration can be avoided if a second gateway node is present (i.e., one gateway

node is a GM/LC while the other gateway node is an LC/GM).

A data dissemination protocol that follows a similar approach has recently been proposed in [64].

The protocol presented in [64] operates under the assumption that an additional relay node is present

in each group. This protocol uses the configurations a) and d) of Figure 4.2, and exploits the addi-

tional relay node to forward information from the GO to the gateway node. By doing so, the method

presented in [64] mitigates the fact that the gateway node has the same IP address as its GO. However,

this does not provide seamless communication between two groups, since a TCP connection defaults

to the WiFi interface (i.e., only the LC link can use TCP sockets). As a result, the gateway node trans-

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 70

mits data to the other nodes in its group by broadcasting UDP packets. While this protocol does not

require any configuration change, it requires the presence of an additional relay node in every group

(which cannot always be guaranteed), and adds an additional communication hop.

In order to fully explore the WiFi Direct protocol for multi-group networking, we downloaded

the source code of Android 4.4.2 and modified the existing implementation of WiFi Direct to assign

a unique IP address to the GOs and change the DHCP range accordingly (the IP address and DCHP

range are statically defined inside the WifiP2pService). This simple modification allows the simul-

taneous operation of a gateway node that uses both the WiFi and WiFi Direct interfaces. Further

modifications are required for creating multiple WiFi Direct interfaces. This requires changing the

WifiP2pService to instantiate different NetworkInterfaces as well as to change the SystemServer and

the Context to instantiate a new WiFi Direct Service and a new identifier for this service, respectively.

4.4 Performance Evaluation

In this section we evaluate the impact at the gateway node of allowing multi-group WiFi Direct

communications. We measured both the time and the energy required to forward data between two

groups. Our proposed schemes were implemented using three second generation Asus Nexus 7s,

which were released in 2013. The 2013 Nexus 7 has 16 GB of storage, 2 GB of memory, and a

1.5GHz quad-core Snapdragon S4 Pro 8064 CPU [55]. Each of our devices are running Google’s

Android version 4.4.2.

4.4.1 Test Environment

Similar to the work in [54], we measured the current from the battery for each of our experiments

using an Arduino Uno [56]. To this end, we added a 0.005Ω ± 1% shunt resistor in series with the

battery and measured the voltage across the resistor to obtain the current. However, the voltage drop

across this resistor was too small to be read by the Arduino Uno [56]. We therefore configured an op-

amp to act as a non-inverting amplifier with a gain of 977. This allowed the Arduino’s analog input to

read the voltage across the resistor throughout the tests. Additionally, due to the non-linear properties

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 71

of lithium-ion batteries [57, 58], like the one used in the Nexus 7, we restricted our experimental

measurements to battery level above 70%. [58] has shown that for battery levels between 60% and

100%, the internal impedance of lithium-ion batteries scales almost linearly with regard to the state

of charge.

All of the measurements were taken in an indoor workspace, and the nodes were stationary during

these experiments. We acknowledge that in real life, nodes are generally mobile, and may enter or

leave a network. However, to accurately determine the impact of the switching process on the gateway

node and to limit the variability across different experiments, we kept the nodes stationary. Moreover,

all the results of this section have been obtained with the screen turned off.

For all the scenarios presented in Figures 4.1 and 4.2, we consider a situation in which the gateway

must relay 10 MB of data between Node A and Node B. Thus, the gateway first receives all the data

from one node, and then sends the data to the other node following one of the techniques described

in Section 4.3.3. For the Time Sharing experiments, we measured the energy and time required for

the switching process, from the disconnection from the first group to the actual availability of the

second link. We assumed that the gateway is able to communicate with the second node as soon

as the operating system updates the ARP table with its address. For the Simultaneous Connections

solutions, instead, we measured the total time and energy consumption required to relay the data

between Node A and Node B, since there is no actual switching between groups. Moreover, all the

groups are considered to be persistent to allow for a faster switching between the two groups, that

we assume to be known by the gateway. This accounts for the situation in which the gateway node

switches between the groups multiple times3. All the results presented in this section are obtained

over 50 runs of the same experiment, where the gateway node forwards the data between Node A and

Node B. However, we also performed some continuous tests where the gateway node exchanges data

back and forth between the two groups and found consistent results (i.e., the total time and energy

consumption of the continuous tests were simply the sum of the time and energy for the isolated tests).

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 72

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

GO-GM/GM-GO

GO-LC/GM-GO

GM-GO/GM-GO

LC-GO/GM-GO

GO-GM/LC-GO

GO-LC/LC-GO

GM-GO/LC-GO

LC-GO/LC-GO

GO-LC/GO-GM

GO-GM/GO-GM

GO-GM/GO-LC

GO-LC/GO-LC

Ti
m

e
[s

]
Group Creation

WiFi Scan and Connect

WiFi Direct
Scan and Connect

Figure 4.3: Experimental Measurements. Time required to switch between two groups for the differ-
ent scenarios described in Section 4.2.2.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

GO-GM/GM-GO

GO-LC/GM-GO

GM-GO/GM-GO

LC-GO/GM-GO

GO-GM/LC-GO

GO-LC/LC-GO

GM-GO/LC-GO

LC-GO/LC-GO

GO-LC/GO-GM

GO-GM/GO-GM

GO-GM/GO-LC

GO-LC/GO-LC

En
er

gy
 [J

]

WiFi Direct Scan and Connect

WiFi Scan and Connect

Group Creation

Figure 4.4: Experimental Measurements. Energy required to switch between two groups for the
different scenarios described in Section 4.2.2.

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 73

4.4.2 Numerical Results - Time Sharing

To measure the amount of energy and time required to switch between the two groups, we per-

formed isolated tests to determine the impact that the switching process has on a particular node. We

first established some baseline measurements for the transmission and reception energy consump-

tions. Using the experimental setup described above and Iperf [59], we measured the average energy

required to send (and receive) 10 MB of data between devices, when acting as a GO, a GM or a LC.

We then logged the total energy required at the gateway node to receive the 10 MB data, switch and

transmit the data to the other group. Finally, we subtracted the reception and transmission energy

from the total energy to determine the energy required for switching between the groups.

In Figures 4.3 and 4.4, we plot the time and energy, respectively, required to switch between the

two groups, for all the scenarios described in Section 4.2.2. Figure 4.3 shows that the switching

time depends only on the method used by the gateway node for connecting to the second group. In

particular, the lower switching times are achieved by the gateway that connects to an existing group

as a LC. This is because the Android API that manages the standard WiFi connection allows to scan

and connect to an existing AP faster than the WiFi Direct API, that instead relies on a combination

of asynchronous call and event notifications. As a result, when connecting as a GM, the gateway is

either able to join the second group in less than 500ms (see the minimum values of cases */GM-GO

in Figure 4.3) or, in other cases, the switching process can require even more than 8s. We note that

these variable connection times are due to the WiFi Direct protocol that requires, during the group

formation process, an initial discovery phase where each device iteratively searches and listens over

channels 1, 6 and 11 for nearby clients [19, 51].

When the gateway creates the second group and acts as a GO, instead, the average switching time

is around 4s, with lower connection times for the case in which it is connecting to a LC. It is important

to notice that when the gateway node acts as a GO for the second group, it cannot send connection

requests to the LC. In this case, instead, the LC is constantly scanning for the second group and, as

soon as the gateway creates the group, it will connect to the group.

Our results are in line with the experimental evaluations of the WiFi Direct protocol presented

3We acknowledge that, when creating the groups for the first time, the energy and time required are on average higher.

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 74

in [51] and [65]. For example, [65] showed that the average time required for a device to au-

tonomously create a group and immediately become a GO (autonomous group formation) is 3s, while

the average time required for a node to join an existing group is 6s.

Regarding the energy, Figure 4.4 shows that the energy required to switch between two groups is

similar across the different scenarios, with the exception of the cases in which the gateway is required

to switch from a LC to a WiFi Direct node, e.g., a GO or a GM. This is due to the fact that the

Android WiFi Direct implementation is built on top of the standard WiFi APIs but it requires some

additional initialization (i.e, starting the WiFi Direct services) before the device can actually use the

WiFi Direct protocol. For the same reason, switching between WiFi Direct roles or from a WiFi

Direct role to a LC, instead, does not provide any significant impact on the energy consumption of

the node. In addition, we note that even if the energy consumed by the gateway node when switching

as a LC is comparable and, in some cases, lower than the energy required by the other scenarios, this

energy is consumed in a short amount of time (i.e., around 500ms in Figure 4.3) and thus the power

consumption of this operation is much higher. This is because the LC implements a more aggressive

approach for scanning and connecting to an existing group, that causes the higher power consumption

when compared to the other methods.

4.4.3 Numerical Results - Simultaneous Connections

We now focus on the gateway node configurations that allow for simultaneous connections in two

WiFi Direct groups. In this regard, in Figures 4.5 and 4.6 we plot the time and energy, respectively, re-

quired to transfer 10 MB of data between the two groups, for the scenarios in which the gateway node

acts as a LC in one group and a GM in the other (i.e., scenarios GO-LC/GM-GO and GO-GM/LC-

GO). We remind the reader that in these configurations (except for the Time Sharing scenarios that are

included for comparison), the gateway node is allowed to maintain a simultaneous physical connec-

tion to both groups (see Section 4.3.3). Figures 4.5 and 4.6 show that substantial gains in both time

and energy can be achieved by the techniques that allow for simultaneous connection in both groups.

As expected, the best performances are attained by the non-stock Android implementations, which

represent the lower bound on the performance achievable by any scheme. Nevertheless, both the

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 75

 0

 5

 10

 15

 20

 25

 30

 35

Time Sharing - LC/GM

Time Sharing - GM/LC

UDP Multicast - LC/GM

UDP Multicast - GM/LC

Hybrid - LC/GM

Hybrid - GM/LC

Non-Stock - LC/GM

Non-Stock - GM/LC

Ti
m

e
[s

] Time Sharing
(data tx+Switching)

Simultaneous Connections

GM LCGO GO

Figure 4.5: Experimental Measurements. Time required to transfer 10 MB of data between two groups
for a gateway node acting as LC and GM.

UDP Multicast and the Hybrid approaches perform very close to the lower bound, with the exception

of the GM/LC configuration that requires a higher time and energy consumption. This is due to the

encapsulation of a one-to-many unicast communication protocol that impacts the data reception over

the WiFi Direct link of the UDP Multicast approach, and to the configuration switch of the Hybrid

scheme. Moreover, we note that while the Time Sharing, Hybrid and Non-Stock implementations use

TCP sockets for reliable data transmission, the UDP Multicast communication does not implement

any retransmission mechanism and, as such, is subject to a variable data loss (in our experiments, an

average of 93% of the total data was successfully delivered).

Finally, while all the results presented in this section were obtained using a 2013 Nexus 7 [55],

similar conclusions can be drawn when changing to a different device. In particular, we ran the tests

presented in this section on a 2012 Nexus 7, which has a completely different hardware configuration

(e.g, different memory, processor and wireless chipset), with Android 4.4.2 and found similar relative

results in term of transmission/reception and switching time, but an overall higher (almost doubled)

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 76

Time Sharing
(data tx+Switching)

Simultaneous
Connections

GM LCGO GO

 0

 2

 4

 6

 8

 10

 12

Time Sharing - LC/GM

Time Sharing - GM/LC

UDP Multicast - LC/GM

UDP Multicast - GM/LC

Hybrid - LC/GM

Hybrid - GM/LC

Non-Stock - LC/GM

Non-Stock - GM/LC

En
er

gy
 [J

]

Figure 4.6: Experimental Measurements. Energy required to transfer 10 MB of data between two
groups for a gateway node acting as LC and GM.

energy consumption for all schemes. These results suggest that similar conclusions can be drawn for

different Android devices.

4.5 Conclusions

In this chapter, we propose and explore different practical methods for enabling multi-hop ad

hoc networks using the WiFi Direct standard. We present the limitations of enabling WiFi Direct

multi-group communication, and we propose and analyze different simple, yet effective mechanisms

to allow the communications between devices belonging to different groups. For all the proposed

methods, we discuss the achievable tradeoffs in terms of both time and energy.

Our experimental results show that a faster switching time can be achieved by connecting to an

existing group as a legacy client, at the expense of a higher power consumption. In addition, switching

from standard WiFi to WiFi Direct entails a higher energy consumption, when compared to all the

other scenarios. Better performance can be achieved by techniques that exploit the device ability

CHAPTER 4. ENABLING MULTI-GROUP COMMUNICATIONS IN D2D NETWORKS 77

to maintain simultaneous physical connections to two groups. In particular, the Hybrid approach,

where a UDP multicast communication is used as a control channel for triggering a configuration

switch, allows for a reliable data transfer between groups and attains performance close to a non-

stock Android implementation.

Future work includes the inclusion of a routing protocol, and further modifications to the Android

OS to allow simultaneous communication over multiple WiFi Direct interfaces.

78

Chapter-5

Mobile Computational Offloading in Multi-hop Ad Hoc
Networks

5.1 Introduction

By combining the work from the prior chapters, we strive to enable ad hoc networks with the

ability to utilize all available computational resources in a network, especially due to the fact that

single hop ad hoc networks might not fully satiate the application space where infrastructure-based

wireless networks are difficult to deploy and maintain. In doing so, we aim to enable the next step

in the evolution of mobile computation offloading by considering all the computational resources

available in a multi-hop ad hoc network.

This chapter aims to address the opportunities and limitations of a multi-hop computational of-

floading system, using a time and energy model for offloading, a routing heuristic, and an iterative

task distribution algorithm. To verify the accuracy of our model, we implement and compare our

algorithm to a variety of other task distribution schemes, on an Android-based multi-hop WiFi Direct

network. We demonstrate that the benefit of expanding the number of computational resources that

can be utilized for task completion outweighs the overhead to transmit tasks to non-nearest neighbor

nodes for all cases where the computation has a higher cost than the communication. Finally, we

show the ability of our routing heuristic to select nodes for offloading such that all of the available

resources in the network are fully utilized.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 79

10-1 100 101 102

Ratios (Computation/Communication)

-120
-100

-80
-60
-40
-20

0
20
40
60
80

100

G
ai

n
ov

er
 o

ffl
oa

di
ng

 to
 o

ne
 n

ei
gh

bo
r [

%
]

Greedy Group
Greedy 2-Hops Network
Greedy 3-Hops Network
Uniform Group
Uniform 2-Hops Network
Uniform 3-Hops Network

10-2

2-Hops 3-HopsGroup

Figure 5.1: Experimental measurement of the percent gain over offloading to only a single neighbor
of a simple greedy and uniform task distribution scheme.

5.2 Motivation

Similar to [66], our mobile to mobile computational offloading system is composed of a set of

N mobile devices, organized into a network through ad hoc communications. The devices are co-

operative, meaning that we do not consider the presence of any selfish user. Moreover, we assume

the existence of a global routing protocol, and each node has knowledge of all other available nodes

within the network.

At a certain point in time, one of the devices needs to run a complex application, which can

be divided into clearly defined tasks, as is the case for a military SIGINT application [67], or non-

invasively determining the structural integrity of a building during disaster relief efforts [68]. These

tasks are independent from each other, and their computation can be parallelized by offloading the

tasks to different devices. The results of all the tasks’ execution is then merged in order to complete

the initial complex application. As a result, assigning a task to a device requires the transmission

and reception of the task and the results of the task execution over the ad hoc route. This requires

communication energy consumption on all the nodes along the routing path, and incurs a time delay

due to the propagation of the data throughout the network.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 80

In order to determine the benefit of utilizing multi-hop mobile to mobile computation offloading,

we implemented a computational offloading system on Android devices, utilizing the WiFi Direct

protocol [19]. We note that the functionalities for creating multi-group networks using WiFi Direct

are not natively implemented in Android [69]. Nevertheless, the work presented in [64, 69] provide

different solutions (e.g., time sharing between groups, broadcasting and multicasting data between

groups and modifications of the Android OS) to seamlessly enable multi-group communication using

stock and non-stock Android devices.

Given the above, we developed a testbed by interconnecting several 2013 Nexus 7s (N7), using

the modified version of Android presented in [69]. The 2013 N7 has 16 GB of storage, 2 GB of

memory, and a 1.5GHz quad-core Snapdragon CPU [55]. For all the results presented in this chapter,

we limited each device to compute only one task at a time, and the device cannot request the next task

until it has returned the result. Each of the presented data points are an average of thirty trials. All

of the measurements were taken in an indoor workspace, and the nodes were stationary during these

experiments. We acknowledge that in real scenarios, nodes are generally mobile, and may enter or

leave a network. However, to accurately determine the impact of the task assignment and to limit the

variability across different experiments, we kept the nodes stationary. Moreover, all the results of this

chapter have been obtained with the screen turned off.

To evaluate the performance of the envisioned multi-hop mobile to mobile computation offloading

system, in Figure 5.1 we compare the experimental performance gain to complete a set of 50 homo-

geneous tasks relative to a task distribution that only utilizes one additional device with extending

the computation to a larger network (see Figure 5.1). For assigning the tasks, we implemented both

a simple Greedy task distribution, where each device in the network requests a new task as soon as

it has completed the previous task, and a Uniform task distribution, where the tasks are uniformly

distributed throughout the network. While both task assignments provide substantial performance

gain compared to offloading to a single neighbor when the computation time is much larger then the

time required to assign the tasks and receive the results, extending the computation to the multi-hop

network can be detrimental when the communication time is greater than the computation.

Furthermore, this provides no analysis of the affect this offloading has to the entire network. For

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 81

instance, does an assignment bring the network closer to partitioning? Additionally, in the event that

partitioning is inevitable, these approaches do not have the ability to partition the network in the least

adverse manner. As a result, it is not straightforward to determine how to best assign the tasks due to

the communication costs of distributing the tasks. Moreover, while both the Uniform and the simple

Greedy task distribution already provide gains in some cases, it is not possible to directly determine

the performance of a Greedy distribution before assigning the tasks and, at the same time, it is not

clear if further performance improvements are even possible. Thus, in the next sections we first model

the different elements of the system under consideration and then present an iterative algorithm that

is guaranteed to return the optimal task assignment.

5.3 System Model

In this section, we present new task time and energy models for a multi-hop network, as well as a

heuristic that models how important a device is to the task of routing data within the network. Unlike

the model presented in Section 3.5.6, the aim of these new models is simply to capture the relative

cost, in terms of time and energy, that is associated with a given device computing a particular task.

The model presented in Section 3.5.6, aims to more accurately capture the actions performed by a

partcipating device, rather than represent the effects that sharing computation has on the network. As

a result, we use these new models to derive different task distribution policies, which will be presented

in Section 5.4.

5.3.1 Task Time Model

We start by considering the total time Di required to compute a given task at a particular device i.

We define this total time as the time between the task assignment and the end of the transmission of

the result of the task execution. Thus, in order to determine the time required to assign, compute and

then receive the results of the task execution we need to consider two main components, namely the

communication time required to distribute the task and receive the results, and the time actually spent

for the task execution.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 82

In order to derive the communication time, we consider that each task is characterized by three

parameters, namely the task data size t, the result data size r and the task complexity c. Thus, accord-

ing to this definition, assigning a task (t, c, r) to a device requires the transmission/reception of t bits,

while the result of the task execution to be reported back to the task generator entails the transmis-

sion/reception of r bits. The time required to execute a single task depends on the CPU of the mobile

device and on the complexity c of the task to be executed, which, without loss of generality, can be

considered as a function ei(c). Therefore, the total time required to compute a single task at device i

depends on the device’s computational capabilities, and on the characteristics of the radio technology

used for the data exchange, as well as on the number of hops Hi between the device that generated

the tasks and device i.

Given the above, the total delay Di(t, c, t) experienced by a task (t, c, r) assigned to device i is

given by

Di(t, c, r) =

Hi∑
l=1

(
t

T tx
l

+
r

T tx
l

)
+

Hi−1∑
l=1

2T sw
l + ei(c), (5.1)

where T tx
l represents the estimated transmission throughput1 of the l communication hop, l represents

the communication hop l in the reverse path, and T sw
l accounts for additional switching time when

routing the data between two subsequent communication links as can be the case, for example, with

the WiFi Direct protocol (see, e.g., [69]). We note that the transmission throughput also accounts

for parallel use of the same communication link (by, e.g., the simultaneous assignment of different

tasks) and, since the throughput on wireless networks fluctuates due to the signal strength and chan-

nel impairments, assigning values to the transmission throughput only serves as an example of the

achievable performance of a network.

5.3.2 Task Energy Model

In most cases, the networks described in this chapter will consist of battery operated mobile de-

vices. As a result, it is important not only to characterize the delay experienced by the computation

of each task, but also to determine the impact in terms of energy consumption of the task distribu-

1This metric can be expanded to use a moving average of the channel throughput or other forms of uncertainty analysis.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 83

tion. Therefore, in what follows we define the total energy consumption required to assign a task to a

particular device.

Similar to the task time model defined in the previous section, distributing a task entails a com-

munication energy consumption and the task execution energy consumption. In order to define the

communication energy model, we first define P tx
l and P rx

l to be the transmission and reception power

consumption of a particular ad hoc communication link l, respectively. We note that a particular link

l actually represents a pair of nodes (h, k), where h is the device transmitting the data and k is the

device receiving the data. Thus, with a little abuse of notation we can write P tx
l = P tx

h and P rx
l = P rx

k ,

where P tx
h represents the power consumption of mobile device h during transmission, and P rx

k repre-

sents the power consumption of mobile device k during reception. In the same way, we define P ex
i to

represent the power consumption of mobile device i during task computation.

As a result, we define the total energy expenditure when assigning a task (t, c, r) to device i as

Ei(t, c, r) =

Hi∑
l=1

[
t

T tx
l

(P tx
l + P rx

l) +
r

T tx
l

(P tx
l

+ P rx
l

)

]

+

Hi−1∑
l=1

2Esw
l + P ex

i ei(c),

(5.2)

where, similar to Eq. (5.1), l represents the communication hop l in the reverse path (e.g., if l rep-

resents the pair of nodes (h, k), l refers to the pair (k, h)), and Esw
l represents the amount of energy

required for switching when routing the data between two subsequent communication links.

5.3.3 Routing Metric

Although the aforementioned models assess the cost associated when assigning a task to a partic-

ular device, neither represent the effect this assignment has on the network as a whole. To this end,

we define a heuristic routing metric Ri, to represent the routing importance a particular device i has

to the network, and hence we define Ri in terms of energy.

Given that the aim ofRi is to represent a device’s importance to maintaining a connected network,

we start by examining the trade-off between routing and computing. More specifically, it is important

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 84

to understand how computing a task can affect the descendants for a given device i. We define R′i to

be the amount of residual energy remaining in the batteries of device i’s descendants, divided by the

residual energy in device i’s battery. It is sufficient to only consider the R′is reported by a device’s

immediate descendants, K, due to the fact that all subsequent descendants will have to either route

through a device inK, or be a member ofK itself. This allows us to formulate R′i as:

R′i =

n∈K∑
R′n +Qn

Qi

(5.3)

where Qi is the amount of residual energy in the battery of device i. In addition to representing how

assigning a task can affect a device’s descendants, it is also important to consider any tangential effects

that an assignment can have on other devices in the network. Specifically, how does assigning a task

to device i affect either device i’s ancestors, or devices that are siblings to device i? By considering

the R′is of a device’s ancestors, A, we are able to represent any tangential effects an assignment has

on the network; however, we argue that these effects are dependent on the ratio between the energy

required to communicate a task and result and the energy required to compute. This allows us to

define the routing metric for a given device i to be

Ri(t, c, r) = R′i + (
a∈A∑

R′a)

t
T tx
l
P tx
l + r

T tx
l

P tx
l

P ex
i ei(c)

(5.4)

Similar to the Task Energy Model, P tx
l and P rx

l are the transmission and reception power consumption

of a particular ad hoc communication link l, respectively. Additionally, we note that this metric

operates under the assumption that the network can be formed into a tree structure, when distributing

tasks. We argue that this is feasible due to the fact that in most cases, tasks would be originating from

a single device, allowing for the use of spanning tree algorithms to fit this constraint.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 85

5.4 Task Distribution

The goal of our analysis is to find the distribution of a set of heterogeneous tasks that minimizes

the overall cost metric, by all devices in a multi-hop network. This can be seen as a combinatorial

optimization problem, known as the general assignment problem (GAP). Although the GAP has been

shown to be NP-hard, under certain conditions, the GAP can be translated to the Linear Bottleneck

Assignment Problem (LBAP), which can be solved in polynomial time. Furthermore, we present an

iterative solution to solve an augmented form of the LBAP. In what follows, we present the formula-

tion of the GAP, LBAP, and an augmented form of the LBAP problems.

5.4.1 General Assignment Problem (GAP)

Let N be the number of mobile devices participating in the computations and M be the number

of heterogeneous tasks to be distributed. Furthermore, let i be a given mobile device and j be a

particular task, such that i ∈ N and j ∈ M . We define φ to be a binary matrix representing a

potential distribution of tasks, where each entry φij = 1 if task j is assigned to device i, and φij = 0

otherwise. Moreover, letC be a matrix, where each entry Cij represents the cost to assign and execute

task j at device i. Given the above, we define our objective function to be:

min
φ∈Φ

F(φ), (5.5)

where Φ is the collection of possible task distributions, φ, and F(φ) =
N∑
i=1

M∑
j=1

φijCij represents the

cost of a given distribution. We note that F(φ) accounts for the assignment of tasks to devices and is

suitable for finding the minimum cost required to perform the distributed computation of the M tasks.

This problem has been shown to be NP-Hard, and the only method to ensure an optimal task

distribution is to exhaustively search over all possible permutations of tasks Φ. As a result, several

algorithms and heuristics have been proposed that generate a distribution that is capable of approxi-

mating the optimal distribution. In particular, Dantzig et al. proposed a greedy algorithm where the

tasks are ordered from longest to shortest, before being assigned uniformly to devices. Additional so-

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 86

lutions include a fully polynomial time approximation scheme proposed by Kellerer et al. [70]. This

scheme partitions the tasks into long tasks and short tasks. A variable number of tasks are distributed

from each set. This number of tasks to be distributed is generated every cycle until there are no more

tasks left. More recently, Luo et al. demonstrated that their multi-robot auction based algorithm con-

verges to a solution [71]. Lou et al. go on to prove that their algorithm converges to a solution to GAP

with an approximation ratio of 1 + α, meaning that their solution is within 1 + α times the optimal

solution, where α is the “aggressiveness2” of each of the participating agents. Furthermore, Racer et

al. developed a heuristic to approximate an optimal solution to the GAP [72].

5.4.2 Linear Bottleneck Assignment Problem (LBAP)

As stated above, the LBAP is a special case of the GAP, where the number of heterogeneous tasks

and the number of mobile devices are equal. The solution to LBAP takes the form of a bipartite

graph, meaning that each device can only by assigned one task. Similar to GAP, we define φ to be a

permutation, corresponding to a solution to distribute the tasks to the devices, and Φ to be the set of

all solutions, such that φ ∈ Φ. Likewise, let C be a cost matrix, where Cij is the cost associated with

device i executing task j. Furthermore, we redefine F(φ) from Eq. (5.5) to be:

F(φ) = max
i=1,...,N

{
M∑
j=1

φijCij

}
. (5.6)

To solve the LBAP, Zimmerman et al. proposed a solution using Dijkstra’s algorithm, where the

authors constructed a graph, similar to the one seen in Figure 5.2 [73]. Figure 5.2 explicitly shows the

“first stage,” where all of the devices are connected to all of the tasks, and the edges connecting these

nodes are representative of the costs associated with that device executing the connected task. Each

task is then connected to a set of potential stages, ki for i ∈ 1, z, where an example of a subsequent

stage can be seen in Figure 5.3. Finally, by traversing from node s to node e, an optimal solution can

be found by looking at the device-task pairs that comprise the route.

2How aggressive each agent is towards bidding.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 87

S

K1T1

T2

TM

A2

A1

AN

Devices Tasks

K2

Kz

E

Possible Subsequent
Assignments

Figure 5.2: A representation of how Dijkstra’s algorithm is used to solve the LBAP.

Prior
Task

Next
Task

T2

T3

TM

A2

A1

AN

CA1(T2)

CA1(T3)

CA1(TM)

0

0

00
0

0

Figure 5.3: A representation of an individual stage, K, in Figure 5.2

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 88

5.4.3 Augmented Form of LBAP

Additionally, there exists an augmentation of the LBAP, where the system wishes to optimally

distribute M homogeneous tasks to N devices. Although the LBAP requires the number of tasks and

devices to be the same, when the tasks are homogeneous, we can linearly combine multiple tasks to

makeN heterogeneous tasks. As a result, this special case cannot be solved using the same algorithms

presented in Section 5.4.2, due to their in ability to combine homogeneous tasks ; however, we have

developed an iterative algorithm to solve this special case. In what follows, we present and prove the

optimality of our iterative task distribution algorithm.

Proposed Policy

We aim to find the optimal policy φ for the following objective function:

min
φ∈Φ

F(φ) (5.7)

where

F(φ) = max
i=1,...,N

{
M∑
j=1

φijCij

}
(5.8)

To solve this problem, we have developed an iterative algorithm, which assigns tasks one at a time

to the device who’s cost will change the least with the addition of this new task. More formally,

let us redefine φ to be a vector such that φ = [φ0, φ1, . . . , φN], where φi represents the number

of homogeneous tasks assigned to a particular device i, such that φi ∈ Z+, 0 ≤ φi ≤ M and∑N
i=1 φi = M , and Φ is the set of all the possible task assignments that satisfy these conditions.

Moreover, let C = [C1, C2, . . . , CN] be a cost vector, where Ci with i = 1, . . . , N represents the cost

of assigning a task to device i. To this end, let Xα be a vector of length N , so that Xα
i represents the

number of tasks that have been assigned to device i up to the assignment of task α, with α ≤ M . In

addition, let Y be a decision vector of length N , so that all but one of the elements of Y are zero.

Given the above, the algorithm for finding the optimal task assignment is defined in Algorithm 1.

To prove that Algorithm 1 is able to determine an optimal solution to the optimization problem

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 89

Algorithm 1 Cost–Optimal Task Distribution
1: X0={0, 0, 0, ..., 0}
2: for Each Task α ∈ [1, ...,M] do
3: Y={0, 0, 0, ..., 0}
4: i = argmin((Xα−1 +

−→
1) ◦C)

5: Yi = 1
6: Xα = Xα−1 + Y
7: end for

defined in Eq. (5.5), we first show that starting from an optimal task assignment for K tasks, it is

possible to construct an optimal task assignment for K + 1 tasks.

Theorem 5.4.1. Given an optimal K tasks assignment ΓK , an optimal K + 1 tasks assignment ΓK+1

can be obtained as

ΓK+1 = argmin
ψ∈ΨK+1

[maxi{ψiCi|i = 1, ..., N}],

where ΨK+1 = {ψi}, ψi = ΓK + εi and εi is an all-zeros vector with a one in position i, for each

i = 1, . . . , N .

Theorem 1. See Appendix 7.3.

We will now use the result of Theorem 5.4.1 to show that the algorithm presented in Section 5.4

returns an optimal solution to the optimization problem defined in Eq. (5.6), when considering the

objective function defined in Eq. (5.6).

Theorem 5.4.2. Algorithm 1 yields an optimal solution to the optimization problem defined in Eq. (5.5).

Theorem 1. See Appendix 7.4.

5.5 Maximizing the Number of Tasks

While Section 5.4 formulated the objective function for finding the optimal task distribution for a

set of tasks, it is also important to understand the full capabilities of a network, such as the maximum

number of tasks the network can compute before partitioning or in a given amount of time. These

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 90

types of problems can be solved using Mixed Integer Linear Programming (MILP). In what follows,

we present the objective function for solving this problem. We note that we cannot find the optimal

number of tasks the network can compute for heterogeneous tasks using this method, due to the fact

that MILP will return a set containing only the “cheapest” tasks. As a result, we present the objective

function for homogeneous tasks.

Similar to Section 5.4, we start by defining N to be the number of mobile devices participating in

the computation and M to be the number of homogeneous tasks that can be computed. Furthermore,

let B be a vector representing all of the devices’ batteries capacities such thatB = [B0, B1, . . . , BN],

where Bi represents the total energy capacity of device i’s battery. Likewise, we define X to be a

vector such that X = [X0, X1, . . . , XN], where Xi represents the number of homogeneous tasks

assigned to a particular device i, such that Xi ∈ Z+, 0 ≤ Xi ≤ M and
∑N

i=1Xi = M . Moreover, let

Cenergy and Ctime be N×N matrices, representing the cost, either as a function of energy or time,

associated with a given action. For instance Cenergy
ij is the cost to device i for forwarding a task to

device j and Cenergy
ii is the cost to device i to compute, and if applicable receive, a task. Finally, we

define the time required to compute the set of tasks to be Ctime ·X and L a vector representing a time

constraint3. Given the above, we define our objective function as

maximize
M

M =
N∑

i=0

(Xi)

subject to D(t, r, c) ·X ≤ B

E(t, r, c) ·X ≤ L

0 ≤ Xi : ∀i ∈ [1 , ...,N]

(5.9)

where 0 ≤ Xi : ∀i ∈ [1 , ...,N] is constraining each device to a minimum of zero tasks. As stated

above, this optimization problem can be solved using MILP.

3L does not have to be defined, for instance if L is not defined the function will search for the maximum number of
tasks that the network can compute before partitioning.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 91

5.6 Results

In order to evaluate the performance of the algorithms presented in Section 5.4, we define the cost

for a given device i to be:

Ci(t, c, r) = αDi(t, c, r) + (1− α)Ri(t, c, r) (5.10)

where α is an adjustable parameter emphasizing whether the algorithm is optimizing for delay (Di(t, c, r), α =

1) or network lifetime (Ri(t, c, r), α = 0). The performance of these algorithms are compared to an

algorithm that uniformly distributes the tasks to the nodes as well as a greedy task distribution al-

gorithm. We start by presenting the performance of these algorithms when distributing a given set

of homogeneous tasks. Additionally, we couple the routing heuristic with these algorithms to gauge

its ability to maximize the number of homogeneous tasks a network can compute. These values are

then compared to the solutions generated by the optimal algorithm defined in Section 5.5. Finally, we

present the performance of these algorithms when distributing heterogeneous tasks.

5.6.1 Performance Evaluation: Homogenous Tasks

For all the results presented in this section, we consider a network comprised of homogeneous de-

vices, that is distributing homogeneous tasks. To this end, we define the cost vectorC = [C1, C2, . . . , CN]

of the optimization problem in Eq. (5.6) such that Ci = Di(t, c, r), α = 1, where t = 13B,

r ∈ {10KB, 100KB, 1MB} and c is determined so that ei(c) ∈ {10ms, 100ms, 1s, 10s}.

Offloading Results

After implementing the testbed described in Section 5.2, we compared the task distribution found

using the iterative algorithm presented in Section 5.4 as well as the uniform and greedy task distribu-

tion algorithms described in Section 5.2. Each trial was started after the correct task distribution, if

applicable, was found and was stopped when the last result of the computation was received. While

we do not include the energy consumption at each device (i.e., Ei in Eq. (5.2)) in the definition of the

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 92

10-2 10-1 100 101 102

Ratios (Computation/Communication)

0

1

2

3

4

5

6

7

8

Ti
m

e
[m

s]

105

Experimental Results

Iterative Average Throughput
Uniform Average Throughput
Iterative High Throughput
Uniform High Throughput
Iterative Low Throughput
Uniform Low Throughput
Implemented Iterative
Implemented Uniform
Implemented Greedy

e (c)=10msi
e (c)=100msi

e (c)=1si

e (c)=10si

Figure 5.4: Implementation and simulation results for different computation/communication ratios.
Result size is 1 MB.

cost vector C, when our algorithm finds multiple task assignments that result in the same delay cost,

we select the task assignment that minimizes the overall network energy consumption.

In Figures 5.4-5.6 we plot the time required to compute a set of 50 homogeneous tasks as a func-

tion of different computation/communication time ratios, for both an Android implementation of the

task distribution as well as a simulation of the task distribution using the model described in Sec-

tion 5.3. In these figures, the dashed lines represent the simulated performance of the task distribution

obtained through the iterative algorithm described in Section 5.4, while the continuous lines repre-

sent the simulated performance of a uniform task distribution for different values of transmission

throughput. In particular, we set T tx
l = T tx

l
∈ {72Mbps, T avgr , 0.5Mbps} in Eq. (5.1), where T avgr is

the average experimental throughput measured for the different data size r (i.e., T avg10KB = 0.87Mbps,

T avg100KB = 8.4Mbps and T avg1MB = 30Mbps). The squares, diamonds and stars, instead, represent the

results obtained by implementing the Iterative, Uniform and the Greedy task distribution policies in

our real network of Android devices, respectively.

The results in Figures 5.4-5.6 show that when the computation takes about 40 times longer than

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 93

the communication, a uniform task distribution provides the same performance as both the greedy

algorithm as well as our iterative algorithm. Below this point, there are clear benefits in using the

task distribution found with our iterative algorithm, with gains that become more evident when the

time spent computing is comparable to the communication time. When the communication takes

significantly longer than the computation, the iterative algorithm can complete the set of tasks about

twice as quickly as the uniform algorithm (for a result size of 1MB and computation time of 10ms).

Moreover, these results show that the simulated results can provide a good approximation of the

implementation results so long as the appropriate average link throughput are used. Hence, the model

developed in Section 5.3 can be used to explore the performance of computation offloading in multi-

hop ad hoc networks.

The simple Greedy task distribution is able to adapt to the instantaneous variations in computa-

tional time (due to, e.g., operating system operations unrelated to the actual task execution), as well

as to the channel impairments that can severely affect the actual throughput of the communication

links. As a result, the Greedy task distribution is able to attain performance very close to the simu-

lated performance of our iterative algorithm with the high WiFi Direct throughput. When minimizing

the total completion time, thanks to its adaptability to the instantaneous system variations, the Greedy

task distribution outperforms the implementation of the iterative task assignment, thus making it the

de-facto choice for real device implementations.

To gain further insight into the differences between the Greedy task distribution and our iterative

algorithm, in Figure 5.7 we compare the average task assignments that were used in each case. As can

be seen in Figure 5.7(a), both the iterative and Greedy task distribution schemes start assigning tasks in

a uniform way when the computation time (10s) is much longer than the time spent communicating.

When the situation is reversed (i.e., communication is much longer than the 10ms computation),

instead, in some cases no tasks are actually assigned to the furthest node (see Figure 5.7(d)). Overall,

these results show that the throughput used to compute the task assignment is over estimated, which

is particularly evident by the fact that the device that is generating the tasks (i.e, the device at 0 hops),

is most of the time computing fewer tasks than when using the Greedy approach.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 94

10-1 100 101 102 103

Ratios (Computation/Communication)

0

2

4

6

8

10

12

14

16

18

Ti
m

e
[m

s]

104

Iterative Average Throughput
Uniform Average Throughput
Iterative High Throughput
Uniform High Throughput
Iterative Low Throughput
Uniform Low Throughput
Implemented Iterative
Implemented Uniform
Implemented Greedy

Experimental Results

e (c)=10msi
e (c)=100msi

e (c)=1si

e (c)=10si

Figure 5.5: Implementation and simulation results for different computation/communication ratios.
Result size is 100 KB.

Benefits of Offloading to Multi-hop Neighbors

The results presented in the previous section show that a Greedy task assignment can adapt to

changing computation and communication environments and hence can return all the tasks in the

least amount of time. However, our iterative algorithm provides a task distribution that is close to

that provided by the Greedy algorithm. Additionally, the results in the previous section show that the

simulated results match the implementation results and, as a consequence, simulations based on the

model from Section 5.3 can be used to provide insight into the performance of the system. Thus, in

what follows we use the analytical model and the iterative algorithm described in Sections 5.3 and 5.4

to further explore the gains that can be achieved by extending the distributed computation to all the

available network resources.

In particular, in order to highlight the benefits of offloading the computation to all the mobile

devices in a network, in Figure 5.8 we compare the gain in time to complete all 50 tasks relative to a

task distribution that only utilizes one additional device (i.e., single-hop task distribution as considered

in the literature [74, 75, 6]) with: a) offloading the computation to all of the nearest neighbors of the

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 95

10-1 100 101 102 103

Ratios (Computation/Communication)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
Ti

m
e

[m
s]

105

Iterative Average Throughput
Uniform Average Throughput
Iterative High Throughput
Uniform High Throughput
Iterative Low Throughput
Uniform Low Throughput
Implemented Iterative
Implemented Uniform
Implemented Greedy

e (c)=10msi

e (c)=1si

e (c)=10si

e (c)=100msi

Experimental Results

Figure 5.6: Implementation and simulation results for different computation/communication ratios.
Result size is 10 KB.

device that is generating the tasks (i.e., Single Group), and b) offloading the computation to a multi-

hop network (i.e., 2-hops, 3-hops and 4-hops network). As shown in Figure 5.8, in this simulation

we consider a tree-like network with the root node generating the tasks having four children nodes,

and each subsequent child servicing one additional node. This network extends for 2, 3 or 4 hops,

resulting in a total of 4 devices in the source node’s group that can be used for group task distribution,

and 8, 12 and 16 devices that can be used for network task distribution.

Figure 5.8 clearly shows the benefit of offloading to a multi-hop network. In particular, offloading

to the larger network provides up to 30% faster computation time than offloading the tasks only to

the first group, and a gain of up to 88% against offloading to only a single device (as is currently

supported in the literature).

Network Utilization

Due to the fact that mobile devices are often energy constrained, it is imperative to consider how

offloading computation impacts the network. In this section, we examine the impact of the network in

terms of network utilization. More specially, in order to best utilize the network, computation should

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 96

0 hops 1 hop 2 hops 3 hops 4 hops
Number of hops

0

5

10

15

N
um

be
r o

f t
as

ks

Iterative
Greedy

(a) 10s calculation

0 hops 1 hop 2 hops 3 hops 4 hops
Number of hops

0
2
4
6
8

10
12
14
16
18
20

N
um

be
r o

f t
as

ks

Iterative
Greedy

(b) 1s calculation

0 hops 1 hop 2 hops 3 hops 4 hops
Number of hops

0
5

10

15

20

25

30

35

40

N
um

be
r o

f t
as

ks

Iterative
Greedy

(c) 100ms calculation

0 hops 1 hop 2 hops 3 hops 4 hops
Number of hops

0
5

10
15
20
25
30
35
40
45

N
um

be
r o

f t
as

ks

Iterative
Greedy

(d) 10ms calculation
Figure 5.7: Task distribution for the Greedy and Iterative approaches with result size fixed to 1 MB.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 97

0 50 100 150 200 250 300

Ratios (Computation/Communication)

0

10

20

30

40

50

60

70

80

90

G
ai

n
ov

er
 o

ffl
oa

di
ng

 to
 o

ne
 n

ei
gh

bo
r [

%
]

Single Group
2-Hops Network
3-Hops Network
4-Hops Network

2-Hops 3-Hops 4-Hops
Group

Figure 5.8: Simulated measurement indicating the percent speed up over offloading to only a single
neighbor.

be offloaded not only to the devices that have the most residual energy, but also those devices that are

not critical to the connectivity of the network. The prior sections indicate that the ratio of the cost to

communicate to the cost to compute can impact the assignments made by our iterative algorithm. We

use a ratio of 1 : 1 when simulating the networks detailed in Figures 5.9(a)-5.11(a). For the purposes

of this section, we define performance as a percentage of the maximum number of homogeneous tasks

that a network is able to compute 4, as determined by the solution to Eq. (5.9).

Figures 5.9(a)-5.11(a) plot, in blue, the performance of our iterative algorithm with respect to α, as

well as the performance of the uniform algorithm, where the dashed lines represent the performance

of the uniform algorithm and the solid lines represent the performance of our iterative algorithm. The

results in these figures show that the uniform algorithm is able to compute 72%, 83%, and 73% of the

maximum number of tasks. On the other hand, our iterative algorithm is able to compute all of the

tasks for α ∈ [.284, .293], α ∈ [0, .316], and α ∈ [0, .434]. At its worst, the iterative algorithm is only

able to compute 93%, 93%, and 75% of the maximum tasks when α = 1, α = 1, and α ∈ [.892, 1].

To gain further insight into the effect α has on the network, Figures 5.9(a)-5.11(b) plot, in red, the

4The maximum number of tasks were generated using the technique detailed in Section 5.5.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 98

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Alpha

0

10

20

30

40

50

60

70

80

90

100
P

er
ce

nt
 o

f I
de

al
 T

as
ks

 C
om

pu
te

d

0

2

4

6

8

10

12

14

16

A
ve

ra
ge

 T
im

e
P

er
 T

as
k

(S
ec

on
d)

Dijkstra Percent Completed
Uniform Percent Completed
Dijkstra Average Time Per Task
Uniform Average Time Per Task

A B

D

C E

(a) Average time per task.

A B

D

C E

(b) Percentage of energy left in the network.

Figure 5.9: The effect α has on the iterative algorithm’s ability compute the maximum number of
tasks before network partition.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 99

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Alpha

0

10

20

30

40

50

60

70

80

90

100
P

er
ce

nt
 o

f I
de

al
 T

as
ks

 C
om

pu
te

d

0

5

10

15

20

25

A
ve

ra
ge

 T
im

e
P

er
 T

as
k

(S
ec

on
d)

Dijkstra Percent Completed
Uniform Percent Completed
Dijkstra Average Time Per Task
Uniform Average Time Per Task

A B DC E

(a) Average time per task.

A B DC E

(b) Percentage of energy left in the network.

Figure 5.10: The effect α has on the iterative algorithm’s ability compute the maximum number of
tasks before network partition.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Alpha

0

10

20

30

40

50

60

70

80

90

100
P

er
ce

nt
 o

f I
de

al
 T

as
ks

 C
om

pu
te

d

3

3.5

4

4.5

5

5.5

6

6.5

7

A
ve

ra
ge

 T
im

e
P

er
 T

as
k

(S
ec

on
d)

Dijkstra Percent Completed
Uniform Percent Completed
Dijkstra Average Time Per Task
Uniform Average Time Per Task A

B DCE

(a) Average time per task.

A

B DCE

(b) Percentage of energy left in the network.

Figure 5.11: The effect α has on the iterative algorithm’s ability compute the maximum number of
tasks before network partition.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 101

average time per task, and the percentage of residual energy left in the entire network, respectively.

From these figures, we can see that for smaller values of α, the average time per task for the iterative

algorithm is 81%, 137%, and 65% slower than the uniform case. Additionally, Figures 5.9(b)-5.11(b)

indicate that smaller values of α, enable the iterative algorithm to utilize more of the network’s energy,

leaving the network with 24%, 1.5%, and 20% of its total energy. This is compared to the uniform

algorithm, which consumes 45%, 37%, and 41% of the network’s total energy. In the other extreme,

Figures 5.9(a)-5.11(a) show the iterative algorithm is able to perform an average task either 43%,

51%, or 15% faster than the uniform algorithm for certain values of α. These values correspond to

the instances where the iterative algorithm leaves the network with 43%, 44%, and 50% of its initial

energy.

From these figures, it is evident that the routing metric is able to utilize the network fully when

distributing tasks for many values of α. Additionally, these figures indicate there is a clear trade

off between average time per task, and utilizing the network. As a result, the value of α should

be chosen appropriately for the particular situation in which the network is operating. Finally, we

can see that the performance heavily depends on the network topology. For instance, we can see

that the network in Figure 5.11(a) computes fewer tasks than the uniform algorithm, compared to

Figures 5.9(a) and 5.10(a) where the iterative algorithm always computes more tasks.

5.6.2 Performance Evaluation: Heterogeneous Tasks

Static Task Set

In the prior sections, we have made the case that offloading computation, using the proposed al-

gorithm presented in Section 5.4, can be beneficial; however, the prior sections still rely on the strong

assumption that the computation that is being shared and the devices participating in the computa-

tion are homogeneous. For the results in this section, we analyze the performance of our iterative

algorithm, relative to the uniform algorithm and the algorithm proposed by Dantzig et al., for hetero-

geneous tasks. By varying the heterogeneity 5 of the tasks being distributed, we aim to complete our

5We vary the heterogeneity by initially distributing a set of homogeneous tasks, and slowly change the set until all of
the tasks have a different cost.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 102

analysis of offloading computation in ad hoc networks. We note that the NP nature of this problem

only allows us to comment on the particular scenarios we have simulated and general trends exhibited

by these simulations.

To this end, we analyze Figures 5.12(a) and 5.12(b), using the performance of the uniform algo-

rithm as a baseline, we are able to understand the relative performance of both our iterative algorithm

and the algorithm proposed by Dantzig et al. For these results, we simulated the network, specified in

each figure, while distributing sets of 150 tasks with varying heterogeneity. These simulations were

performed with a “low” communication cost (10 seconds to send and receive the task/result). Addi-

tionally, Figure 5.12(a) starts with a homogeneous set of tasks, which require 10 seconds to compute,

and varies the heterogeneity of the set by replacing tasks from the heterogeneous set, with tasks that

require longer (bounded to 1500 seconds) to compute. Figure 5.12(a) demonstrates the effect that the

heterogeneity of the task set has. More specifically, it is evident that the iterative algorithm is able to

complete the set of tasks 47% faster than the uniform algorithm , when the set is homogeneous, and

about 8% faster when the set is heterogeneous. On the other hand, the algorithm proposed by Dantzig

et al. exhibits the same performance as the uniform algorithm in the homogeneous case , and is able

to complete the set of tasks about 10% faster than the uniform algorithm for heterogeneous task sets.

It is worth noting that the results in the homogeneous case corroborate the results from Section 5.6.1,

due to the fact that the ratio between time to compute and time to communication is 1:1.

Similar to Figure 5.12(a), Figure 5.12(b) simulated the same network and communication cost;

however, this figure changed the homogeneous set of tasks to be a set of tasks requiring 1500 seconds

to compute. This particular simulation proceeded to substitute these tasks with shorter tasks (bounded

to 10 seconds) as the heterogeneity changed. The results from this simulation indicate that both the

iterative algorithm and the algorithm proposed by Dantzig et al. exhibit the same performance as the

uniform algorithm in the homogeneous case and each algorithm performs about 10% faster as the set

become more heterogeneous. These figures not only reinforce the conclusions drawn in Section 5.6.1,

but also demonstrates that as a set becomes more heterogeneous, the algorithm proposed by Dantzig

et. al is able to complete the set of tasks the fastest.

For completeness, Figure 5.6.2 simulates the same network, distributing the same sets of tasks,

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 103

with communication costing 1500 seconds to transmit and receive results. By comparing Figures 5.12(a)

and 5.13(a), we observe that in the communication dominant system, our iterative algorithm is able

to compute the set of tasks between 65% and 98% faster than the incumbent algorithms. Moreover,

Figures 5.12(b) and 5.13(b) shows that our iterative algorithm is now able to compute the set of tasks

between 48% and 65% faster than both the uniform algorithm and the algorithm proposed by Dantzig

et al. We note that unlike Figures 5.12(a) and 5.13(a), which maintain similar trends, Figure 5.13(b)

exhibits different behavior from Figure 5.12(b). This is likely due to the fact that in the homoge-

neous case for Figure 5.12(b), the cost to compute is 150 times greater than the cost to communicate,

meaning that our iterative algorithm uniformly distributes the tasks to all of the participating devices,

whereas in Figure 5.13(b) the cost to compute and the cost to communicate are equal. The exami-

nation of all of these figures allude to a trend that the relative cost of communicating impacts each

of the algorithm’s ability to efficiently distribute tasks. For instance, there exists a set of conditions

for which the algorithm proposed by Dantzig et al. is able to distribute the set of tasks more effi-

ciently than our iterative algorithm; however, due to the fact that this algorithm needs to order both

the tasks and devices, it must know all of the tasks a priori. In contrast to Dantzig et al.’s algorithm,

our iterative algorithm greedily assigns tasks to the device that has the lowest cost, at that particular

moment. Furthermore, we note that the Hungarian algorithm [76] is another incumbent algorithm for

task distribution schemes; however, this algorithm stipulates that the number of devices and tasks are

equal and is therefore not presented in these findings.

Online Task Sets

In Section 5.6.2, we demonstrated the expected performance of our iterative algorithm, the uni-

form algorithm, and the algorithm proposed in [77] when distributing a full set of tasks; however,

seldomly are all of the tasks available at one. Figure 5.6.2 presents the simulated results for the

topology detailed in 5.6.2. This simulation focused on the effect that distributing tasks in an “online”

manner has on each of the algorithm’s ability to efficiently distribute tasks. Therefore, we have fo-

cused on the effect that binning tasks has on the over all time required to distribute 150 heterogeneous

tasks. We note that the algorithms were applied to each of the bins.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 104

Similar to the prior sections, we have provided the results for both task dominant system, found

in 5.14(a) and 5.14(c), as well as a communication dominant system, seen in 5.14(b) and 5.14(d).

Figures 5.14(a) and 5.14(b) show the percent speed up our iterative algorithm and the algorithm

proposed by Dantzig et al. has over the uniform algorithm. Likewise, Figures 5.14(c) and 5.14(d) plot

the absolute time required for each of the algorithms’ to compute 150 tasks.

Figure 5.14(c) demonstrates that our iterative algorithm is able to to maintain consistent perfor-

mance across all bin sizes. Our iterative algorithm is able to account for each of the participating

device’s current load, allowing for the system to maintain consistent performance. This is in contrast

to the other algorithms, which effectively distribute each batch uniformly among the participating

devices. We note that when the bin size is equal to 6, the uniform algorithm requires more time. this

is due to the fact that the root node ends up calculating an additional task. This is in contrast to the

algorithm proposed by Dantzig et al., where the root node computes the quickest task, from that bin,

in addition to the longest, thereby acting as an upper bound to the uniform algorithm for this particular

scenario.

Similar to the Section 5.6.2, Figure 5.14(b) and 5.14(d) further cement our iterative algorithm’s

ability to account for the impact that communication has on the system’s ability to distribute tasks. For

communication dominant systems, both the uniform algorithm and the algorithm proposed by Dantzig

et al. incur higher costs due to the majority of the time being spent on communicating the task and

result. This notion is reinforced when analyzing bin size of 6 for the communication dominant system,

where we can observe a reduction in the amount of time required to compute 150 tasks.

5.7 Conclusions

In this chapter, we explored the benefits of enhancing mobile to mobile computational offloading

in multi-hop cooperative networks. By implementing a multi-hop computational offloading system,

we were able to implement different task distribution algorithms and verify the accuracy of an analytic

model. Using this model, we were able to show the overall benefit of enabling offloading to multi-hop

neighbors in a network, which can be quite large when the time to compute is higher than the time to

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 105

communicate the data.

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 106

0 50 100 150
Heterogeneity

0

5

10

15

20

25

30

35

40

45

50

Pe
rc

en
t S

pe
ed

 U
p

O
ve

r U
ni

fo
rm

 W
he

n
Co

m
pu

tin
g

15
0

Ta
sk

s
Iterative
Dantzig

A B

D

C E

Adding Expensive Tasks

Completely
Homogeneous

Completely
Heterogeneous

(a) Compute time increases with heterogeneity

0 50 100 150
Heterogeneity

0

2

4

6

8

10

12

14

Pe
rc

en
t S

pe
ed

 U
p

O
ve

r U
ni

fo
rm

 W
he

n
Co

m
pu

tin
g

15
0

Ta
sk

s

Iterative
Dantzig

A B

D

C E

Adding Cheaper Tasks

Completely
Homogeneous

Completely
Heterogeneous

(b) Compute time decreases with heterogeneity

Figure 5.12: Percent speed up when distributing 150 tasks with varying heterogeneity and low com-
munication cost (10s). The homogeneous case is a set of tasks requiring 10s to compute and the
heterogeneous case has tasks ∈ [10s, 1500s].

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 107

0 50 100 150
Heterogeneity

-20

0

20

40

60

80

100
Pe

rc
en

t S
pe

ed
 U

p
O

ve
r U

ni
fo

rm
 W

he
n

Co
m

pu
tin

g
15

0
Ta

sk
s

Iterative
Dantzig

A B

D

C E

Adding Expensive Tasks

Completely
Homogeneous Completely

Heterogeneous

(a) Compute time increases with heterogeneity

0 50 100 150
Heterogeneity

-10

0

10

20

30

40

50

60

70

Pe
rc

en
t S

pe
ed

 U
p

O
ve

r U
ni

fo
rm

 W
he

n
Co

m
pu

tin
g

15
0

Ta
sk

s

Iterative
Dantzig

A B

D

C E

Adding Cheaper Tasks

Completely
Homogeneous

Completely
Heterogeneous

(b) Compute time decreases with heterogeneity

Figure 5.13: Percent speed up when distributing 150 tasks with varying heterogeneity and high com-
munication cost (1500s). The homogeneous case is a set of tasks requiring 10s to compute and the
heterogeneous case has tasks ∈ [10s, 1500s].

CHAPTER 5. MOBILE COMPUTATIONAL OFFLOADING IN MULTI-HOP AD HOC NETWORKS 108

1 2 3 5 10 15 25 30 50 75 150
Bin Size

-60

-40

-20

0

20

40

60

80

Sp
ee

d
Up

 O
ve

r U
ni

fo
rm

 W
he

n
Co

m
pu

tin
g

15
0

Ta
sk

s Iterative
Dantzig

A B

D

C E

(a) Relative performance compared to uniform for low communication cost

1 2 3 5 10 15 25 30 50 75 150
Bin Size

0

10

20

30

40

50

60

70

Sp
ee

d
Up

 O
ve

r U
ni

fo
rm

 W
he

n
Co

m
pu

tin
g

15
0

Ta
sk

s Iterative
Dantzig

A B

D

C E

(b) Relative performance compared to uniform for high communication cost

1 2 3 5 10 15 25 30 50 75 150
Bin Size

2

3

4

5

6

7

8

9

10

11

12

Ti
m

e
re

qu
ire

d
to

 c
om

pu
te

 1
50

 c
as

ks

104

Iterative
Uniform
Dantzig

A B

D

C E

(c) Absolute time with low communication cost

1 2 3 5 10 15 25 30 50 75 150
Bin Size

0.5

1

1.5

2

Ti
m

e
re

qu
ire

d
to

 c
om

pu
te

 1
50

 c
as

ks

105

Iterative
Uniform
Dantzig

A B

D

C E

(d) Absolute time with high communication cost

Figure 5.14: Performance when distributing tasks in an “online” scenario.

109

Chapter-6

Visualizing Mobile Computing in Ad Hoc Networks

6.1 Introduction

Although an ad hoc network’s independence from infrastructure based communication makes it

ideal for facilitating communication in military and disaster relief scenarios, these very situations ben-

efit greatly from high situational awareness, which is often not readily available in ad hoc networks.

Hence we have created a system to visualize pertinent network information, allowing network oper-

ators to quickly identify bottlenecks, locate lost or disconnected nodes, and re-assign network roles

in response to a node’s impending death due to lack of energy. By coupling this information with

geographical information, i.e., displaying the nodes and connections on a map, operators can more

easily trouble shoot errors that arise from environmental conditions.

Given these objectives, our visualization system includes the following:

• We display link information, such as received signal strength indication (RSSI) and link speed,

by drawing a colored line between two connected nodes. By coloring the link a particular color,

based on link information, operators are able to quickly determine if there are environmental

conditions that could inhibit communication even if nodes are geographically close together.

This provides a good starting point for creating a heat map, which would allow for operators to

determine any bottlenecks in a network.

• We display, with an approximation to the nearest quartile, the node’s battery level, and we

display disconnected nodes in a separate color, with no battery life. By doing so, operators are

CHAPTER 6. VISUALIZING MOBILE COMPUTING IN AD HOC NETWORKS 110

Figure 6.1: Screen shot displaying two groups and various link qualities.

able to visually see which nodes are on the verge of depleting their battery, as well as have a

last known location of nodes that have lost contact with the network.

• We provide a method of displaying individual subnets, groups, or clusters, which make up the

larger network. We have done so by using a convex hull to connect the various nodes that are

members in each subnet. This in turn allows operators to determine which nodes are capable

to become a new group owner, in the event that the current one will deplete its energy, or

accommodate nodes that may exist outside of the current network.

In order to gather all of this information, we have developed an Android service, which collects

the specified information and periodically adds and updates its information in a database that can

exist both locally and over a longer latency link. By doing so, any node with privileges to access

CHAPTER 6. VISUALIZING MOBILE COMPUTING IN AD HOC NETWORKS 111

Figure 6.2: Screen shot displaying last known location of a node that has lost connection with the
network.

the database is able to visualize the network as we have described above. A sample of our system is

shown in Figures 6.1 and 6.2.

6.2 Implementation

To bring these goals to fruition, we have developed an Android application to collect node infor-

mation and route data and commands through our ad hoc network. We have additionally developed a

web application to visualize the data received from our ad hoc network.

CHAPTER 6. VISUALIZING MOBILE COMPUTING IN AD HOC NETWORKS 112

6.2.1 Android

We start by constructing an ad hoc network using Android’s implementation of WiFi Direct. Using

Android’s WifiP2pManager and WifiManager API, we are able to collect a node’s IP address, link

speed, RSSI, and role in the network. Additionally, we use the BatteryManager API to collect the

battery level as well as Location API to determine the node’s GPS coordinates. All of these metrics

are combined into a node object, which is in turn sent to each node’s respective group owner. The

group owner is then able to construct a routing table, which is used to route commands and data, as

well as pass the information towards the desired data sink, where the sink uploads all of the network

information to a mongoDB data base. This process is executed periodically, with the period specified

by the Android program.

6.2.2 Web Application

With the goal of presenting pertinent network information in an easily accessible and visual man-

ner, we developed an application to fulfill these requirements. Our web application must first be able

to access the mongoDB database, in order to visualize the stored data. We use Leaflet to handle the

map and ploting the nodes on the map. Node.js is used to calculate the convex hull of each group,

which is used to help color coordinate each individual group, as well as determine what level of

opacity should be used, which is dependant on the amount of time a node has been absent from the

network, as well as coloring the links.

113

Chapter-7

Conclusions and Future Work

7.1 Conclusions

This dissertation addresses some of the fundamental challenges in creating and distributing tasks

in mobile clouds comprised of multi-hop ad hoc networks. Our results have shown that mobile clouds

can benefit greatly from using all computing resources available in a given network. By constructing

suitable task assignments, based on available network resources, we aim to further enhance mobile

cloud computing. The contributions of this dissertation are summarized as follows:

• I extended volunteer computing platforms through the use of ad hoc networking protocols and

practices. In particular, I have analyzed the impact that task distribution schemes, namely Proxy

and Batch, have on these systems, as well as created a closed form analytical model of these

systems.

• I have designed and provided an in-depth analysis of different approaches for implementing

multi-group WiFi Direct networks to enable multi-hop communication in ad hoc mobile clouds.

My approaches include designs that will work with off-the-shelf mobile devices as well as

optimized communication solutions that require modifying the Android operating system.

• I have explored the opportunities and challenges in offloading computation in a multi-hop wire-

less network. Additionally, I have found that the proposed iterative algorithm is provably opti-

mal under certain conditions.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 114

• I have developed a system to visualize basic parameters of an ad hoc mobile cloud. This system

is able to control the network topology as well as track the location and movement of the

participating nodes. By doing so, administrators are not only able to tailor routes and topologies,

to avoid communication bottlenecks, but they are also able to anticipate and avoid network

partitions, by monitoring the status of crucial relay nodes.

As a result, the work presented here has further enhanced mobile clouds by exploring the necessary

techniques required to establish multi-hop computational offloading, as well as providing optimiza-

tion, which proved not only the viability of offloading to nearby mobile devices, but also provided

intuition into the trade-offs in time spent computing and time spent communicating when utilizing

multi-hop computational offloading.

7.2 Future Work

While the work presented here provides an understanding of enabling multi-hop wireless com-

putational offloading systems, several directions can be investigated to further improve the findings

presented here.

• When enabling multi-hop wireless networks, generalizing the network structure from a “tree”

like structure can provide more options for sharing the computation. This more general graph

structure can provide more routing options to either avoid partitions or have the network “heal”

from partitions.

• For multi-hop computational offloading systems, studying the effect that device mobility has on

the task assignment will create a more realistic understanding of the impact of computational

offloading in multi-hop networks. Although works like Serendipity [29] have provided a study

on the effects mobility has on throughput for Disruption Tolerant Networks, Serendipity does

not address any techniques to re-form the network as devices move. The results of this expan-

sion can also be used to provide insight into the benefits of re-forming the network, to keep

mobile devices connected, or let the devices leave the system.

CHAPTER 7. CONCLUSIONS AND FUTURE WORK 115

• When expanding this work to include more commercial scenarios, privacy and incentive struc-

tures become the primary factors for resource sharing among mobile devices to succeed.

• Studying the effects and dependencies associated with distributed computation will also provide

further insight as to when and where computation should be offloaded. For instance, can tech-

niques used by out of order processors benefit the overall computation, or does the criticality of

a given task affect the assignment?

In conclusion, the contents of this thesis have provided the basis for understanding how compu-

tational offloading in ad hoc networks affects the network as a whole. Furthermore, by providing

details on how to implement these systems in practice, others can expand this work to new fields and

applications.

116

Bibliography

[1] “International Data Corporation (IDC).” [Online]. Available: http://www.idc.com

[2] “Gartner Inc.” [Online]. Available: http://www.gartner.com

[3] “Geekbench 4: Cross-platform processor benchmark,” Last time accessed: Febuary 2017.

[Online]. Available: http://www.primatelabs.com/geekbench/

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud: Elastic execution between

mobile device and cloud,” in Proc. of EuroSys. New York, NY, USA: ACM, 2011, pp. 301–314.

[5] “Amazon Elastic Compute Cloud (Amazon EC2).” [Online]. Available: http://aws.amazon.

com/ec2/

[6] C. Funai, C. Tapparello, H. Ba, B. Karaoglu, and W. Heinzelman, “Extending volunteer comput-

ing through mobile ad hoc networking,” in Prof. of IEEE GLOBECOM, Dec. 2014, pp. 32–38.

[7] “Attached Resource Computer (ARCNET).” [Online]. Available: http://www.arcnet.com/

[8] “The Stone SouperComputer.” [Online]. Available: http://www.extremelinux.info/stonesoup/

[9] “Microsoft OneDrive.” [Online]. Available: https://onedrive.live.com/

[10] “IBM Cloud.” [Online]. Available: http://www.ibm.com/cloud-computing/us/en/

[11] “Great Internet Mersenne Prime Search.” [Online]. Available: http://www.mersenne.org

[12] L. Gong, “Jxta: a network programming environment,” IEEE Internet Computing, vol. 5, no. 3,

pp. 88–95, 2001.

http://www.idc.com
http://www.gartner.com
http://www.primatelabs.com/geekbench/
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/
http://www.arcnet.com/
http://www.extremelinux.info/stonesoup/
https://onedrive.live.com/
http://www.ibm.com/cloud-computing/us/en/
http://www.mersenne.org

BIBLIOGRAPHY 117

[13] G. Fedak, C. Germain, V. Neri, and F. Cappello, “Xtremweb: a generic global computing sys-

tem,” in Proc. of IEEE/ACM CCGrid, 2001.

[14] D. P. Anderson, “BOINC: A system for public-resource computing and storage,” in Proc. of

IEEE/ACM GRID, Pittsburgh, PA, Nov. 2004.

[15] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “Seti@home: An experi-

ment in public-resource computing,” Commun. ACM, vol. 45, no. 11, pp. 56–61, Nov. 2002.

[16] “BOINC,” BOINC’s Homepage, Last time accessed: October 2014. [Online]. Available:

http://boinc.berkeley.edu/

[17] T. Phan, L. Huang, and C. Dulan, “Challenge: Integrating mobile wireless devices into the

computational grid,” in Proc. of ACM MobiCom, Atlanta, Georgia, USA, Sept. 2002.

[18] Bluetooth Group, “Specification of the Bluetooth system,” June 2010.

[19] Wi-Fi Alliance, P2P Task Group, “Wi-Fi Peer-to-Peer (P2P) Technical Specification, Version

1.2,” Dec. 2011.

[20] E. E. Marinelli, “Hyrax: Cloud computing on mobile devices using mapreduce,” Sept. 2009.

[21] J. R. Eastlack, “Extending volunteer computing to mobile devices,” Oct. 2011.

[22] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud computing: architec-

ture, applications, and approaches,” Wireless Communications and Mobile Computing, vol. 13,

no. 18, pp. 1587–1611, Dec. 2013.

[23] D. C. Chu and M. Humphrey, “Mobile ogsi.net: Grid computing on mobile devices,” in Proc.

IEEE/ACM GRID, Pittsburgh, PA, Nov. 2004.

[24] M. Y. Arslan, I. Singh, S. Singh, H. V. Madhyastha, K. Sundaresan, and S. V. Krishna-

murthy, “Computing while charging: Building a distributed computing infrastructure using

smartphones,” in Proc. of ACM CoNEXT, Nice, France, Dec. 2012.

http://boinc.berkeley.edu/

BIBLIOGRAPHY 118

[25] K. B. Parmar, N. N. Jani, P. S. Shrivastav, and M. H. Patel, “jUniGrid: A simplistic framework

for integration of mobile devices in heterogeneous grid computing,” International Journal of

Multidisciplinary Sciences and Engineering, vol. 4, no. 1, pp. 10–15, Jan. 2013.

[26] H. Xu, M. Bilec, L. Schaefer, A. Landis, and A. Jones, “Ocelot: A wireless sensor network and

computing engine with commodity palmtop computers,” in Proc. of IGCC, Arlington, VA, USA,

June 2013.

[27] S. Schildt, F. Busching, E. Jorns, and L. Wolf, “Candis: Heterogenous mobile cloud framework

and energy cost-aware scheduling,” in Proc. of IEEE GreenCom, Beijing, China, Aug. 2013.

[28] P. Datta, S. Dey, H. Paul, and A. Mukherjee, “ANGELS: A framework for mobile grids,” in

Proc. of AIMoC, Kolkata, India, Feb. 2014, pp. 15–20.

[29] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura, “Serendipity: Enabling remote computing

among intermittently connected mobile devices,” in Proc. of MobiHoc, Hilton Head, SC, USA,

June 2012.

[30] N. Fernando, S. Loke, and W. Rahayu, “Honeybee: A programming framework for mobile

crowd computing,” in Mobile and Ubiquitous Systems: Computing, Networking, and Services,

ser. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommuni-

cations Engineering. Springer Berlin Heidelberg, 2013, vol. 120, pp. 224–236.

[31] P. Jassal, K. Yadav, A. Kumar, V. Naik, V. Narwal, and A. Singh, “Unity: Collaborative down-

loading content using co-located socially connected peers,” in Proc. of IEEE PERCOM, San

Diego, CA, USA, Mar. 2013.

[32] R. Agarwal, “DRAP: A decentralized public resourced cloudlet for ad-hoc networks,” Mar.

2014.

[33] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for vm-based cloudlets in

mobile computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14–23, Oct. 2009.

BIBLIOGRAPHY 119

[34] “BOINC on Android,” Last time accessed: October 2014. [Online]. Available: http:

//boinc.berkeley.edu/trac/wiki/AndroidBoinc

[35] “Boincoid.” [Online]. Available: http://boincoid.sourceforge.net

[36] “AndroBOINC - BOINC manager for Android phones.” [Online]. Available: https:

//code.google.com/p/androboinc/

[37] “NativeBOINC.” [Online]. Available: http://http://nativeboinc.org

[38] M. Black and W. Edgar, “Exploring mobile devices as grid resources: Using an x86 virtual

machine to run BOINC on an iPhone,” in Proc. of IEEE/ACM Grid Computing, Banff, AB,

Canada, Oct. 2009.

[39] “HTC Power to Give.” [Online]. Available: http://www.htc.com/us/go/power-to-give/

[40] “The 10th BOINC workshop - BOINC/Android status and plans,” Sept. 2014. [Online]. Avail-

able: http://boinc.berkeley.edu/trac/attachment/wiki/WorkShop14/boinc_on_android_2014.pdf

[41] E. Cuervo, P. Gilbert, B. Wu, and L. Cox, “CrowdLab: An architecture for volunteer mobile

testbeds,” in Proc. of COMSNETS, Bangalore, India, Jan. 2011.

[42] A. D. Zayas and P. M. Gómez, “A testbed for energy profile characterization of ip services in

smartphones over live networks,” Mob. Netw. Appl., vol. 15, no. 3, pp. 330–343, June 2010.

[43] A. Nandugudi, A. Maiti, T. Ki, F. Bulut, M. Demirbas, T. Kosar, C. Qiao, S. Y. Ko, and

G. Challen, “Phonelab: A large programmable smartphone testbed,” in Proc. of ACM SENSEM-

INE, Roma, Italy, Nov. 2013.

[44] J. Cappos, I. Beschastnikh, A. Krishnamurthy, and T. Anderson, “Seattle: A platform for educa-

tional cloud computing,” in Proc. of ACM SIGCSE, Chattanooga, TN, USA, Mar. 2009.

[45] Y. Zhuang, A. Rafetseder, and J. Cappos, “Experience with Seattle: A community platform for

research and education,” in Proc. of GREE, Salt Lake City, UT, USA, Mar. 2013.

http://boinc.berkeley.edu/trac/wiki/AndroidBoinc
http://boinc.berkeley.edu/trac/wiki/AndroidBoinc
http://boincoid.sourceforge.net
https://code.google.com/p/androboinc/
https://code.google.com/p/androboinc/
http://http://nativeboinc.org
http://www.htc.com/us/go/power-to-give/
http://boinc.berkeley.edu/trac/attachment/wiki/WorkShop14/boinc_on_android_2014.pdf

BIBLIOGRAPHY 120

[46] H. Ba, W. Heinzelman, C.-A. Janssen, and J. Shi, “Mobile computing - A green computing

resource,” in Proc. of IEEE WCNC, Shanghai, China, Apr. 2013.

[47] E. Chen, S. Ogata, and K. Horikawa, “Offloading Android applications to the cloud without

customizing Android,” in Proc. of IEEE PerCom, Lugano, Switzerland, Mar. 2012.

[48] T. Soyata, R. Muraleedharan, S. Ames, J. Langdon, C. Funai, M. Kwon, and W. Heinzelman,

“Combat: mobile-cloud-based compute/communications infrastructure for battlefield applica-

tions,” in Proc. of SPIE, Baltimore, USA, Apr. 2012.

[49] G. Hiertz, S. Max, Y. Zang, T. Junge, and D. Denteneer, “IEEE 802.11s MAC fundamentals,” in

Proc. of IEEE MASS, 2007.

[50] E. Ferro and F. Potorti, “Bluetooth and Wi-Fi wireless protocols: a survey and a comparison,”

IEEE Wireless Commun., vol. 12, no. 1, pp. 12–26, Feb. 2005.

[51] D. Camps-Mur, A. Garcia-Saavedra, and P. Serrano, “Device-to-device communications with

Wi-Fi Direct: overview and experimentation,” IEEE Wireless Commun., vol. 20, no. 3, pp. 96–

104, June 2013.

[52] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck, “A close examination of

performance and power characteristics of 4G LTE networks,” in Proc. of ACM MobiSys, Low

Wood Bay, Lake District, UK, June 2012.

[53] G. P. Perrucci, F. H. P. Fitzek, and J. Widmer, “Survey on energy consumption entities on the

smartphone platform,” in Proc. of IEEE VTC, Budapest, Hungary, May 2011.

[54] R. Friedman, A. Kogan, and Y. Krivolapov, “On power and throughput tradeoffs of WiFi and

Bluetooth in smartphones,” IEEE Trans. Mobile Comput., vol. 12, no. 7, pp. 1363–1376, July

2013.

[55] “Asus Nexus 7 (2013).” [Online]. Available: http://www.asus.com/Tablets_Mobile/Nexus_7_

2013/

http://www.asus.com/Tablets_Mobile/Nexus_7_2013/
http://www.asus.com/Tablets_Mobile/Nexus_7_2013/

BIBLIOGRAPHY 121

[56] “Arduino uno.” [Online]. Available: http://arduino.cc

[57] D. Rakhmatov and S. Vrudhula, “Energy management for battery-powered embedded systems,”

ACM Trans. Embed. Comput. Syst., vol. 2, no. 3, pp. 277–324, Aug. 2003.

[58] M. Coleman, C. K. Lee, C. Zhu, and W. Hurley, “State-of-charge determination from EMF

voltage estimation: Using impedance, terminal voltage, and current for lead-acid and lithium-

ion batteries,” IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2550–2557, Oct 2007.

[59] “Iperf.” [Online]. Available: https://iperf.fr

[60] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl,

“Maui: Making smartphones last longer with code offload,” in Proc. of ACM MobiSys. New

York, NY, USA: ACM, 2010, pp. 49–62.

[61] “Android Developers - Wi-Fi Peer-to-Peer.” [Online]. Available: http://developer.android.com/

guide/topics/connectivity/wifip2p.html

[62] “Android API Guides.” [Online]. Available: https://developer.android.com/guide/index.html

[63] “RFC1122, Requirements for Internet Hosts – Communication Layers.” [Online]. Available:

http://tools.ietf.org/html/rfc1122

[64] C. Casetti, C. F. Chiasserini, L. Curto Pelle, C. Del Valle, Y. Duan, and P. Giaccone, “Content-

centric routing in Wi-Fi Direct multi-group networks,” ArXiv e-prints, Dec. 2014.

[65] M. Conti, F. Delmastro, G. Minutiello, and R. Paris, “Experimenting opportunistic networks

with WiFi Direct,” in Wireless Days (WD), Valencia, Spain, Nov. 2013.

[66] C. Funai, C. Tapparello, H. Ba, B. Karaoglu, and W. Heinzelman, “Mobile to mobile computa-

tional offloading in multi-hop cooperative networks,” in Prof. of IEEE GLOBECOM, Dec. 2016.

[67] M. T. Flynn, M. F. Pottinger, and P. D. Batchelor, “Fixing intel: A blueprint for making intelli-

gence relevant in afghanistan,” DTIC Document, Tech. Rep., 2010.

http://arduino.cc
https://iperf.fr
http://developer.android.com/guide/topics/connectivity/wifip2p.html
http://developer.android.com/guide/topics/connectivity/wifip2p.html
https://developer.android.com/guide/index.html
http://tools.ietf.org/html/rfc1122

BIBLIOGRAPHY 122

[68] B. Raj, T. Jayakumar, and B. Rao, “Non-destructive testing and evaluation for structural in-

tegrity,” Sadhana, vol. 20, no. 1, pp. 5–38, 1995.

[69] C. Funai, C. Tapparello, and W. Heinzelman, “Enabling multi-hop ad hoc networks through wifi

direct multi-group networking,” in Prof. of IEEE, Jan. 2017.

[70] H. Kellerer and U. Pferschy, “A new fully polynomial time approximation scheme for the

knapsack problem,” Journal of Combinatorial Optimization, vol. 3, no. 1, pp. 59–71, 1999.

[Online]. Available: http://dx.doi.org/10.1023/A:1009813105532

[71] L. Luo, N. Chakraborty, and K. Sycara, “Distributed algorithm design for multi-robot gener-

alized task assignment problem,” in 2013 IEEE/RSJ International Conference on Intelligent

Robots and Systems, Nov 2013, pp. 4765–4771.

[72] M. Racer and M. M. Amini, “A robust heuristic for the generalized assignment problem,”

Annals of Operations Research, vol. 50, no. 1, pp. 487–503, 1994. [Online]. Available:

http://dx.doi.org/10.1007/BF02085655

[73] D.-M. U. Derigs and U. Zimmermann, “An augmenting path method for solving linear bottle-

neck assignment problems,” Computing, vol. 19, no. 4, pp. 285–295, 1978.

[74] N. Fernando, S. Loke, and W. Rahayu, “Mobile crowd computing with work stealing,” in Proc.

of NBiS, Melbourne, Australia, Sept. 2012.

[75] T. Penner, A. Johnson, B. Van Slyke, M. Guirguis, and Q. Gu, “Transient clouds: Assignment

and collaborative execution of tasks on mobile devices,” in Prof. of IEEE GLOBECOM. IEEE,

2014, pp. 2801–2806.

[76] H. W. Kuhn, The Hungarian Method for the Assignment Problem. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010, pp. 29–47. [Online]. Available: http://dx.doi.org/10.1007/

978-3-540-68279-0_2

[77] G. B. Dantzig, “Discrete-variable extremum problems,” Operations Research, vol. 5, no. 2, pp.

266–288, 1957. [Online]. Available: http://dx.doi.org/10.1287/opre.5.2.266

http://dx.doi.org/10.1023/A:1009813105532
http://dx.doi.org/10.1007/BF02085655
http://dx.doi.org/10.1007/978-3-540-68279-0_2
http://dx.doi.org/10.1007/978-3-540-68279-0_2
http://dx.doi.org/10.1287/opre.5.2.266

BIBLIOGRAPHY 123

7.3 Proof of Theorem 5.4.1

Theorem 2. We will prove this in two steps. In the first step, we consider the case where ΓK is the

only optimal task assignment for K tasks, while in the second step, we consider the case of multiple

K task assignments that have the same optimal cost.

For the case where there is a unique optimal solution to distribute K tasks, let’s assume by con-

tradiction that ΓK+1 determined according to the above definition is not optimal. This, in turn, means

that there exists a K + 1 tasks assignment ΘK+1, such that ΘK+1 /∈ ΨK+1 and

F(ΘK+1) < F(ΓK+1). (7.1)

Moreover, we can consider ΘK+1 to be derived from a K tasks assignment ΘK , such that F (ΓK) <

F(ΘK) and

F(ΘK) ≤ F(ΘK+1). (7.2)

As a result, by combining Eq. (7.1) and Eq. (7.2), we obtain

F(ΘK) < F(ΓK+1). (7.3)

On the other end, assuming that F (ΘK) = ΘK
mCm (i.e., device m is the bottleneck device that

determines the overall cost of the non-optimal task assignment ΘK), we have that ΓKm < ΘK
m. Thus,

ΓKm + 1 ≤ ΘK
m. Now, if ΓKm + 1 < ΘK

m, then F(ΓK + em) = F(ΓK) < F(ΘK+1), which contradicts

the hypothesis in Eq. (7.1). If ΓKm + 1 = ΘK
m, instead, F(ΓK + em) = F(ΘK) ≤ F(ΘK+1), which still

contradicts the hypothesis in Eq. (7.1). As a result, if ΓK is the unique optimal K tasks assignment,

then theK+1 task assignment ΓK+1 obtained by Theorem 5.4.1 is an optimalK+1 tasks assignment.

For the case where F(ΓK) = F(ΘK), there exist at least one ΓKm, m = 1, . . . , N such that

ΓKm < ΘK
m since ΓK 6= ΘK . Thus, ΓKm + 1 ≤ ΘK

m which, following an argument similar to the one

describe above, results in F(ΓK+1) = F(ΓK + em) ≤ F(ΘK+1), which contradicts the hypothesis in

Eq. (7.1).

BIBLIOGRAPHY 124

Therefore, ΓK+1 obtained by Theorem 5.4.1 is an optimal K + 1 tasks assignment.

7.4 Proof of Theorem 5.4.2

Theorem 3. In what follows, we will prove by induction on the number of tasks M that the solution

determined by Algorithm 1 is an optimal solution to the optimization problem defined in Eq. (5.5). For

the caseM = 1, the set of all possible tasks assignment is represented by Φ = {[1, 0, ..., 0], [0, 1, ..., 0],

..., [0, 0, ..., 1]}; as a result, we can easily see that

C1
opt = min

φεΦ

[
max

i=1,...,N
{φiCi}

]
= min(

−→
1 ◦C), (7.4)

where
−→
1 is a vector of all ones. Thus, C1

opt can further be simplified to

C1
opt = Ci, (7.5)

where i = argmin(
−→
1 ◦C).

Now to prove that our algorithm is capable of yielding an optimal solution for M = 1 task, let

Calgo be the cost of the solution produced by the algorithm, defined as

C1
algo = max

i=1,...,N

{
X1
i Ci
}
. (7.6)

Since X0 is initialized to a vector of zeros, as shown in step 2 of our algorithm, C1
algo simplifies to

C1
algo = max

[
{(X 0

i + 1)Ci}
⋃
{(X 0

j + 0)Cj |∀j 6= i}
]
, (7.7)

where X0
i is the device which is chosen at steps 4 and 5 of our algorithm, and X0

j is the subset of X0

that were not chosen at step 4 (i.e., by the argmin function). Eq. (7.7) can further be rewritten as

C1
algo = max

[
{1 · Ci}

⋃
{0 · Cj|∀j 6= i}

]
= Ci, (7.8)

BIBLIOGRAPHY 125

which, compared with Eq. (7.5), shows that C1
algo=C

1
opt.

Let’s now assume that CK
algo = CK

opt up to M = K, and that XK = ΓK , where ΓK is the optimal

solution for M = K. For the case where tasks M = K + 1 we can write

CK+1
opt = min

φεΦ

[
max

i=1,...,N
{φiCi}

]
. (7.9)

However, as shown in Theorem 5.4.1, we can restrict the search of the optimal solution to the set

ΨK+1, which has reduced cardinality to N . This means that we can rewrite Eq. (7.9) as

CK+1
opt = min

ψεΨK+1

[
max

i=1,...,N
{ψiCi}

]
, (7.10)

which in turn can be expanded and ultimately yields three possible outcomes, i.e.,

CK+1
opt = min

[
ΓK
g Cg |∀lS.T.(ΓK

l +1)Cl=ΓK
g Cg

(ΓK
g +1)Cg

(Γh+1)Ch|∀hS.T.(ΓK
h +1)Ch>ΓK

g Cg

]
, (7.11)

where ΓKg Cg = CK
opt, which can be rewritten as

CK+1
opt = max

i=1,...,N

[
{(ΓKi + 1)Ci}

⋃
{(ΓKj + 0)Cj|∀j 6= i}

]
, (7.12)

where (ΓKi + 1)Ci, i = argmin((ΓK + 1)C).

Now for the solution determined by the algorithm, we can write:

CK+1
algo = max{XK+1

i Ci|i = 1, ..., N}, (7.13)

which in turn can be simplified to

CK+1
algo = max

i=1,...,N

[
{(XK

i + 1)Ci}
⋃
{(XK

j + 0)Cj|∀j 6= i}
]
, (7.14)

which, combined with Eq. (7.12), returns CK+1
algo = CK+1

opt . Thus, according to Theorem 5.4.1, the

K + 1 tasks assignment determined by the algorithm is guaranteed to be optimal, which concludes

BIBLIOGRAPHY 126

the proof.

	Biographical Sketch
	Acknowledgments
	Abstract
	Contributors and Funding Sources
	List of Tables
	List of Figures
	Introduction
	Challenges for Mobile Cloud Computing
	Contributions to Mobile Cloud Computing

	Related Work
	Classification of Parallel Computing
	Cluster Computing
	Distributed Computing
	Volunteer Computing
	Parallel Computing on Mobile Devices

	Mobile Distributed Computing Architectures
	Server Driven Mobile Distributed Computing
	User Driven Mobile Distributed Computing
	Mobile Volunteer Computing

	Extending Mobile Cloud Computing with Device-to-Device Communications
	Introduction
	Application Scenarios
	Server Driven Mobile Computing
	User Driven Mobile Computing

	Background on Device to Device Communication
	Bluetooth
	WiFi Direct

	System Architecture
	Task Distribution Point
	Task Execution Point
	Complexity Considerations
	Implementation

	Analytical Model
	Communication Energy Model
	Computation Energy Model
	Task Distribution Energy Model
	TEP and TDP Energy Model
	Total Task Time Model
	TEP Modeling
	Task Distribution Considerations

	Experimental Results
	Test Environment
	Results

	Conclusions

	Enabling Multi-Group Communications in D2D Networks
	Introduction
	WiFi Direct
	Single-group Communications
	Multi-group Communications

	Multi-group Networking on Android Devices
	WiFi Direct on Android
	Limitations of Stock Android
	Proposed Solutions

	Performance Evaluation
	Test Environment
	Numerical Results - Time Sharing
	Numerical Results - Simultaneous Connections

	Conclusions

	Mobile Computational Offloading in Multi-hop Ad Hoc Networks
	Introduction
	Motivation
	System Model
	Task Time Model
	Task Energy Model
	Routing Metric

	Task Distribution
	General Assignment Problem (GAP)
	Linear Bottleneck Assignment Problem (LBAP)
	Augmented Form of LBAP

	Maximizing the Number of Tasks
	Results
	Performance Evaluation: Homogenous Tasks
	Performance Evaluation: Heterogeneous Tasks

	Conclusions

	Visualizing Mobile Computing in Ad Hoc Networks
	Introduction
	Implementation
	Android
	Web Application

	Conclusions and Future Work
	Conclusions
	Future Work
	Proof of Theorem 5.4.1
	Proof of Theorem 5.4.2

