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Abstract

Speech is a fundamental modality in human-to-human communication. It carries complex mes-

sages that written languages cannot convey effectively, such as emotion and intonation, which can

change the meaning of the message. Due to its importance in human communication, speech pro-

cessing has attracted much attention of researchers to establish human-to-machine communication.

Personal assistants, such as Alexa, Cortana, and Siri that can be interfaced using speech, are now

mature enough to be part of our daily lives. With the deep learning revolution, speech processing has

advanced significantly in the fields of automatic speech recognition, speech synthesis, speech style

transfer, speaker identification/verification and speech emotion recognition.

Although speech contains rich information about the message that is being transmitted and the

state of the speaker, it does not contain all the information for speech communication. Facial cues

play an important role in establishing a connection between a speaker and a listener. It has been shown

that estimating emotions from speech is a hard task for untrained humans; therefore most people

rely on a speaker’s facial expressions to discern the speaker’s affective state, which is important for

comprehending the message that the speaker is trying to convey. Another benefit of the availability

of facial cues during speech communication is that seeing the lips of the speaker improves speech

comprehension, especially in environments where background noise is present. This can be observed

mostly in cocktail-party scenarios, where people tend to communicate better when they are facing

each other but may have trouble communicating when talking over the phone.

This thesis describes my work in the fields of speech enhancement (SE), speech animation (SA),

and automatic speech emotion recognition (ASER). For SE, I have proposed long short-term mem-

ory (LSTM) based and convolutional neural network (CNN) based architectures to compensate for
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the non-stationary noise in utterances. My proposed models have been evaluated in terms of speech

quality and speech intelligibility. These models have been used as pre-processing modules to a com-

mercial automatic speaker verification system, and it has been shown that they provide a performance

boost in terms of equal-error rate (EER).

I have proposed a speech super-resolution (SSR) system that employs a generative adversarial

network (GAN). The generator network is fully convolutional with 1D kernels, enabling real-time

inference on edge devices. The objective and subjective studies showed the proposed network outper-

forms the DNN baselines.

For speech animation (SA), I have proposed an LSTM network to predict face landmarks from

first- and second-order temporal differences of the log-mel spectrogram. I have conducted objective

and subjective evaluations and verified that the generated landmarks are on-par with the ground-truth

ones. Generated landmarks can be used by the existing systems to fit texture or 2D and 3D models

to obtain realistic talking faces to increase speech comprehension. I extended this work to include

noise-resilient training. The new architecture accepts the raw waveforms and processes them through

1D convolutional layers that output the PCA coefficients of the 3D face landmarks. The objective and

subjective results showed that the proposed network achieves better performance compared to my pre-

vious work and a DNN-based baseline. In another work, I have proposed an end-to-end image-based

talking face generation system that works with arbitrarily long speech inputs and utilizes attention

mechanisms.

For automatic speech emotion recognition (ASER), I have compared human and machine perfor-

mance in large-scale experiments and concluded that machines could discern emotions from speech

better than untrained humans. I have also proposed a web-based automatic speech emotion classifi-

cation framework, where the user can upload their files and can analyze the affective content of the

utterances. The framework adapts to the user’s choices over time since the user corrects the wrong

labels. This allows for large-scale emotional analysis in a semi-automatic framework. I have proposed

a transfer learning framework where I train autoencoders using 100 hours of neutral speech to boost

the ASER performance. I have systematically analyzed four different autoencoders, namely denois-

ing autoencoder, variational autoencoder, adversarial autoencoder and adversarial variational Bayes.
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This method is beneficial in scenarios where there are not enough annotated data to train deep neural

networks (DNNs).

Pulling all of this work together provides a framework for generating a realistic talking face

from noisy and emotional speech that has the capability of expressing emotions. This framework

would be beneficial for applications in telecommunications, human-machine interaction/interface,

augmented/virtual reality, telepresence, video games, dubbing, and animated movies.
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Chapter-1

Introduction

Imagine you are in a noisy environment, where you need to talk to someone over the phone. It

would be tough to understand what the other person is saying for both parties. In another scenario,

you are in an environment where the Internet connection is limited; hence it is not possible to use

video chat, but you are trying to talk to a person who is hard of hearing. Alternatively, you are an

elder person talking with a machine, such as a personal assistant (Cortana, Siri, Alexa), and want to

see a familiar human face that makes you comfortable.

An obvious way to improve speech comprehension in such scenarios is to use text messaging

instead, at the cost of discarding the emotional state, tone, accent, articulation, co-articulation and

facial expressions of the speaker. Discarding such information may impair successful communication

between the parties. Speech communication involves a visual counterpart in addition to the acoustic

signal. The facial cues carry essential information including emotions, where these emotions may

influence the context of the speech.

For the hearing-impaired population, the presence of a visual signal is even more essential. The

missing information due to the lack of an acoustic signal can be retrieved from the facial cues. Having

an automated system that can generate a talking face from speech will enable the hearing-impaired

population to access much of the available speech content online.

In this thesis, to address these issues, I work on the problem of generating a realistic talking face

from speech that accounts for emotions to improve or even establish speech comprehension.
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1.1 Motivation

Speech is the most common mode of communication in our society. The main purpose of speech

is human-to-human and human-to-machine communication, where the speaker transmits a message

to the listener [6]. Denes and Pinson describe the speech communication process as the “speech

chain” [7]. The speech chain starts with the formulation of a message, usually represented by text,

in the speaker’s brain. This is followed by converting the message into phonemes and prosody, i.e.,

the language code. The language code drives the neuro-muscular control mechanism that moves the

speech articulators, i.e., the lips, teeth, tongue, jaw, eyes, eyebrows, and facial expressions, in sync

with the desired speech. The next step in the speech chain is the vocal tract system that creates the

acoustic waveform of the speech. The steps described in the speech chain up to this point are called

speech production, and occur on the speaker’s side. Speech production works similarly for machines:

the text is converted to phonemes and prosody. Then the intonation is determined according to the

phonemes and prosody. This is followed by generating speech parameters and synthesizing the speech

according to these parameters. However, automatic systems usually do not generate a visual signal.

The processes described after this point in the speech chain occur on the listener’s side and are

called speech comprehension. The speech is converted from an acoustic waveform to a spectral rep-

resentation in the inner ear. The next step is feature extraction by the neural transduction, which

produces features that can be processed by the brain. At the same time, the human visual system

processes the visual signal by extracting features from visual cues as described in the previous para-

graph. Both audio and visual features are merged and synced. Then the features are converted into

the language code, i.e., the phonemes, words, and sentences. The last step in the speech chain is

the high-level understanding of the message. If the listener is a machine, the process is similar: the

waveform is converted to the feature representation and piped into a statistical model, and the output

of the model is post-processed to obtain the high-level understanding of the message.

Speech processing has attracted the attention of researchers in order to develop automatic un-

derstanding (pattern recognition), efficient transmission, synthesis of the speech, speaker identifica-

tion/verification and aids for the hearing impaired population. These problems have been extensively
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studied using traditional machine learning algorithms, and most of them have been commercialized

and are being used in our daily life. With the deep learning revolution, significant improvements have

been obtained for these problems over traditional methods.

1.1.1 Benefits of Visual Component in Speech Comprehension

Speech comprehension, as described in the previous section, is the process of understanding the

message that the speaker is trying to transmit. During speech production, the visual components,

which are the movement of lips, teeth, tongue, jaw, eyes, eyebrows, and skin, are generated to reflect

the affective state of the speaker that directly influences the meaning of the speech. In light of this

information, it is necessary to obtain the information from the visual signal counterpart of the speech

in order to achieve true speech comprehension.

Most commercial systems do not consider the visual counterpart of speech in their framework.

Most of the research is focused on the automatic speech recognition (ASR) problem, which can be

described as the conversion of speech to text. The text modality is important for human-machine

communication. However, it is not sufficient to describe what the speaker is trying to convey. The

intonation and sentiment pieces of information are discarded in such systems.

It is shown that when there is a complementary visual signal present during speech communica-

tion, the speech comprehension is significantly improved [8, 9, 10, 11]. This is more evident when the

background is noisy. For example, in a cocktail party scenario, two people facing each other can com-

municate effectively regardless of the background noise since the visual signal is present; however, it

would be challenging to talk over a phone in the same situation.

1.1.2 Augmented/Virtual Reality Agents

Text-to-speech synthesis systems can produce realistic speech, thanks to recent advances in deep

learning. Some of these systems consider generating emotional speech [12, 13] to establish natural

communication with the user. However, just using acoustic speech to interact with a computer might

still feel unnatural for most people, especially for the elderly population.
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Augmented reality (AR) and virtual reality (VR) technologies are still in their infancy. However,

with rapidly increasing computational power, these technologies will be accessible to a large amount

of the population soon. Interacting with the participant who is in the VR from the normal reality

(NR) can break the immersion for the participant, and speech comprehension can be difficult due to

the environment noise. For example, VR is already being used for training purposes in domains such

as police enforcement, military, sports, flight schools, industrial machine operation, and driving. The

communication between the student, who is in VR, and instructor, who is in NR, must be seamless.

If these systems can generate a synthetic talking face of the instructor speaking in NR seamlessly, the

student can better be immersed in the training scenario and have increased speech comprehension.

Also, there are multi-person VR applications, where the avatars of the users interact. These avatars

must have the capability to mimic the visual component of the speech when the users talk.

1.1.3 Movie Dubbing

When translating from one language to another, the number of words and syllables changes per

sentence. Furthermore, the intonation varies for different languages. The facial expressions might

also differ in time, for example in one language the facial expression for disgust may appear at the

beginning of the sentence, while in another language it may appear at the end for the same sentence.

These differences make it difficult to dub a movie while keeping the lips and facial expressions synced

to the new speech.

A framework that can generate a talking face from speech, conditioned on the input face im-

age/video, is useful in this scenario. A realistic, emotionally expressive talking face can be generated

using the target actor’s identity (provided as an image or video clip), and the dubbed speech. The

original face can be replaced with the generated one, which will solve the lip movement and facial

expression mismatch problem for dubbed movies.
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1.2 Limitations of Existing Systems

There are a few existing works in the literature that generate emotionally expressive talking faces

from speech [14, 15, 16, 17, 18]. However, it is important to note that it is hard to compare some

of these older techniques with modern deep learning based methods. Cao et al. [14] proposed a

method to generate an emotionally expressive face by first estimating the emotion from speech using

a support vector machine (SVM) based system and then generating a face using a graph that represents

the visual motion of a phoneme. Deng et al. [15] proposed an eigenspace based expression model,

where personality vectors can be applied to other targets. The main limitation of these two approaches

is that they highly depend on a reliable estimation of phonemes. In our method, we plan to use the raw

audio, and let the network automatically learn the mapping between phonemes and the facial motions.

Pham et al. [16] proposed a method to predict 3D blend shape parameters from speech. They

trained their system using an emotional audio-visual database and can generate emotionally expressive

faces. They improved their work by directly predicting the 3D blend shape parameters from raw

speech [17]. They tested their system using four speakers from the same dataset that is not seen during

training. Large-scale, unseen speakers from other datasets must also be evaluated to draw conclusions.

Karras et al. [18] proposed an end-to-end network to generate 3D vertex points from speech. Their

proposed method does not rely on the categorical representation of emotion. Instead, they let the

network learn the emotional expression from the raw data itself. Their network is designed for a single

speaker, but is still able to generalize well to unseen speakers. However, a large-scale evaluation must

be conducted with major categories of emotions to draw conclusions about the generalization capacity

of this network. In our proposed method, we design our network to be speaker-independent, and we

train with a wide variety of speakers. Also, different from these two approaches, we want to produce

the image/video of the speaker to increase the realism, which will expand the application areas.

There are image-based methods that can generate talking faces from speech using a single frame

of the target identity [4, 19, 20, 21, 22, 23]. Some of these works first predict sparse intermediate

points of the face [4, 19] followed by mapping these sparse points to images, and others predict the

images directly from speech features [20, 21, 22], where [23] directly predicts the images from raw
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waveforms. Facial expression generation and speech comprehension are not the focus of these works.

Only [22, 23] consider natural movements, such as head movements and eye blinking.

1.3 Related Areas

In this section, we present the related research areas for generating an emotionally expressive

talking face from speech. These problems have been studied extensively by the research community.

1.3.1 Speech Enhancement (SE)

In real-world applications, the speech signal sampled from the user usually is not clean. The signal

is frequently corrupted by background noise, channel compression, and reverberation. These corrup-

tions can be in different signal-to-noise ratio (SNR) levels and can include a wide variety of non-

stationary noises. A speech signal corrupted in this way is hard to understand for humans, especially

for the hearing impaired population, as well as machines. Almost all automatic speech processing

systems such as automatic speech recognition (ASR), automatic speech emotion recognition (ASER),

and automatic speaker recognition/verification (ASID/ASV) have degraded performance when they

receive corrupted speech as input.

Speech enhancement is the problem of removing/reducing the corruption in a speech signal, and

it has received much attention and been well-studied in the speech processing research community.

Early works in this area focused on compensating static-noise such as white, pink, blue, purple, and

brown noises using statistical models. However, most of the noise encountered in the real world

is non-stationary. To eliminate non-stationary noises, the temporal structure of the speech signal

must be considered. Most recently, deep learning based methods have significantly improved the SE

performance over classical methods.

The biggest challenge in SE is to deal with unseen noises in the wild, for unseen speakers, and in

unknown SNRs. Although deep learning based methods provide decent results, there is still room for

improvement.
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1.3.2 Speech Animation (SA)

As computational resources rapidly increase, complex graphical animations for video games, an-

imated movies, and augmented/virtual reality applications have emerged. The animation of a char-

acter often requires animating the mouth/face, as those characters tend to speak. The best quality

mouth/face animations are obtained using motion capture systems, where an actor/actress wears gear

designed specifically for this purpose. However, these systems are costly and require manual labor.

Given a speech signal, automatically generating talking face graphics in accordance with speech

is called speech animation. The challenges include accent, language, culture, gender, age and emotion

variabilities of the speakers. Usually, these systems must be speaker-independent to be useful.

The works in SA include generation of 2D and 3D meshes, active appearance model parameters,

and directly generating the image/video. 2D/3D models are more appropriate for computer graphics,

while directly generating images/videos is more realistic and is suitable for boosting speech compre-

hension.

1.3.3 Automatic Speech Emotion Recognition (ASER)

As mentioned in the previous sections, emotion is essential for communication. The affective

state of the person must be determined to interact with that person appropriately. Being able to

estimate emotions from the speech is beneficial for the field of behavioral psychology for analyzing

the development of children, social interactions, and couple relations. It is also useful for businesses

that interact with customers via telephones to try to estimate the customer/employee satisfaction, such

as call centers. One of the requirements for realistic AI systems is being able to estimate the user’s

emotions, as emotions can profoundly influence the context of communication.

Automatically determining the affective state or mood of a person from only an acoustic speech

signal is called ASER, and it has been studied over two decades. ASER has not matured as much as

the other speech processing systems to be able to apply it to our daily lives. However, as the research

on ASER has been making rapid progress recently, the techniques may be mature in the near future

for commercial applications.
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The lack of well annotated data is the biggest issue in ASER. Usually, researchers rely on psychol-

ogists to annotate the speech samples. Emotions are subjective, and determining emotions objectively

requires experts. Besides, annotators do not agree with each other all the time. Even if they agree,

the annotating process is manual and takes a lot of time. Therefore, no single benchmark dataset is

accepted by the community. There are a few datasets, and researchers usually benchmark their results

on some/all of these datasets to show the performance of their approach.

1.4 Contributions

This thesis aims to address the issues in the areas of speech enhancement (SE), speech animation

(SA), and automatic speech emotion recognition (ASER), as steps to developing a system that can

produce an emotionally expressive talking face video solely from speech. The specific contributions

of this thesis include the following:

• I propose two deep neural network (DNN) architectures for SE, and I compare the performance

of the proposed networks with existing work. I evaluate the resulting SE networks using the

objective measures of perceptual evaluation of speech quality (PESQ) and short-time objec-

tive intelligibility (STOI). Second, I analyze the performance of automatic speech verification

(ASV) systems when SE methods are used as front-end processing to remove the non-stationary

background noise. I compare the resulting equal error rate (EER) using my DNN based SE ap-

proaches, as well as existing SE approaches, with real customer data and the freely available

RedDots dataset. The results show that my DNN based SE approaches provide benefits for

speaker verification performance. This work is described in [24] and in Chapter 2, Section 2.1.

• I develop a speech super-resolution system that leverages generative adversarial networks to

obtain state-of-the-art results. The network generates the missing high-frequency spectrograms

and contains only convolutional layers with 1D kernels. The results are evaluated against recent

DNN based methods in terms of log-spectral distance (LSD), segmental SNR, and PESQ met-

rics in addition to perceptual listening tests. Both objective and subjective tests show that the
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proposed systems reach better performance compared to the baselines. The proposed system is

light-weight and can run in edge devices. This work is described in [25] and [26] and in Chapter

2, Section 2.2.

• I propose a system that can generate landmark points of a talking face from an acoustic speech

signal in real time. The system uses a long short-term memory (LSTM) network and is trained

on frontal videos of 27 different speakers with automatically extracted face landmarks. After

training, it can produce talking face landmarks from the acoustic speech of unseen speakers and

utterances. I evaluate this system using the mean-squared error (MSE) loss of landmarks of lips

between predicted and ground-truth landmarks as well as their first- and second-order temporal

differences. I further evaluate this system by conducting subjective tests, where the evaluators

try to distinguish the real and fake videos of talking face landmarks. Both tests show promising

results. This work is described in [5] and in Chapter 3, Section 3.1.

• I improve the face landmark generation work by introducing noise-resilient training that can

increase the robustness against unseen non-stationary noises. In this new system, the network

generates 3D face landmarks instead of 2D landmarks. The network architecture is changed

by replacing the LSTM layers with 1D convolutional layers that directly operates on the raw

waveforms. I also propose another variant of the network, that accepts the previous frame’s

face landmarks in order to generate temporally smooth sequences. I evaluate the proposed net-

works using the root-mean-squared error (RMSE) loss of face landmarks between predicted

and ground-truth landmarks as well as their first- and second-order temporal differences using

unseen data. I further evaluate this system by conducting subjective tests, where the evaluators

try to distinguish the real and fake videos of talking face landmarks. Both objective and sub-

jective results show that the proposed networks achieve better results compared to the baseline

systems. This work is described in Chapter 3, Section 3.2.

• I propose an end-to-end image-based talking face generation method that works with arbitrary

length speech input. The system utilizes LSTM-Convolutional layers in addition to the attention

mechanism to produce realistic talking faces. The speech encoder takes the raw waveform and
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calculates the short-term features. The final speech features are obtained by adding the context

information from past and future short-term features and skipping every fifth frame to match the

video frame per seconds. The generated results are further improved by employing generative

adversarial networks. This work is described in Chapter 4.

• I present the first large-scale comparison in a speech-based emotion classification task between

138 Amazon Mechanical Turk workers (Turkers) and an SVM based automatic computer sys-

tem. I show that the computer system outperforms the naive Turkers in almost all cases. I

conclude that the computer system can increase the classification accuracy by rejecting to clas-

sify utterances for which it is not confident, while the Turkers did not show a significantly

higher classification accuracy on their confident utterances versus unconfident ones. This work

is described in [27] and in Chapter 5, Section 5.2.

• I introduce a web-based interactive speech emotion classification system, WISE. WISE has

a web-based interface that allows users to upload speech data and automatically classify the

emotions within this speech using pre-trained models. The system adapts to the user’s choices

over time to increase prediction accuracy. This is the first system of its kind to my knowledge.

I evaluate WISE by simulating the user interactions with the system using the LDC dataset,

which has known, ground-truth labels. I evaluate the benefit of the user feedback enabled by

WISE in situations where manually classifying emotions in a large dataset is costly, yet trained

models alone will not be able to accurately classify the data. This work is described in [28] and

in Chapter 5, Section 5.3.

• I systematically investigate four kinds of unsupervised feature learning methods for improving

the performance of a speaker-independent ASER system. I specifically explore the denoising

autoencoder (DAE), variational autoencoder (VAE), adversarial autoencoder (AAE) and adver-

sarial variational Bayes (AVB) in the context of ASER. I show that all methods improve the

performance regarding unweighted accuracy rating (UAR) and F1-score over methods that use

hand-crafted features or that do not perform feature learning on external datasets. I also show

that VAE, AAE and AVB methods, which control the distribution of the latent representation,
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outperform DAE that does not control for such a distribution. This work is described in [29]

and in Chapter 5, Section 5.4.

1.5 Thesis Structure

This thesis has the following structure: I describe my speech enhancement (SE) and speech super-

resolution (SSR) work in Chapter 2. Next, I describe my speech animation (SA) research and describe

my talking face landmarks from the speech network in Chapter 3 and image-based speech animation

work in 4. I present my contributions regarding automatic speech emotion recognition (ASER) in

Chapter 5. Finally, I summarize the conclusions of my thesis in Chapter 7 and discuss future work.
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Chapter-2

Speech Enhancement

2.1 Front-End Speech Enhancement for Commercial Speaker Ver-
ification Systems

2.1.1 Introduction

Automatic speaker verification (ASV) systems are vital for security applications in areas such as

financial services, law enforcement, and government security. A security breach occurs when an ASV

system makes a false authorization for an imposter, which may lead to economic, personal or national

security consequences. Noise, reverberation and channel distortion are factors that significantly im-

pair the performance of ASV systems and make the ASV system particularly vulnerable to imposter

attacks or missed verification.

Therefore, speech enhancement (SE), which aims to reduce noise in the speech signal, is an im-

portant pre-processing module in commercial ASV systems. These systems in general use traditional

SE techniques [1, 30, 2], which have been shown to be effective against stationary noise. However, as

most noise types encountered in real-world applications are non-stationary, traditional SE techniques

do not perform well in these cases.

Deep neural networks (DNNs) have been successfully applied to SE systems to model non-

stationary noise [31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. However, these techniques have typically been

tested in laboratory settings using an artificially created speech corpus (e.g., TIMIT Acoustic-Phonetic

Continuous Speech Corpus sentences [41]), where the utterances are spoken in a very different way,
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i.e., not natural, compared to real-world speech utterances. To be able to assess the feasibility of SE

systems in commercial applications, these methods need to be evaluated with real-world utterances in

addition to artificial tests.

In this work, we propose two DNN-based speech enhancement approaches. We apply them as

a front-end noise removal module for a state-of-the-art speaker verification system and test the com-

bined systems. In addition to evaluating the proposed systems using utterances collected and mixed in

laboratory settings, we also use utterances that are collected by a commercial ASV system from real

customers, as well as the freely available Reddots dataset to evaluate the proposed systems. We show

that both systems yield superior results compared to traditional methods, in terms of both objective

speech quality and intelligibility measures and speaker verification performance.

2.1.2 Related Work

In this section, we review existing work on speech enhancement and its application to speaker

verification systems.

Speech Enhancement: Classical Methods

Early notable works on speech enhancement modeled the noise statistically, typically using the

first 4-5 frames of the noisy speech signal, assuming those are noise only. These methods, such

as spectral subtraction (SS) [1], minimum mean square error spectral amplitude estimator (MMSE)

[30] and minimum mean square error log-spectral amplitude estimator (Log-MMSE) [2], produce

disturbing musical artifacts, which are portions of spectral power appearing in random frequency

regions, in the predicted signal. Since these techniques use the first frames to model the noise, they

are not effective against time-varying noises.

Speech Enhancement: Deep Learning Methods

In recent years, DNN based methods have been shown to significantly outperform classical meth-

ods. Various deep models have been proposed, but generally they can be classified into two categories:
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regression-based and masking-based.

Regression-based methods attempt to learn the mapping from noisy speech to clean speech di-

rectly. Lu et al. [31] trained a deep auto-encoder (DAE) on Mel-scale power spectral patches of clean

speech and used this to denoise noisy speech. Later, they extended the model by training the DAE

with noisy-clean speech pairs [32] and by introducing ensemble models [33].

Similarly, Xu et al. [34, 35, 36, 37] used restricted Boltzmann machines (RBMs) to learn a map-

ping function from the log power spectra of noisy speech to those of clean speech. They extended this

work by adding a statistical estimate of the noise from the first several frames to the network’s input

to achieve noise-aware training [35]. In [36], they further extended this work by introducing global

variance equalization to tackle the over-smoothing issue that causes the removal of speech segments

in the predicted speech, which leads to muffled speech.

Park et al. [3] proposed a redundant convolutional encoder-decoder (R-CED) network, which is a

fully convolutional network, for mapping the noisy STFT magnitude to clean STFT magnitude. They

applied 1D convolution along the frequency axis. The input to the network is eight frames including

the current and the past seven frames, where the output is the current frame’s clean version.

Masking-based methods, on the other hand, attempt to predict the time-frequency (T-F) filters or

masks that are later applied to noisy speech spectra to recover the corresponding clean speech spectra.

Methods in this category have shown significant improvements over regression-based methods [42,

43, 44, 38, 45, 46]. Various types of masks have been proposed. Binary masks such as the ideal

binary mask (IBM) [47, 42] and the target binary mask (TBM) [48] set the mask value at a T-F unit

to 1 when speech dominates and to 0 when noise dominates. Soft masks such as the ideal ratio mask

(IRM) [43] and the Wiener-like mask [47, 44, 43] use a real value between 0 and 1 to reflect the

relative dominance of speech in each T-F unit. An extension to soft masks is a complex soft mask

such as the complex ideal ratio mask [46]. This mask uses complex numbers and is applied to the

complex spectra of the noisy speech. Wang et al. [45] investigated some of the above-mentioned

masks in a supervised simultaneous speech separation system.

Different types of DNNs have been proposed to predict these masks from noisy speech for SE.

Chen et al. [39] trained a feed-forward DNN to predict the IRM from 64-band cochleagrams of the
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noisy speech. The network was trained with 10,000 different types of noise to increase the robustness

against unseen noises. Weninger et al. [40] used a long short-term memory (LSTM) network to predict

phase sensitive masks, and tested the use of this speech enhancement system on the performance of

a speech recognition system. Huang et al. [38] proposed a recurrent neural network to jointly output

the clean speech, noise, and the IRM. The training objective function considers both the interference

reduction and mask prediction.

Automatic Speaker Verification

The Gaussian mixture model (GMM) - universal background model (UBM) ASV system de-

scribed in [49, 50] utilizes GMMs to model the acoustic space, which is parametrized by the selected

acoustic features. A GMM with a typically large number of mixtures is trained using a large pool of

speakers. This model is usually called the UBM.

Dehak et al. [51] proposed a total variability space that represents the speaker and channel vari-

ability. The speaker’s supervector can be represented in the total variability space by the following

equation,

s = m+ Tw , (2.1)

where s is the speaker’s supervector, m is the mean supervector of the GMM-UBM, T is the total

variability matrix, and w is the latent variable where the maximum a posteriori (MAP) point estimate

of w given the utterance is φ, which is called the identity vector (i-vector). For the process of training

the T matrix and extracting the i-vectors, please see [52] and [51], respectively.

Probabilistic linear discriminant analysis (PLDA) assumes that the i-vector φ can be represented

by the following equation,

φl,r = µ+ Fhl +Gvl,r + εl,r , (2.2)

where F andGmatrices represent the speaker and channel subspace, l and r represent the speaker and

session indexes, hl and vl,r represent the speaker- and session-specific vectors, µ represents the mean i-

vector and εl,r ∼ N (0,Σ) represents the residual noise. The PLDA parameters θPLDA = {µ, F,G,Σ}
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can be estimated by expectation maximization (EM). The probabilistic form of Eq. 2.2 is as follows

p(φl,r) = N (φl,r|µ, FF T +GGT + Σ) . (2.3)

For detailed information on how to estimate PLDA parameters with EM, how to calculate multi-

session PLDA scoring and how to apply length normalization, please refer to [53, 54], [55] and [56],

respectively.

SE Application to ASV Systems

Godin et al. [57] evaluated speaker identification (SID) methods and SID performance improve-

ments using the early (classical) speech enhancement techniques described in Section 2.1.2 [1, 30, 2]

to see if SE is useful in real noisy telephone conversations. They compared the equal error rate (EER)

values between artificially generated noisy speech (i.e., adding noise to clean speech) and natural

noisy speech, and found that they do not correlate well.

In recent years, deep-learning based speech enhancement methods have also been integrated into

ASV and SID systems. Zhao et al. [58, 59] proposed a robust SID system under noisy and reverberant

conditions where the IBM prediction was adopted for speech enhancement. They integrated SE and

SID systems at the feature level.

Kolbœk et al. [60] proposed an LSTM-based SE front end for a text-dependent i-vector-based

ASV system. This SE network includes two LSTM layers and a fully connected layer. For each

audio frame (32 ms window with 16 ms hop size), the input to their network is a concatenation of the

magnitude spectra of the current frame and its previous 15 and future 15 frames, totaling 31 frames of

data. The output of the network is the T-F mask of the current frame. They trained and evaluated their

system using six types of non-stationary noises and compared their results with classical SE methods.

They showed that their method outperforms classical methods in an SNR range from -5 dB to 10 dB.

Although this was a good evaluation of SE systems as a denoising front-end, this evaluation had

two limitations. First, all noise types that were used for evaluation were used for training; a more

thorough analysis using unseen noise types would be required. Second, all noisy speech utterances
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were created by artificially mixing clean speech utterances with noise; while this made it possible to

create noisy speech with different SNRs, an additional evaluation with natural noisy speech would

be required to show the SE front end’s performance with commercial ASV systems in real-world

scenarios.

To the best of our knowledge, there has not been a thorough analysis of state-of-the-art speech

enhancement approaches working with commercial text-independent ASV systems in real-world sce-

narios. As in [60], we treat the ASV system as a black box: we enhance the noisy speech and then feed

it to the ASV system for speaker verification. In our experiments, we use natural noisy speech sam-

ples that were collected by Voice Biometrics Group (VBG) and utterances from the RedDots dataset

and evaluate the verification error rate on these enhanced utterances. In addition, we conduct artificial

tests by mixing additional noise to natural noisy speech utterances with different SNRs and evaluate

the verification error rate.

2.1.3 Network Architecture

In this section, we propose two neural network architectures for speech enhancement as the front

end of our ASV systems.

Bidirectional LSTM Network

The first architecture we propose has a total of five layers including the input layer, as shown

in Figure 2.1. Each hidden BLSTM layer contains 1024 units. The input layer receives a sequence

of L vectors, each of which corresponds to one time frame of the input noisy speech. Specifically,

each vector is the concatenation of the log-amplitude spectrogram of the 2c + 1 neighboring frames

centered around the current frame, where c is the short-term context window parameter. Including

the neighboring frames provides subsequent layers with contextual information. The input then goes

through three Bidirectional LSTM (BLSTM) [61] layers that model the temporal dependencies of the

signal. The output layer consists of a BLSTM layer to reconstruct the speech mask.

We use dropout layers with a 0.2 dropout rate between the BLSTM hidden layers and add l2
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Figure 2.1: Proposed BLSTM network architecture for speech enhancement. Input vector vt is the
concatenation of the normalized log-amplitude spectra of 2c+ 1 frames centered around the t-th time
frame, where c is the short-term context window parameter. Hidden layer outputs are denoted as hnt ,
where n is the layer index. m̂s

t is the predicted mask for the speech.

regularization to the network weights during the optimization to overcome overfitting and to increase

robustness against unseen noise types. The sigmoid activation function is used in the BLSTM hidden

layers.

The BLSTM network is a fully recurrent network, i.e., it only contains BLSTM layers, even in the

output. The main difference between the RNN-based method in [38] and our network is that we use

BLSTM layers instead of basic recurrent layers. Compared to general RNNs, LSTM units are better

at modeling long-term temporal dependencies of data, as it suffers less from the vanishing gradient

issue [61]. Our network directly predicts the T-F masks rather than computing it in a deterministic

layer as in [38, 40].
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Figure 2.2: Proposed convolutional encoder-decoder (CED) network architecture for speech enhance-
ment. The numbers of filters in the convolution and deconvolution layers are 128, 256, 512, 1024,
512, 256, and 128, respectively. The input is an L-frame magnitude spectrogram, where the output
are estimated L-frame mask of speech and noise spectrograms. The red arrows represent the skip
connections.

Convolutional Encoder-Decoder Network

The second network architecture that we propose here is a convolutional encoder-decoder (CED)

network, as shown in Figure 2.2. The input layer receives a short-time Fourier transform (STFT)

magnitude spectrogram of the noisy speech. This input is then passed to four convolutional layers

with a stride length of two forming an encoder, followed by three deconvolutional layers [62] with

a stride length of two forming a decoder. This encoder-decoder design compresses and reconstructs

the input, and preserves compact and important features. Three skip connections, as denoted by red

arrows in the figure, are also added, to help preserve the fine details for better decoding. Finally,

a mask for speech is estimated at the output layer. Each of the convolutional and deconvolutional

layers also includes a batch normalization (BN) layer and an activation layer with rectified linear unit

(ReLU), that are not shown in the figure. The numbers of filters used in all of the convolutional and

deconvolutional layers are 128, 256, 512, 1024, 512, 256, 128, and 1, respectively. Filter sizes are
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7× 7 for all layers, except for the output layers, where filter sizes are 3× 3. We add l2 regularization

to the network weights during the optimization to overcome over-fitting and to increase robustness

against unseen noise types.

This architecture is inspired by [3] and [63]. The main difference between redundant convolutional

encoder-decoder (R-CED) proposed in [3] and our approach is that we model both speech and noise

where R-CED only models the speech. Another difference is that instead of using only 8 STFT frames

to denoise a single frame, our network takes much more (L = 100 in the experiments) frames and

returns the same amount of mask frames. We divide each test utterance into non-overlapping segments

that are L frames long and feed each segment into the CED network for enhancement. The rationale

behind selecting this much larger number of frames to analyze is that it leads to modeling longer-term

dependencies and yielding a better reconstruction. In addition, the network depth is also different, R-

CED contains 15 layers and is deeper than CED, where each layer contains a convolution, BN and an

activation layer, and the proposed CED has 7 layers, where each layer contains three layers, namely

a convolution/deconvolution, a BN layer and an activation layer. The number of filters are symmetric

in R-CED blocks which are 10, 12, 14, 15, 19, 21, 23, 25, 23, 21, 19, 15, 14, 12, 10, and 1, while the

number of filters in the proposed CED are fixed.

Objective Function

We consider the amplitude soft mask (ASM) in our experiments. ASM for the speech source is

defined as

ms
t(f) =

st(f)

st(f) + nt(f)
, (2.4)

where st and nt are the clean speech and the noise magnitude spectra at time t, respectively.

To train the networks, we consider two loss functions, the mean-squared error (MSE) and binary

cross-entropy (BCE). The MSE objective function minimizes the reconstruction error of the T-F mask

of the speech source of the training data as

JMSE =
∑
t,f

‖ms
t(f)− m̂s

t(f)‖2 , (2.5)
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where ms
t is the mask calculated from the clean speech and the noise, and m̂s

t is the mask that is

predicted by the network.

The ground-truth ASM speech mask, whose values range from 0 to 1, can be considered as prob-

abilities of T-F bins belonging to the speech source. The predicted speech mask, whose values also

range from 0 to 1, thanks to the sigmoid transfer function at the output layer, can be viewed as the

predicted probabilities of T-F bins belonging to the speech source. Therefore, BCE can be used to

measure the mismatch between the two Bernoulli distributions as

JBCE =
∑
t,f

H(ms
t(f), m̂s

t(f))

= −
∑
t,f

ms
t(f) log m̂s

t(f)) + (1−ms
t(f)) log(1− m̂s

t(f))).

(2.6)

We compare the MSE and BCE objective functions and analyze their effects on speech enhance-

ment performance in Section 2.1.4.

2.1.4 Experiments

We divide the experiment section into two parts. The first part evaluates the speech quality and

intelligibility of the speech enhancement approaches on noisy speech utterances that are artificially

mixed from clean speech and noise. The clean utterances are not naturally encountered by commer-

cial ASV systems and the mixing process is artificial, however, they are needed for calculating the

evaluation measures and are publicly available for results reproduction. The second part connects the

proposed approaches with a speaker verification system and evaluates their verification error rates on

real-world speech utterances.

For training, we create noisy speech sentences by mixing clean speech utterances from the Lib-

rispeech corpus [64] with 138 different types of non-stationary noise obtained from Sound Ideas [65],

with SNRs at -6, -3, 0, 3, 6, and 9 dB, totaling about 80 hours of training data. The noise data includes

non-stationary noise from various environments such as nature, city, domestic, office, traffic and in-

dustry, all of which are what commercial ASV systems may encounter. All files are downsampled
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to 8 kHz to simulate the telephone frequency range, since many commercial ASV systems use this

range. Our proposed networks described in Section 2.1.3, namely BLSTM and CED, are trained once

and used in all of the experiments described in this section.

Comparison Methods

As a comparison to our approaches, we trained the fully convolutional redundant CED (R-CED)

network, described in [3] and in Sections 2.1.2 and 2.1.3, as our convolutional baseline .

We designed another DNN-based baseline identical to our BLSTM architecture, but instead of

BLSTM layers it uses general recurrent layers, similar to the approach in [38]. The differences are

that we directly predict the masks instead of using a deterministic layer to compute them, and we

do not include signal interference terms in the objective function as described in [38]. We call this

network recurrent neural network (RNN) for simplicity.

We also compare with traditional SE methods described in Section 2.1.2, namely SS and Log-

MMSE methods. We use implementations provided in [66].

We implement all DNN-based methods (including the proposed ones) using Keras, a Python li-

brary for deep learning [67].

Speech Quality and Intelligibility Evaluation

We mix 300 utterances of 85 unique speakers with 5 types of noise (babble, factory, speech-

shaped noise (SSN), motorcycle and cafeteria) at SNRs of -6, 0, 6 and 9 dB. All of the 85 speakers

and the 5 types of noise have not been used as part of the training data. Specifically, the babble and

factory noises are obtained from [68], motorcycle noise is obtained from [69], the cafeteria noise

is recorded by ourselves at the University of Rochester, and the SSN noise is created by filtering

white noise with an FIR filter with frequency response that matched the long-term spectrum of speech

utterances [70]. We provide the mentioned test noise samples on our website 1. Figure 2.3 shows an

example noisy spectrogram corrupted by motorcycle noise at 0 dB SNR along with its corresponding

clean and enhanced versions. Among the 300 utterances, 120 are from the Librispeech corpus spoken

1http://www.ece.rochester.edu/projects/wcng/code.html
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(a)	Noisy	spectrogram

(b)	Clean	spectrogram

(c)	Enhanced	(SS)	spectrogram

(d)	Enhanced	(Log-MMSE)	spectrogram

(e)	Enhanced	(RNN)	spectrogram

(f)	Enhanced	(R-CED)	spectrogram

(g)	Enhanced	(BLSTM)	spectrogram

(h)	Enhanced	(CED)	spectrogram

Figure 2.3: An example of speech enhancement results. Magnitude spectrograms of the noisy speech
signal corrupted by motorcycle noise at 0 dB, the ground-truth clean speech, and enhanced speech of
six speech enhancement methods, namely SS, Log-MMSE, RNN, R-CED, BLSTM and CED.

by 65 unique speakers, and 180 utterances are from the PTDB-TUG corpus [71] spoken by 20 unique

speakers. In particular, the inclusion of the PTDB-TUG utterances is to further test the cross-corpora

performance of the proposed approach. We use the perceptual evaluation of speech quality (PESQ)

[72] and short-time objective intelligibility (STOI) [73] to evaluate our approaches. Both metrics are

widely used in SE research. We do not conduct subjective listening tests, as our primary goal in this

work is to analyze the effect of DNN-based SE systems on the performance of an ASV system.

For pre-processing, we perform STFT with a 32 ms Hanning window and an 8 ms hop size to

obtain the log-amplitude spectrogram of the noisy speech to be input to all networks. We set FFT size

to 256 in our experiments and we use the full frequency range of 0 to 4000 Hz. These parameters are

kept the same for all of the speech enhancement experiments. We normalize the input to have zero

mean and unit standard deviation. For the BLSTM network, we set the short-term context window
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Figure 2.4: PESQ comparison between the proposed methods (BLSTM and CED) and baseline tradi-
tional methods (SS [1] and Log-MMSE [2]) and baseline DNN-based methods (RNN and R-CED [3])
for different noise types and SNRs.

parameter c to 5 frames in all experiments. Increasing this parameter yields faster convergence, but

at the cost of computational complexity. We empirically set the time sequence length parameter L to

100 frames for both networks. Training the networks on the long input sequences makes the networks
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Figure 2.5: STOI comparison between the proposed methods (BLSTM and CED) and baseline tradi-
tional methods (SS [1] and Log-MMSE [2]) and baseline DNN based methods (RNN and R-CED [3])
for different noise types and SNRs.

more robust to non-stationary noise, which varies over time.

For training, the dropout rate is set to 0.2 for the BLSTM network, and the l2 regularization value

is set to 0.000001 for both networks. The models are trained for 100 epochs, i.e., we iterate over
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Figure 2.6: PESQ and STOI comparisons averaged over all noise types.

the training set for 100 times. For testing, the network reconstructs the masks of both speech and

noise. We then apply the predicted speech mask to the noisy signal’s magnitude spectrogram and

then reconstruct its time-domain signal using an inverse STFT with overlap-add from the resulting

magnitude spectrogram with the noisy speech’s phase. We trained both networks using only the BCE

objective function described in Eq. 2.6, as we found that BCE consistently outperforms MSE in our

system analysis experiments in Section 2.1.4.

Figures 2.4-2.6 show the PESQ and STOI results for the unprocessed noisy speech and the en-

hanced speech using the traditional techniques of spectral subtraction (SS) and minimum mean square

error log-spectral amplitude estimator (Log-MMSE) as well as the DNN-based RNN, R-CED, and the

two proposed networks described in Section 2.1.3, namely BLSTM and CED.

The results show that the proposed techniques (BLSTM and CED) are superior than other tech-

niques in terms of the PESQ and STOI metrics in completely unmatched noise types and speaker

scenarios. BLSTM achieves the best improvement in terms of PESQ and STOI, while CED achieves

the second best results. SS and Log-MMSE make the STOI values worse than for the unprocessed

noisy speech. We believe that this is due to the musical artifacts introduced by the spectral subtraction

operation: the amount of subtraction is determined by the estimated instantaneous SNR, but the esti-

mation does not consider long-term temporal dependencies and leads to fluctuating and inappropriate
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Figure 2.7: PESQ and STOI comparisons averaged over all noise types for different numbers of
hidden units (64, 128, 256, 512 and 1024) per layer in the BLSTM network.

estimation. This issue also leads to degraded performance of the following ASV system, as shown in

Section 2.1.4.

Parameter Analysis of the Proposed Methods

In this section, we further analyze the effects of several key parameters of the proposed CED and

BLSTM networks, including the number of hidden units and layers, the objective function, and the

input features. In the following experiments, we use the same settings described in Section 2.1.4, i.e.,

the train and test speech and noise combinations are the same. We report the average results of five

test noise types.

The Number of Hidden Units We analyze the effect of different numbers of hidden units in the

BLSTM network on PESQ and STOI results. We investigate a three-layer BLSTM network with

N units in each layer, where N is varied to take values of 64, 128, 256, 512 and 1024. PESQ and

STOI results are shown in Figure 2.7. The results suggest that increasing the number of hidden units

monotonically improves PESQ and STOI across all SNR conditions, yet the improvement seems to be

close to saturation whenN is 1024. IncreasingN beyond 1024 is not feasible for us due to insufficient

memory; we used an NVIDIA Tesla K80 GPU which has 12 GB memory.
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Figure 2.8: PESQ and STOI comparisons averaged over all noise types for different numbers of filters
(M = 8, 16, 32, 64 and 128) in the first convolutional layer in the CED network. The numbers of
filters in the other convolutional and deconvolutional layers are powers-of-two times of M , following
the same symmetric pattern shown in Fig. 2.2.

Next, we investigate the effect of different numbers of filters of the CED network on PESQ and

STOI results. The CED network has a symmetric encoder-decoder structure, and the number of filters

can be described as M , 2M , 4M , 8M , 4M , 2M , M for the hidden layers and 1 filter for the predicted

speech mask. We vary M to have values of 8, 16, 32, 64 and 128 and show PESQ and STOI results in

Figure 2.8. Again, we can see that increasing M generally improves PESQ and STOI across all SNR

conditions, yet the improvement is very small when M is greater than 32. Increasing M above 128 is

not feasible for us due to insufficient memory.

In practice, the trade-off between system performance and computational cost needs to be bal-

anced. In our experiments, we chose N and M to be 1024 and 128, respectively, to achieve the best

possible PESQ and STOI on our device.

The Number of Hidden Layers We investigate the effect of the number of layers in BLSTM and

CED networks. For the BLSTM network, we let each hidden layer contain 1024 units and vary the

number of hidden layers between 1 and 3. The PESQ and STOI results are shown in Figure 2.9. We

can see that increasing the number of hidden layers improves both PESQ and STOI across all SNR
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Figure 2.9: PESQ and STOI comparisons averaged over all noise types for different numbers of
hidden layers (1, 2 and 3) in the BLSTM network.
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Figure 2.10: PESQ and STOI comparisons averaged over all noise types for different numbers of
layers (3, 5 and 7) in the CED network.

conditions. Increasing the number of layers above three is not feasible due to insufficient memory.

The CED network has two parts, the encoder and the decoder. In Figure 2.2, there are a total of 7

layers shown. We vary this number to 3, 5 and 7 and compare their PESQ and STOI performance. The

number of filters of the hidden layers follows the same power of 2 ratio as described in the previous

subsection, and we set M to 128. Also note that the number of skip connections also varies to be 1, 2
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Figure 2.11: PESQ and STOI comparisons averaged over all noise types for mean-squared error
(MSE) and binary cross-entropy (BCE) loss functions in BLSTM and CED networks.

and 3 for networks with 3, 5 and 7 layers, respectively. Results are shown in Figure 2.10. Again, we

see that more layers leads to better PESQ and STOI performance across all SNR conditions. However,

the number of parameters also increase dramatically, by approximately 11 times from 3 layers to 7

layers.

In our experiments, we set the number of hidden layers to 3 and 7 for the BLSTM and the CED

networks, respectively, in order to achieve the best possible PESQ and STOI on our device. Consid-

ering the hidden layer size parameters in the previous subsection, the BLSTM and the CED networks

have 54,782,992 and 17,669,889 trainable parameters, respectively.

The Objective Function This section compares the mean-squared error (MSE) objective function

from Eq. 2.5 and the binary cross-entropy (BCE) objective function from Eq. 2.6 for CED and

BLSTM networks. The results are shown in Figure 2.11. We can see that the BCE objective function

achieves slight but consistent improvement over the MSE objective function on both metrics and

networks and across all SNR conditions. Therefore, we use the BCE objective function in all the

remaining experiments.
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Figure 2.12: PESQ and STOI comparisons averaged over all noise types between log-mel spectrogram
(MEL) and log-linear spectrogram (LIN) inputs for BLSTM and CED networks.

The Input Feature Next, we compare the log-amplitude linear-frequency (log-linear) spectrogram

with the log-amplitude mel-frequency (log-mel) spectrogram as the input feature to the networks.

The main difference between these two inputs is the frequency resolution. Compared to the linear-

frequency scale, mel-frequency scale has a better correspondence with human auditory systems. It has

a higher frequency resolution at low frequencies but a lower frequency resolution at high frequencies.

The PESQ and STOI results are shown in Figure 2.12. From the results, we can see that there is a slight

difference between the two types of input. The log-amplitude linear frequency spectrogram yields

slightly better PESQ and STOI results, therefore, we selected it as our input in other experiments.

Application in Automatic Speaker Verification

In this section, first we describe the ASV system used for the experiments, and then we use the

different speech enhancement methods as a pre-processor for the described ASV system and compare

their effects in decreasing the verification error rate.

The i-vector approach is the state of the art in speaker verification and is commonly used in current

commercial systems. Therefore, we evaluate our SE system on an i-vector-based text-independent

ASV system with probabilistic linear discriminant analysis (PLDA) scoring, which is implemented
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based on [74], an open source Python library for speaker and language recognition. We choose this

open-source ASV implementation for result reproduction purposes. For all ASV experiments, we

use 13 Mel Frequency Cepstrum Coefficients (MFCCs) with their delta and double-delta features,

resulting in a 39-dimension vector. The rank of the T matrix, and therefore the dimension of the

i-vectors, is set to 100. We found that using low dimensional i-vectors provide better EER results

when the utterances are short in duration. We apply length normalization described in [56]. The

dimensionalities of the subspaces F and G in PLDA training are set to 100×50 and 100, respectively.

We use the widely used metric, equal error rate (EER), to evaluate the ASV performance. EER is

defined as the intersection point where false rejection rate and false acceptance rate are equal. Lower

EER means better ASV performance.

Datasets We run our experiments on two datasets: VBG RANDNUM and RedDots. All of the

utterances in both datasets are sampled at 8 kHz, and are natural noisy utterances with a high SNR.

VBG RANDNUM is a dataset from the Voice Biometrics Group (VBG)’s production system. It

contains 1300 English utterances from 100 speakers, where each speaker has 3 enrollment utterances,

and 10 verification utterances. Please note that in our experiments we use multi-session scoring

described in [55]. Each utterance contains four random digits and its average length is 6.3 seconds.

We estimated the SNR of VBG RANDNUM samples using the tool described in [75] with a window

size of 8 ms and 50% overlap, and show the SNR distribution in Figure 2.13. We use the enrollment

and verification samples of 50 speakers to train the ASV system, namely, the UBM, T matrix and

PLDA parameters. These samples already contain natural noise, but we also added artificial noise

between 10-25 dB SNR level to 100 randomly chosen samples to obtain a multi-condition training

set. We use the remaining 50 speakers for evaluation, where there are in total 50 (target speakers)

× 10 (verification utterances) × 50 (potential speakers) = 25,000 trials in the evaluation. Since this

dataset contains constrained speech, we follow the general guidelines described in [50] and keep the

number of components used for the UBM small (128 components). Some examples from the VBG

RANDNUM corpus and their enhanced versions are available for the research community2.

2Free download at http://www.ece.rochester.edu/projects/wcng/code.html
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This VBG RANDNUM dataset is representative of VBG’s RandomPINTM offering, which is cur-

rently deployed (commercially) in 8 countries, using 36 different languages. VBG is currently pro-

cessing over 6 million RandomPINTM verification requests annually, and this number is growing

rapidly.

To build voice-prints for RandomPINTM, users are prompted to repeat a series of six separate

static numeric digit phrases, each five digits long. Note that each RandomPINTM user is prompted

with these same enrollment phrases. To verify the speaker, the VBG system generates a random 4- or

5-digit phrase for the user to repeat.

VBG uses text-independent technology to perform speaker verification. As a pre-processor, VBG

uses automatic speech recognition to make sure all content is spoken as requested. A variety of audio

quality assessment tests are also performed to ensure the audio is of sufficient quality to perform bio-

metric voice processing. Should samples “fail” content or quality pre-checks as part of a verification

request, the system will automatically generate a new random PIN and re-prompt the user.

Using constrained data (digits only) helps the client to create reliable voice-prints in a limited

amount of time efficiently. As the majority of VBG’s customers are interactive voice response (IVR)

users (stand-alone or as an entry to a call center conversation), telephone connect time (i.e., “call

handle time”) becomes a sufficient economic consideration. Thus, shorter and more compact uses of

voice biometrics are advantageous. Moreover, when RandomPINTM is combined with other security

factors, such as knowledge-based authentication (KBA), an extremely reliable match can be provided

to VBG clients - without the lengthy data collection requirement of free speech or passive voice

biometric applications (which VBG also supports commercially).

The second dataset, namely RedDots [76], is a collection of short utterances in English from

native and non-native speakers reading text prompts to mobile devices. The sessions are collected

over a long period (aimed to be over a year), where each speaker records a session per week. The

dataset contains 13 female and 49 male speakers from different regions worldwide, a total of 21

countries, which results in vast inter-speaker variations. Since the data collection is carried out from

a mobile device, the user can choose to record an utterance in any place, indoor or outdoor. Therefore

utterances contain various types of noise with various SNRs. We estimated the SNR of the RedDots
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Figure 2.13: Histogram of SNR estimation of VBG RANDNUM files.
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Figure 2.14: Histogram of SNR estimation of RedDots files.
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samples in the same way that we estimated the SNR of the VBG RANDNUM samples. Figure 2.14

shows the SNR distribution for the RedDots samples.

We conduct our experiments in a text-independent fashion. Therefore, we use RedDots part 04:

text-independent test set. There are a total of 136,698 target trials and 5,098,950 imposter trials for

males, and 26,928 target and 184,368 imposter trials for females in this test set. Since the number

of female samples are relatively limited in this dataset, we only use male trials in our experiments,

different from the gender-independent case in the experiments with the VBG RANDNUM dataset.

To conduct a more comprehensive evaluation in different noise conditions, we also mix RedDots

test utterances with five types of noise at SNRs of -6, 0, 6 and 9 dB to create more noisy utterances

and report their ASV results. To construct the UBM and i-vector models (i.e., the T matrix), we

use two other datasets, NIST SRE06 [77] and the NIST SRE08 [78]. We randomly draw 650 male

speakers from these datasets’ training set. We also added artificial noise between 10-25 dB SNR

level to 150 randomly chosen samples to obtain a multi-condition training set. Since the test samples

are unconstrained speech, we set the number of mixtures in the UBM to 2048 in our experiments, as

suggested in [50]. Finally, we used the remaining male data in the RedDots dataset that is not included

in the trials to train PLDA parameters.

Evaluations Figure 2.15 and Figure 2.16 show the EER results for speech that is unprocessed as

well as speech that is enhanced with SS, Log-MMSE, RNN, R-CED, CED and BLSTM for VBG RAND-

NUM and RedDots datasets, respectively.

For constrained speech data, Figure 2.15 (VBG RANDNUM) shows that BLSTM significantly

decreases the EER compared to other techniques, from the unprocessed EER (%) result of 6.59 to

5.21. This is followed by CED with an EER (%) value of 5.78. The gap between BLSTM and CED

EER results are significant, although their PESQ and STOI values shown in Figures 2.4-2.6 are close.

While the reason for this mismatch is unclear, this result suggests that speech quality and intelligibility

measures for speech enhancement preprocessing modules only provide qualitative predictions of the

final speaker verification error rates. RNN yields slightly better results compared to R-CED, which is

consistent with the PESQ and STOI results. An important observation from these results is that there
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Figure 2.15: VBG RANDNUM EER results. Note that the y-axis starts from 5.0%.
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Figure 2.16: EER results for RedDots Dataset. Note that the y-axis starts from 13.0%.

is a benefit of using DNN-based approaches as a front-end SE module since all DNN-based methods

yield EER improvements on naturally noisy data. SS and Log-MMSE, however, significantly increases

EER, showing that they cannot deal with non-stationary noise conditions well.

The same trends can be observed for unconstrained speech data (RedDots) results shown in Figure

2.16, although the improvement on EER of the DNN-based methods are slighter compared to the VBG

RANDNUM results. SS and Log-MMSE, again, do not perform well in this dataset.
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Figure 2.17: RedDots dataset EER results for different noise types and SNRs.

Figure 2.17 shows the artificial test results, i.e., the EER results when additional noise is intro-

duced at an SNR of -6, 0, 6 and 9 dB to the RedDots dataset. For all noise cases, the SS method

increases the EER. The Log-MMSE method yields EER improvements in low SNRs for factory and

cafeteria noise types, however, it does not provide EER improvements for all the other noise types
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and SNRs. The DNN-based methods yield EER improvements in most cases. The BLSTM network

performs the best for all noise types.

2.1.5 Conclusions

In this work, two DNN-based speech enhancement methods (BLSTM and CED) are introduced,

and their effect as a preprocessor for an automatic speaker verification (ASV) system is investigated.

Compared to two classical and two DNN-based speech enhancement baselines, the proposed methods

significantly improve the PESQ and STOI of the enhanced speech on different kinds of non-stationary

noise that are unseen in the training data. Moreover, they decrease the verification error rate on

natural utterances encountered by the verification system and on utterances artificially mixed with

additional noise. We show that all DNN-based methods investigated in this work yield performance

improvements when they are used as a front-end noise removal module on natural noisy data collected

from real customers, while the classical methods degrade the performance in the same conditions.

2.2 Adversarial Training for Speech Super-Resolution

2.2.1 Introduction

Deep neural networks (DNNs) have been outperforming traditional methods in various classi-

fication and regression tasks, and speech processing is not an exception. For speech recognition,

enhancement, emotion recognition, and speaker identification/verification, state-of-the-art methods

are based on DNNs.

An interesting problem in speech processing is to expand the bandwidth of speech signals by

generating the missing high frequencies (i.e., increasing the waveform resolution). This problem is

named artificial speech bandwidth expansion or Speech Super-Resolution (SSR) in the literature. In

this work, we tackle this problem and refer it SSR.

SSR is beneficial for speech communication over low-bandwidth channels. An SSR module can

be integrated into receiver-end devices to enhance the resolution of transmitted low-resolution signals.
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One study shows that users prefer a wider frequency range in communication [79]. Other studies show

that the narrowband communication is challenging for the hearing impaired population [80], and arti-

ficially expanding the bandwidth up to 8 kHz leads to improved speech recognition rates for Cochlear

Implant (CI) users [81]. Furthermore, speech synthesis systems can also benefit from employing a

computationally light-weight SSR module after synthesizing low-resolution speech. This is because

the computational cost of speech synthesis drastically increases as the sampling rate increases, pre-

venting a real-time high-resolution synthesis on edge computing devices. Also, speech synthesis

systems, once trained, are not straightforward to change the sampling rate on the fly.

In this work, we propose a novel neural network framework that leverages adversarial training for

SSR, and utilize a recent regularization method that stabilizes the adversarial training. We employ a

sequence-to-sequence convolutional autoencoder network that accepts Log Power Spectrogram (LPS)

as input and yields the corresponding high-frequency range LPS. We use 1D kernels in the convolu-

tional layers that operate along the time axis of the spectrogram. The training process contains two

major steps. First, we train our network using only a reconstruction loss for a few epochs as the

initialization. Then, we switch to the adversarial loss in addition to the weighted reconstruction loss.

We train our network on the Centre for Speech Technology Research (CSTR) Voice Cloning

Toolkit (VCTK) Corpus [82] and evaluate it on an entirely disjoint dataset to show the robustness

against unseen speakers and recording conditions, namely the Wall Street Journal (WSJ0) corpus

[83]. We compare with [84, 85] baselines. The objective and subjective evaluations show that the

resulting enhanced time domain signals yield better results than the baseline methods. We further

analyze our network by changing the network parameters, namely the number of layers and filters

in the autoencoder, and the reconstruction loss weight parameter, and report the objective scores.

Besides, we discuss the stability of GAN training for different regularization methods and compare

phase estimation methods. Furthermore, we compare the computational complexity of our method

and the baselines. We also propose a method to train the network against the noise, and we analyze it

against the unseen non-stationary noise types. In addition, we conducted a listening test to verify the

intelligibility of the generated samples. Some examples of synthesized super-resolution speech are
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publicly available3.

In summary, our contributions in this work are as follows:

• We apply the generative adversarial network framework to speech super-resolution and synthe-

size the high-resolution speech spectrogram directly with the network.

• We use a regularization method [86] to address the failure modes encountered during GAN

training, and effectively stabilize it.

• We obtain a computationally light-weight generator compared to the baselines due to the usage

of 1D kernels in the convolutional layers.

2.2.2 Related Work

Artificial Speech Bandwidth Expansion

Speech Super-Resolution (SSR) is studied widely by the research community under the name

of artificial speech bandwidth expansion [87, 88, 89, 84]. In [87], Park et al. used Linear Predic-

tive Coding (LPC) coefficients, pitch, and power that were extracted from the narrowband signal,

and modeled the mapping between narrowband and wideband parameters using a Gaussian Mixture

Model (GMM). Chennoukh et al. [90] proposed a method that extends the bandwidth using Line

Spectral Frequencies (LFS), applied on LPC coefficients. Seo et al. [89] proposed a GMM model for

maximum a posterior estimation of the wideband spectrum from the narrowband. This method also

considers sentence-level temporal dynamics to synthesize wideband speech. Jax et al. [91] proposed

a method to estimate the gain and the shape of the spectral envelope of the wideband using a Hidden

Markov Model (HMM). Song et al. [92] showed that the Baum-Welch re-estimation algorithm out-

performs the method proposed by Jax et al. [91]. They also showed that the GMM-based methods

are a special case of the HMM-based methods, while their performances are comparable. Abel et

al. [93] proposed to use DNNs for high band spectral envelope estimation, and compared with GMM

and HMM-based baselines. They showed that DNNs outperform the baselines.

3http://www.ece.rochester.edu/projects/air/projects/SSRGAN.html
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While some works focused on predicting the wide-band spectral envelope, others focused on di-

rectly estimating the missing data points [94, 95, 84, 85]. In [94], the authors used a latent component

analysis and Expectation-Maximization (EM) algorithm to estimate missing frequencies, similar to

Non-negative Matrix Factorization (NMF). Sun et al. [95] cast the bandwidth extension problem as a

convex optimization problem and employed NMF to estimate the missing frequencies. In one of the

notable works, Li et al. [84] proposed a DNN to predict the log-power spectrum of the wideband.

They used 32 ms window size and 16 ms hop size when extracting LPS features from the input nar-

rowband. The hidden layers were pre-trained using the Restricted Boltzmann Machine (RBM). Their

network accepts nine frames of narrowband LPS and predicts a single frame of wideband LPS. Since

phase information is still missing, they flip the phase of the low-frequency band as that of the high-

frequency band to reconstruct the time domain signal. They trained and evaluated their method on the

Wall Street Journal (WSJ0) Corpus. They showed that their method yields better results compared to

the GMM baseline in both objective and subjective evaluations.

Kuleshov et al. [85] proposed an end-to-end super-resolution method that takes the raw wave-

form as input and outputs the super-resolution waveform. They employed 1D convolution layers

and formed an auto-encoder with concatenating skip connections, which are similar to skip connec-

tions but instead of adding the feature maps together, they are concatenated. Before being fed to the

network, the low-resolution waveform is upsampled to match the sampling rate of the target super-

resolution signal. This upsampled input is also added to the network output. A Mean-Squared Error

(MSE) loss function is used for training. Compared with neural methods working with time-frequency

representations, one significant advantage of this time domain approach is that no special module is

needed to estimate the signals’ phase. However, it is computationally very expensive.

Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) [96] have been employed to generate highly realistic

images, videos and speech signals. In essence, GANs contain two neural networks, a generator, and

a discriminator. The generator tries to generate fake but realistic data, while the discriminator tries

to distinguish between the real and fake data. When the training converges, the generator is able
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to generate data that lie on the real data manifold, and the discriminator cannot tell the fake from

real data. There are variants of GANs, which improve the generation capability or add controls over

the generated distributions. Deep Convolutional GAN (DCGAN) [97] can generate realistic images,

where both the generator and discriminator architectures are based on convolutional neural networks.

The conditional GANs [98] are another family of GANs where the generator and discriminator accepts

a condition input and enables control over the generated distribution.

Although GANs are powerful, they suffer from instabilities during training [99], which lead GANs

not to converge and make them yield poor results. Therefore, researchers steered towards finding bet-

ter training methods for GANs [100, 101, 102, 86, 99]. Wasserstein GAN (WGAN) [100] is one of

the regularized GAN family members that employs the Wasserstein divergence instead of the Jensen-

Shannon divergence and maintains the Lipschitz constraint by clipping the weights. In an improved

version of WGAN [101], instead of weight-clipping, Gulrajani et al. proposed a Gradient-Penalty

(GP) to satisfy the Lipschitz constraint. In the proposed method, the data point between a real and

generated distributions is drawn, and the norm of the gradient for this data point is penalized for not

having a unit norm. For WGAN and WGAN-GP, the critic (discriminator) is usually updated for a

few iterations before alternating to updating the generator, which makes the training computationally

intense. Another regularization technique is to add instance noise, which is typically chosen as Gaus-

sian noise, to the input of the discriminator [102]. Mescheder et al. [99] show that instance noise is

indeed useful for GAN training, and leads GANs to converge. Roth et al. [86] derived a zero-centered

GP regularizer that is inspired from the instance noise. Mescheder et al. [99] proposed two similar but

simplified versions of Roth et al.’s regularizer, one of them only penalizes the generated data distribu-

tion, while the other one only penalizes the real data distribution. In this work, we choose to penalize

both the real and generated distribution; therefore we use the regularizer proposed by Roth et al. [86].

GANs have been successfully applied to image and video super-resolution. Ledig et al. [103]

confirmed that reconstruction loss based single image super-resolution systems yield blurry results.

By using an adversarial training loss, they showed that their Super-Resolution Generative Adversarial

Network (SRGAN) yields sharper, superior results that lie on the data manifold. GANs also ben-

efit Video Super-Resolution (VSR). Lucas et al. [104] showed that their GAN based VSR system
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Figure 2.18: Overview of the proposed SSR system during test time. The Log-Power Spectra (LPS)
XNB and the phase spectrogram XP are calculated from the input narrowband waveform x through
Short-Time Fourier Transform (STFT). XNB is fed to the speech super-resolution generative adver-
sarial network (SSR-GAN) to obtain the estimated high-frequency range LPS X̂WB, which is then
concatenated with the original narrowband LPS. The phase of the high-frequency range is artificially
produced by flipping and repeating the narrowband phase XP and adding a negative sign. For frac-
tional super-resolution factors, the last repeat is truncated to match the frequency range. Finally,
the estimated wideband LPS and artificial phase are used to reconstruct the time-domain signal ŷ by
Inverse STFT (ISTFT) and overlap-add.

outperforms the current state-of-the-art VSR systems. These studies inspired us to investigate the

application of GANs to SSR, where we work with spectrograms that are similar to images or video

frames.

It is noted that Li et al. [105] has proposed a GAN-based SSR approach recently. They employed

a fully connected neural network (generator) with two hidden layers to predict the Line Spectral Fre-

quencies (LSF) and speech energy of the high band (HB) from LSF, delta LSF and speech energy of

the low band signal. They used a fully connected discriminator to distinguish fake parameters from

real parameters. They then used the EVRC-WB framework [106] and a synthesis filterbank to syn-

thesis high-resolution speech signals from the predicted speech parameters. Although our approach is

similar to [105] in the sense that they are both applications of GANs in SSR, one of the key differences

is that we directly generate the speech spectrograms, while [105] generates speech parameters (LSF

+ energy) and synthesize speech from those parameters with another synthesis framework. Another

novelty of our work is that we use a recently proposed regularizer [86] to stabilize GAN training.

Furthermore, our generator and discriminator architectures contain convolutional layers, while [105]

uses only fully connected layers.
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2.2.3 Proposed SSR System

System Overview

We propose a neural network approach with adversarial training to tackle the Speech Super-

Resolution (SSR) problem. Before we introduce the network architecture and training processes,

we think it is helpful to first explain how the whole SSR system runs during test time, treating the

network as a black box. This process is shown in Figure 2.18. Let x be the time domain waveform

of the narrowband speech that we want to increase the time resolution. First, the Short-Time Fourier

Transform (STFT) is applied to x with parameter settings described in Section 2.2.4. The Log-Power

Spectrogram (LPS) XNB and the phase spectrogram XP are computed from X , and XNB is fed

to the proposed generator network, or namely the Speech-Super Resolution Generative Adversarial

Network (SSR-GAN) to estimate the high-frequency range LPS, X̂WB. The original narrowband and

the predicted high-frequency range are concatenated to obtain the estimated wideband LPS XSR. In

order to avoid discontinuities at the concatenation [84], we also predict the highest C frequency bins

of the narrowband spectrogram, where C is called the offset parameter. During concatenation, the top

C frequency bins are removed from the narrowband spectrogram.

Since we do not estimate the phase of the high frequencies, we follow Li et al. [84] to create an

artificial phase by flipping the narrowband phase and reverting the sign. For the 2x super-resolution

version, we concatenate this flipped phase with the narrowband phase to obtain an artificial phase X̂P

of the entire wideband signal. For the 4x super-resolution version, we repeat the flipped phase three

times. For fractional super-resolution factors, the last repeat is truncated to match the frequency range.

Our method could be improved by predicting the phase from the magnitude spectrogram; however,

this is a challenging problem itself [107].

Finally, inverse STFT is applied to the complex spectrogram calculated from the estimated wide-

band LPS XSR and artificial phase X̂P , and the time domain signal ŷ is reconstructed using the

overlap-add method.
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Figure 2.19: The proposed network architectures for the generator (middle) and the discriminator
(right). Each rectangular block is a convolutional layer with structures color coded and detailed on
the left subfigure. The generator is an autoencoder with concatenating skip connections, predicting the
high-frequency range of the input narrowband magnitude spectrogram. It is then concatenated with
the original low-frequency range to generate the full wideband magnitude spectrogram. The input to
the discriminator is the full wideband spectrogram of either a real sample or a generated sample. We
do not use batch normalization in the discriminator. Notations: BN - batch normalization layer, FC -
fully connected layer, LReLU - LeakyReLU activation, and PShuffle - pixel shuffle or sub-pixel layer,
LPS - log-power spectrogram.

Network Architecture

In this section, we explain the generator and discriminator architectures. The generator is fully

convolutional, while the discriminator contains convolutional layers followed by two Fully Connected

(FC) layers. The architectures are shown in Figure 2.19.

For the generator network, we employ a common bottleneck autoencoder architecture described
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in [85]. The generator is a sequence-to-sequence model that accepts the narrowband LPS with T time

steps and outputs the high-frequency range LPS with T time steps.

In the generator network, we use a Batch Normalization (BN) layer after each convolutional layer

and before the activation. BN allows the network to converge faster and allows higher learning rates

to be used for training. We use sub-pixel (or pixel shuffle) layers introduced in [108], which is proved

useful for image and video super-resolution. The main idea behind the sub-pixel layers is to compute

more feature maps on the convolution layer and resize them into an upsampled data. Readers are

referred to see [108] for more details about sub-pixel layers. We use leaky rectified linear units

(LeakyReLU) as the activation with a slope of 0.2, except for the output layer, where we use linear

activation.

The discriminator network accepts the concatenated narrowband and high-frequency range LPSs

as input, where the high-frequency range LPS could be generated by the generator network or coming

directly from the data distribution. Including the narrowband to the discriminator’s input is essen-

tially conditioning the input high-frequency range LPS on the narrowband LPS, similar to conditional

GANs [109]. The discriminator contains three convolutional layers as shown in Figure 2.19. Different

from the generator, we do not employ BN layers in the discriminator. Using BN in the discriminator

leads to instabilities during training, especially if the discriminator loss is regularized [86, 99]. The

convolutional layers are followed by two FC layers. We use LeakyReLU activation with a slope of

0.2 in all layers, except for the output layer, where we use a linear activation function. The details of

both network architectures are shown in Table 2.1.

Loss Functions

In this section, we describe the training objectives of the generator and the discriminator. First, we

train our network using a reconstruction loss as initialization for several epochs. This process lets the

generator to produce the “mean” results, which are overly smooth. Then, we switch to using both the

reconstruction loss and an adversarial loss (GAN loss). Using GAN loss produces sharper and more

detailed LPSs. We use a parameter to weight these two losses in the generator’s objective function. In

the following, we explain the details for each loss function.
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Table 2.1: Detailed parameters of the proposed network architecture. The number of channels and
hidden units, filter sizes, strides, activations and output shapes are shown for each layer in the gen-
erator and discriminator networks. K and N are the narrowband and the high-frequency range LPS
dimensions along the frequency axis, respectively. K is 129 and 65 for 2x and 4x super-resolution
scales, respectively. N is 141 and 199 for 2x and 4x super-resolution scales, respectively.

Net Layer Activation Filter No. Filter Size Stride BN Sub-Pix Output Shape
Generator Input - - - - - - 32×K

Conv LeakyReLU 256 (7, 1) (2, 1) Yes No 16× 256
Conv LeakyReLU 512 (5, 1) (2, 1) Yes No 8× 512
Conv LeakyReLU 512 (3, 1) (2, 1) Yes No 4× 512
Conv LeakyReLU 1024 (3, 1) (2, 1) Yes No 2× 1024
Conv LeakyReLU 512 (3, 1) (1, 1) Yes Yes 4× 512
Conv LeakyReLU 512 (5, 1) (1, 1) Yes Yes 8× 512
Conv LeakyReLU 256 (7, 1) (1, 1) Yes Yes 16× 256
Conv LeakyReLU N (7, 1) (1, 1) Yes Yes 32×N
Conv LeakyReLU N (9, 1) (1, 1) No No 32×N

Discriminator Input - - - - - - 32× (K +N)
Conv LeakyReLU 1024 (7, 1) (2, 1) No No 16× 1024
Conv LeakyReLU 1024 (5, 1) (2, 1) No No 8× 1024
Conv LeakyReLU 1024 (3, 1) (2, 1) No No 4× 1024
Flatten 4096
FC LeakyReLU 2048 No 2048
FC Sigmoid 1 No 1

Reconstruction Loss There are a few candidates for the reconstruction loss. The most common

distance functions are L1-norm and L2-norm, or namely, Mean Absolute Error (MAE) and Mean

Squared Error (MSE). Our initial testing showed that using Log-Spectral Distance (LSD) (or Log-

Spectral Distortion) function as our training objective yield slightly better results for the SSR task. The

LSD measures the distance between two spectrograms in decibels, and it is mathematically defined as

follows:

lLSD =
1

L

L∑
l=1

√√√√ 1

K

K∑
k=1

[XHR(l, k)−XSR(l, k)]2, (2.7)

where XHR and XSR are the ground truth and estimated LPS, respectively K is the number of fre-

quency bins. LSD is used widely for evaluating SSR methods objectively. In this work, we use it

as both the reconstruction loss and an objective evaluation metric. LSD is essentially the average L2

distance of LPS across time frames.

Adversarial Loss The original generative adversarial network (GAN) is a two player, zero-sum

(minimax) game between a generator and a discriminator. The generator’s job is to generate realistic

data that can fool the discriminator into classifying it as real data, while the discriminator’s job is to

distinguish the real and fake data apart. When this game reaches a Nash equilibrium, the generator is
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able to produce realistic data that the discriminator cannot tell from real data. In the SSR context in

this work, this two-player game can be defined as follows:

min
θ

max
ψ

EP[logDψ(XHR)] + EQ[log(1−Dψ(Gθ(X
NB)))],

P : XHR ∼ p(XHR)

Q : XNB ∼ p(XNB)

(2.8)

where XHR is the high resolution data (real data), XNB is the narrowband data. Gθ(·) is the gen-

erator and Dψ(·) is the discriminator, where θ and ψ represent their trainable parameters. P is the

distribution of real data and Q is the distribution of the narrowband data. This formulation assumes

the generator contains the concatenation of narrowband LPS and high-frequency LPS. This equation

can be simplified as follows:

min
θ

max
ψ

EP[logϕR] + EQ[log(1− ϕF )], (2.9)

where ϕR and ϕF are the discriminator output for real and fake data, respectively.

In practice, unregularized GANs are usually unstable during training, depending on the task at

hand, and do not always converge [99]. To stabilize the GAN training, we add a penalty on the

weighted gradient-norms of the discriminator as described in [86]. The regularization term is de-

scribed as:

Ω = EP[(1− ϕR)2‖OφR‖2] + EQ[ϕ2
F‖OφF‖2], (2.10)

where φ = σ−1(ϕ), and σ is the sigmoid activation used in generating the output of the discriminator.

Note that the gradients are computed on φ, before the sigmoid activation, which yields more robust

gradients [86]. We add this term into the traditional GAN loss and obtain the loss for the discriminator

as follows:

lDIS = EP[logϕR] + EQ[log(1− ϕF )]− γ

2
Ω, (2.11)

where γ is the weight for the regularization term.
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Figure 2.20: The adversarial training procedure for the proposed method. The generator contains the
concatenation of narrowband LPS and high-frequency LPS.

The generator loss is defined as the weighted sum of the reconstruction loss and the adversarial

loss. We minimize the following function:

lGEN = EQ[− log(Dψ(Gθ(X
NB)))] + λlLSD, (2.12)

where lLSD is the loss function described in Equation (2.7) and λ is the weighting factor for the LSD

loss.

2.2.4 Experiments

In this section, first, we describe the data used in this study and how we prepared the data for

network training. Next, we describe the objective metrics used for evaluating our method. Then, we

show the results of our experiments and analyze our network architecture by changing parameters.

Next, we investigate our network’s resilience to background noise, propose a training method to make

the network robust against noise. Finally, we conclude this section by describing and presenting the
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results of a subjective evaluation of our method.

Datasets

The CSTR Voice Cloning Toolkit Corpus (VCTK), which is originally designed for training Text-

to-Speech (TTS) synthesis systems, was used to train our network. There are a total of 109 English

speakers with different accents. The recordings are 16-bit WAV files with 48 kHz sampling rate and

contain clear speech. Each speaker utters 400 sentences, where the sentences are either taken from

newspaper articles, the International Dialects of English Archive’s Rainbow passages or an elicitation

passage that aims to identify the speaker’s accent. We split this dataset into training and validation

sets, where we randomly chose six speakers for the validation set and use the rest for the training set.

We employed another dataset for evaluation that has different speakers and different recording

conditions than the VCTK corpus, in order to evaluate the generalization capability of our network.

This is the Wall Street Journal (WSJ0) corpus, where the speakers read the Wall Street news articles

plus spontaneous dictations. The sampling rate of the recordings is 16 kHz. The recordings contain

natural background noise. We randomly selected 5000 samples (around 12 hours) within this dataset

for the objective evaluations.

We applied a low-pass filter and downsampled the high-resolution signals to obtain their parallel

low-resolution signals for training and testing.

Objective Metrics

To evaluate our method and compare it with the baselines, we employed LSD defined by Equation

(2.7), Segmental Signal-to-Noise Ratio (SegSNR) [110], and Perceptual Evaluation of Speech Quality

(PESQ) [72] objective metrics, which are widely used for SSR and speech enhancement literature.

LSD measures the similarity between two spectrograms in decibels and defined in Equation (2.7),

where a lower value is better. SegSNR is the signal-to-noise (SNR) ratio, averaged over segments of
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audio samples. It is defined as:

SegSNR =
1

L

L∑
l=1

10log

∑N
n=1[x(l, n)]2∑N

n=1[x(l, n)− x̂(l, n)]2
, (2.13)

where L is the number of segments, and N is the number of data points in the utterance. A higher

value of SegSNR is better.

PESQ measures speech quality and it is standardized by the International Telecommunication

Union Telecommunication Standardization Sector (ITU-T). It is widely used in industry to assess the

quality of telephony speech and in research fields such as speech enhancement. PESQ ranges from

-0.5 to 4.5, where higher values correspond to better speech quality.

Baseline Methods

We chose two state-of-the-art methods described in Section 2.2.2 as comparison baselines. The

first baseline is an FFT-based method [84], which we name as BL1 through the rest of the paper. The

neural network architecture of BL1 is a DNN with three hidden layers with 2048 hidden units per

hidden layer. The network accepts nine STFT frames, including four past and four future frames, and

generates a single STFT frame. The objective function of this network is MSE. We implemented BL1

as described in the original paper, except that we used VCTK corpus for training in order to fairly

compare all methods. Since this work only considers 2x SSR, we did not implement 4x SSR version

of this work.

The second baseline is a waveform-based method [85], which we name as BL2 through the rest

of the paper. Similar to ours, this network is a convolutional autoencoder, although our network

is applied to spectrograms instead of waveforms. Another difference is that their network has an

additive residual connection between the input and output of the network. The number of filters of

the convolutional encoder layers is 128, 256, 512, and 512, and is 512 for the bottleneck layer. The

decoder has twice the number of filters in the encoder layers but in reverse order. The size of filters

of the convolutional encoder layers is 65, 33, 17, and 9, and is 9 for the bottleneck layer. The size

of filters in the decoder layers are the same as the encoder but in reversed order. Their network is
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(a) 2x SSR results

(b) 4x SSR results

Figure 2.21: Spectrogram examples for 2x and 4x, shown in (a) and (b), respectively. The samples
are randomly selected from the WSJ0 corpus (unseen speakers). The first row in each Figure shows
the ground truth high-frequency range spectrograms. The second and third rows show the generated
high-frequency range spectrograms of the proposed network trained with only the LSD loss (second
rows) and with both LSD and GAN losses (third rows).

trained with the MSE objective function. For implementation, we used the code provided by the

authors directly to generate results for both 2x and 4x SSR, using the hyperparameters described in

their paper. To ensure fairness, we used the exact same data we used for our method during training

and testing the baselines.

Pre-Processing

For our method, we applied the band-limited sinc interpolation method described in [111] to the

high-resolution signal and obtained the downsampled signal. We computed the short-time Fourier

transform (STFT) on both low and high-resolution signals, with 32 ms window size and 8 ms hop

size. We applied the log and power operations to these spectrograms to obtain log-power spectra

(LPS). We chopped up the utterances into T timesteps and form our dataset with narrowband and
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high-frequency range LPS pairs.

Similarly, for BL1, we followed the same steps. However, we followed their original implementa-

tion, and instead of 8 ms hop size, we used 16 ms hop size.

For the pre-processing for BL2, we used the author’s code, which is available online. The low-

resolution signals were created by applying an order 8 Chebyshev type I low-pass filter and downsam-

pling the high-resolution signals. The low-resolution signals were upsampled to match the size of the

high-resolution signals using cubic upscaling as the input to their neural network. The samples were

chopped into patches with the length of 6000 in the high-resolution space (0.375 seconds), which is

the same for 2x and 4x scales.

Implementation Details of Proposed Method

We implemented our system in Tensorflow [112]. We used mini-batches during training, and we

set the mini-batch size to 64. We trained our network using only the LSD loss for 50 epochs, and

then switched to LSD plus GAN loss for 100 epochs. We decided the number of epochs empirically.

We still use LSD loss during GAN training, which keeps the output around the mean distribution as

discussed in [103]. The number of time-steps T of our input and output spectrograms is 32. We used

a learning rate of 10−4 when training the network using only LSD loss, and we used a learning rate

of 10−5 for both the generator and discriminator when training the network using LSD plus GAN

losses. We chose lower learning rate during GAN training to further stabilize it. The λ value is

set to 0.5. We used Adam optimizer [113] to train our generator and RMSProp optimizer [114] to

train the discriminator. The K variable shown in Table 2.1 is 129 for 2x experiments and 65 for 4x

experiments. The frequency offset value is calculated according to the following formula:

C = floor(
K

10
) + 1, (2.14)

whereK is the number of frequency bins in the input spectrogram. TheN variable shown in Table 2.1

is 141 and 199 for 2x and 4x super-resolution scales, respectively. The γ variable shown in Equation

(2.11), which weighs the regularization term for the discriminator, is set to 2. Please note that we did
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Table 2.2: The objective evaluation results for 2x and 4x SSR experiments. The bolded values show
the best results. Our method (SSR-GAN) outperforms the baselines for all metrics. LSD HF shows
the LSD value calculated only for the high-frequency range, where LSD Full shows the LSD value
calculated for the whole spectrogram.

Scale Method LSD HF
(dB)

LSD Full
(dB)

SegSNR
(dB) PESQ

2x

BL1 [84] 9.32 7.06 15.73 4.21
BL2 [85] 10.56 7.64 14.96 4.19
SSR-LSD 8.60 6.09 17.58 4.25
SSR-GAN 8.20 5.95 19.64 4.32

4x
BL2 [85] 16.20 14.96 8.24 2.89
SSR-LSD 14.10 12.42 11.78 3.26
SSR-GAN 12.90 10.24 13.01 3.40

not use decaying on this parameter as in the original work [86]. We normalized the input and output

LPSs to have zero mean and unit variance. We calculated these statistics from the training data and

applied them during inference. We reverted the normalization when we calculate the LSD loss during

training since calculating LSD on normalized data does not make sense perceptually.

2.2.5 Results

Objective evaluation results are shown in Table 2.2. The table shows the high-frequency LSD

values (LSD HF), full-range frequency LSD values (LSD Full), SegSNR values and PESQ values for

the baseline methods, our neural network trained with only the LSD loss (denoted as SSR-LSD) and

that with the full loss SSR-GAN. SSR-GAN method outperforms the baselines in both 2x and 4x SSR

tasks with a good margin in terms of all of the three objective evaluation metrics. The improvement

of our method, compared to BL2, is more pronounced in the 4x setting.

Figure 2.21 (a) and (b) show the example spectrograms, where the first row is the ground truth

high-frequency range spectrogram, the second row is the high-frequency range spectrograms obtained

from the SSR-LSD, and the third row shows SSR-GAN results, for 2x and 4x, respectively. Note that

the LPSs on the second rows are overly smooth. After the GAN training, the resulting LPSs are

sharper, containing fine details and usually, more energy. Generating more energy, in addition to

generating fine details, leads to slightly better objective measures as seen in Table 2.2. Nevertheless,
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Figure 2.22: Objective evaluation results are presented for changing the number of layers in the
encoder and decoder of the generator network. The results for 2x and 4x scales are shown in (a)
and (b), respectively. The four sets of bars show LSD HF, LSD Full, SegSNR, and PESQ values,
respectively.

the difference between the objective results for SSR-LSD and SSR-GAN are somewhat close compared

to the baselines, especially for LSD metrics. We believe that the benefit of adversarial training is more

evident for the subjective evaluations, which we discuss in Section 2.2.6.

Architecture and Parameter Analysis

In this section, we analyze our network by changing the number of hidden layers and the number

of filters to see how they influence the objective evaluation results.
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Number of Hidden Layers Our proposed generator contains three encoder layers, followed by

a bottleneck layer, three decoder layers, an upsampling layer, and an output layer. Note that the

encoder and decoder layers are symmetric. We varied the number of layers in the encoder and decoder

and reported the objective evaluation results in Figure 2.22. The results show that the network with

three layers generally achieves the best performance across all of the objective metrics, although the

differences between the three layers and four layers are rather small for the 2x scale. The network with

one or two layers, however, achieves significantly worse performance. We believe that the networks

with one or two layers perform worse due to underfitting, i.e., the capacity of these networks is not

sufficient to learn patterns in the training corpus. As for the four-layer configuration, the performance

slightly drops compared to three layers, which suggests that the increased capacity leads to overfitting.

Considering the computational cost and slight performance differences between three layers and four

layers, the three-layer configuration is preferred in our experiments.

Number of Filters Next, we investigated the effect of varying the number of filters on our gen-

erator network. We investigated two other configurations in addition to the original configuration

shown in Table 2.1. The first configuration is called Half, where the number of filters of the original

configuration is halved. The second one is called Double and has twice the number of filters of the

original configuration. The results are shown in Figure 2.23. The results show that the configuration

Half performs worse than the original in terms of objective measures, although the difference is not

significant. This is a good option for systems with limited resources, where the number of filters can

be halved in order to reduce the computational costs. Again, we suspect that the Half configuration

suffers from underfitting due to the reduced capacity. For the Double configuration, increased com-

putational complexity does not translate much into the performance gain compared to the original.

Interestingly, for 4x scale, Double yields slightly better results for LSD HF and LSD FULL metrics,

but overall, yields slightly lower speech quality. We believe that this is due to overfitting.
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Figure 2.23: Objective evaluation results are presented for changing the number of filters of the
generator network. The results for 2x and 4x scales are shown in (a) and (b), respectively. Half and
Double means that the number of filters shown in Table 2.1 has been halved and doubled, respectively.
The four sets of bars show LSD HF, LSD Full, SegSNR, and PESQ values, respectively.

Loss Weight Parameter (λ)

We analyzed the impact of changing the loss weight parameter λ. Increasing the value of λ in-

creases the weight of the reconstruction loss. In this experiment, we used the following λ values: 0.01,

0.1, 0.5 (default), 1, and 10. The results for 2x and 4x scale experiments are shown in Figure 2.24.

As the λ value increases the objective results get closer to the SSR-LSD results. On the other hand,

decreasing λ from the default value of 0.5 leads to a degradation in generation quality. Since GAN
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Figure 2.24: Objective evaluation results are presented for different loss weight parameters (λ) and
for SSR-LSD for comparison. The results for 2x and 4x scales are shown in (a) and (b), respectively.
The four sets of bars show LSD HF, LSD Full, SegSNR, and PESQ values, respectively.

loss becomes dominant, the generator produces speech-like spectrogram shapes that are unintelligi-

ble. In conclusion, we chose λ = 0.5 since it seemed a good balance between generating sharp and

intelligible results.

2.2.6 Noise Analysis

In real-world applications, the incoming speech signal has a high chance of containing background

noise. Therefore, we further analyze our method against unseen time-varying noise types in this
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Table 2.3: Objective evaluation results for noise analysis.

Scale Noise Type Method LSD HF (dB)

2x

Babble
SSR-GAN 14.63

NR-SR-GAN 10.23

Factory
SSR-GAN 13.47

NR-SR-GAN 9.97

Motorcycle
SSR-GAN 14.24

NR-SR-GAN 10.08

4x

Babble
SSR-GAN 17.35
NR-SR-GAN 14.12

Factory
SSR-GAN 16.78
NR-SR-GAN 13.56

Motorcycle
SSR-GAN 17.16
NR-SR-GAN 13.84

section. We trained our network against noise, by creating a dataset, where the narrowband signal

is mixed with noise types in -6, -3, 0, 3, 6 and 9 dB SNR. We call this version of our network

noise resilient SSR-GAN (NR-SSR-GAN). The network tries to predict the clean high-frequency range

LPS from corrupted narrowband LPS. We employed the noise data from [115] for training. For

evaluation, we used unseen noise types that were not present during training. Specifically, we used

babble and factory noises described in [68] and a motorcycle noise described in [69]. We report the

high-frequency range LSD results for samples that are mixed with 0 dB signal-to-noise ratio (SNR)

testing noises using our base network model (SSR-GAN) and NR-SSR-GAN in Table 2.3. The results

suggest that noise resilient version of SSR-GAN can yield better scores against all three test noise types

than the original SSR-GAN. The most challenging noise type is babble noise, followed by motorcycle

noise and lastly, the factory noise.

Subjective Evaluations

Perception Test We conducted subjective evaluations to test if our method is successful regarding

human perception. In our evaluations, we used a MUSHRA (MUltiple Stimuli with Hidden Reference

and Anchor) test [116]. We compiled two test sets, one for 2x scale and one for 4x scale, where

each of them contains 10 different tuples of signals with 5 signals in each tuple. These 5 signals

included the narrowband signal (anchor), ground-truth high-resolution signal (reference), predicted

super-resolution signals of our methods (SSR-LSD and SSR-GAN), BL1 for 2x scale, and BL2 for 4x
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Figure 2.25: The subjective evaluation results (MUSHRA test) for 2x and 4x scales are shown in (a)
and (b), respectively. The error bars show the 95% confidence intervals.

scale. We wanted to limit the test time for each subject within 30 minutes; therefore we only used

samples generated from one baseline method for each experiment. Before starting the experiments,

each volunteer was trained by listening to 10 pairs of low and ground-truth high-resolution samples

that were not contained in the testing tuples. After training, the testing utterances were presented to

the volunteers in tuples, and within a tuple, the samples were presented randomly. The volunteers

assigned a score between 0 and 100 for each utterance, where 0 corresponds to the low-resolution

signal, and 100 corresponds to the high-resolution signal. We recruited 20 volunteers, where each

of them evaluated 100 utterances (50 per 2x and 4x scales). During the test, the evaluators could
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listen to each utterance as many times as they wanted, and could listen to the reference signal (high-

resolution signal) anytime. In MUSHRA experiments, the utterance tuples for which the evaluator

failed to identify the hidden reference signal should be excluded. In our experiments, all evaluators

successfully identified the hidden reference signal for all tuples.

The 2x scale experimental results are shown in Figure 2.25 (a). The ground-truth high-resolution

speech has an average score of 90.31, which is followed by the SSR-GAN with an average score

of 75.19%. The SSR-LSD achieves a score of 57.63%. The low-resolution signal and BL1 has low

scores, which are 17.7% and 36.6%, respectively. A paired t-test shows that the SSR-GAN score

are statistically better compared to those of SSR-LSD and BL1 at the significance level of 0.01 (p =

10e-43).

Figure 2.25(b) shows MUSHRA test results for the 4x scale. The results show that the 4x experi-

ments are more challenging compared to 2x experiments. The gap between the high-resolution score

and the SSR-GAN is around 41%. SSR-GAN can still outperform the baseline method and has slightly

more than 50% score. A paired t-test shows that the SSR-GAN results are statistically better compared

to the SSR-LSD and BL2 results at the significance level of 0.01 (p = 10e-36).

Although SSR-GAN only slightly outperforms SSR-LSD in objective evaluation, their subjective

evaluation results show a wider gap and the evaluators clearly preferred SSR-GAN over SSR-LSD.

This outcome confirms the benefit of using the GAN loss for the SSR task.

Intelligibility Test To rule out the possibility that the proposed SSR-GAN approach generates high-

quality speech like sounds that are actually incomprehensible, we further conducted a listening test to

check the intelligibility of the generated high-resolution speech. We employed the TIMIT dataset [117]

for this test since it is distinct from our training dataset and the transcriptions of the sentences are

available. As a baseline, we included the low-resolution samples into this test. We randomly selected

10 utterances with the low-resolution and selected 10 different utterances generated by SSR-GAN per

2x and 4x scales, totaling 40 sentences. We employed 20 volunteers among University of Rochester

Graduate students, each of which evaluated all 40 sentences. During the experiments, the evaluators

were presented each sample twice and were asked to transcribe the words.
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Table 2.4: The intelligibility test results. The mean and standard deviation (std) of word error rate
(WER) is shown for the 2x and 4x scale experiments using SSR-GAN.

Scale Method WER mean (%) WER std (%)

2x low-res 1.64 1.36
SSR-GAN 1.48 1.28

4x low-res 4.27 2.86
SSR-GAN 3.82 2.12

Table 2.4 shows the mean and standard deviation of the word error rate (WER) between the

ground-truth and evaluators’ transcription. The error rates for the 2x scale experiment are 1.48%

and 1.64% for SSR-GAN and low-resolution signal (8 kHz sampling rate), and for the 4x scale exper-

iment, they are 3.82% and 4.27% for SSR-GAN and low-resolution signal (4 kHz sampling rate). The

2x scale experiments have a lower error rate compared to 4x scale experiments since 8 kHz speech

signals are more comprehensible than 4 kHz speech signals. Since SSR-GAN error rates are slightly

lower than the low-resolution signal error rates, it can be concluded that the proposed SSR method

does not impair the speech intelligibility.

Stability of GAN Training

In this study, we have considered different types of GANs and regularization techniques for sta-

bilizing their training processing for SSR. We started from exploring the vanilla GAN [96]. After

training it for a few epochs, it became unstable and produced nonsensical results. We observed sim-

ilar issues for the WGAN [100] and the least-squares GAN [118]. Next, we explored GANs with

regularization. WGAN-GP [101] and a GAN with instance noise regularization [102] produced more

meaningful (spectrograms that looked like speech) yet not intelligible results. Finally, the regulariza-

tion method suggested by Roth et al. [86] stabilized the GAN training, and led to the results obtained

in this work. The regularizer [86] introduces a term that penalizes the weighted gradient-norm of the

discriminator, leading to overcome the phenomenon called mode collapsing effectively. Furthermore,

it is a simple modification over the traditional GAN implementation and is computationally efficient

compared to other regularization schemes.
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Table 2.5: Computational complexity in terms of floating point operations per second (FLOPS),
FLOPS per generating 1 second of speech and number of parameters for the baselines (BL1 and
BL2) and the proposed SSR-GAN method.

Scale Method
Number of
Parameters

Computational
Complexity

(FLOPS)

FLOPS per
1 second
of speech

2x
BL1 [84] 11.2 M 45.1 M 2.9 B
BL2 [85] 56.4 M 76.2 B 202.7 B
SSR-GAN 14.6 M 154.0 M 616.0 M

4x BL2 [85] 56.4 M 76.2 B 202.7 B
SSR-GAN 16.0 M 190.5 M 762.0 M

2.2.7 Computational Complexity

We compare the computational performance of our method with the baselines using two metrics:

floating point operations per second (FLOPS) and the number of trainable parameters. To obtain the

FLOPS for each network, we employed Tensorflow’s profiler.

Table 2.5 shows these values for 2x and 4x configurations of our method and the baselines. Please

note that for BL2, the scale does not influence the computational complexity, since the input is always

up-sampled to the target resolution. From values in the 2x scale, it can be observed that the fastest

network during run time is BL1, followed by our method. It is important to highlight that BL1 gen-

erates a single frame, while BL2 and our method generate multiple frames. Therefore, we calculated

the FLOPS value for generating 1 second of speech for each of these methods and concluded that our

method has the lowest complexity.

Phase Estimation

In this work, we simply flipped the phase of the low-resolution signal as the phase of the high-

frequency range of the SSR output. To improve our results, we considered Griffin-Lim algorithm

[119] to estimate the phase of the high-range frequencies. However, the results contained artifacts,

namely musical noise, and compared to flipped-phase we used in our experiments, they were not

satisfactory. We think it is beneficial to share this finding with the research community. In addition,

some example samples reconstructed with Griffin-Lim algorithm are shared in the link we provided.
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Future research directions to improve our results include estimating the phase using a deep learning

approach or directly estimating the raw waveform.

2.2.8 Conclusions

We introduced a novel method for speech super-resolution using adversarial training and sequence-

to-sequence modeling. To stabilize the GAN training, we employed a regularization method that

penalizes the discriminator’s gradient norms. Our generator architecture is a bottleneck encoder-

decoder, while our discriminator architecture contains a convolutional decoder followed by fully con-

nected layers. We used 1D kernels in the convolutional layers to reduce the computational complexity.

The proposed method was evaluated for 2x (8 kHz to 16 kHz) and 4x (4 kHz to 16 kHz) scale super-

resolution. We showed that our method outperforms the two state-of-the-art baseline methods in terms

of objective metrics. We also conducted a subjective intelligibility evaluation, which showed that our

method can score closely to the ground-truth high-resolution signal for the 2x scale, and can perform

decently for the 4x scale. In additional experiments, we introduced a training method to increase

the system’s resilience against non-stationary, unseen noise types for real-world applications. Future

directions include the estimation of phase information for better super-resolution quality.
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Chapter-3

Generating Talking Faces From Speech: Shape-Based
Methods

3.1 Generating Talking Face Landmarks From Speech

3.1.1 Introduction

Speech is a natural form of communication, and understanding speech is essential in daily life.

The auditory system, however, is not the only sensory system involved in understanding speech. The

visual cues from a talker’s face and articulators (lips, teeth, tongue) are also important for speech

comprehension. Trained professionals are able to understand what is being said by purely looking

at lip movements (lip reading) [120]. For ordinary people and the hearing impaired population, the

presence of visual signals of speech has been shown to significantly improve speech comprehension,

even if the visual signals are synthetic [11]. The benefits of adding the visual speech signals are more

pronounced when the acoustic signal is degraded, due to background noise, communication channel

distortion, and reverberation.

In many scenarios such as telephony, however, speech communication is still acoustical. The

absence of the visual modality can be due to the lack of cameras, the limited bandwidth of communi-

cation channels, or privacy concerns. One way to improve speech comprehension in these scenarios

is to synthesize a talking face from the acoustic speech in real time at the receiver’s side. A key chal-

lenge of this approach is to make sure that the generated visual signals, especially the lip movements,

well coordinate with the acoustic signals, as otherwise more confusions will be introduced.
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In this work, we propose to use a long short-term memory (LSTM) network to generate landmarks

of a talking face from acoustic speech. This network is trained on frontal videos of 27 different

speakers of the Grid audio-visual corpus [121], with the face landmarks extracted using the Dlib

toolkit [122]. The network takes the first- and second-order temporal differences of the log-mel

spectra as the input, and outputs the x and y coordinates of 68 landmark points. To help the network

capture the audio-visual coordination instead of the variation of face shapes across different people,

we transform all training landmarks to those of a mean face across all talkers in the training set. After

training, the network is able to generate face landmarks from an unseen utterance of an unseen talker.

Objective evaluations of the generation quality are conducted on the LDC Audiovisual Database of

Spoken American English dataset [123], which will be referred as the LDC dataset in the remainder

of this chapter. Subjective evaluation is also conducted to ask evaluators to distinguish speech videos

with ground-truth and generated landmarks. Both the objective and subjective evaluations achieve

promising results. The code and pre-trained talking face models are released to the community1

3.1.2 Related Work

Generating a talking head automatically has been a great interest in the research community. Some

researchers focused on text-driven generation [124, 125, 126, 127]. These methods map phonemes to

talking face images. Compared to text, voice signals are surface-level signals that are more difficult

to parse. Besides, voices of the same text show large variations across speakers, accents, emotions,

and the recording environments. On the other hand, speech signals provide richer cues for generating

natural talking faces. For text, any plausible face image sequence is sufficient to establish natural

communication. For speech, it must be a plausible sequence that matches the speech audio. Therefore,

text-driven generation and speech-driven generation are different problems and may require different

approaches.

There exist a few approaches to speech-driven talking face generation. Early work in this field

mostly used Hidden Markov Models (HMM) to model the correspondence between speech and facial

movements [128, 129, 130, 131, 132, 133, 134]. One of the notable early work, Voice Puppetry [128],
1http://www.ece.rochester.edu/projects/air/projects/talkingface.html
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proposed an HMM-based talking face generation that is driven by only speech signal. In another

work, Cosker et al. [130, 131] proposed a hierarchical model that animates sub-areas of the face

independently from speech and merges them into a full talking face video. Xie et al. [132] proposed

coupled HMMs (cHMMs) to model audio-visual asynchrony. Choi et al. [129] and Terissi et. al [133]

used HMM inversion (HMMI) to estimate the visual parameters from speech. Zhang et al. [134] used

a DNN to map speech features into HMM states, which further maps to generated faces.

In recent years, a few DNN-based approaches have also been proposed. Suwajanakorn et al. [4]

designed an LSTM network to generate photo-realistic talking face videos of a target identity directly

from speech. Their system requires several hours of face videos of the specific target identity, which

greatly limits its application in many practical scenarios. Chung et al. [20] proposed a convolutional

neural network (CNN) system to generate a photo-realistic talking face video from speech and a single

face image of the target identity. Compared to [4], the reduction from several hours of face videos to

a single face image for learning the target identity is a great advance.

While end-to-end speech-to-face-video generation is very useful in many scenarios, the main lim-

itation of this approach is the lack of freedom for further manipulation of the generated face video.

For example, within a generated video, one may want to vary the gestures, facial expressions, and

lighting conditions, all of which can be relatively independent of the content of the speech. These

end-to-end systems cannot accommodate such manipulations unless they can take these factors as ad-

ditional inputs. However, that would significantly increase the amount and diversity of data required

for training the systems.

A modular design that separates the generation of key parameters and the fine details of generated

face images is more flexible for such manipulations. Ideally, the key parameters should just respond

to the speech content, while the fine details should incorporate all other non-speech-content related

factors. Pham et al. [16] adopted a modular design: the system first maps speech features to 3D

deformable shape and rotation parameters using an LSTM network, and then generates a 3D animated

face in real-time from the predicted parameters. In [17], they further improved this approach by

replacing speech features with raw waveforms as the input and replacing the LSTM network with a

convolutional architecture. However, compared to face landmarks used in our proposed approach,
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Figure 3.1: Examples of extracted face landmarks from the training talking face videos. Certain
landmarks are connected to make the shape of the face easier to recognize. The first row shows
unprocessed landmarks of five unique talkers. The second row shows their landmarks after outer-eye-
corner alignment. The third row shows their landmarks after alignment and the removal of identity
information.

these shape and rotation parameters are less intuitive, and the mapping from these parameters to a

certain gesture or facial expression is less clear. In addition, the landmarks generated by our system

are for a normalized mean face instead of a certain target identity. This also helps remove factors that

are not directly related to the voice.

3.1.3 Proposed Method

In this section, we describe our method to generate talking face landmarks. First, we extract face

landmarks and align them across different speakers and transform their shapes into the mean shape

to remove the identity information. We extract the first and second order temporal difference of the

log-mel spectrogram and use them as the input to our system. Finally, we train an LSTM network to

generate the face landmarks from the speech features.
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Training Data & Feature Extraction

We employ the audio-visual GRID dataset [121] to train our system. There are in total 16 female

and 18 male native English speakers, each of which has 1000 utterances that are 3 seconds long. The

sentences are structured to contain a command, a color, a preposition, a letter, a digit, and an adverb,

for example, “set blue at C5 please”.

The videos are provided in two resolutions, low (360x288) and high (720x576). In this work, we

use the high-resolution videos. The videos use a frame rate of 25 frames per second (FPS), resulting

in 75 frames for each video. The speech audio signal is extracted from the video with a sampling rate

of 44.1 kHz.

We extract 68 face landmark points (x and y coordinates) using the DLIB library [122] from each

frame for each video in the dataset. Examples are shown in the first row of Figure 3.1. We calculate

64 bin log-mel spectra of the speech signal covering the entire frequency range using a 40 ms hanning

window without any overlap to match the video frame rate. We then calculate the first- and second-

order temporal differences of the log-mel spectra and use them as the input (128-d feature sequence)

to our network. We experimented using log-mel spectrogram with and without its first- and second-

order derivatives as input to our network. The generated mouth for many speech utterances in these

two setups, however, were almost always open even in silent segments, and the lip movements were

less prominent than the current system. The first- and second-order temporal differences of the log-

mel spectrogram may show less variations on the same syllable uttered by different speakers, and the

mismatch problem is less pronounced.

Face Landmark Alignment

Since the talking face may appear in different regions with different sizes in different videos, we

need to align them to reduce the complexity of training data. To do so, we follow the procedure

described in [135] to simply pin the two outer corners of the eyes in the first frame of each video to

two fixed locations, (180, 200) and (420, 200) in the image coordinate system, through an 6 DOF

affine transformation. We then transform all of the landmarks in all video frames with the same
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transformation. Note that we do not align each video frame using their own affine transformation

separately because we find that the eye-corner-based alignment is sensitive to eye blinks, which often

results in zoom in/out effects of the transformed face shape. Also note that our approach assumes

that the head does not move significantly within a video, as otherwise, the same affine transformation

would not be able to align faces in different frames. The second row of Figure 3.1 shows several

examples of the aligned face landmarks.

Removing Identity Information from Landmarks

After alignment, faces of different speakers are of a similar size and general location; however,

their shapes are still different as well as their mouth locations. This identity-related variation may

pose challenges to the network for capturing the relation between speech and lip movement, especially

when the amount and diversity of training data are small. Therefore, we propose to remove the identity

information from the landmarks before training the network.

To do so, we apply the following steps. First, we calculate the mean face shape by averaging all

aligned landmark locations across the entire training set. Second, for each face landmark sequence,

we calculate the affine transform between the mean shape and the first frame of the sequence. Third,

we calculate the difference between the current frame and the first frame and multiply with the scaling

coefficients obtained from the second step with the result obtained in the third step. Finally, we add

the mean shape to results obtained in fourth step to obtain the face landmark sequence that has no

identity. The third row of Figure 3.1 shows several examples of landmarks with the identity removed.

LSTM Network

Our proposed network, as shown in Figure 3.2, uses four long short-term memory (LSTM) [136]

layers with a sigmoid activation function. At each time step, the input to the network is the first and

second order temporal differences of the log-mel spectra of the current and the previous N frames.

This provides short-term contextual information. The output is the predicted the x and y coordinates

of face landmarks of the current frame (if no delay is added) or a previous frame (if a delay is added

as described below). The reason for adding delay is because lips often move before the sound is
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Figure 3.2: The LSTM network architecture for generating landmarks of a talking face from the first
and second order temporal differences of the log-mel spectrogram. hlt are the hidden layers, where t
is the time step and l is the hidden layer index. yt are the output face landmarks for the time step t.

produced. With a little delay, the network is able to “hear into the future” and can better prepare

for those lip movements. The generated lip movements tend to be smoother. The amount of delay

we introduce is between 1 (40 ms) and 5 frames (200 ms). This turns out to be enough for good

generation results and is still tolerable in real-time speech communication.

During training, we use dropout between each layer and between recurrent connections, with a

rate of 0.2. We use Adam optimizer to train our network. The training sequences are all 75 frames

long. We set the batch size to 128 sequences and the learning rate to 0.001. Our network minimizes

the following mean squared error (MSE) objective function JMSE ,

JMSE = 1
N

N∑
t

‖st − ŝt‖2 , (3.1)

where s and ŝ are the x and y coordinates of ground-truth (GT) and predicted (PD) face landmarks

sequences, respectively. N is the number of samples.

Finally, the predicted landmarks are further processed in order to fix the eye corner points to fixed
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Figure 3.3: Pair-wise comparison between ground-truth landmarks (black solid lines) and generated
landmarks (red dotted lines) on unseen talkers and sentences. The second image shows a failure case
for “oh” sound.

points as described in Section 3.1.3, which produces more stable talking face landmarks.

Due to causality constraints, the bidirectional LSTM network is not considered in our experiments.

We have also experimented with fully connected architecture instead of LSTM. However, the resulting

face landmarks often show sudden jumps between frames, which looks unnatural. This is due to not

having temporal connections in the architecture.

3.1.4 Experiments

We conduct our objective and subjective evaluations on a totally different audio-visual dataset,

the LDC dataset [123]. It contains 10 female and 4 male speakers, where each speaker provides 94

samples, totaling to 1316 utterances. The duration of the videos is arbitrary, and the resolution of

the samples are 720x480. Since the frame rate of the videos is higher than the Grid dataset used to

train our system, we resampled the videos to the same frame rate of 25 FPS. The vocabulary of the

LDC dataset is much larger than that of the Grid dataset. There are various words and sentences from

TIMIT sentences [137], Northwestern University Auditory Test No. 6 [138], and Central Institute

for the Deaf (CID) Everyday Sentences [139]. The audio stream is provided at 48 kHz sampling

rate, which we down-sampled to 44.1 kHz. Figure 3.3 shows examples of ground-truth and generated

face landmarks in the first and second row, respectively. Examples of generated videos are publicly

accessible2.
2http://www.ece.rochester.edu/projects/air/projects/talkingface.html
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Table 3.1: Objective evaluation results for different system configurations. The models are named
according to the amount of delay and contextual information. For example, “D40-C5” describes a
model trained with 40 ms delay and 5 frames of context. The lower value means better results, where
the ideal result is zero.

RMSE RMSE First Diff RMSE Second Diff
D0-C3 0.0954 0.0045 0.0073
D0-C5 0.0945 0.0042 0.0071
D40-C3 0.0932 0.0039 0.0068
D40-C5 0.0921 0.0032 0.0065
D80-C3 0.0946 0.0044 0.0072
D80-C5 0.0944 0.0043 0.0069

Objective Evaluation

We report the root-mean-squared error (RMSE) results between the ground-truth (GT) and pre-

dicted (PD) face landmarks according to Equation 3.1. The landmarks scale are between 0 and 1,

therefore RMSE value of 0.01 approximately equivalent to 1% error. We also report the RMSE of the

first and second order temporal differences of the GT and PD face landmarks to assess the movement.

We report the results in Table 3.1. These results serve as a way of model selection. The best model

according to these results is the model that has 40 ms delay and 5 frames of context information

(D40-C5). We selected this model to conduct the subjective evaluations, which are described in the

next section.

Subjective Evaluation

We conducted subjective tests to determine if our system can generate realistic face landmarks. 17

naive volunteer evaluators who are graduate students at the University of Rochester participated in the

test. The test presented 25 real landmark videos and 25 generated landmark videos in a randomized

order to each evaluator and asked the evaluator to label whether each presented video was real or

fake. Each video was presented twice in the randomized video sequence. The real landmark videos

were created from randomly selected LDC videos. Landmarks were extracted and aligned, and the

identity information was removed, according to Section 3.1.3. Fake videos were generated from the

audio signals of another 25 randomly selected LDC videos. The GT landmarks were noisy; hence
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Figure 3.4: Subjective evaluation results. The mean accuracy score and its standard deviation are
averaged over all subjects. The mean confidence scores and their standard deviations are averaged
over all subjects and videos.

we also added Gaussian noise to the PD landmarks to make them look more like the GT landmarks.

In addition to a binary decision, the evaluators were asked to report their confidence level of each

decision, between 0 and 100 percent.

The mean accuracy score of the evaluators are shown in Figure 3.4, along with the overall mean

confidence score and the mean confidence score for the correctly and incorrectly predicted samples.

The results show that the evaluators struggled to distinguish real and generated samples, as the ac-

curacy is 42.01% which is even below chance (50%). Another interesting observation of this test is

that the mean confidence score for accurately determined samples is lower than that for inaccurately

determined samples. This suggests that the evaluators had a higher classification accuracy when they

were more cautious. Another outcome is that the mean confidence score on answers for generated

samples is more than the confidence score on answers for the ground truth samples.

3.1.5 Conclusions

In this work, we present a method to generate talking face landmarks from speech. We extract face

landmarks from the Grid corpus, align them across different speakers, and transform their shapes into

the mean shape to remove the identity information. The LSTM network predicts the face landmarks

from the first and second order temporal differences of the log-mel spectrogram from any arbitrary

voice. The network can produce face landmarks that look natural for the given speech input. The
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main limitation of this network is that it cannot produce “oh” and “oo” sounds correctly. We plan to

balance the phonetic content of the dataset to enable the network to produce all phonemes correctly in

our future work. We will evaluate the system against noise, and improve it to obtain a noise-resilient

system in our future work. We report objective and subjective evaluation results that are promising.

We release the code and example videos to the community.

3.2 Noise-resilient Training Method For Face Landmarks Gen-
eration From Speech

3.2.1 Introduction

Speech communication between humans is often not merely via the acoustic channel; visual cues

can also play an important and even critical role. Extensive studies have shown that seeing lip move-

ments besides hearing speech can significantly improve speech comprehension for both the general

and hearing impaired population [8, 9, 10, 11], especially when background noise or compression

effects corrupt the acoustic signal.

Therefore, having ways to generate talking faces from acoustic speech signals would significantly

improve speech communication and comprehension in many scenarios and enable many applications.

It improves access to abundantly available speech content on the web for the hearing impaired pop-

ulation. It is also useful in AR/VR professional training applications for pilots, drivers, machine

operators, doctors, police officers, and soldiers, where the training scenarios are often noisy, and

audio-only speech comprehension can be challenging. It is also useful for developing visual dubbing

applications for movies.

To this end, researchers proposed end-to-end and module-based systems. End-to-end data-driven

methods can learn the mapping between speech and visual cues; as a result, they can generate natural

looking talking faces [4, 20, 17]. However, utilizing separate modules to generate the key parameters

(articulation, mouth shapes) and fine details (texture, identity) has benefits. The key parameters,

such as face landmarks, are driven by the speech content directly, and they play the skeleton role
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in such systems. Another module can further process the generated face landmarks to impose photo-

realistic textures and details of the face. This modular design provides more flexibility than end-to-end

generation systems. For example, the face landmarks can be manipulated before being processed by

the texture module to change the facial expression, emotion and the fine articulation of words.

Speech signals encountered in the wild often contain background noise that degrades the perfor-

mance of automatic speech processing systems. It is vital that the talking face generation system is

resilient to such background noise in practice. To our best knowledge, however, most of the existing

systems do not consider background noise in their system design and evaluation.

In this work, we improve on our previous work [5] and present a new method that generates

3D face landmarks directly from the raw waveform. We propose a novel pre-processing method to

normalize the identities of the face landmarks. In addition, we propose a neural network that pro-

cesses the waveform with convolutional layers with 1D filters and predicts the active shape model

(ASM) parameters of 3D face landmarks with a following fully connected (FC) layer. We train the

network with pairs of speech audio and 3D face landmarks extracted from the GRID dataset [121].

To cope with background noise in speech input, we further propose a noise-resilient training method

that uses speech enhancement ideas in feature learning. Objective evaluations show that our proposed

method yields better results than two state-of-the-art baseline methods. Results also show signifi-

cant improvement thanks to the noise-resilient training method in non-stationary noise conditions.

Through subjective evaluations, we show that the generated 3D face landmarks demonstrate a con-

vincing match with the speech audio signals. To promote scientific reproducibility, we release several

generation examples, code of the proposed system, and pre-trained models3.

Compared to our preliminary work [5], we make the following contributions in this work: 1) We

generate 3D face landmarks as opposed to 2D as our previous work. Including the 3rd dimension

allows novel applications such as AR/VR, video games and movie dubbing. 2) Instead of Mel-

Frequency Cepstral Coefficients (MFCC) and their temporal derivatives, we directly input the raw

waveform to the network. 3) We propose a new network architecture that replaces Long Short-Term

Memory (LSTM) layers with convolutional layers for improving the results on raw waveform inputs.

3http://www.ece.rochester.edu/projects/air/projects/3Dtalkingface.html
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4) We propose a noise-resilient training method to incorporate speech enhancement ideas at the fea-

ture level to increase the system’s robustness to non-stationary background noise. This noise-resilient

training method can be applied to other speech processing tasks such as automatic speech recognition,

emotion recognition, and speaker identification/verification.

3.2.2 Related Work

The multi-modal approaches can be divided into two categories, approaches that utilize multi-

modal inputs to boost their performances, and approaches that convert one modality into another

one. The research community showed that using visual modality in addition to the audio modality

can significantly improve the performance of the traditional problems such as speech enhancement,

source separation, speech recognition, emotion recognition, and voice activity detection [140, 141,

142, 143, 144, 145]. Conversion between the text, audio, and visual modalities has been extensively

studied over the years [146, 147, 148]. In the following, we describe the works that generate visual

signals from speech.

Generating talking faces from speech has drawn attention from researchers in recent years. There

are shape model-oriented methods and image-oriented methods. Shape model-oriented methods usu-

ally employ a deformable face shape model, where the face shape is represented by sparse points in

a 2D or 3D space. These models can be controlled by low dimensional parameters that are often

obtained by principal component analysis (PCA) or other dimensionality reduction methods. Image-

oriented models predict the RGB face or mouth image sequences directly from speech. Some of these

methods use intermediate representations as constraints, such as the face or mouth landmarks.

Some works generate talking faces from the text [124, 125, 127, 149, 150, 126]. There is a key

difference between text-driven and speech-driven talking faces. Speech signals show large variations

across speakers, emotions, and accents for the same text, and the generated talking face must be in

sync with the input speech. However, for text-driven faces, any plausible talking face is sufficient.

These two tasks require different approaches. Therefore, in the following, we only review speech-

driven talking face generation methods.
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Image-Oriented Methods

Suwajanakorn et al. [4] demonstrated an LSTM-based system on synthesizing videos of President

Barack Obama from his speech. This system uses a two-stage approach. It first uses an LSTM

to predict PCA coefficients of 18 mouth landmark points from 13 MFCCs plus the energy term.

Then, according to the predicted PCA coefficients, few nearest candidate frames are selected from the

dataset that contains the images of the target identity, and the weighted median is applied to synthesize

the texture. Therefore, this method is a hybrid shape-image model since it predicts mouth landmarks

first. Although the results are photo-realistic and impressive, the method requires a large amount of

training data for the target identity. It can accept speech from a different person; however, it can only

generate the face of the person in the training data. It is also computationally heavy, making it difficult

to run on edge devices.

Chung et al. [20] proposed a method that accepts 12 MFCCs and a single frame target image to

generate a talking face video. The system uses an audio encoder and an identity encoder to convert

audio features and the target image to their respective embeddings. It then uses an image decoder to

generate face images from these embeddings. Since the generated images are blurry, the system uti-

lizes a separate deblurring module to sharpen the images. All modules are based on 2D convolutional

neural networks. This method can run in real-time on a GPU. Similar to this work, Chen et al. [21]

proposed a method that leverages an adversarial loss function in addition to a pixel-level reconstruc-

tion loss and a perceptual loss, to generate sequences of images from speech. The network accepts the

speech and a target lip image as inputs and outputs 16 frames of lip images that are synchronized with

the speech. The network contains an audio encoder, an identity encoder, and 3D convolutional resid-

ual blocks. Compared to Chung et al.’s method, the generated images are sharper, and a deblurring

module is not needed.

A disadvantage of these systems is that facial expressions, animations, and for some systems, the

identity information, are difficult to manipulate during generation. The shape model-oriented methods

usually predict an intermediate representation that can be manipulated before rendering the details.
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Shape Model-Oriented Methods

Early works focused on Hidden Markov Models (HMMs) to map from speech to talking faces

[128, 129, 130, 131, 132, 133, 134]. Voice puppetry [128] was one of the early works. It models 26

points of a face using HMM and drove them using linear predictive coding and relative spectral trans-

form - perceptual linear prediction audio features. Choi et al. [129] used HMM inversion (HMMI)

to estimate visual parameters from 12 MFCCs of speech, where the visual parameters include the left

and right corners of the mouth and the heights of the upper and lower lips.

Cosker et al. [130, 131] employed a hierarchical model that models subareas of the face indepen-

dently by an active appearance model (AAM) [151] and then merges them into a full face containing

a total of 82 landmark points. Each sub-area is driven by 12 MFCCs of speech. Xie et al. [132] pro-

posed a system that generates only the mouth region using coupled HMMs (cHMMs) to compensate

audio-visual asynchrony. They used MFCCs and their first- and second-order derivatives as speech

features and PCA coefficients of the mouth region as the visual parameters. Zhang et al. [134] also

used PCA coefficients of the mouth region as the visual parameters, but estimated HMM states from

speech features with a deep neural network (DNN).

Recent works use deep neural networks to map speech features to face landmarks. Pham et al. [16]

proposed an LSTM network that predicts the 3D face model parameters from speech input features,

namely MFCCs and the chromagram. The authors later improved their work by using spectrograms

as input and employing convolutional and recurrent layers [17] in the network architecture. Karras

et al. [18] employed a network that maps speech into 3D positions of 5022 landmark points. The

network can generate realistic faces with emotions using only 5 minutes of training data. However,

their system is designed for the generation of a single speaker.

Compared to these listed works, our approach includes a novel pre-processing method that nor-

malizes the identities of the target data (face landmarks). This normalization improves the quality

of results, leads to faster convergence for neural network training and can work using fairly simple

network architectures. In addition, our approach uses a noise-resilient training mechanism to ensure

its robustness in noisy conditions. To our best knowledge, this is the first consideration of back-
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ground noise in the system design and evaluation of talking face generation from speech. Further-

more, compared to shape model-oriented methods described above, our system predicts landmarks

by the multi-pie 68 point markup convention [152], which is used by most of the existing systems for

facial landmark detection, face morphing, and face swapping applications. This allows our system

to be seamlessly integrated into a pipeline for facial manipulation with such systems. A quantitative

side-by-side comparison with the most closely related methods, however, is difficult. Karras et al.

[18] and Pham et al. [16] are the two most similar methods to ours, but their systems are optimized

for different face models making a side-by-side comparison difficult with ours. In particular, Karras

et al. used facial motion capture to obtain a 3D mesh model of the face. Pham et al. used a 3D mesh

model of the face built from a Kinect point cloud, and they developed a technique to map videos into

this 3D mesh model. We do not have access to their code of these face models, and we believe that it

is not fair to those methods to re-implement them but using our 68 point face model to compare with

ours.

Considering the above-mentioned difficulties, we eventually chose to compare with the landmark

generation part of the system proposed by Suwajanakorn et al. [4] and our prior preliminary sys-

tem [5]. The system in [4] is a state-of-the-art image-oriented system that generates realistic face

images of a single speaker. As an intermediate step, it also predicts PCA coefficients of mouth land-

marks similar to our method. Therefore, we believe that it is a reasonable baseline for our method.

3.2.3 Method

In this section, we describe face landmark extraction, landmark pre-processing before training

the neural network, the proposed neural network architecture, the proposed method to increase the

system’s resilience against background noise, and how it works during the inference process.

Pre-processing

Face Landmark Extraction We first use the open source library DLIB [122] to extract 2D face

landmarks (x and y coordinates), and then use the method described in [153] to estimate 3D face
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Figure 3.5: Data preparation steps for face landmarks illustrated on six different speakers, where each
column corresponds to a speaker. We draw lines between certain landmarks to form face shapes. The
first, second, and third rows show raw face landmarks extracted from video images, landmarks after
Procrustes alignment, and landmarks after identity removal, respectively.

landmarks from these 2D landmarks and their corresponding video frames. We extract a total of 68

landmarks, following a standard in the mark-up convention described in [152]. Face shapes formed

by connecting these landmarks are shown in the first row of Figure 3.5.

Face Landmark Alignment The extracted raw landmarks are in pixel coordinates and can be at dif-

ferent positions, scales and orientations. These variations make it difficult to train our neural network,

as they are largely irrelevant to the input speech. To minimize these variations, we use Procrustes

analysis [154] to align the 3D landmarks. This is a common practice for creating active shape models

(ASMs) [155] and active appearance models (AAMs) [151, 156]. Face shapes after alignment are

shown in the second row of Figure 3.5.
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Face Landmark Identity Removal Different speakers have different face shapes, where mouth,

nose, and eyes may not be well aligned across speakers even after the Procrustes analysis. These

variations are also less correlated to the input speech. Therefore, we want to remove this identity

variation from our 3D face landmarks. To achieve that, for each landmark sequence, we detect one

reference frame that contains a closed mouth by thresholding the distance between the upper lip and

lower lip coordinates. We then calculate the landmark coordinate deviations from this reference frame

for each frame in the sequence, and impose these deviations onto a template face across all sequences

of all identities. This template face is calculated as the average of aligned faces with a closed mouth

across all identities. The 3D face landmarks can be represented as:

s = (x1, y1, z1, x2, y2, z2, ..., xN , yN , zN)T , (3.2)

where N is the number of vertices and T denotes vector transpose. The identity removal operation

can be described as:

sIR = s− sCM + sT , (3.3)

where sIR represents the identity removed face shape, sCM is a face frame with mouth closed that

is automatically selected from the video, and sT is the template (reference) shape. Face shapes after

identity removal are shown in the third row of Figure 3.5.

Active Shape Model (ASM) ASMs [155] are deformable shape models that can represent the vari-

ations in the training set by a set of coefficients. These coefficients are the weights for eigenvectors

that are obtained by PCA. By using the parameters obtained from PCA, s in Equation 3.3 can be

described as follows:

s = sµ + wS, (3.4)

where sµ is the mean shape vector, w = [c1, ..., cP ] is a vector that contains the weights and S =

[s1, ..., sP] is a matrix that contains the eigenvectors. P is the number of PCA components, which is

smaller than their dimensionality (P < N ).



CHAPTER 3. GENERATING TALKING FACES FROM SPEECH: SHAPE-BASED METHODS 83

We create pairs of raw speech waveform and corresponding ASM weights w as the input-output

pairs for neural network training.

Data Augmentation By removing the target identity from the 3D face landmarks, we already stan-

dardized the target data, which is described in Section 3.2.3. We do not further augment the target

data.

For the speech input, we aim to develop a system that is robust against unseen speakers. However,

speech recordings encountered in the wild contains articulation, pitch, timbre and talking speed vari-

ations. In addition, the recording conditions can be disjoint from that of the training set, which affects

the performance of our network.

We resort to data augmentation to improve the robustness of the system. Augmentation is not

performed before but rather during training iterations. For each sample in each training batch, we

randomly choose whether we use the original training sample or an augmented sample. If it is the

latter, two augmentation steps are applied in a sequence. We first pitch shift the sample by one or two

semitones up or down. We then apply a gain factor to the amplitude of the sample between -12 dB

and 6 dB with a 3 dB granularity. It is noted that this dynamic augmentation is random, but it saves

memory compared to a preset augmentation beforehand.

Network Architecture

The deep neural network (DNN) accepts a frame (280 ms) of the raw waveform as an input and

outputs the ASM weights of that frame. There are four convolutional layers with 1D filter kernels

operating on the raw waveform. The number of filters grows as the time dimension shrinks. We use

strides for each convolutional layer, which halves the time-steps. Each convolutional layer is followed

by LeakyReLU activation with a slope of 0.3 and a dropout layer that discards 20% of the units. The

final layer is a fully connected layer that outputs the ASM weights. The network architecture is shown

in Table 3.2 and Figure 3.6.

In order to have smooth transitions between generated talking faces across frames, we further

added a temporal constraint to the network architecture. It accepts the previous frame’s ASM weights
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Table 3.2: Detailed parameters of the proposed network architecture. The number of filters and hidden
units, filter sizes, strides, activations, and output shapes are shown for each layer. 1D_CNN_TC is
identical to 1D_CNN; further, it accepts condition input and concatenates it with the output of the
fully connected (FC) layer that is shown in the last two rows of the table. This concatenated tensor is
fed to another FC layer that outputs the final ASM weights.

Net Layers
Number of Filters

or
Hidden Units

Filter Size Strides Activation Output Shape

1D_CNN

Input - - - - (2240, 1)
Conv 64 (21, 1) (2, 1) LeakyReLU (1110, 64)
Conv 128 (21, 1) (2, 1) LeakyReLU (545, 128)
Conv 256 (21, 1) (2, 1) LeakyReLU (263, 256)
Conv 512 (21, 1) (2, 1) LeakyReLU (122, 512)
FC 6 - - LeakyReLU (6)

1D_CNN_TC
Condition - - - - (6)

FC 6 - - LeakyReLU (6)

as a condition in order to obtain smoother results over time. The condition is concatenated to the inter-

mediate tensor immediately after the fully connected layer, and we add another fully connected layer

as shown in shown in Table 3.2. We discuss the trade-off between these two models in Section 3.2.4.

We denote our proposed method as 1D_CNN and the temporally constrained version as 1D_CNN_TC

throughout the rest of this paper.

The network minimizes the L1 loss between the predicted and ground-truth ASM weights, as

follows:

J`1(w, ŵ) = ‖w − ŵ‖1 , (3.5)

where ŵ is the ASM weight vector predicted by the network. Equation 3.5 shows the loss for a single

sample. During training, the average of all training samples is minimized.

Noise-Resilient Training

To make the system robust to noise, we propose a novel, yet simple method for noise-resilient

training. The idea is to match the intermediate features obtained from the clean and noisy speech,

as in theory, they contain the same speech information hence the extracted features are ideally be the

same. This is shown in Figure 3.7. The clean features h is obtained by feeding the clean speech x

to the network. The corrupted features h̃ is obtained by feeding the corrupted speech x̃ to the same
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Figure 3.6: The network architecture for (a) 1D_CNN network and (b) 1D_CNN_TC network.
1D_CNN_TC is identical to 1D_CNN, except that it accepts the previous frame’s ASM weights as
a condition to enforce temporal constraint. Raw waveform is fed to four convolutional layers, fol-
lowed by a fully connected (FC) layer.

network. In addition to the ASM coefficient loss on both networks, we also add the weighted MSE

between h and h̃:

J = J`1(w, ŵ) + J`1(w, ̂̃w) + λ‖h− h̃‖2 , (3.6)

where λ is the weighting coefficient, and ̂̃w is the ASM parameters generated from corrupted speech

x̃.
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Figure 3.7: The noise-resilient training scheme. The networks on the left and right sides are the same,
and their weights are shared. The clean and noisy speech goes through the left and the right networks,
respectively, to reconstruct their face landmarks. A mean-squared error (MSE) constraint is applied to
the latent representations to incorporate the supervised speech enhancement idea at the feature level.

System Overview

During inference, our system utilizes a speech buffer that acts as first in first out (FIFO) queue.

First, the speech buffer is initialized with zeros. When the system receives new speech data, it is

pushed to the speech buffer, and the network predicts the next frame’s weights. There is no pre-

processing applied to the speech; the raw speech is directly fed to the neural network. The predicted

weights are converted to 3D landmark points using Equation 3.4. The system overview is shown in

Figure 3.8.

For the 1D_CNN_TC network, the system utilizes another buffer, called the conditioning buffer,
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Figure 3.8: System overview. A talking face is generated every 40 ms (frame hop size) from 320 ms
(frame length) of audio. t represents the time.

that stores the last frame. The conditioning buffer is initialized with the template face shape weights.

3.2.4 Experiments

Datasets

We start our experiments in a single-speaker setting. To this end, we follow Suwajanakorn et al.

[4] and utilize President Obama’s weekly address videos, which are available online4. We downloaded

315 videos that have 3 minutes average duration, totaling to approximately 18 hours of content. The

videos are provided in 30 frames per second (FPS) and we down-sampled the videos to 25 FPS. We

split the dataset into training (70%), validation (15%), and testing (15%) sets.

4https://obamawhitehouse.archives.gov/briefing-room/weekly-address
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For multi-speaker experiments, we use a publicly available audio-visual dataset called GRID [121]

to train our system. There are 34 native English speakers in this dataset, with 16 female and 18 male

speakers, who are ranging from 18 to 49 years old. All of the speakers are from England except

one from Scotland and one from Jamaica. Each speaker has 1000 recordings that are 3 seconds in

duration. The recordings contain sentences that are identical for each speaker. The structure of the

sentences is in the following form: command (4) - color (4) - preposition (4) - letter (25) - digit (10) -

adverb (4), where the numbers of choices are shown in parenthesis for each component. An example

sentence can be given as “set blue at C 5 please”.

Recordings are provided both in audio and video format. In this study, we use the high-resolution

videos included in the GRID dataset. These videos have a frame rate of 25 FPS and a resolution of

720× 576 pixels. Since each recording is 3 seconds in duration, each video has a total of 75 frames.

The video files contain the corresponding audio that has a sampling rate of 44.1 kHz. We down-sample

the audio to 8 kHz which is a typical sampling rate for speech signals in telecommunication.

We employ another dataset that is disjoint from the GRID dataset in order to evaluate our system

against unseen speakers, namely Speech Test Video Corpus (STEVI) [157]. Specifically, we employ

the High-Probability speech perception in noise (SPIN) Sentences and Nonsense Sentences listed

in [157]. The videos are provided in 29.97 FPS and 1920 × 1080 resolution. The audio stream has a

sampling rate of 48 kHz. We down-sample the audio to 8 kHz and generate 3D talking faces. Since

our system is trained to generate 25 FPS videos, we use cubic spline interpolation to up-sample the

generated videos to 29.97 FPS to match with the ground truth face landmarks. There are a total of 4

speakers, each of which has 400 sentences, 200 High-Probability SPIN Sentences and 200 Nonsense

Sentences. The duration of each sentence is around 2 to 3 seconds.

We use DLIB [122] and [153] to extract face landmarks from these videos according to Section ??

for training, validation and testing. To verify the validity of the extracted face landmarks, we employ a

two-step approach. First, we run a script that automatically identifies wrong landmarks by comparing

the upper and lower lip landmark positions and eliminates invalid landmark sequences. This script

was applied to all extracted landmarks. In the second step, we manually check the landmarks and

eliminate problematic sequences. Since manual verification is costly, the second step is only applied
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to the STEVI dataset and the test set of the Obama dataset. In this way, we further improve the quality

and validity of the evaluation data.

To create noisy speech input, we employ a noise dataset named Sound Ideas [65] that contains

138 different noise types including non-stationary noises from various environments such as nature,

city, domestic, office, traffic, and industry. A noisy speech is created by mixing a clean speech file

with a randomly selected noise file in 6 to 30 dB SNRs with 3 dB increments.

Implementation Details

Our system was trained to generate 25 FPS videos, i.e., the system generates a talking face every

40 ms. We include the context information to our input speech. Specifically, we concatenate 3 frames

from past and future, totaling 7 frames. For 8 kHz speech signals, a 40 ms window contains 320 data

points. The input speech size becomes 7 × 320 = 2240 as shown in Table ??. The networks were

trained for 100 epochs, and the weights were saved only if the validation loss was improved for each

epoch. We implemented our method in PyTorch [158]. The mini-batch size and learning rate were set

to 128 and 10−4, respectively. We used Adam [113] optimizer during training.

We compared our method with Suwajanakorn et al.’s [4] landmark generation method denoted as

BL1 and our preliminary work [5] denoted as BL2. BL1 utilizes a single LSTM layer with a time delay

to generate 20 PCA coefficients for the mouth landmarks. The input of their network is the 13 MFCCs

plus the log mean energy and their first temporal derivatives. BL2 accepts first and second derivatives

of 13 MFCCs of speech as input and outputs PCA coefficients for the whole face landmarks. There

are 4 LSTM layers in the network architecture.

For single-speaker experiments, we trained all of the above-mentioned methods on the Obama

dataset, while for multi-speaker experiments, we trained them on GRID and evaluated them on

STEVI.

Objective Evaluation

We used the root-mean-squared error (RMSE) between the ground-truth and predicted face land-

mark sequences and their first and second derivatives for evaluation. Although our system generates
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Figure 3.9: Single speaker objective evaluation results for the BL1 [4], BL2 [5], 1D_CNN and
1D_CNN_TC methods. We calculate the root-mean-squared error (RMSE) between generated and
ground-truth 2D mouth landmarks, and its first order and second-order temporal derivatives. Error
bars show the standard deviation.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

RMSE RMSEʹ RMSEʺ

1e
-2

BL1 BL2 1D_CNN 1D_CNN_TC

Figure 3.10: Multi speaker objective evaluation results for the BL1 [4], BL2 [5], 1D_CNN and
1D_CNN_TC methods. We calculate the root-mean-squared error (RMSE) between generated and
ground-truth 2D full face landmarks, and its first order and second-order temporal derivatives. Error
bars show the standard deviation.

3D landmarks, we used only x and y coordinates (2D landmarks) of the results of our system for these

calculations since the baseline can only generate 2D face landmarks. Therefore, all numbers reported

in this section were obtained from 2D landmarks. Before we evaluated the landmarks, we normal-

ized the values between 0 and 1. Therefore, each 0.01 RMSE value corresponds to approximately 1

percent of the face length.
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For the single-speaker setting, we evaluated our systems and the baseline systems with the test set

of Obama dataset by using only the mouth landmarks. For the multi-speaker setting, we used unseen

speakers from STEVI corpus. Figures 3.9 and 3.10 show the single- and multi-speaker results,

respectively, for the baseline methods (BL1 and BL2), and two versions of our proposed methods

(1D_CNN and 1D_CNN_TC).

For the single-speaker setting, the results show that the 1D_CNN method yields the best objec-

tive results with an RMSE value of 1.38× 10−2 followed by 1D_CNN_TC with an RMSE value of

1.52× 10−2. For the multi-speaker setting, the trends are similar: the 1D_CNN method yields the

best objective results with an RMSE value of 1.46× 10−2 followed by 1D_CNN_TC with an RMSE

value of 1.55× 10−2. There is a significant improvement over the BL1 method that has an RMSE

value of 1.91× 10−2.

1D_CNN_TC results are smoother due to the temporal constraint. However, the resulting mouth

movement of the talking faces has weaker high-frequency movements. This can also be observed from

the multi-speaker objective results. The RMSE′ and RMSE′′ are higher for 1D_CNN_TC (0.88× 10−2,

1.2× 10−2) compared to 1D_CNN (0.77× 10−2, 1.03× 10−2); and both of them are better than the

baseline methods. A paired t-test shows that results of both proposed systems are statistically signifi-

cantly better than the baseline at a significance level of 0.01 for all the three measures.

There is a trade-off between these two versions of our method. From our observations of the gen-

erated outputs, 1D_CNN yields better mouth movement and mouth shape match, where 1D_CNN_TC

yields more stable and smoother shape changes over time. One may prefer 1D_CNN for applications

that focus on improving speech comprehension since high-frequency mouth movement is essential in

such cases, and one may prefer 1D_CNN_TC for general speech animation applications. An example

result for the word “ashes” has been shown in Figure 3.11.

Analysis of the Network

We further analyze the 1D_CNN network architecture by changing the number of convolutional

layers, the number of filters in each layer, and the input speech size in multi-speaker setting using

STEVI corpus.
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Figure 3.11: The example output showing the pronunciation of the word “ash”. The speech sample
was taken from STEVI corpus. The first row shows the result generated by 1D_CNN. The second row
shows the comparison of the result generated by 1D_CNN and the ground-truth (dotted red line). The
third and fourth rows show the result generated by 1D_CNN_TC and comparison with the ground-
truth (dotted red line). Columns show every three frames.

Number of Layers The original configuration contains four convolutional layers. We conducted

experiments with 2, 3, 4, 5 and 6 convolutional layers, and compared the objective results. For fifth

and sixth layers, we used 512 filters.

The results are shown in Figure 3.12. The 4-layer configuration achieves the best results, where 5-

layer configuration has the worst results. An interesting outcome is that the 2-layer configuration has

the second best results. For RMSE′′, there is a big gap between the 4-layer configuration and others.

A paired t-test shows that RMSE′ and RMSE′′ results of 4-layer configuration is statistically better at

a significance level of 0.01 compared to other configuration results. In conclusion, we selected 4-layer

configuration in our final models.

Number of Filters Table 3.2 shows the number of filters for the convolutional layers, which are x =

64, 2x = 128, 4x = 256 and 8x = 512 for the four layers, respectively, in the original configuration.
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Figure 3.12: Comparison of 1D_CNN configurations with different number of convolution layers.
The number of filters for Layers 1 to 4 is shown in Table 3.2. The number of Layers 5 and 6 is
both 512. We compare the root-mean-squared error (RMSE) between generated and ground-truth
landmarks, and its first order and second-order temporal derivatives. Error bars show the standard
deviation.
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Figure 3.13: The comparison of 1D_CNN configurations that has a different number of filters in
convolutional layers is shown. The number of filters in the first layer is displayed, which are 16, 32,
64 and 128. After the first layer, the filters are doubled with each following convolutional layer. We
compare the root-mean-squared error (RMSE) between generated and ground-truth landmarks, and
its first order and second-order temporal derivatives. Error bars show the standard deviation.

We varied x to have values of 16, 32, 64, and 128 and compared the objective results.

Figure 3.13 shows the results. Networks with x = 16 and x = 32 performs similarly for all

metrics. The network with x = 128 has the worst performance compared to other configurations; We

suspect that this is due to over-fitting given its largest capacity. The network with x = 64 performs
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Figure 3.14: The comparison of results for different sizes of the input speech is shown for 1D_CNN
network. The number of frames is displayed, which are 5, 7, 9. Each frame spans 40 ms speech. We
predict the middle frame and use previous and past frames as context information. We compare the
root-mean-squared error (RMSE) between generated and ground-truth landmarks, and its first order
and second-order temporal derivatives. Error bars show the standard deviation.

better than other configurations. A paired t-test shows that RMSE′ and RMSE′′ results of x = 64

configuration is statistically better at a significance level of 0.01 compared to other configuration

results. Therefore, we selected x = 64 as the final parameter for our networks.

Input Speech Size The input speech includes context information of past and future frames as

described in Section 3.2.4. In the original configuration, we use 7 frames of speech, including 3

frames before and 3 frames after the current frame. Each frame corresponds to 40 ms of speech. In

this section, we vary the input size from 5, 7, and 9 frames and compare the performance.

The results are shown in Figure 3.14. The RMSE results are similar; However, for RMSE′ and

RMSE′′, 7 frames configuration has better results. A paired t-test shows that RMSE′ and RMSE′′

results of 7 frames configuration is statistically better at a significance level of 0.01 compared to 5 and

9 frames configuration results. In our final network, we selected 7 frames of speech as our input.

Resilience Against Noise

In this section, we evaluate our system on noisy conditions. We consider five types of noise for the

evaluations, namely babble, factory, speech-shaped noise (SSN), motorcycle and cafeteria. We mix
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Table 3.3: Objective results for the 1D_CNN method and noise-resilient (NR) version of it
(1D_CNN_NR) for clean and noisy speech input. We present results for Babble, Factory, SSN, Mo-
torcycle and Cafeteria noises at 5 and 10 dB SNRs, none of which were not included in the training
noise corpus. Best results in each noise setting are bolded.

Noise Type SNR Method RMSE
(1e-2)

RMSE′
(1e-2)

RMSE′′
(1e-2)

Clean -
1D_CNN 1.46 0.77 1.03
1D_CNN_NR 1.45 0.81 1.09

Babble
5

1D_CNN 1.53 0.84 1.11
1D_CNN_NR 1.46 0.82 1.10

10
1D_CNN 1.52 0.83 1.10
1D_CNN_NR 1.44 0.79 1.07

Factory
5

1D_CNN 1.55 0.86 1.13
1D_CNN_NR 1.48 0.84 1.12

10
1D_CNN 1.54 0.84 1.11
1D_CNN_NR 1.48 0.82 1.10

SSN
5

1D_CNN 1.50 0.81 1.12
1D_CNN_NR 1.48 0.80 1.09

10
1D_CNN 1.50 0.81 1.11
1D_CNN_NR 1.45 0.80 1.09

Motorcycle
5

1D_CNN 1.50 0.79 1.06
1D_CNN_NR 1.43 0.79 1.07

10
1D_CNN 1.49 0.78 1.05
1D_CNN_NR 1.42 0.77 1.04

Cafeteria
5

1D_CNN 1.52 0.82 1.08
1D_CNN_NR 1.46 0.81 1.06

10
1D_CNN 1.50 0.81 1.07
1D_CNN_NR 1.45 0.79 1.05

the speech files of STEVI corpus with the noises described above in 5 and 10 dB signal-to-noise ratio

(SNR) values and report the RMSE values of the generated faces. Note that the noise types used in

evaluations were not included in the training set, and obtained from a different source (i.e., different

recording conditions).

For the noise-resilient training method, we initialized the weights using the pre-trained weights

from the clean version of our network and reduced the learning rate to 10−5. We conducted experi-

ments and varied the λ parameter in Equation 3.6 between 1 and 0, and found that 10−2 performs the

best. Therefore, we set λ to 10−2. The network was trained for 100 epochs. The noise resilient (NR)

version of our network is denoted as 1D_CNN_NR throughout the rest of the paper.

Table 3.3 shows results of the proposed system with and without the noise-resilient training

method on both clean and noisy speech. For the clean speech, noise-resilient training (1D_CNN_NR)

provides a slight improvement on RMSE at the cost of RMSE′ and RMSE′′ compared to the originally

proposed method. For noisy speech, however, the noise-resilient training yields significant improve-
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Figure 3.15: The results for the subjective test of speech-mouth match. The bars show the average
score for the baseline method, proposed method (1D_CNN) and ground-truth face landmarks. Error
bars show the standard deviation.

ments over the proposed method for all unseen noise types and SNRs on all evaluation measures.

We conducted a paired t-test between the results of 1D_CNN and 1D_CNN_NR for each noise and

SNR category as shown in Table 3.3. The results show that the bolded RMSE values are statisti-

cally significant at a significance level of 0.01. Among these non-stationary noises, the babble and

cafeteria noises are the most challenging ones for the proposed system. The motorcycle noise is the

least challenging noise, and 1D_CNN_NR can yield objective results even better than those for clean

speech.

Subjective Evaluation

To further evaluate the match between generated face landmarks and the input speech, we con-

ducted a subjective Turing test in the multi-speaker setting. We recruited 20 volunteers as our evalu-

ators. We presented each evaluator a random selection of 16 samples generated by BL1, 16 samples

generated by BL2, 16 samples generated by the proposed system, and 16 samples of ground-truth

landmarks. All of the speech samples were taken from the STEVI dataset, which was not used for

training. For the BL1, we retrained the system with full 68 face landmarks’ PCA coefficients instead

of just the mouth landmarks’ PCA coefficients in order to conduct the subjective tests. We found out

that using only the mouth region compared to using all 68 face landmarks does not change mouth
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movements. This is due to the alignment of face landmarks in pre-processing; the regions besides the

mouth region do not change much.

The generated landmarks were painted and added teeth and eyes in order for evaluators to eas-

ily recognize the faces and mouth movements. During evaluation, a few ground-truth talking face

samples were shown to each evaluator. Then, the 64 samples were presented to the evaluator in a

random order, and the evaluator was asked to assign a score between 0 (worst) and 100 (best) based

on the match between the speech and mouth movement. Each sample was presented twice before the

evaluator was asked to assign a score.

The results are shown in Figure 3.15. The proposed method significantly scores higher than the

baseline methods. These results show comparable scores for our method and the ground-truth face

landmarks, indicating that our system can generalize well to unseen speakers and can convince eval-

uators that speech and articulation match strongly. A paired t-test shows that the 1D_CNN results are

statistically significantly better compared to the both baseline results at the significance level of 0.01.

Limitations

As a data-driven approach, the performance of our method highly depends on the the training data

The dataset should contain a wide variety of phonemes, ideally uniformly distributed. However, the

GRID dataset is limited in terms of the words and phonemes it includes. Our future work includes

expanding the training set to include more data that has rich phonetic content and balancing the data

in order to have uniformly distributed phoneme content.

The performance of our system is proportional to the performance of the face landmarks extractor

on the training data. The extractor we used in this study works on each single frame and does not

consider temporal relations across frames. This might be the main reason for noisy mouth movements

in the extracted landmarks. We believe that by utilizing a video-based face landmark extractor that

models temporal dependencies of landmarks, the quality of landmark extraction and our trained model

will be improved.
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3.2.5 Conclusion

In this work, we proposed a new noise-resilient neural network architecture to generate 3D face

landmarks from speech in an online fashion that is robust against unseen non-stationary background

noise. The network predicts active shape model (ASM) coefficients of face landmarks from input

speech. In one version of the system, we further added the predicted ASM coefficients in the previous

frame to the network input to improve the smoothness of frame transitions. We conducted objective

evaluations on landmark prediction errors and subjective evaluations on audio-visual coherence. Both

objective and subjective evaluations showed that the proposed method statistically significantly im-

proves over state-of-the-art baseline methods. Detailed analyses of network hyper-parameters were

also provided to gain insights into the architecture design. To promote scientific reproducibility, we

provided the research community with our pre-trained models, code and generation examples.
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Chapter-4

Generating Talking Faces From Speech: Image-Based
Methods

4.1 End-to-End Talking Faces from Speech

4.1.1 Introduction

Visual signals influence speech communication in several ways. First, the presence of lip im-

ages/videos has been shown to increase speech comprehension [8, 9, 10, 11]. The benefit is more

prominent in scenarios where there is background noise or when the speech signal is corrupted by

other effects such as channel compression and transmission loss. Next, the meaning of the message

can be better interpreted since seeing the facial expressions improves the ability to infer emotions,

which can change the meaning of the message.

In this work, we present an end-to-end talking face generation system that works with an arbitrarily

long speech input and a single reference image of a target face. The network utilizes an attention

mechanism [159]. The raw speech waveform is processed by a speech encoder to extract short-

term speech features. The image quality and speech-mouth synchronization are further improved by

employing generative adversarial networks.
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4.1.2 Related Work

Some of the works in this field leverage sparse face points to generate talking face videos. These

works usually contain two networks, one of which predicts face landmarks from speech, while the

other network maps the face landmarks to images. These networks can be trained independently, i.e.,

the training is not end-to-end. Suwajanakorn et al. [4] proposed such a system. Their system can gen-

erate videos of President Barack Obama from his speech. First, they predict the PCA coefficients of

the mouth landmarks from speech features (13 MFCCs plus the energy) using an LSTM network. The

texture is synthesized according to the predicted PCA coefficients by selecting a few nearest candidate

frames from the dataset that contains the images of the target identity and applying the weighted mean

to them. However, this method is designed for a single-person and requires a considerable amount of

data.

Chen et al. [19] proposed a similar method that can work on unseen speakers. First, an LSTM net-

work generates the PCA coefficients of 68 face landmarks from MFCC coefficients. Another network,

which receives the reference identity, reference face landmarks and the predicted face landmarks, gen-

erates the talking faces. The two networks are trained separately, where the second network is trained

with ground-truth landmarks. During inference, the talking face landmarks are predicted using the

first network, and the second network converts the landmarks into images. The network contains an

attention mechanism, which can emphasize the image regions that correlate with landmark move-

ments.

Another common approach is to generate talking faces from speech features. Chung et al. [20]

proposed a method that generates talking faces from 12 MFCCs and a single frame target image.

However, the generated images are blurry. Therefore, the authors trained a separate deblurring module

to sharpen the images, meaning that it is not an end-to-end system. Similarly, Chen et al. [21]

proposed a lip generation system with an adversarial loss function in addition to a reconstruction loss.

The network accepts the MFCC features and a target lip image as inputs and outputs 16 frames of

talking lip images.

Song et al. [22] improved Chung et al.’s work by proposing a recurrent neural network (RNN) that
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is conditioned on the audio and reference image features. Their system uses a multi-task discriminator

to improve the image quality of each frame and the natural movement of the video. A similar work

that uses temporal GANs is proposed by Vougioukas et al. [23]. The system uses an RNN to process

the noise that is generated independently for each frame, similar to [160]. Different from Song et

al. [22], their system utilizes two discriminators, one for improving the image quality and the other

for improving the natural video movements. Also, most importantly, their system is end-to-end.

4.1.3 Method

In this section, we describe how our system works, and show the details of each component of our

system.

System Overview

Our system contains an image encoder, a speech encoder, an encoder for processing latent noise,

a generator, a frame discriminator, and a pair discriminator. The image encoder accepts the reference

face image and outputs image features, where the speech encoder accepts the raw speech waveform

and produces short-term speech features. An encoder that contains an LSTM layer processes a nor-

mally distributed random noise vector for each frame into temporally meaningful latent variables.

The generator maps these features into the talking face videos. The objective function is formed from

the reconstruction loss and the adversarial losses from the pair and frame discriminators. The system

overview is shown in Figure 4.1.

Mouth Region Mask

The movement of the regions in the image other than the mouth does not depend on the input

speech. Therefore, we apply the reconstruction loss only to the mouth region. We detect the center

point of the mouth using a face landmark detector and place a 2D Gaussian mask at that point. We

call this mask the mouth region mask (MMR). Figure 4.2 shows an example mouth region mask.
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Figure 4.1: The proposed end-to-end talking face generation system overview. The input reference
image and raw speech waveform are processed by the image encoder and speech encoder, respec-
tively. For each frame, a normally distributed random noise vector is generated and fed to the noise
encoder that contains an LSTM layer. The image, speech, and noise features are sent to the generator.
During training, we use both the adversarial loss and the reconstruction loss. The frame discriminator
improves the image quality, where the pair discriminator improves the mouth movements and speech
synchronization.

Figure 4.2: An example of the mouth region mask is shown. The mouth is located using the mean
point of mouth face landmarks. A 2D Gaussian is placed at the mean point to isolate the mouth. The
first row shows the original frame, the second row shows the mouth region mask, and the third row
shows the masked mouth.



CHAPTER 4. GENERATING TALKING FACES FROM SPEECH: IMAGE-BASED METHODS 103

CONV 1D

CONV 1D

CONV 1D

CONV 1D

CONV 1D

CONTEXT

Figure 4.3: The architecture of the speech encoder. The network accepts an arbitrarily long speech
waveform and processes it frame by frame through five convolutional layers. The resulting embedding
is a time-series corresponding to these frames. Past and future frames as context information are also
fed to the network as input when the network processes each frame. For the beginning and ending
frames of the waveform, we concatenate zeros as the context information. Every fifth frame is kept to
form the final speech features.

Speec Encoder

The speech encoder takes the raw speech waveform as an input and outputs short-term speech

features, similar to what the short-term Fourier transform (STFT) does. The encoder contains only

1D convolutional layers, enabling arbitrarily long speech inputs. It is designed for 8 kHz speech

signals; for 1 second of speech (8000 data points), the output feature size is 125 frames × Fspeech,

where Fspeech is the dimension of features in a single frame. The receptive field is approximately 86

ms for each frame. The architecture is shown in Figure 4.3 and Table 4.1.

The stride of the first two convolutional layers is 4, and it is reduced to 2 for the following two

layers. The filter size of the first layer is 63, and it gradually decreases to 31, 17, and 9 in the next

layers. Each convolutional layer is followed by a batch normalization layer, a leaky ReLU activation,
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Table 4.1: Detailed parameters of the proposed network architecture. The number of filters and hidden
units, filter sizes, strides, activation functions, and output shapes are shown for each layer.

Net Layers
Number of Filters

or
Hidden Units

Filter Size Strides Activation Output Shape

Speech Encoder

Input - - - - (Nspeech, 1)
Conv 64 (63, 1) (4, 1) LeakyReLU (Nspeech/4, 64)
Conv 128 (31, 1) (4, 1) LeakyReLU (Nspeech/16, 128)
Conv 256 (17, 1) (2, 1) LeakyReLU (Nspeech/32, 256)
Conv 512 (9, 1) (2, 1) LeakyReLU (Nspeech/64, 512)
Conv Fspeech (1, 1) (1, 1) LeakyReLU (Nspeech/64, 512)

Image Encoder

Input - - - - (128, 128, 1)
Conv 64 (7, 7) (1, 1) LeakyReLU (128, 128, 64)
Conv 64 (3, 3) (2, 2) LeakyReLU (64, 64, 64)
Conv 128 (3, 3) (2, 2) LeakyReLU (32, 32, 128)
Conv 256 (3, 3) (2, 2) LeakyReLU (16, 16, 256)
Conv 512 (3, 3) (2, 2) LeakyReLU (8, 8, 512)
Conv 512 (3, 3) (2, 2) LeakyReLU (4, 4, 512)

Noise Encoder
Input - - - - (t, Fnoise)

LSTM Fnoise - - Tanh (t, Fnoise)

and a dropout layer. The last convolutional layer’s filter size and stride is set to 1, and it does not

include batch normalization and dropout.

We concatenate the Nctx past and future frames to include context information. Adding context

information allows us to reduce the frames even further: we only include every 5th frame to build

our final speech features zspeech. For 1 second of speech, the dimension of zspeech becomes 25 ×

Fspeech((2Nctx) + 1). We aim to generate 25 frames-per-second videos, and by using our speech

encoder, we can design a sequence-to-sequence generator that works with arbitrary lengths of speech

input.

Image Encoder

The image encoder takes the reference image, i.e., the target identity and outputs the image fea-

tures. We use 2D convolutional layers followed by leaky ReLU activation in each layer. The param-

eters of the architecture are shown in Table 4.1. The image encoder sends all intermediate features

to the generator. They are concatenated to the generator’s intermediate layers as in a U-net architec-

ture [161].
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Figure 4.4: The architecture of the generator. The noise, image, and speech features are concatenated
at each frame and fed into a fully connected layer, and the output is reshaped. Then, the results are
concatenated with skip connections from the image decoder and fed into a convolutional layer. This
is repeated for all layers except for the last convolutional layer.

Generator

The generator takes the speech and reference image features, and noise as inputs. The noise is a

sequence sampled from N(0, 1) for each frame, which is processed by a single layer unidirectional

LSTM to produce a temporally meaningful noise sample.

For each frame, the latent noise code and speech features are concatenated and fed into a fully

connected layer. Then, it is reshaped and fed into a convolutional layer. The skip connections coming

from the image encoder are concatenated with the intermediate features in each layer except for the

last layer. We employ an LSTM-Convolutional layer to improve the movements of the mouth over
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Figure 4.5: The architecture of the pair discriminator is shown. The input is the masked mouth
frames, condition speech, and condition image. The image and speech encoders are identical to our
main speech and image encoders, but the parameters are updated only during discriminator training.
Each frame is classified as real or fake.

time.

Frame Discriminator

The frame discriminator takes the individual frames of the generated and real videos, concatenated

to the reference image, to improve the quality of the generated frames. The frame discriminator is a

six-layer convolutional neural network that outputs binary patches as in a pix2pix network [162].
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Figure 4.6: Example generation results shown along with the baseline results and the ground-truth. a)
shows an utterance of “POINT” and b) shows an utterance of “RUSSIANS”.

Pair Discriminator

The pair discriminator tries to distinguish the real and fake pairs of videos and speech inputs. We

utilize a separate speech encoder that has the same architecture described in Section 4.1.3. After the

speech features are extracted, they are processed by a BLSTM layer. For the video frames, we utilize

a separate image encoder that has the same architecture we use for our main image encoder. The

extracted image encoding for each frame is fed into BLSTM layer. The outputs of both BLSTMs are

concatenated and fed into another BLSTM. Each output of the final BLSTM is classified as real or

fake. The pair discriminator is shown in Figure 4.5.

The purpose of this discriminator is to check each frame to see if they are aligned with the input

speech.
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4.1.4 Experiments

Dataset

In our experiments, we use the lip reading in the wild (LRW) dataset [163]. This is a large-scale

audio-visual dataset that contains short video clips (1.16 seconds) of people uttering a single word.

There are in total 500 words in the dataset and 1000 clips for each word.

Results

The generated talking faces are shown in Figure 4.6, along with the ground-truth and the base-

line [19] results. From visual inspections of a small subset of the results, we find that our method

seems to generate mouth shapes that better match with those of the ground truth. This is still ongoing

work, and large-scale subjective and objective evaluations will be conducted in the near future.

4.1.5 Conclusion

We developed an end-to-end talking face generation system that operates on a raw speech wave-

form and a reference image. The system works with arbitrary length speech inputs and utilizes gen-

erative adversarial networks to improve image quality and mouth-movement-speech synchronization.

This is ongoing work; large-scale objective and subjective evaluations will be used to characterize the

performance of this end-to-end talking face generation system.
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Chapter-5

Automatic Speech Emotion Recognition (ASER)

5.1 Introduction

In this chapter, we introduce the automatic speech emotion recognition (ASER) problem and ana-

lyze the different aspects and challenges of ASER. Our final goal is to generate emotionally expressive

talking faces. However, first, we need to be able to estimate emotions from speech accurately and use

this information as a condition when generating the talking faces. Therefore, this chapter’s primary

focus is estimating emotions from speech.

5.2 Amazon Mechanical Turk Study

5.2.1 Introduction

Emotion classification is a fundamental task for humans in order to interpret social interactions.

Although emotions are expressed at various levels (e.g., behavioral, physiological), vocal and verbal

communication of emotions is a central domain of communication research [164]. Classification ac-

curacy is essential in order to be ensured of the validity and reliability of emotional constructs used

in psychological research. Given the importance of accurately classifying emotions to understand-

ing human interactions, many researchers have developed automatic emotion classification computer

systems. There are a number of modalities that can be used to determine one’s emotions, including

facial expression, body movement, physiological measures such as galvanic skin response, and voice.
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While automatic emotion classification systems have been developed that use all of these modalities,

individually and in concert [165, 166, 167, 168], several systems have focused on classifying emo-

tions using speech features in particular [169, 170, 171, 172]. There are a number of reasons for this,

including the fact that speech is relatively easy to capture and is less intrusive than other methods

for capturing emotional state. While these speech-based automatic emotion classification systems

all provide reasonable accuracy in their classification results, it is not known how well these systems,

which in many applications would replace a human’s classification of the emotion, compare to a naive

human coder performing the same emotion classification task.

In this work, we compare how well an automated computer system can perform at the task of

emotion classification from speech samples compared with naive human coders. In particular, we

asked Amazon Mechanical Turk workers (Turkers) to listen to speech samples from the LDC dataset

of emotions [173] and classify them in three ways: 1) determine whether the conveyed emotion

was active, passive or neutral; 2) determine whether the conveyed emotion was positive, negative or

neutral; and 3) determine which of six emotions (happy, neutral, sad, anger, disgust, fear) was being

conveyed. We also asked the Turkers how confident they were in their classification. We compared

the Turkers’ accuracy with that achieved by a speech-based automated emotion classification system

[169], using a leave-one-subject-out (LOSO) approach for evaluating the system.

Our results show that the automated system has a higher emotion classification accuracy compared

with the Turkers’ accuracy averaged over all six emotions, with the automated system able to achieve

close to 72% accuracy compared with the Turkers’ accuracy of only about 60%. Additionally, while

the automated system can achieve even better accuracy by rejecting samples when its confidence

in the classification is low, the Turkers’ results for the samples in which they were confident about

their classification did not show any significant improvement compared with the accuracy of all their

responses. These results suggest that an automated speech-based emotion classification system can

potentially replace humans in scenarios where humans cannot be easily trained.
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5.2.2 Related Work

To date, only a few studies have been conducted to compare the performance of automatic systems

with that of humans for emotion classification. Some of these studies use visual facial expressions

to determine emotion [174, 175, 176], but these are out of the scope of this study, which focuses on

comparing human and machine performance for emotion classification based on speech.

For the existing studies on human emotion classification from speech, the number of human sub-

jects used is relatively small. In addition, whether the human subjects were trained for the spe-

cific emotion classification task or not is not always specified. In [177], Shaukat et al. compared

a psychology-inspired automatic system that utilizes a hierarchical categorization model based on

multiple SVMs with humans’ ability to classify emotions from speech on two databases, the Ser-

bian Emotional Speech Corpus (GEES) and the Danish Emotional Speech Corpus (DES). For the

experiments with humans, there were 30 subjects for the GEES, and 20 subjects for the DES. Results

showed that the automatic system slightly underperformed humans for both databases.

In [178], Esparza et al. employed a multi-class SVM system to classify speech emotions, and

compared its performance with humans on two German databases, the “corpus of spoken words for

studies of auditory speech and emotional prosody processing” (WaSeP), and the Berlin Database of

Emotional Speech (EmoDB). The WaSeP corpus was evaluated by 74 native German speakers with

an accuracy of 78.5%, and the EmoDB corpus was evaluated by 20 native German speakers with an

accuracy of 84.0%. Computer system accuracies were 84.0% and 77% for the WaSeP and EmoDB

databases, respectively. In this case the results (whether humans or the automated system perform

better) were mixed. A final study considered a Hungarian database evaluated by both humans and an

automated emotion classification system that utilized Hidden Markov Models (HMMs) [179]. The

evaluation was performed by 13 subjects, where the subjects never heard the same speaker succes-

sively. The evaluation included utterances that contained emotion as well as neutral utterances. The

authors evaluated the 4 best emotional categories for the computer system with average accuracy

around 85%, and they evaluated the 8 best emotion categories for the human subjects, with average

accuracy of 58.3%. The results showed that the humans provided better evaluations for the sad and
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disgust emotion categories, while the computer system provided better evaluations for the surprised

and nervous emotion categories.

In this work, we conducted a large scale comparison between a state-of-the-art speech-based emo-

tion classification system with the performance of 138 human subjects classifying 7270 audio sam-

ples. These human subjects were recruited using the Amazon Mechanical Turk service. Compared

to existing studies, our experiment used more human subjects with much higher diversity both de-

mographically and geographically. In addition, these human subjects were not trained on the dataset

used in the experiment.

5.2.3 LDC Dataset

In this study, we use the LDC dataset, a collection that includes speech samples with 14 distinct

emotion categories recorded by professional actors, 3 male and 4 female, reading semantically neutral

utterances such as dates and times [173]. Note that using semantically neutral utterances is a common

practice in speech-based human emotion classification studies [178, 177, 179]. The length of the

utterances varies between one and two seconds. In our study, we used a total of 727 utterances that

contained the emotions happy (136), neutral (67), sad (157), anger (136), disgust (108), and fear

(123). Each emotion was also labeled as active (happy, anger, fear), passive (sad, disgust) and neutral

as well as positive (happy), negative (sad, anger, disgust, fear) and neutral.

5.2.4 Automated Emotion Classification System

There are a number of systems that automatically classify emotions from speech [170, 171, 180,

172, 181]. In this work, we use the one described in [169], as it has been shown to achieve similar

or better classification accuracy than several other state-of-the-art systems [170, 171, 172] and it has

the added advantage that it can reject samples as unclassified if it is not a confident classification.

The rejection mechanism is useful in scenarios where classification is not required on all samples and

the cost of an incorrect classification is high; hence, it is better to simply not classify some samples

in order to achieve a much higher classification accuracy on all classified samples. Here, we briefly
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overview this emotion classification system.

In this system, speech utterances are divided into 60 ms frames with a hop size of 10 ms. For

all voiced frames (frames that contain voiced speech), several features are calculated, including: fun-

damental frequency (F0), energy, frequency and bandwidth of the first four formants, and 12 mel-

frequency cepstral coefficients (MFCCs), zero crossing rate, spectral rolloff, brightness, centroid,

spread, skewness, kurtosis, flatness, entropy, roughness, irregularity and the derivative of all features

[182]. Five statistics of these features (mean, standard deviation, min, max, and range) are then

calculated over all speech frames to obtain utterance-level features. Additionally, speaking rate is

calculated for each utterance. This provides a total of 331 features for each utterance.

A classification system with 6 one-against-all (OAA) support vector machines (SVM), one for

each emotion, with radial basis function (RBF) kernels, is then trained using the features extracted

from training data together with their ground-truth emotion labels. This system is then able to classify

new unseen utterances. For an unseen utterance, each OAA classifier outputs a confidence value, in-

dicating the classifier’s confidence that the utterance conveys that particular emotion. The confidence

values of all 6 classifiers are compared, and the final emotion label of the utterance is determined by

the classifier with the highest confidence.

In many scenarios, a classification does not have to be made for every utterance, yet when a

classification is made, the cost of an incorrect classification is high. To deal with these scenarios, the

system is also equipped to perform thresholding fusion, as per the approach in [183]. If the highest

confidence value is below a threshold, the system rejects the sample. Only if the confidence value is

above a threshold will the system provide a label for the utterance.

The system also employs speaker normalization, training set over-sampling, and feature selection

to enhance the classification performance [169]. Speaker normalization (z-score normalization [184])

is used to normalize the distribution of the features of each speaker. This is to cope with the problem

that different speakers may have distinct speech characteristics such as loudness. Training set over-

sampling is used to overcome the problem of having an unbalanced training. SMOTE [185] over-

sampling method is used, where synthetically created samples are added to the training set to balance

the training data set. Feature selection is employed to select the most effective features from the 331
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features for the classification. While in prior work [169], Mutual Information (MI) was used, here we

use an SVM Recursive Feature Elimination [186] method instead, as we found that this approach can

provide overall better performance in terms of classification accuracy using a subset of the features.

Similar OAA-SVM classification systems were trained for active-passive-neutral (APN) and positive-

negative-neutral (PNN). These systems also use the thresholding fusion mechanism to reject utter-

ances for which they are not confident enough, in order to improve the classification accuracy of

those utterances that are ultimately classified.

To evaluate these systems, we conduct leave-one-subject-out (LOSO) tests, where the OAA binary

classifiers are trained using speech utterances from all but one of the speakers in the dataset, and

then tested using the one speaker left out of the training phase. In this way, we can determine the

performance of the system when it has not been trained on the individual speaker, as would be the

case for a number of applications where the system can be trained on the class of speakers it will

encounter but it cannot be trained using samples from the target person. The results represent the

average over all 7 LOSO cases using the 7 speakers in the LDC dataset.

5.2.5 Amazon’s Mechanical Turk Setup

For the MTurk experiment, each Turker was provided with initial instructions about the task.

These instructions included a sample of each of the different emotion categories to provide some

minimal training of the Turkers. After reviewing the instructions, the Turkers were presented with

a random selection of 10 to 100 audio samples to classify. After listening to each audio sample,

as shown in Figure 5.1, Turkers were asked if the emotion conveyed in the sample was 1) active,

passive or neutral, 2) positive, negative or neutral, and 3) one of the six emotions. Additionally, the

Turkers were asked to rate their confidence in their labeling of the emotion. Finally, they were asked

to transcribe what they heard in the audio file in order to ensure that the Turker actually listened to

the audio sample. After completing the classification of all audio samples, the Turkers were asked

to provide demographic information, including gender, age and race. Note that only Turkers whose

native language is English are requested for this task. Once the MTurk task was completed and



CHAPTER 5. AUTOMATIC SPEECH EMOTION RECOGNITION (ASER) 115

Figure 5.1: Questions shown to Turkers.

approved by us, the Turkers were paid $0.50 for each group of 10 speech samples they classified, in

exchange for their time.

Table 5.1 shows the number of samples classified by the Turkers, broken down by gender and

age. There were 138 unique Turkers that classified 7,270 audio samples, with individual Turkers

classifying between 10 and 100 audio samples.

5.2.6 Evaluation

The goal in our experiments is to compare the performance of the automatic emotion classification

system described in Section 5.2.4 with the performance of naive human coders, the Turkers from our

MTurk experiment described in Section 5.2.5. In order to provide a fair comparison, we present

results for the leave-one-subject-out (LOSO) case for the automatic emotion classification system. In
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this case, the training set does not contain any samples from a particular speaker who is used in the

test set.

In this section, we compare three different ways of classifying the utterances: 1) classifying the

utterances to one of 6 different emotions; 2) classifying the utterances as active, passive or neutral; and

3) classifying the utterances as positive, negative or neutral. For each case, we compare the results of

the automatic system with the Turkers when classifying all samples as well as when classifying only

those samples for which they are confident. Additionally, we provide data showing the performance

of the male and female Turkers, and for the performance for female and male utterances separately.

Classifying the Utterances: 6 Emotions

The first task is to classify the samples into the six emotion categories mentioned in Section 5.2.3.

Table 5.2 shows the accuracy values for the computer system and the Turkers for this task. Overall,

the average accuracy for the Turkers is 60.4%, which is 12.5% worse than the automatic emotion

classification system, which provides an accuracy of 72.9%. As shown in this table, the Female

Turkers performed slightly better than the Male Turkers (1.1% improvement).

Also shown in Table 5.2 are the different accuracy values for the computer system and the Turkers

when considering only the female or male utterances. It is interesting to note that the computer system

performs slightly better (1.2%), while the Turkers perform significantly better (10.8%) for the female

utterances.

We compare the accuracy values for the samples where the Turkers were confident about their

classification with the accuracy values when the automatic emotion classification system is confident

(here we use two different thresholds such that either 50% or 80% of the samples are classified,

with all others being rejected). If we compare the Turkers’ accuracy in classifying the emotions

when all samples are classified with the accuracy when only those samples for which they were

confident in their classification are considered, we see very little difference in the accuracy values

(60.4% vs. 60.6%). This tells us that humans are not able to accurately estimate their performance and

reliability on the emotion classification task. On the other hand, if we look at the automatic emotion

classification system results, we see that when the computer rejects as unclassified the samples for
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Table 5.1: Number of samples classified by Turkers.

All (7270)
Female (2850) Male (4350) NA (70)

Ages Ages Ages
18-29 30-39 40-49 50-59 18-29 30-39 40-49 50-59 18-29
1300 630 620 300 2610 940 550 250 70

Table 5.2: Accuracy values (%) for six emotions.

Speaker
Gender

Classification
Confidence Level

Accuracy Overall Female Male Confident
(80%)

Confident
(50%)

Unsure
(20%)

Unsure
(50%)

Computer System 72.9 73.2 72.0 77.7 85.4 61.2 55.3
All Turkers 60.4 64.9 54.1 60.6 (80.5% confident) 59.6 (19.5% unsure)
Female Turkers 61.2 64.4 57.1 60.4 (78.4% confident) 62.9 (21.6% unsure)
Male Turkers 60.1 65.4 52.5 60.8 (82.0% confident) 57.9 (18.0% unsure)

Table 5.3: Confusion matrix for the automatic classification system (GT = ground truth).

Anger Disgust Fear Happy Neutral Sad
Anger (GT) 92.9 0.0 2.4 2.5 0.0 2.2
Disgust (GT) 0.9 80.7 0.9 6.0 1.1 10.3
Fear (GT) 4.3 0.0 85.2 8.9 0.0 1.6
Happy (GT) 5.6 3.5 8.2 79.0 1.5 2.2
Neutral (GT) 0.0 4.2 0.0 2.4 86.3 7.2
Sad (GT) 0.0 5.1 0.0 0.8 1.5 92.6

which the confidence values from the OAA SVM are low, the accuracy of those samples that are

classified increases from 72.9% to 77.7% when 80% of the samples are classified and to 85.4% when

50% of the samples are classified. Hence, we see that one clear advantage of an automatic emotion

classification system over human coders is this ability to improve classification accuracy by rejecting

to classify some samples. In applications where not all samples must be classified and the cost of

mis-classification is high, this can be a valuable means to increase emotion classification accuracy.

The final set of numbers shows the accuracy of the utterances that are rejected by the automatic

classification system or for which the Turkers were unsure of their classification. From this data, we

can see that there is not much difference in accuracy for the set where the Turkers were confident

(60.6%) and for the set where the Turkers were not confident (59.6%). Additionally, this data shows

that when 20% of the samples are rejected by the automatic classification system, the accuracy on

those rejected samples is 55.3%. Hence, some of the rejected samples (55.3%) were actually correctly

classified. However, it is impossible to know which ones, and including this set of classifications

makes the overall classification accuracy drop, and in some applications this is not a good trade-off
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Table 5.4: Confusion matrix for the Turkers (GT = ground truth).

Anger Disgust Fear Happy Neutral Sad
Anger (GT) 69.0 14.7 4.6 6.8 3.5 0.7
Disgust (GT) 7.8 32.5 9.4 6.8 28.0 15.0
Fear (GT) 11.2 3.6 67.2 11.3 4.2 2.3
Happy (GT) 3.3 6.3 8.0 54.7 22.9 4.3
Neutral (GT) 0.9 2.1 0.4 1.8 78.4 15.8
Sad (GT) 0.5 3.7 5.6 0.3 25.2 64.3

Table 5.5: Accuracy values (%) for APN and PNN.

Samples Classification Confidence

All Female Male Confident
(80%)

Unsure
(20%)

Computer (APN) 89.3 86.8 92.4 94.4 73.1
Turkers (APN) 70.5 71.5 69.0 71.0 67.9
Computer (PNN) 82.9 82.9 82.4 88.0 62.0
Turkers (PNN) 71.8 75.5 66.6 72.1 70.7

to make. Nevertheless, it is interesting to see that the computer system’s accuracy on the rejected

samples is very close to that obtained even by confident Turkers, which further shows the superiority

of the computer system over naive human coders on this dataset.

Confusion matrices for the automatic emotion classification system’s classification and the Turk-

ers’ classification for the 6 emotions are shown in Tables 5.3 and 5.4, respectively. Note that in these

tables, the rows are the ground truth (GT) labels, and they sum to 100%. From these tables, we see

that the automatic classification system is classifiying each emotion better than the Turkers.

Classifying into Active-Passive-Neutral

Next, we explore the results when classifying the samples according to the three arousal cate-

gories: active, passive and neutral (APN). As can be seen in Table 5.5, the Turkers achieved 70.5%

accuracy in their classification of the utterances into active, passive and neutral categories, while the

computer system achieved 89.3% accuracy. As for the 6 emotion classification task, the accuracy for

the samples for which the Turkers are confident in their classification does not improve significantly

compared with the accuracy for all the samples, while the computer system does have an increase in

accuracy when only classifying samples for which it is confident in the response.
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Classifying into Positive-Negative-Neutral

For the final classification task, we explore the results when classifying the samples according

to the three valence categories: positive, negative and neutral (PNN). As can be seen in Table 5.5,

the Turkers achieved 71.8% accuracy in their classification of the utterances into positive, negative

and neutral categories, while the computer system achieved 82.9% accuracy. Once again, the same

conclusions hold for the confident utterances.

5.2.7 Discussions

It is important to note that the expression and perception of emotion are very subjective. For the

same utterance, different listeners may perceive different emotions, and all of them may be different

from the emotion that the speaker intended to convey. Therefore, for an emotion classification task,

obtaining the ground-truth emotion labels is not trivial. To obtain the ground-truth “perceived” emo-

tion, one could ask some listeners to label the utterance, but these labels are ambiguous due to their

subjective nature. Our results also show that different Turkers do sometimes disagree with each other.

Due to this difficulty in obtaining ground-truth emotion labels, in our study we used acted emo-

tions. On the one hand, one may criticize that these utterances may not be “natural”. On the other

hand, however, the ground-truth labeling is not an issue. Each utterance is labeled to the emotion that

the speaker wants to convey, hence the ground-truth labels are “expressed” emotions. Consequently,

the classification errors that the Turkers made simply indicate the mismatches between the emotions

that the speakers wanted to convey and the emotions that the Turkers perceived, i.e., the effectiveness

of the emotion communication through these utterances.

Compared to the automated classification system, emotion communication between humans is

apparently less effective according to the results in our study. One of the most important reasons,

we argue, is due to the lack of training. The computer system was trained and tested on the same

dataset. Although utterances from different speakers were used for training and testing, they did share

some common characteristics such as the type of speech content and the recording environment.

The Turkers, however, were only provided with 1 sample recording for each emotion of the dataset.
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Although the Turkers have experienced numerous samples of these emotions in their daily lives, they

are still considered “naive” for this dataset.

While it is feasible to train computer systems for specific types of data (e.g., in a certain environ-

ment), it is often not possible to provide similar training to humans and hence they will always be

operating in the “naive” mode. Some applications where trained automatic classification systems can

replace naive human coders include: 1) warning managers at call centers when either a customer or

the customer service representative displays a negative emotion (such as anger, frustration, etc.); 2)

applications where there is sensitive data and the content should not be released to human workers due

to privacy issues; 3) a vehicular application that warns a driver about negative emotions to avoid road

rage; and 4) applications that help those unable to decode emotions accurately, such as those with

autism or certain cognitive degeneration diseases. In these systems, it is not required to classify every

“sample” (e.g., each 2-3 s of audio); instead, it is important that when an emotion classification label

is added to the data, that classification is accurate. As shown in our study, an automatic classification

system is able to meet this requirement, providing quite high accuracy values by classifying between

50% and 80% of the data.

One interesting question for future work is how quickly humans would be able to be trained on a

particular dataset, and once trained, would they be able to provide accuracy performance similar to

the automatic classification system? If humans could be trained quickly, then this would be a feasible

option for some applications; however, if the cost (time and resources) to train humans is large, the

automatic classification system remains an attractive alternative.

5.2.8 Conclusions

This study compares the performance of a speech-based automatic emotion classification system

with the performance of naive human coders in classifying emotions for speech utterances. The results

show that the automatic system achieves much better accuracy in almost all cases. Additionally, the

automatic system can improve the classification accuracy by rejecting to classify samples for which

it is not confident in the classification, while the naive human coders were not able to improve their
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accuracy through specifying their confidence in their classification. These results show that a speech-

based automatic emotion classification system is feasible as a replacement for applications that utilize

naive human coders to classify emotion.

5.3 WISE: Web-based Interactive Speech Emotion Classification

5.3.1 Introduction

Accurately estimating emotions of conversational partners plays a vital role in successful human

communication. A social-functional approach to human emotion emphasizes the interpersonal func-

tion of emotion for the establishment and maintenance of social relationships [187], [188], [189].

According to [187] “Emotions are not mere feelings, but rather are processes of establishing, main-

taining, or disrupting relations between the person and the internal or external environment, when

such relations are significant to the individual.” Thus, the expression and recognition of emotions al-

lows the facilitation of social bonds through the conveyance of information about one’s internal state,

disposition, intentions, and needs.

In many situations, audio is the only recorded data for a social interaction, and estimating emotions

from speech becomes a critical task for psychological analysis. Today’s technology allows for gath-

ering vast amounts of emotional speech data from the web, yet analyzing this content is impractical.

This fact prevents many interesting large-scale investigations.

Given the amount of speech data that proliferates, there have been many attempts to create au-

tomatic emotion classification systems. However, the performance of these systems is not as high

as necessary in many situations. Many potential applications would benefit from automated emotion

classification systems, such as call-center monitoring [190, 191], service robot interactions [192, 193]

and driver assistance systems [194, 195]. Indeed, there are many automated systems today that fo-

cus on speech [172, 196, 171, 170, 197, 198]. However, emotion classification accuracy of fully

automated systems is still not satisfactory in many practical situations.

In this study, we propose WISE, a web-based interactive speech emotion classification system.
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This system uses a web-based interface that allows users to easily upload a speech file to the server

for emotion analysis, without the need for installing any additional software. Once the speech files

are uploaded, the system classifies the emotions using a model trained on previously labeled training

samples. Each classification is also associated with a confidence value. The user can either accept

or correct the classification, to “teach” the system the user’s specific concept of emotions. Over

time, the system adapts its emotion classification models to the user’s concept, and can increase its

classification accuracy with respect to the user’s concept of emotions.

The key contribution of our work is that we provide an interactive speech-based emotion analysis

framework. This framework combines the machine’s computational power with human users’ high

emotion classification accuracy. Compared to purely manual labeling, it is much more efficient. Com-

pared to fully automated systems, it is much more accurate. This opens up possibilities for large-scale

speech emotion analysis with high accuracy.

The proposed framework only considers offline labeling and returns labels in three categories:

emotion, arousal and valance with time codes. To evaluate our system, we have simulated the user-

interface interactions in several settings, by providing ground truth labels on behalf of the user. One

of the scenarios is designed to be a baseline, with which we can compare the remaining scenarios.

In another scenario, we test if the system can adapt to the samples whose speaker is unknown to the

system. The next scenario tests how the system’s classification confidence of a sample effects the

system’s accuracy. The full system is available for researchers to use. 1

5.3.2 Related Work

All-in-one frameworks for automatic emotion classification from speech, such as EmoVoice [199]

and OpenEar [200], are standalone software packages with various capabilities, including audio

recording, audio file reading, feature extraction, and emotion classification.

EmoVoice allows the user to create a personal speech-based emotion recognizer, and it can track

the emotional state of the user in real-time. Each user records their own speech emotion corpus to

train the system, and the system can then be used for real-time emotion classification for the same
1http://www.ece.rochester.edu/projects/wcng
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user. The system outputs the x- and y-coordinates of an arousal-valance coordinate system with time

codes. It is reported in [199] that EmoVoice has been used in several systems including humanoid

robot-human and virtual agent-human interactions. EmoVoice does not consider user feedback once

the classifier is trained, whereas in our system, the user can continually train and improve the system.

OpenEar is an emotion classification multi-platform software package that includes libraries for

feature extraction written in C++ and pre-trained models as well as scripts to support model building.

One of its main modules is named SMILE (Speech and Music Interpretation by Large-Space Extrac-

tion), and it can extract more than 500K features in real-time. The other main module allows external

classifiers and libraries such as LibSVM [201] to be integrated and used in classification. OpenEar

also supports popular machine learning frameworks’ data formats, such as the Hidden Markov Model

Toolkit (HTK) [202], WEKA [203], and scikit-learn for Python [204], and therefore allows easy tran-

sition between frameworks. OpenEar’s capability of batch processing, combined with its advantage

in transitioning to other learning frameworks, makes it appealing for large databases.

ANNEMO (ANNotating EMOtions) [205] is a web-based annotation tool that allows labeling

arousal, valence and social dimensions in audio-visual data. The states are represented between -1 and

1, where the user changes the values using a slider. The social dimension is represented by categories

rather than numerical values, and those are agreement, dominance, engagement, performance and

rapport. No automatic classification/labeling modules are included in ANNEMO.

In contrast, WISE is a web-based system and can be used easily without installing any software,

unlike EmoVoice and OpenEar. WISE is similar to ANNEMO in terms of the web-based labeling

aspect, however WISE only considers audio data and provides automatic classification as well.

5.3.3 Web-based Interaction

Our system’s interface, shown in Figure 5.3, is web-based, allowing easy, secure access and use

without installing any other software except a modern browser.

When a user uploads an audio file, the waveform appears on the main screen, allowing the user to

select different parts of the waveform. Selected parts can be played and labeled independently. These
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Figure 5.2: Flow chart showing the operation of WISE.

selected parts will also be added to a list, as shown in the bottom-left side of Figure 5.3. The user can

download this list by clicking on the “save” button in the interface.

The labeling scheme is restricted to three categories: emotion, arousal and valence. Emotion

category elements are anger, disgust, fear, happy, neutral, sadness. Arousal category elements are

active, passive and neutral, and valance category elements are positive, negative and neutral. Our

future work includes adding user defined emotion labels into the system.

The user can request labels from the automated emotion classifier by clicking on the “request

label” button. The system then shows suggested labels to the user.

The next section describes the automated speech-based emotion classification system used in

WISE.

5.3.4 Automated Emotion Classification System

There are various automated speech-based emotion classification systems [172, 196, 171, 170,

197] that consider different features, feature selection methods, classifiers and decision mechanisms.
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Figure 5.3: WISE user interface screenshot.

Our system is based on [198], which provides a confidence value along with the classification label.

Features

Speech samples are divided into overlapping frames for feature extraction. The window and hop

sizes are set to 60 ms and 10 ms, respectively. For every frame that contains speech, the following fea-

tures are calculated: fundamental frequency (F0), 12 mel-frequency cepstral coefficients (MFCCs),

energy, frequency and bandwidth of first four formants, zero-crossing rate, spectral roll-off, bright-

ness, centroid, spread, skewness, kurtosis, flatness, entropy, roughness, and irregularity, in addition

to the derivatives of these features. Statistical values such as minimum, maximum, mean, standard

deviation and range (i.e., max-min) are calculated from all frames within the sample. Additionally,

speaking rate is calculated over the entire sample. Hence, the final feature vector length is 331.
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Feature Selection

The system employs the support vector machine (SVM) recursive feature elimination method

[186]. This approach takes advantage of SVM weights to detect which features are better than others.

After the SVM is trained, the features are ranked according to the order of their weights. The last

ranked feature is eliminated from the list and the process starts again, until there are no features left.

Features are ranked in reverse order of elimination order. The top 80 best features are chosen to be

used in the classification system. Note that in Section 5.3.5, the features are selected beforehand and

not updated when a new sample is added to the system.

Classifier

Our system uses a one-against-all (OAA) binary SVM with radial basis function (RBF) for each

emotion, arousal and valance category element, for a total of 12 SVMs. The trained SVMs calculate

confidence scores for any sample that is being classified. The system labels the sample with the class

of the binary classifier with maximum classification confidence on the considered sample.

5.3.5 Evaluation

To evaluate WISE and the benefit of user-assisted labeling of the data, we have simulated user-

interface interactions using the LDC database as the source of data for training, validation and testing.

Dataset

We use the Linguistic Data Consortium (LDC) Emotional Prosody Speech and Transcripts [173]

database in our simulations. The LDC database contains samples from 15 emotion categories; how-

ever, in our evaluation, we only use 6 of the emotions as listed in Section 5.3.3. The LDC database

contains acted speech, voiced by 7 professionals, 4 female and 3 male. The transcripts are in English

and contain semantically neutral utterances, such as dates and times.
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Figure 5.4: The results of emotion category for Scenarios I-III.

Figure 5.5: The results of arousal category for Scenarios I-III.

Simulations

We have simulated user-interface interactions in different scenarios for which WISE can be used

to enable user feedback to improve classification accuracy. In these simulations, there are three data

groups: training, test and validation. We assume that validation data represents the samples where the

user provides the “correct” label. In each iteration, the system evaluates the test data using the current

models, and at the end of each iteration, a sample from the validation data is added to the training data

to update the models. Next, we describe the different scenarios in detail.
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Figure 5.6: The results of valence category for Scenarios I-III.

Scenario 0 - Baseline

In this scenario, the data from 1 of the 7 speakers is used for testing, while the remaining 6

speakers’ data are used for training and validation. Since only a limited amount of data is available

from each speaker in the next scenarios, we also limit the amount of the validation data in this scenario.

In this way, the baseline becomes more comparable to the other scenarios.

The training data starts with N samples from each class for each category. For the emotion classi-

fication, there are only 2 samples available in each class (emotion) for the validation data. However,

the arousal and valance categories have half the number of classes that the emotion category has,

therefore, there are 3 samples available in each class that can be used in validation data for these cate-

gories. After the data are chosen randomly, the system simulates the interaction process. This process

is repeated for all speakers, and the results are averaged over all 7 speakers and 200 trials.

Scenario I

This scenario has the same settings as Scenario 0, except this time, the testing data, as well as

the validation data are chosen from a speaker, and the training data is chosen among the remaining 6

speakers’ data.
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Scenario II

This scenario has the same settings as Scenario I with a single difference: in each round, the

validation data has been ordered in ascending order of the classifier’s confidence level in classifying

them. Therefore in each iteration, the sample, on which the system has the least confidence, is added

to the training data from the validation data.

Discussion

Figures 5.4-5.6 show the classification accuracy versus the number of added samples for each

scenario for the emotion, arousal and valence, respectively. Note that the error bars represent the

standard deviation of the results over the 7 speakers and 200 trials.

Scenario I shows the ability of WISE to enable adaptation of the models. In many situations,

trained models of automatic systems have no information on the speaker to be classified. The compar-

ison of classification accuracy between Scenario 0 and Scenario I shows that adaptation to unknown

data is vital for accurate emotion estimation, as the accuracy increases greatly when data from the

new user are added.

For example, in Scenarios I and II, when N is 4 for the emotion category, the system’s initial

accuracy starts around 37% and increases to approximately 63%, as can be seen in Figure 5.4, where

on the other hand in Scenario 0, accuracy can only increase to approximately 41%. In Scenarios I and

II , when N is 10, the classification accuracy starts higher then the previous case, yet with the same

number of added samples, they converge to the same percentage. This enables the possibility of using

pre-trained models in our system that are trained on available databases.

The results of Scenario II suggest that adding the samples with low classification confidence are

slightly more beneficial than adding a sample for which the system already has more confidence.

Figures 5.4-5.6 show that the classifier in Scenario II converges to a slightly higher classification

accuracy than the one in Scenario I. This can be seen especially in the arousal category results.
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5.3.6 Conclusions

This study introduced and evaluated the WISE system, which is an interactive web-based emotion

analysis framework to assist in the classification of human emotion from voice data. The full system

is available for the community to use. The evaluation results show that the system can adapt to the

user’s choices and can increase the future classification accuracy when the speaker of the sample is

unknown. Hence, WISE will enable adaptive, large scale emotion classification.

5.4 Unsupervised Learning Approach to Feature Analysis for Au-
tomatic Speech Emotion Recognition

5.4.1 Introduction

Emotions are a vital part of social interactions. Designing computational models to recognize

emotions is key to an automatic understanding of social interactions. In recent years, researchers

have developed automatic emotion recognition systems using different data modalities, including

physiological signals [206], facial expressions and body gestures [207], and speech [208]. Among

these modalities, speech is more accessible and less intrusive in daily life. Therefore, automatic

speech emotion recognition (ASER) has received much attention in this field.

ASER is a challenging task. While automatic systems have been shown to outperform naive hu-

man listeners on speech emotion classification [27], unlike speech and image classification tasks,

current ASER systems are still not competitive to trained human listeners. One bottleneck for im-

proving ASER is the lack of training data. Recording and annotating emotional speech is a very

time-consuming process. Compared to general speech datasets, publicly available speech emotion

recognition datasets are much more limited in the number of speakers and utterances, and the cover-

age of vocabulary and recording conditions [208].

One way to alleviate the data lacking issue is to transfer knowledge learned from unlabeled data

or data in other related tasks (source tasks) to the task at hand (target task) [209]. One technique is

unsupervised feature learning, which does not utilize the label information but aims to learn robust
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features that can capture the intrinsic structures of the data. These features are also often discrimina-

tive to train better classification models for the target task [210, 211]. For ASER, the most natural and

available data sources are general speech. They may not carry strong emotions, but features learned

from these data may capture intrinsic structures of speech and be useful for ASER.

Unsupervised feature learning has been rarely explored in ASER beyond autoencoders (AE) [212]

and denoising autoencoders (DAE) [210]. AE and DAE aim to learn features that are good for the

reconstruction of the input. More advanced techniques, such as variational autoencoders (VAE) [213]

and generative adversarial networks (GAN) [96], do not aim to reconstruct the input, but aim to

generate data that come from the same distribution as the input. This relaxation tends to put more

emphasis on the modeling of intrinsic structures of the data during feature learning [213, 96, 211].

In this chapter, we describe our design of a convolutional neural network (CNN)-based ASER

system and make the first systematic exploration of various kinds of unsupervised learning tech-

niques to improve the speaker-independent emotion recognition accuracy. These techniques include

the denoising autoencoder (DAE), variational autoencoder (VAE), adversarial autoencoder (AAE)

and adversarial variational Bayes (AVB). We compare these systems with two baselines (SVM and

CNN) that work on hand-crafted features without unsupervised feature learning. Experiments show

that unsupervised feature learning significantly improves the ASER performance, when trained on a

large scale general speech dataset, regarding unweighted accuracy rating (UAR) and F1-score. Fur-

thermore, the latent variable models including VAE, AAE, and AVB improve the ASER performance

more than the DAE and other baselines. This suggests that unsupervised learning with these latent

variable models are useful practices for ASER, where training data is insufficient.

5.4.2 Related Work

Traditional ASER systems that utilize Gaussian mixture models (GMMs) [214, 171, 215], hidden

Markov models (HMMs) [216, 180], and support vector machines (SVMs) [217, 170, 218], rely on

well-established hand-crafted speech features. These features usually include spectral, cepstral, pitch,

and energy features of the speech signal at the frame level. Statistical functionals of these features are
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Figure 5.7: Proposed ASER system overview. The dashed red windows represent the sliding window
with 50% overlap. From each window, emotion class probabilities (p1, p2, p3, p4 and p5) are predicted
and the average of these vectors is calculated over all windows is calculated for each utterance. The
emotion that has the highest probability is predicted as the emotion of the utterance.

then applied across multiple frames to obtain an utterance-level feature vector.

Some researchers explored deep learning methods to find robust features for the ASER task. Xia

et al. [219] proposed a modified DAE that maps input speech to two hidden representations, a neutral

representation learned by reconstructing neutral speech beforehand, and an emotional representation

learned by reconstructing emotional speech with the neutral representation fixed. During testing, the

emotional representation of a test speech sample is fed to an SVM classifier for emotion classification.

In their follow-up work [220], Xia et al. incorporated the speaker gender information which resulted

in further improvements.

Ghosh et al. [221, 222] trained stacked DAEs and a bidirectional long short-term memory (BLSTM)

AE to obtain a latent representation of the input spectrogram extracted from the speech and the glottal

flow waveform. These latent representations were then fed to a multilayer perceptron (MLP) with a

softmax output for 4-class emotion classification.

Deng et al. [223] proposed a single-layer sparse autoencoder (SAE) for feature transfer learning

between different emotion corpora. One SAE was trained for each emotion class in the source do-
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main using hand-crafted features as the input. Then each training sample in the target domain was

reconstructed by the SAE of the corresponding class. Finally, an SVM model was trained on the

reconstructed data to classify the original test samples without going through the SAEs. Deng et

al. [224] obtained further improvements by replacing the SAEs with denoising autoencoders (DAEs).

Although these studies have demonstrated the benefits of unsupervised feature learning using

DAEs, more advanced latent variable methods such as VAE, AAE, and AVB have not been explored

for ASER. These methods attempt to model the distribution of data and are likely to learn more

meaningful, controllable and discriminative features, leading to better classification performance, es-

pecially when the amount of labeled data is small [211].

5.4.3 Method

We propose to adopt a convolutional neural network (CNN)-based architecture (shown in Fig. 5.7)

for ASER and to investigate the effects of different unsupervised learning techniques. Specifically, the

network contains a pre-trained encoder network to extract features from the log-Mel spectrogram of

the input speech, and a fully connected (FC) network to classify their emotions. The encoder includes

three convolutional layers with a leaky rectified linear unit (LReLU) activation and an FC layer with a

linear activation as shown in Table 5.6. The encoder gradually reduces the dimension of the input into

the latent dimension. During classification, the encoder network weights are frozen. The classifier

consists of three fully connected layers with LReLU activations except for the last activation, which

uses softmax to represent probabilities of each emotion class. There are two dropout layers with 0.25

drop rate between FC layers. The categorical cross-entropy loss is used during the training of the FC.

The proposed network processes each utterance by segments that are 1 second long. During train-

ing, we randomly choose patches to form training batches from each utterance and use the utterance-

level label as the label for the segment. During testing, we segment each utterance into 1-second long

segments with a 0.5-second overlap. We predict the emotion probabilities in each segment and then

average the probabilities across all segments. We finally choose the emotion category, which has the

highest mean probability, as the utterance-level emotion classification result.
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Net Layers Activ. F. No F. Size Strides Output Shape

encoder
(qθ)

Input (x) - - - - 64× 64× 1
Conv2D LReLU 32 9× 9 2× 2 32× 32× 32
Conv2D LReLU 64 7× 7 2× 2 16× 16× 64
Conv2D LReLU 128 5× 5 2× 2 8× 8× 128
Flatten - - - - 8192

FC Linear - - - 256

decoder
(pφ)

Input (z) - - - - 256
FC LReLU - - - 8192

Reshape - - - - 8× 8× 128
Conv2DT LReLU 128 5× 5 2× 2 16× 16× 128
Conv2DT LReLU 64 7× 7 2× 2 32× 32× 64
Conv2DT LReLU 32 9× 9 2× 2 64× 64× 32
Conv2D Sigmoid 1 1× 1 1× 1 64× 64× 1

AAE
discriminator

Input (z) - - - - 256
FC LReLU - - - 2048
FC LReLU - - - 2048
FC LReLU - - - 2048
FC Sigmoid - - - 1

AVB
discriminator

Input (z) - - - - 256
FC LReLU - - - 4096

Reshape - - - - 64× 64× 1
Input (x) - - - - 64× 64× 1
Concat - - - - 64× 64× 2

Conv2D LReLU 32 9× 9 2× 2 32× 32× 32
Conv2D LReLU 64 7× 7 2× 2 16× 16× 64
Conv2D LReLU 128 5× 5 2× 2 8× 8× 128
Flatten - - - - 8192

FC LReLU - - - 256
FC Sigmoid - - - 1

classifier

Input (z) - - - - 256
FC LReLU - - - 1024

Dropout - - - - 1024
FC LReLU - - - 1024

Dropout - - - - 1024
FC Softmax - - - 5

Table 5.6: The architecture of the encoder, decoder, discriminator and emotion classifier networks.
AEs share the encoder and decoder structures, except AVB where we modify the encoder to accept
external noise input similar to AVB discriminator architecture. Conv2D is a 2-d convolution layer,
where Conv2DT is a transposed 2-d convolution (or deconvolution) layer. Concat is the concatenation
layer. F. No is the number of filters, where F. Size is the filter size.
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Figure 5.8: DAE network architecture: reconstructing the clean spectrogram from noisy input

In the following, we describe different architectures, and inference models for the encoder ex-

plored in this work, including denoising autoencoder (DAE), variational autoencoder (VAE), adver-

sarial autoencoder (AAE) and Adversarial Variational Bayes (AVB).

Denoising Autoencoder (DAE)

Denoising autoencoders (DAEs) [210] aim to extract robust features by reconstructing clean data

from their corrupted versions. They have been applied to ASER systems [219, 220, 221, 222] and

yielded performance increase. The model can be expressed as:

z ∼ qθ(z|x̃), (5.1)

x̂ ∼ pφ(x|z), (5.2)

where z, x, x̃ and x̂ are the latent representation, clean data, corrupted data and reconstructed clean

data, respectively. qθ and pφ are the probabilistic notation of the encoder and decoder networks,

where θ and φ are the trainable parameters of the networks. When cross-entropy is used to measure
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Figure 5.9: VAE network architecture: variational inference on auto-encoder by constraining the
latent representation to follow a normal distribution

the reconstruction error, the loss function is defined as:

min
θ,φ
−Ez∼qθ(z|x̃)[log pφ(x|z)]. (5.3)

As we do not have an estimation nor control of the distribution of the latent representation, it is

difficult to generate new but realistic data using the decoder of DAEs.

We train a DAE using the same encoder-decoder architecture as shown in Table 5.6. The encoder

and decoder networks are symmetrical except for the last layer of the decoder network.

Variational Autoencoder (VAE)

VAE [213] is another version of AE that performs variational inference by constraining the latent

representation to match an explicit distribution such as a normal distribution. The latent representation

is defined as follows:

(zµ, zσ) ∼ qθ(zµ, zσ|x), (5.4)

z = zµ + zσ �N (0, I), (5.5)
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where zµ, zσ are the mean and standard deviation obtained from the encoder network, and N (0, I) is

the Gaussian distribution with zero mean and unit standard deviation. The loss function is defined as

min
θ,φ

KL (qθ(z|x)‖p(z))− Eqθ(z|x)[log pφ(x|z)], (5.6)

where p(z) = N (z; 0, I) is the prior multivariate Gaussian distribution that we want latent representa-

tion to match and KL is the Kullback-Leibler (KL) divergence respectively. The first term regularizes

the output latent distribution of the encoder and the second term is the reconstruction loss of AE.

Since the latent representation distribution is controlled, new but realistic samples can be easily gen-

erated by feeding to the decoder the randomly drawn latent representations according to the normal

distribution.

We train a VAE using the same architecture as the encoder-decoder shown in Table 5.6 except that

we modify the encoder network by replacing the last layer with two fully connected layers, which

output zµ and zσ. We calculate the latent representation z using Eq. (5.4), and feed it to the decoder

network.

Adversarial Autoencoder (AAE)

Generative adversarial networks (GANs) have achieved remarkable success in generating realistic

data [96]. GANs are zero-sum two player game where the players are the counterfeiter and the police.

The counterfeiter forges a fake sample and presents it to the police, and the police try to distinguish

between real and fake samples. In neural network terminology, the counterfeiter is called the generator

network and the police is called the discriminator network.

Adversarial autoencoders (AAEs) [225] are a type of AE that performs variational inference by

constraining the latent distribution to match a specified distribution p(z) through adversarial training.

In GAN terms, the encoder qθ(z|x) tries to fool the discriminator by generating latent codes that
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Figure 5.10: AAE network architecture: variational inference on auto-encoder by constraining the
latent representation through adversarial training

mimic p(z). The min-max game can be expressed as:

min
θ,φ

max
ψ

Ez∼p(z)[logDψ(z)]+

Ex∼pdata [log(1−Dψ(qθ(z|x)))]−

Ez∼qθ(z|x)[log pφ(x|z)],

(5.7)

where Dψ(·) is the discriminator, and ψ is its parameter. The first two terms are the GAN loss

involving the encoder and the discriminator, while the third term is the reconstruction loss involving

the encoder and the decoder. AAEs rely on reconstruction loss to capture the data distribution where

adversarial loss acts as a regularization term over latent distribution to match the prior distribution.

We use the same architecture that is used for the other AEs for the encoder and decoder networks.

We add a discriminator network shown in Table 5.6 to distinguish between real and fake latent codes.

Adversarial Variational Bayes (AVB)

AVB is a training technique for VAEs that replaces the KL term with an adversarial loss [226].

The discriminator inputs are pairs of (x, z) where x is sampled from the real data distribution and z

is either sampled from the prior distribution or obtained from the inference model. The discriminator
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Figure 5.11: AVB network architecture: unifying VAE and generative adversarial networks (GANs)

tries to distinguish whether the pairs are sampled from the prior distribution or the inference model.

The encoder-decoder model parameters are updated with Eq. (5.8) where the discriminator pa-

rameters are updated with Eq. (5.9).

min
φ,θ

Ex∼pdataEε∼N (0,I)[Dψ(x, qθ(z|x, ε))]−

Ez∼qθ(z|x,ε)[log pφ(x|z)],

(5.8)

max
ψ

Ex∼pdataEε∼N (0,I)[logDψ(x, qθ(z|x, ε))]+

Ex∼pdataEz∼p(z)[log(1−Dψ(x, z))],

(5.9)

We modify the discriminator to accept both the data and latent code. The latent code dimensional-

ity is increased by an FC layer than added to the data as a second channel. The architecture is shown

in Table 5.6. We modify the encoder network to accept external noise ε ∼ N (0, I); we follow the

same steps described for the discriminator network to merge ε into the data as a second channel.
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5.4.4 Experiments

The Data

In our experiments we use USC-IEMOCAP audio-visual dataset [227] that contains scripted and

improvised interactions between actors, we only use the audio files. There are five sessions totaling

about 12 hours of data, where each session includes interactions between a female and a male. There

are three annotators, where annotations include both categorical and real-valued. Categorical emo-

tions include anger, disgust, excitement, fear, frustration, happiness, neutral, sadness and surprise. We

only considered categorical annotations that are agreed by at least two annotators. This database is

commonly used in the ASER literature [220, 215, 222].

While most existing work on this database considered only four emotion categories, we consider

five, which are anger (972 samples), excited (948), frustration (1670), neutral (1507) and sadness

(1039). In all of our experiments, we apply leave-one-session-out cross-validation, where for each

rotation we train on four sessions (from eight speakers) and test on the other session (from the other

two speakers). This assures that the evaluation is speaker-independent. To tune hyperparameters and

decide early stopping, we reserve 20% of training data as the validation set for each rotation.

The Baseline Models

We use the SVM based ASER system described in [27] as one of the baseline models. We ex-

tract frame-level features that include 13 Mel-frequency cepstral coefficients (MFCCs), first four

formant frequencies and bandwidths, zero-crossing rate (ZCR), fundamental frequency (F0), root-

mean-square (RMS) energy and their first and second-time derivatives, totaling 72 features per frame.

We apply mean, std, min, max, and range functionals to frame-level features to obtain utterance-

level features, which have a dimensionality of 72 × 5 = 360. We normalize each dimension of the

utterance-level features of the entire training samples to the range between 0 and 1; we normalize the

test data using the same scaling factor. We then train a one-against-all binary SVM for each emotion

category, with a radial-basis function kernel. During testing, we calculate the probabilities for each

class and select the maximum one as the final emotion class for each test sample.
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Figure 5.12: The unweighted accuracy rating (UAR) and F1-score results for the baseline systems and
the proposed systems. F1-score is calculated for each class, and their unweighted mean is presented.

We design another CNN-FC network as our second baseline system. It takes the same hand-

crafted features used in the SVM baseline with a temporal length of 64 (approximately 1 second) as

inputs to the CNN encoder network. The CNN output is then fed to an FC network for classification.

The architectures for the CNN encoder and the classifier are shown in Table 5.6. Note that the input

dimension of the encoder is different, which is 64×72×1. We train this network with Adam optimizer

and 0.0002 learning rate. We adopted early stopping criteria, where the training stops if the validation

loss is not improved for four epochs.

For the third baseline, we construct another CNN-FC network to take the log-Mel spectrogram

directly as input, the same as the proposed four networks. This is to directly test the benefit of the

adopted four unsupervised feature learning methods. For this purpose, we use the CNN encoder and

FC classifier shown in Table 5.6 and train them from scratch. The resulting system, however, yielded

very poor results, close to the chance performance. Therefore, we do not include it in Figure 5.12.

We believe that the poor results were due to the scarcity of the training data (only 6136 samples) and

the complexity of the CNN network taking log-Mel spectrogram inputs.
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Proposed Models

The AEs presented in Section 5.4.3 are trained by an Adam optimizer with a learning rate of

0.0002. As for the training dataset, we select the Librispeech automatic speech recognition (ASR)

corpus [64], which contains read speech that is often emotionally neutral. We calculate a 64-bin log-

Mel spectrogram for each utterance with a 32 ms window size and a 16 ms hop size. We normalize

the spectrogram values between 0 and 1 per utterance. We form training batches with a size of

256, by selecting random segments with a temporal length of 64 (approximately 1 seconds) from the

utterances. The AEs are trained for 200 epochs.

The proposed ASER systems described in Section 5.4.3 are trained with the four pre-trained infer-

ence models (encoders), whose parameters are frozen, by an Adam optimizer with a learning rate of

0.001. We adopt an early stopping criterion, where training ends if the validation loss is not improved

for four epochs. The emotion models are trained up to 50 epochs. The number of samples in each

training batch is set to 256.

Results

We report the unweighted accuracy ratings (UARs) and F1-score in Figure 5.12 for the SVM and

CNN baselines and the proposed systems. Several interesting observations are made. First, the CNN

baseline yields slightly better UAR and F1-score than the SVM method. This suggests that deep

models, taking the same hand-crafted features as inputs, outperform shallow models. Second, for

both metrics, we are able to verify that the DAE-based unsupervised feature learning method using

an external emotion-neutral dataset improves the ASER performance over SVM and CNN baselines

that do not have the unsupervised feature learning module. This suggests that the learned features

from the external emotion-neutral dataset are better than hand-crafted features (SVM baseline) and

deep features learned only on the emotion dataset (CNN baseline). Third, the latent variable models

VAE, AAE, and AVB outperform the DAE model in terms of both metrics, although they learn fea-

tures from the same external dataset. This suggests that the latent variable models capture the more

discriminative inherent structures of speech data than the reconstruction models such as the DAE.
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Fourth, adversarial models AAE and AVB achieve the best result, showing the importance of GAN

loss on feature learning. In particular, AVB, which defines the GAN loss on input-code pairs, behaves

the best.

5.4.5 Conclusions

In this work, we systematically explored the unsupervised methods in the context of ASER. We

utilize unsupervised methods namely, DAE, VAE, AAE, AVB and trained on general speech, and use

the learned features for ASER task. We show that these methods yield UAR and F1-score increase

over the SVM and CNN baselines. Furthermore, we demonstrated that the inference models VAE,

AAE, and AVB, outperform the reconstruction model DAE for unsupervised feature learning for

ASER.
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Chapter-6

Generating Emotionally Expressive Talking Faces

In this chapter, we propose a system that can generate emotionally expressive talking faces by

merging the components described in previous chapters.

6.1 System Overview

We employ the system described in Chapter 4 with a few modifications: 1) we add a speech emo-

tion recognition module, and 2) utilize an emotion discriminator to generate emotional expressions.

The overall system is shown in Figure 6.1.

6.2 Speech Emotion Recognition Module

This module classifies speech features into emotion classes. The intuition behind this module

is to drive speech features to capture the emotion information, which will help generate emotional

expressions. The module contains two long short-term memory (LSTM) layers followed by a fully

connected layer that outputs the emotion probabilities. The architecture of the speech emotion recog-

nition module is shown in Figure 6.2.
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Figure 6.1: The proposed end-to-end emotionally expressive talking face generation system overview.
There are two modifications compared to the base system described in Chapter 4. The first modifi-
cation is to add a speech emotion recognition module that classifies the input speech’s emotion. The
second modification is to use another discriminator that checks if the video contains the given emo-
tion.

6.3 Emotion Discriminator

The emotion discriminator takes the video and emotion labels as input and decides if the frames

and emotion label match. A dedicated image encoder processes the video frames and extracts the

image embeddings. The image embeddings are concatenated with the emotion embeddings and are

fed to a bidirectional LSTM (BLSTM) layer. Each frame of the output of the BLSTM layer is fed into

a fully connected (FC) layer that classifies the frame as real or fake.

The architecture of the emotion discriminator is shown in Figure 6.3. The usage of BLSTM
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Figure 6.2: The automatic speech emotion recognition module is shown. The module accepts speech
features as input to two LSTM layers followed by a fully connected layer that outputs a probability
for each emotion class.

allows the discriminator to model the temporal relations, which allow the generation of emotional

expressions.

6.3.1 Experiments

Dataset

In our experiments, we use the audio-visual CREMA-D dataset [228]. This dataset contains six

emotions: anger, disgust, fear, happy, sad, and neutral. There are 7,442 short-clips from 91 actors.

We split the dataset into training (73 speakers), validation (8 speakers) and testing (10 speakers) sets.

Results

The generated talking faces are shown in Figure 6.4 for different emotions using the same condi-

tion image. The network is able to generate different emotional expressions when the same condition
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Figure 6.3: The architecture of the emotion discriminator. The video frames are fed into the image
encoder, and the resulting embeddings are concatenated with emotion embeddings and are fed into a
BLSTM layer. The output is fed into an FC layer that classifies the frames as real or fake.

image and different emotional speech inputs are used. Compared to the results in Chapter4, the results

obtained with this network has more facial movements and looks more natural. This is ongoing work;

large-scale subjective and objective evaluations will be conducted in the near future.

6.3.2 Conclusion

We developed an end-to-end emotionally expressive talking face generation system that operates

on a raw speech waveform and a reference image. With this work, we show that by leveraging

emotion labels during training, we can generate emotional expressions directly from speech. This is

still ongoing work; large scale objective and subjective evaluations will be added soon.
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Chapter-7

Conclusions and Future Work

7.1 Conclusions

As described in this dissertation, I have worked on problems in the fields of speech enhance-

ment (SE), speech animation (SA), and automatic speech emotion recognition (ASER). The specific

contributions of this research are summarized below.

• I proposed two deep neural network (DNN) architectures for SE, and I compared the perfor-

mance of the proposed networks with existing work. I concluded that our DNN based SE

approaches provide benefits for speaker verification performance, speech quality, and speech

intelligibility compared to the existing methods.

• I proposed a speech super-resolution system that utilizes a generative adversarial network that

can work on edge devices. I concluded that the performance of the proposed system is better

than the DNN-based baseline methods, supported by the objective evaluations and perceptual

listening tests.

• I proposed a system that can generate landmark points of a talking face from acoustic speech in

real time. I concluded that generating landmark points of talking faces from unseen speakers is

realistic and can convince the volunteers who participated in the subjective tests that the images

are real.

• I extended the landmark generation work by including noise-resilient training. The proposed
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system can suppress unseen non-stationary noise and can generate plausible talking faces. The

new architecture operates directly on raw waveforms and contains convolutional layers with 1D

kernels, and outputs PCA coefficients of the face landmarks.

• I proposed an end-to-end image-based talking face generation system that can accept an arbi-

trarily long speech signal and outputs the talking face video in sync with the speech input. The

system accepts a speech file and a reference image of a person’s face and can work with unseen

identities in both modalities.

• I concluded that a speech-based automatic emotion classification system is feasible as a replace-

ment for applications that utilize naive human coders to classify emotion by showing that the

computer system outperforms naive Turkers in a speech-based emotion classification task.

• I showed that an interactive speech emotion classifier, which adapts to the user’s choices over

time, is beneficial in situations where manually classifying emotions in a large dataset is costly,

yet trained models alone will not be able to classify the data accurately.

• I concluded that pre-training autoencoders using only neutral speech data and using its encoders

as feature extractors could boost the ASER performance. I also showed that variational autoen-

coder (VAE), adversarial autoencoder (AAE) and adversarial variational Bayes (AVB) methods,

which control the distribution of the latent representation, outperform denoising autoencoder

(DAE) that does not control such distribution.

• I have merged the ideas described in this thesis to propose a robust end-to-end emotionally

expressive talking face generation system.

7.2 Future Work

One of the challenges for generating emotionally expressive talking faces is to obtain audio-visual

datasets that have emotion labels, which are scarcely available in the research community. These

datasets usually are designed for audio-visual emotion recognition. I believe, currently, the best
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dataset for generating emotionally expressive talking faces is the Ryerson dataset [229] and CREMA-

D [228]. However, these datasets contain limited vocabulary. This limitation impairs speech-mouth

synchronization. Besides, the number of samples is low compared to other datasets ([163, 230]),

which impairs the generalization capability. Nevertheless, one can still develop systems that can gen-

erate emotionally expressive talking faces in the same setting as the training data, e.g., using a test

set that contains the same constraint vocabulary and the same image distribution, such as having only

a white background. This is not a preferred approach since the system should work in the wild and

must be robust against unseen inputs.

In order to overcome the lack of labeled data, two-stage systems can be utilized as a next step.

The first stage can include estimating the emotions from speech, and the second stage can be a video

generation from the emotion label input. These systems can be trained separately, allowing the usage

of only one modality dataset at a time (speech or video only). Furthermore, to include talking faces,

the video generation system can be first trained with a large scale audio-visual dataset without any

emotion labels, and can be fine-tuned with emotion labels afterwards.

Another future direction to overcome the lack of data is to use parametric facial expression models

such as active appearance models or any deformable face models. These models can be combined with

deep neural networks since the parameter space has a low dimensionality, which can be learned with

a small number of samples.

One of the possible next steps for generating emotionally talking faces is to create a large scale

dataset that contains various emotions. Ideally, the emotions should be exaggerated, which is not

preferred for emotion recognition research. Natural emotions are harder to detect, even for humans

as shown in this thesis, and will be even harder to generate. Therefore, as the next step to generate

emotionally expressive talking faces, researchers can focus on generating acted emotions and move

towards generating natural emotions afterwards. Another direction can be generating intense emo-

tions, such as laughter, crying, and screaming. Generating such emotions enable natural interactions

between humans and computers. These intense emotions can be included in dataset design to move

towards passing the Turing test for talking face generation systems.
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[200] F. Eyben, M. WÃűllmer, and B. Schuller, “openear - introducing the munich open-source emo-

tion and affect recognition toolkit,” in In ACII, 2009, pp. 576–581.

[201] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector machines,” ACM Transac-

tions on Intelligent Systems and Technology, vol. 2, pp. 27:1–27:27, 2011.

[202] S. J. Young, G. Evermann, M. J. F. Gales, T. Hain, D. Kershaw, G. Moore, J. Odell, D. Ollason,

D. Povey, V. Valtchev, and P. C. Woodland, The HTK Book, version 3.4. Cambridge, UK:

Cambridge University Engineering Department, 2006.

[203] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The weka data

mining software: An update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009.

[Online]. Available: http://doi.acm.org/10.1145/1656274.1656278

[204] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Per-

rot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learn-

ing Research, vol. 12, pp. 2825–2830, 2011.

[205] F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne, “Introducing the recola multimodal

corpus of remote collaborative and affective interactions,” in 2013 10th IEEE International



BIBLIOGRAPHY 174

Conference and Workshops on Automatic Face and Gesture Recognition (FG), April 2013, pp.

1–8.

[206] J. Wagner, J. Kim, and E. André, “From physiological signals to emotions: Implementing and

comparing selected methods for feature extraction and classification,” in International Confer-

ence on Multimedia and Expo (ICME). IEEE, 2005, pp. 940–943.

[207] H. Gunes and M. Piccardi, “Bi-modal emotion recognition from expressive face and body

gestures,” Journal of Network and Computer Applications, vol. 30, no. 4, pp. 1334–1345, 2007.

[208] M. El Ayadi, M. S. Kamel, and F. Karray, “Survey on speech emotion recognition: Features,

classification schemes, and databases,” Pattern Recognition, vol. 44, no. 3, pp. 572–587, 2011.

[209] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on knowledge and

data engineering, vol. 22, no. 10, pp. 1345–1359, 2010.

[210] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing robust

features with denoising autoencoders,” in Proceedings of the 25th international conference on

Machine learning. ACM, 2008, pp. 1096–1103.

[211] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling, “Semi-supervised learning with

deep generative models,” in Advances in Neural Information Processing Systems, 2014, pp.

3581–3589.

[212] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural net-

works,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[213] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013.

[214] D. Neiberg, K. Elenius, and K. Laskowski, “Emotion recognition in spontaneous speech using

gmms,” in Ninth International Conference on Spoken Language Processing, 2006.



BIBLIOGRAPHY 175

[215] K. W. Gamage, V. Sethu, P. N. Le, and E. Ambikairajah, “An i-vector gplda system for speech

based emotion recognition,” in Signal and Information Processing Association Annual Summit

and Conference (APSIPA), 2015 Asia-Pacific. IEEE, 2015, pp. 289–292.

[216] T. L. Nwe, S. W. Foo, and L. C. De Silva, “Speech emotion recognition using hidden markov

models,” Speech communication, vol. 41, no. 4, pp. 603–623, 2003.

[217] B. Schuller, D. Arsic, F. Wallhoff, G. Rigoll et al., “Emotion recognition in the noise applying

large acoustic feature sets,” Speech Prosody, Dresden, pp. 276–289, 2006.

[218] N. Yang, J. Yuan, Y. Zhou, I. Demirkol, Z. Duan, W. Heinzelman, and M. Sturge-Apple, “En-

hanced multiclass svm with thresholding fusion for speech-based emotion classification,” In-

ternational Journal of Speech Technology, vol. 20, no. 1, pp. 27–41, 2017.

[219] R. Xia and Y. Liu, “Using denoising autoencoder for emotion recognition.” in Interspeech,

2013, pp. 2886–2889.

[220] R. Xia, J. Deng, B. Schuller, and Y. Liu, “Modeling gender information for emotion recognition

using denoising autoencoder,” in Acoustics, Speech and Signal Processing (ICASSP), 2014

IEEE International Conference on. IEEE, 2014, pp. 990–994.

[221] S. Ghosh, E. Laksana, L.-P. Morency, and S. Scherer, “Learning representations of affect from

speech,” arXiv preprint arXiv:1511.04747, 2015.

[222] ——, “Representation learning for speech emotion recognition.” in INTERSPEECH, 2016, pp.

3603–3607.

[223] J. Deng, Z. Zhang, E. Marchi, and B. Schuller, “Sparse autoencoder-based feature transfer

learning for speech emotion recognition,” in Humaine Association Conference on Affective

Computing and Intelligent Interaction (ACII). IEEE, 2013, pp. 511–516.

[224] J. Deng, Z. Zhang, F. Eyben, and B. Schuller, “Autoencoder-based unsupervised domain adap-

tation for speech emotion recognition,” IEEE Signal Processing Letters, vol. 21, no. 9, pp.

1068–1072, 2014.



BIBLIOGRAPHY 176

[225] A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, “Adversarial autoencoders,”

arXiv preprint arXiv:1511.05644, 2015.

[226] L. Mescheder, S. Nowozin, and A. Geiger, “Adversarial variational bayes: Unifying variational

autoencoders and generative adversarial networks,” arXiv preprint arXiv:1701.04722, 2017.

[227] C. Busso, M. Bulut, C.-C. Lee, A. Kazemzadeh, E. Mower, S. Kim, J. N. Chang, S. Lee, and

S. S. Narayanan, “Iemocap: Interactive emotional dyadic motion capture database,” Language

resources and evaluation, vol. 42, no. 4, pp. 335–359, 2008.

[228] H. Cao, D. G. Cooper, M. K. Keutmann, R. C. Gur, A. Nenkova, and R. Verma, “Crema-d:

Crowd-sourced emotional multimodal actors dataset,” IEEE transactions on affective comput-

ing, vol. 5, no. 4, pp. 377–390, 2014.

[229] S. R. Livingstone and F. A. Russo, “The ryerson audio-visual database of emotional speech and

song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american

english,” PloS one, vol. 13, no. 5, p. e0196391, 2018.

[230] N. Harte and E. Gillen, “Tcd-timit: An audio-visual corpus of continuous speech,” IEEE Trans-

actions on Multimedia, vol. 17, no. 5, pp. 603–615, 2015.


