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Abstract. We propose an approach for jointly filling holes and upsampling depth information for RGB-D images
captured with common acquisition systems, where RGB color information is available at all pixel locations
whereas depth information is only available at lower resolution and entirely missing in small regions referred
to as “holes.” Depth information completion is formulated as a minimization of an objective function composed
of two additive terms. The first data fidelity term penalizes disagreement with the observed low-resolution data.
The second regularization term penalizes weighted depth deviations from a local linear model in spatial coor-
dinates, where the weights are experimentally determined to ensure consistency between the RGB color image
and the estimated depth image. Analogous to techniques used for optimization formulations of image matting,
the completed depth image is then obtained by solving a large sparse linear system of equations. We also pro-
pose a memory-efficient implementation of the proposed method based on the conjugate gradient method.
Visual evaluation of results obtained with the proposed algorithm demonstrates that the method provides
high-resolution depth maps that are consistent with the color images. Furthermore, the memory-efficient imple-
mentation significantly reduces memory requirements, allowing for computation of the upsampled, hole-filled
depth maps for typical RGB-D images on normal workstation hardware. Quantitative comparisons demonstrate
that the method offers an improvement in accuracy over the current state-of-the-art techniques for depth infor-
mation completion. Importantly, statistical analysis, which we present in this paper, also reveals that prior eval-
uations of depth upsampling accuracy are potentially biased because the evaluations inappropriately used
preprocessed hole-filled data as “ground truth.” An implementation of the proposed algorithm can be accessed
and executed through Code Ocean: https://codeocean.com/capsule/5103691/tree/v1. © 2019 SPIE and IS&T [DOI:
10.1117/1.JE1.28.3.033019]
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“Manhattan world” assumption,> which states that images
involving urban scenes are characterized by edge gradient
statistics and are further verified on more general scenes,’
has inspired several successful methods toward this problem.

1 Introduction

RGB-D images are widely used for multiple purposes, for
example, segmentation, tracking, image dehazing, and three-
dimensional (3-D) scene reconstruction. A key challenge in

using RGB-D images is that the depth data are often incom-
plete; compared to the RGB images, depth images are often
in lower resolution and contain missing regions. Time of
flight (ToF)- and structured light-based systems are the two
prominent methods for capturing depth data. While ToF-
based systems provide highly accurate depth information,
they are relatively tedious to use and even after sophisticated
alignment with images,' they usually offer a lower resolution
than typical high-resolution color cameras. For structured
light-based RGB-D images, a significant fraction of the
pixels (up to 10%) is not assigned depth values due to the
challenges of these systems. Thus, for both ToF- and struc-
tured light-based RGB-D image capture systems, joint depth
upsampling and hole filling are required to generate com-
plete RGB-D images.

The depth map upsampling problem has attracted consid-
erable research. Traditionally this task is accomplished
by bilinear or bicubic interpolation methods, which have
difficulty in preserving the sharp edges in depth maps.
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Several methods have been developed to overcome these
problems, aiming at improving accuracy. One class of tech-
niques relies on proposing a prior and optimizing an objec-
tive function that combines prior and data fidelity terms.* '
Diebel and Thrun proposed a Markov random field (MRF)-
based depth upsampling algorithm. This MRF framework
has been further improved by other researchers.'"!” Lo
et al."® proposed a learning-based depth upsampling frame-
work to handle the texture-copying artifacts, which are intro-
duced by the inconsistency between the color edges and
the depth discontinuities. Yang et al.> made use of a bilateral
filter in an iterative refinement framework. The refinement
is iteratively applied based on the current depth map and
the RGB image. This algorithm can also work on two view
depth map refinement with appropriate modification. In
another work,® a guided filter was designed for edge-preserv-
ing filter, which can be viewed as an extension of the bilateral
filter. Kopf et al.” proposed a joint bilateral filter, which is
also similar in principle. Both filters can be used to upsample
the depth map with a high-resolution RGB image. Park et al.®
proposed an algorithm based on a nonlocal mean filter. The
low-resolution depth map is preprocessed to detect outliers.
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These points are removed, and to obtain the high-resolution
depth map an objective function consisting of a smooth term,
nonlocal structure term, and data term is optimized. This
algorithm is also suitable for filling large holes in the
depth data. Liu et al.'* proposed a joint filtering algorithm
for depth upsampling based on geodesic distance, which
combines both color and spatial changes to recover sharp
depth discontinuities. Ferstl et al.” gave an algorithm based
on total generalization variance (TGV). A TGV regulariza-
tion weighted according to intensity image texture is used
in the objective function and the optimization is solved as
a primal-dual problem. Yang et al.'” built a color-guided
adaptive regression model for depth map upsampling.
Different edge-preserving terms, including nonlocal mean
and bilateral filters are tested and an analysis is given on
the parameter selection and the system stability. Another cat-
egory of depth map upsampling utilizes segmentation tech-
niques to extract depth information. Uruma et al."” started
from an upsampled depth map using standard interpolation
methods and refined the result by image segmentation tech-
niques. The segmentation process serves a similar function in
preserving edges as the aforementioned filters. Dong et al.'®
proposed a joint edge-guided convolutional neural network
(CNN) to recover high-resolution depth map based on syn-
thesized view quality. In addition, robust methods have also
been developed for handling noisy depth information and
color-depth inconsistency.'’~"

Indeed, the Manhattan world assumption indicates that
breaking apart hole filling and depth upsampling may suffer
from biased local statistics compared to joint processing.
However, performance evaluation for hole filling is challeng-
ing because ground truth data are rarely available without
holes. As a result, the hole filling is seldom treated as an
independent problem. Some methods®'? address hole filling
at the same time as upsampling, whereas others” treat this as
a separate problem. For instance, Feng et al.*! first filled the
depth holes caused by abnormal reflection using color infor-
mation, and then filled the remaining holes according to
the background; Wang et al.”? preprocessed the depth maps
using the deepest depth images, and then enhanced the
results using geometry and color information. All these
methods suffer from a lack of validation due to unavailability
of ground truth data.

A common theme of prior algorithms, also adopted in our
work, is to “fix” edges of the upsampled depth map for better
consistency with the color image. Our work is inspired by
Levin et al’s optimization formulation of matting,”® in
which the alpha value for the matting mask is modeled as
a linear combination of neighboring color values. Analogous
to the matting problem, we formulate depth completion as an
optimization problem. Specifically, the upsampled image is
estimated by minimizing an objective function comprising
two additive terms. The first term ensures that the estimated
depth map is locally smooth, consistent with the color image,
and the second term ensures consistency of the estimated
upsampled data with the low-resolution observed data at
the corresponding locations. Depth map completion is then
achieved by solving a large sparse linear system following an
approach similar to that adopted for the matting problem.?
A key difference between the matting problem and our
approach is that we model the depth as a linear function of
the local spatial coordinates and not as a linear function of
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the image intensity values. The experiments also support
our hypothesis that the performance for complicated scenes
degrades with separate processing for hole filling and
upsampling.

The main contributions of this paper are as follows:

* We propose an approach that jointly solves the closely
related problems of depth map upsampling and hole
filling for RGB-D images.

e We present a memory-efficient conjugate-gradient-
based implementation for the proposed approach that
significantly reduces the required memory by avoiding
explicit storage of the image Laplacian matrix, which
is extremely large for high-resolution images. This
memory-efficient improvement allows the method to
be used on typical resolution RGB-D images on nor-
mal workstation hardware.

* We demonstrate that prior evaluations of depth map
upsampling are potentially biased because the evalua-
tions inappropriately used preprocessed hole-filled
data as “ground truth.” Specifically, statistical tests
conducted with a number of alternative upsampling
techniques demonstrate significant differences between
error statistics for hole-filled and adjacent nonhole-
filled regions, highlighting the fact that the use of such
data as ground truth potentially biased evaluations of
alternative techniques.

This paper is organized as follows: Sec. 2 describes the
proposed algorithm and the memory-efficient improvement.
Quantitative and the qualitative results are presented in
Sec. 3. Section 4 concludes the paper.

2 Proposed Joint Hole Filling and Upsampling
Algorithm

Our proposed method is motivated by the fact that regions of
the image that correspond to a smooth 3-D surface can be
locally approximated by a plane (e.g., via a Taylor series
expansion). Thus, over small patches in the image, corre-
sponding to regions with smooth surfaces, a local linear fit
(in spatial coordinates) provides a good approximation to the
depth. To account for edges, where the assumption breaks
down, adaptive nonnegative weights are introduced for the
linear fitting. The weighting seeks to concentrate the linear
fit at each point on the neighboring pixel locations that are
hypothesized, based on their color similarity to the pixel of
interest, to be on the same side of the edge. The weights can
be obtained from one of several edge-preserving techniques,
for example, nonlocal means or bilateral filter. The com-
pleted depth map is obtained by minimizing an overall objec-
tive function that combines a term corresponding to the
weighted deviation from the local linear fitting with a data
fidelity term that penalizes deviations from observations at
the locations where the low-resolution depth map is avail-
able. Figure 1 illustrates the intuition for the proposed
scheme, which is described in detail next.

2.1 Local-Linear-Fitting-Based Problem Formulation

To formally describe our algorithm we use the simplified
one-dimensional (1-D) representation in Fig. 2 that illustrates
the contribution of one pixel to the objective function.
The axis g; (a two-dimensional vector for actual images)
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Smooth depth region: planar
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approximation on appropriate side
of edge

Fig. 1 Motivation and intuitive explanation of the proposed depth completion algorithm. Two patches,
respectively cropped from the handle area and the box area, display different depth characteristics. By
using color-similarity-based adaptive weights for the locally linear fitting, the proposed method aims to
construct a linear interpolation using only pixels within the same object, which are likely to be similar in

both depth and color.
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Fig. 2 The problem formulation illustrated in 1-D. The magenta and cyan points show different color
pixels in a color image patch, and the circles around the data points indicate the available low-resolution
depth values. The unfilled and filled circles indicate, respectively, input and desired depth map values,
and the black line shows the weighted linear fit over the example area. The sizes of filled circles represent

the weights w; ;.

represents the relative pixel positions of points in local pixel
neighborhood of the target pixel, which is located at g = 0.
The low-resolution depth map, denoted by d;, is available at
a subset of the pixel locations in the neighborhood as indi-
cated in the figure by hollow circles. Color values, denoted
by S;, form the high-resolution RGB image. The goal is to
estimate a high-resolution depth map dj, for which tentative
values are shown by the solid circles. Our objective function
is formulated as

Q ZZ”W’J ij dHl ||2+Z’1dLJ de)’ (1)
J=LieN(j)

j=1

where j indices the pixel locations in the completed image,
N is the number of pixels in the completed image, M is the
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number of pixels in the low-resolution depth map, d is the
value of linear fitting of pixel i in the neighborhood N (j) of
pixel j, dy ; is the estimated depth at pixel i € N'(j), d; ;s
the depth value at the pixel j of the low-resolution depth
map, w; ; is the similarity metric of pixel i and j, and 4 is
the free parameter to control the relation of fidelity and
smoothness. The local linear fit is defined as

Ei,j: ;g,,]‘Fﬂj, (2)

where a; and f; are the parameters for linear fitting at pixel
dy j, aj is a 2X 1 vector and f; is a scalar, and g;; is a
2 x 1 vector denoting the relative coordinates of pixel i in
the neighborhood of the pixel j. Specifically, for a pixel i
with coordinates (x;, y;) lying in the neighborhood A () of
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a target pixel j at with coordinates (x;,y;), we define
gij = (x; — x;,y; — y;). The first term in Eq. (1) is the regu-
larization term and the second term is the data fidelity. The
formulation is readily extended to include hole filling by
adding a multiplicative factor in the data fidelity penalty
term that corresponds to the indicator function of pixels
that are not missing depth data, which will be discussed in
Sec. 2.2.

Our problem formulation and the algorithmic approach
we use for the solution (described in the next section) are
inspired by Levin et al.’s formulation of matting as an opti-
mization problem,” where the alpha channel is formulated as
a weighted linear combination of neighboring color values.
A key difference in our formulation is that our weighted local
linear fit is formulated in terms of the local relative spatial
position for the neighborhood, whereas in Levin et al.’s for-
mulation,” the weighted linear fit is performed on the color
values for the neighborhood pixels. Various alternative
schemes can be used for determining the weights, which
are considered subsequently, after we discuss the solution
approach.

2.2 Solution Approach

A direct solution to the problem of Eq. (1) is challenging
because we need to simultaneously determine both the
upsampled depth map (dy;) and the fitting parameters
(a; and f3;), each of which depends on the other. To address
this problem, we denote the vector of upsampled depth val-
ues by d;; € RY and rewrite Eq. (1) in matrix form to obtain

N
Z duni) = Gpill* + A1, 3)

where G; =[G,.1] and p] = laj,p;]", with G; as the
N ()| % 2 matrix with g ; as its i/ row, f; is the value
of the fidelity term from Eq (1), W; is a diagonal matrix
with w; ; as the diagonal entries, and dp ;) is the vector
formed by depth values selected from dy; over the neighbor-
hood V(). The vector p; can be eliminated by replacing it in

Eq. (3) by its optimal value

p; = arg min**ijWj(dH,N( ) — jpj)Hz @
= (GJW},,G)) " GIW idi ),

where W, ; is the diagonal matrix
Replacing p; in Eq. (3) by Eq. (4), we obtain

0= Zd 0 (GIWo,G))dy pj) + Af . (6)

where E; denotes the identity matrix. Details of the deriva-
tion are in Sec. 5.

The minimizer for the quadratic objective function Q is
readily seen to be the solution to the linear equation
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Ldy + AAy(dy —d;) =0, ®)

where L is the Laplacian matrix>*

N
Z 0/ Js (9)

where G is padded with zero to full pixel size, and A is
the afﬁmty matrix indicating the correspondence of pixels
in low-resolution map to the desired high-resolution (and
hole-filled) depth map. Specifically, A 4 is a diagonal matrix
whose i’th diagonal entry is 1 if the pixel at location i in the
high-resolution depth map is observed (in the low-resolution
data with holes) and O otherwise.

2.3 Memory-Efficient Implementation

Equation (8) is a large sparse linear system of the form
Ax =b, where A =L+ M5, x =dy, and b = 1A ,xd;,
which can be efficiently solved with iterative methods such
as a conjugate gradient solver. Algorithm 1 describes the
conjugate gradient algorithm for solving sparse symmetric
and positive-definite linear systems, which is suitable for
the optimization in our problem where the Laplacian matrix
automatically satisfies the required constraints. One bottle-
neck for the proposed algorithm is that, for high-resolution
images, the Laplacian matrix is quite large, for example,
a 10° (mega)-pixel image will require constructing a matrix
with 10'? (tera) entries. Although the memory required for
storing the matrix itself can be significantly reduced by using
sparse matrix representations that exploit the structure of
the Laplacian matrix, naive use of such representations does
not directly reduce overall memory requirements when the
matrices are used in subsequent computations. The problem
can, however, be effectively addressed by a modification of
the naive conjugate gradient method that calculates Aq; in
Algorithm 1 without explicitly constructing the matrix A.*>*

Algorithm 1 lterative for solving the sparse linear system Ax = b;
using the conjugate gradient algorithm.

Input: Initial guess Xq, convergence threshold z, positive semidefinite
matrix A and vector b

Output: x: estimate for x, such that Ax = b;
Procedure initialize: x<x,, ro<b — AX, qy<rg, j<0

while rjr; > z|x| do

fl'/

aj<— q‘Aq]

I — a;Aq;

qjr1<ri +5q;

end
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From Eq. (9) we can obtain the entry /; ; at the i’th row
and the j’th column of the Laplacian matrix L as

li.j = Z [51'_/Wki - Wkiwkj(gi _gk)TCk(gj -gu)ls
k|(i.j)EN (k)

10)

where wy; is the weight between pixel k and pixel i, ;; is the

Kronecker delta, C;, is the inverse of ELWO,,(E,(, and g, is the
global coordinate of the pixel k. Then, we break the summa-
tion stepwise, first computing

a, = Ck< Z W89 _gqu)’ (11)
JEN (k)

where g is the j’th entry of vector ¢, and g, is the average of
g; in N (k). Then,

by = giay. (12)

At the last step, we combine a; and by, to obtain (Aq);, the
entry in the i’th column of the vector Aq. For our problem
setting, (Aq); = (Lq); + A(A.rq);, where from the preced-
ing discussion, we can obtain the Laplacian term as

(Lq)i = Sywudi =& Y @wii+ Y bowi.  (13)
keN (i) keN (i)

Computation of the term (A,up); is straightforward.
Using Eq. (13) in the update step for r;,; in Algorithm 1,
we can get the desired memory-efficient realization for
the proposed algorithm. Details of the derivation of Eq. (13)
are included in Sec. 6.

We note that for the colorization problem, in additional
to memory efficiency, computational efficiency can also be
obtained. For the colorization problem, the summations in
Egs. (11)=(13) can be efficiently calculated by integral
image techniques and dynamic programming. This step is
possible because the formulation in colorization utilizes a
fixed summation table. However, in our case, the g Wi is
a summed table of localized filters w;, which means that
the values reused in summed table are no longer applicable
here. This key difference prevents us from obtaining a com-
putational acceleration for our depth completion problem
using the same approach but still allows for the memory-
efficient implementation. The space complexity of the
improved implementation is O(N), which is a very signifi-
cant improvement over the O(N?) space complexity of the
naive conjugate gradient approach (where N is the number of
pixels of an image).

2.4 Weighting Functions

We explored different choices for the weighting functions,
in the proposed algorithm:

¢ Gaussian profile weights, which are defined as

_ ||si_sj||2
wij=exp| ———=>— |, (14)

262

where s; and s ; are the RGB pixel values in the image §
at corresponding positions, and o controls the relative
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emphasis of pixel similarity in the allocation of
weights. The weights are analogous to the commonly
used bilateral filter;'* however, unlike the typical
bilateral filter, we do not use a distance decay term
in Eq. (14) because the window we use is quite small
in relation to size of the high-resolution images.

¢ Laplacian profile weights, defined as

|si_sj|
W,»ijzexp -, (15)

o

where the symbols are as defined previously.
Compared to the Gaussian weights, the Laplacian
weights are more localized on neighborhood pixel
pairs with smaller differences in colors.

* Max channel weights, defined as

maXCe{R,G,B}|Sc,i - SC.j> (16)

i,j P ( P
where s¢; and s¢; are the pixel values of the RGB
image S at corresponding position in channel C. These
weights are more sensitive to color difference than the
Gaussian/Laplacian weights.

* Gaussian weights combined with depth information,

defined as
52 d = dl?
S TS i | R

2 2
207 205

where d; and d; are the depth information estimated by
a median filter based on the low-resolution depth maps.
We use this combination of color similarity and depth
similarity to avoid inappropriate weighting in situa-
tions where there is a complex color pattern with a
planar depth spatial variation.

3 Experimental Results

We test our algorithm on the Middlebury (stereo) dataset,
which provides high-resolution RGB images of multiple
views and corresponding disparity maps, which are used
as the ground truth in our experiment. A 7 X7 square
patch is used as the neighborhood N () [the neighborhood
size |N(j)| = 49] and the parameter 1 = 10°. The RGB-D
images are zero-padded for consistent use of Eq. (3), and
the padded area is cropped out in the final results. The
parameter o in Eq. (14) for computation of the weights
w; ; is set to one-third of the local variance in each window.
In each patch, the weight of the center pixel is set to 107,
For the naive, nonmemory-efficient implementation, we use
the built-in MATLAB™ conjugate gradient solver (cgs)
for solving Eq. (8) (a tolerance of 10~'° and the maximum
number of iteration was set to 10%).

27-30

3.1 Qualitative and Quantitative Results

The proposed algorithm is suitable for both hole filling and
depth map upsampling, as indicated earlier. In this section,
we first visually examine the performance for filling holes
in the depth map, as shown in Fig. 3. From the images in
the last row, we see that the holes, which correspond to
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Fig. 3 Visual results demonstrating the hole-filling ability of the proposed algorithm on a subset of images
from the Middlebury stereo dataset 2014.%° The first row shows the input high-resolution color images
and the second row shows the corresponding depth maps. The results are shown in the last row. The
illustration in this figure has used input images with approximately 60 to 80 k pixels.

the occluded area in the disparity map, are filled well. Unlike
traditional interpolation methods, our algorithm is able to fix
the holes in the depth images, so as to keep the consistency of
depth map edges with those in the RGB images and avoid
smoothing in such areas. For example, see the third row of
Fig. 3. The computed depth map values for the missing
points in the original depth map along the wall are consistent
on the two sides of the edge and not blurred across the edge.

Quantitative results for depth upsampling are obtained on
the Middlebury stereodataset 2005, which has been used in
prior evaluations. We compare the proposed method against
the following prior methods: IBL,” TGV, AD,*! DGDE,*
and RCG.!” Unlike prior evaluations reported in the litera-
ture, we use the original dataset without hole filling as the
ground truth, because we hypothesize that prior evaluations
of depth upsampling are biased by the inappropriate use of
preprocessed hole-filled data as “ground truth.” We justify
this hypothesis in Sec. 3.3.

To quantitatively evaluate the performance on original
Middlebury dataset, we first downsample the input depth
map to obtain the low-resolution version, and then run differ-
ent algorithms on these images to obtain the upsampled
versions. We use mean absolute error (MAE) as the metric
to evaluate the performance of different algorithms. Table 1
summarizes the results (Code for IBL implementation is
provided by Chunhua Shen®). Figure 4 shows the corre-
sponding visual results for 4x upsampling. The proposed
method outperforms the state-of-the-art methods in most
cases. Compared to the other Laplacian-based RCG
method,'” the proposed method significantly improves the
performance. In addition, the proposed method with the
memory-efficient implementation is capable of processing
typical high-resolution images, unlike the RCG method,'”
for which the memory requirements are inordinately large.
The results in Table 1 used the Gaussian weights combined
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with depth information defined in Eq. (17). We also com-
pared the performance of the proposed approach with alter-
native weights described in Sec. 2.4. Results for these
comparisons are presented in Sec. 7.

The results for the DGDE* method reported here have
been computed directly using the corresponding upsampling
model for each scale. We have also tested the procedure of
first hole filling then upsampling, which resulted in worse
results. Compared to DGDE? in which iterative enhance-
ments on the guided weight function for dependency mod-
eling are used, the proposed method has the advantage of
a clearer intuition and simplicity in usage. The proposed
method does not require training of a dedicated model for
each setting with different upsampling scale and image res-
olutions. Moreover, it is capable of solving the hole filling
and upsampling simultaneously, which is of particular
importance because both problems occur for typical depth
image-capturing methods. Again, we can observe that the
proposed method clearly outperforms DGDE.*

The memory-efficient implementation and naive imple-
mentation give very similar results, when using the same
threshold for conjugate gradient solver. Figure 5 shows an
example comparison of the results for the two implementa-
tions. By using the memory-efficient implementation, the
required memory for a two mega-pixel image is reduced
from 60 to 2 GB memory (for computations performed in
standard double-precision float-point format).

3.2 Color and Depth Inconsistency Handling

Regions with discrepancies between color and depth edges
commonly pose a challenge for depth upsampling and hole-
filling algorithms. Often the reliance on color information to
upsample and fill holes in such regions results in spurious
variations in depth that mirror the color texture variations.
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(2)

Fig. 4 Visual comparison of results obtained for 4x upsampling with different algorithms for images from
the Middlebury dataset.?” Rows from top to bottom correspond to the images Art, Books, and Moebius.
(a) RGB color image, (b) GT high resolution depth ground-truth, unsampled and hole-filled versions
obtained with (c) bilinear interpolation, (d) bicubic interpolation, (e) IBL,'™ (f) TGV,® and (g) proposed

methods.

Table 1 Quantitative comparison of the performance of the different algorithms. MAE depth-disparity values are reported for the images in the
Middlebury dataset®” for four different upsampling ratios, as listed in the second row. The best result for each case is highlighted in bold font.

Images
Art Books Moebius
Sample rate
Methods 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x
Bicubic 0.8965 1.4298 2.4363 4.3456 0.7911 1.0842 1.7031 25419 06855 1.0287 1.5821 25527
Bilinear 0.7642 1.2300 2.1495 3.9500 0.6620 0.8993 1.4183 21174 05685 0.8578 1.3347 2.1942
IBL® 0.5016 0.8934 1.7028 4.2324 0.2790 0.7361 1.4056 24561 0.3987 0.7071 1.1289 2.5885
TGV® 0.6457 0.8926 3.2633 7.6490 0.5980 0.7507 2.3091 6.3240 0.4722 05627 2.0375 6.6210
AD*! 0.3571 0.8334 1.7943 3.8267 0.1316 0.3006 0.5387 1.0706 0.1497 0.3461 0.7164  1.5300
DGDE?° 0.5076 0.8867 1.5465 2.7042 0.6365 1.0936 1.4957 1.9623 0.5435 0.8804 1.2256 1.6751
RCG" 1.0324 1.6941 2.1856 4.1398 1.1922 1.8922 2.3520 3.2686 1.0169 1.6053 2.0135 2.9229
Color® 04423 0.8765 1.7616 3.6033 0.1986 0.3594 0.6655 1.1888 0.1864 0.3426 0.6478 1.2393
Color + depth  0.2744 0.6612 1.3049 2.6243 0.1671 0.3067 0.5207 0.9030 0.1714 0.3396 0.5328 1.0317

We illustrate the performance of the proposed algorithm in
such regions by selecting two suitable regions from the
results presented in Sec. 3.1 and present zoomed-in views
for these regions for 4x and 8 upsampling, respectively,
in Figs. 6 and 7. By comparing the ground truth to the results
obtained with the proposed method, we can see that the
method works fairly well and does not introduce spurious
depth variations correlated with the color texture, whereas
spurious texture is seen for TGV with 8 upsampling.

3.3 Evaluation Datasets: Ground Truth
Considerations

Prior evaluations of upsampling have used, as “ground
truth,” a hole-filled version of the original Middlebury
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dataset®’ obtained using the method of Park et al.® In this
section, we highlight the fact that such assessment is poten-
tially biased by the fact that the hole-filled data does not
indeed represent ground truth. The assessments are therefore
potentially biased: instead of assessing the accuracy of
upsampling, the prior evaluations are instead (partly) assess-
ing conformance of the upsampling with the hole-filling
technique used for generating the “ground truth.” To test
our hypothesis, we formulate and conduct a statistical test
shown in Fig. 8. We run the algorithms on downsampled ver-
sions of the “ground truth” hole-filled depth map and com-
pute the error between the upsampled depth map and the
“ground truth.” We then compare the error statistics of pixels
that correspond to holes in the original Middlebury dataset to
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(a)

(b)

(C)- -

Fig. 5 Visual comparison of results obtained with the proposed approach using either the naive
conjugate gradient or the memory-efficient solver for a subset of images from the Middlebury dataset.?”
The three rows of images from top to bottom represent (a) the depth maps obtained by using the
MATLAB™ inbuilt cgs, (b) depth maps obtained with the proposed memory-efficient implementation,

and (c) the corresponding difference depth maps.
(b) (c) (d) (e) () ()

Fig. 6 Enlarged views of square regions selected from Fig. 4 that visual illustrate the performance of
the proposed method and alternatives for 4x depth upsampling in regions with inconsistency between
color and depth information. (a) RGB color image, (b) GT high resolution depth ground-truth, unsampled
and hole-filled versions obtained with (c) bilinear interpolation, (d) bicubic interpolation, (e) IBL,"

(f) TGV,® and (g) proposed methods.

nonhole-filled pixels adjacent to the holes. Specifically,
we run Welch’s t-test’ on two data samples X and Y where
the null hypothesis is that the error in two samples comes
from the distributions with equal means but unequal varian-
ces. The p-values, which indicate the probability of accept-
ing the null hypothesis, are listed in Table 2. The results
show that, for most algorithms, statistically, there exists a
performance discrepancy between the regions of holes and
the adjacent nonhole-filled pixels. This indicates that the
assessed accuracy for these algorithms does not necessarily
characterize their ability to fill holes and is likely, instead,
assessing conformance with the original hole-filling algo-
rithm used for generating the “ground truth.” For complete-
ness, we also provide, as Table 5 in Sec. 8, the potentially
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biased version of the Table 4 obtained by treating the prepro-
cessed hole-filled data® as ground truth.

3.4 Discussion

Table 1 illustrates that the depth map obtained with the pro-
posed algorithm is accurate and achieves the state-of-the-art
results on the common benchmarking dataset, providing
a better performance compared with other algorithms. The
proposed algorithm, however, still suffers from some limita-
tions. First, there are a few outlier points where the method
yields a large error. Second, the edges are not sharply
defined, especially under high upsampling rate (this limita-
tion is also typical for other depth completion algorithms).
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(a) (b) (©) (d) (e () (8)

Fig. 7 Enlarged views of square regions selected from Fig 4 that visual illustrate the performance of the
proposed method and alternatives for 8x depth upsampling in regions with inconsistency between color
and depth information. (a) RGB color image, (b) GT high resolution depth ground-truth, unsampled and
hole-filled versions obtained with (c) bilinear interpolation, (d) bicubic interpolation, (e) IBL," (f) TGV,°
and (g) proposed methods.

Hole—filled depth map Original depth map

Upsample

Compute
error

Welch’s t—test|

O ﬂ\‘m

Upsampled depth map Error map

Fig. 8 Statistical test for bias in assessments of upsampling algorithms caused by computation of
accuracy using preprocessed data (hole-filled Middlebury dataset®) instead of actual ground-truth data.
Using Welch’s t-test, statistics of computed errors (MAE) are compared between two samples: sample X
corresponding to hole-filled regions and sample Y corresponding to nonhole-filled regions adjacent to
the holes. The regions corresponding to the two samples are highlighted in the region indicated by
the cyan rectangle.

The computational requirements are an additional challenge: hierarchical upsampling also has the potential to offer
to process a 1088 x 1296 pixel image, our algorithm takes speed-up, although our preliminary experiments show that
about 40 min. While the time requirement is comparable for directly adapting the proposed algorithm to a hierarchical
several other completion algorithms, a speed-up is desirable structure yields worse results. An additional limitation of
for many applications. In future work, parallel techniques the proposed algorithm is that it is not directly designed
may be promising for accelerating the computations; to handle the high levels of noise in the input low-resolution

Table 2 The p-values for a statistical test of consistency of error statistics over hole-filled and nonhole-filled regions for different upsampling
methods (see Fig. 8 and text in Sec. 3.3, for details).

Images
Art Books Moebius
Sample rate
Methods 2% ax 8x 16% 2% 4% 8x 16% 2% 4x 8x 16%
IBL® <10 <10 <10~ <10~ <10* <10* <10* <10* <10* <104 <10% <10
TGV® <10 <10 <10~ <10~ <10* <10* <10*  <10* <10*  <10*  <10% <10
AD?! 0.1429 <10 <10~ <10~ <10* <10* <10* <10* <10 <104 <10% <10
DGDE® 0.6959 0.9951 0.8028 0.9369 <10* <10* <10¢ <10¢ <10¢ <10¢ <104 <10

Color + depth <10~ <10~ <10~ <10 <10* <10* <10 <10 <10 <10 <104 <10
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Fig. 9 Visual comparison of results obtained with different algorithms for images from the ToF dataset.’
To allow the differences to be viewed more clearly, for each full image, zoomed-in views of select regions
(shown by red rectangles) are also included. The column labeled “proposed” shows the results for
the proposed algorithm directly applied to the observed noisy low-resolution depth map and the column
labeled “proposed™ shows the results obtained by using the proposed algorithm with a denoised
low-resolution depth map as the input (corresponding to “denoised init. 2” in Table 3). (a) Intensity
image, (b) GT high resolution depth ground-truth, unsampled and hole-filled versions obtained with
(c) DGDE,? (d) RCG,"” (e) proposed, and (f) proposed*.

depth maps that is encountered with some capture technol-
ogies. This is the case, for instance, with the dataset of Ferstl
et al.,” where the low-resolution depth data has been captured
with an actual ToF camera and not obtained synthetically
by downsampling high-resolution depth data. The numerical
performance of the alternative techniques on this dataset is
summarized in Table 3. Because the proposed technique is
not particularly designed to handle noise, using the proposed
method directly to upsample the noisy low-resolution depth
maps does not perform very well [the results for this case
are indicated in the rows labeled “proposed (noisy init)”
in Table 3]. The performance for the proposed technique
can, however, be improved by denoising the low-resolution
depth map data prior to upsampling—an approach that has
also been used previously (and in the results obtained in this
section) with the DGDE?’ method. Results obtained by using
denoised low-resolution depth maps as the input are also
included in Table 3 and are indicated by the qualifying
label “denoised init.” These results indicate that the method
can provide results comparable with the state-of-the-art
methods when the input data are denoised prior to upsam-
pling. Visual comparisons corresponding to the better per-
forming methods in Table 3 are presented in Fig. 9. From
examining these, one can see that even the best performing
methods have relatively large errors compared with the
results in Fig. 4. An enhancement of the proposed method
to comprehensively handle upsampling for noisy low-reso-
lution depth data is therefore a direction worthy of further
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investigation but beyond the scope of the current paper.
It is worth noting here that the technology of ToF cameras
is undergoing rapid technological advance, which should
help reduce noise.

Table 3 Quantitative comparison of the performance of different
methods on the ToF dataset.’ The table lists MAE depth values
(in millimeter).

Images

Books Devil Shark
Bilinear 17.21 17.49 19.01
IBL® 15.41 16.48 17.14
TGV® 13.51 14.60 15.11
AD¥ 15.35 16.17 17.09
DGDE? (denoised init) 13.38 15.58 15.65
RCG" 13.57 14.62 15.74
Proposed (noisy init) 15.82 16.32 17.18
Proposed (denoised init 1) 14.40 15.71 16.54
Proposed (denoised init 2) 13.46 14.68 15.56

May/Jun 2019 « Vol. 28(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 04 Jun 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Zhang, Ding, and Sharma: Local-linear-fitting-based matting for joint hole. . .

We also have a couple of additional observations regard-
ing the relation of the proposed algorithm to Levin et al.’s
matting method”® and He et al’s fast implementation.”
Levin et al.’s method formulates the matting map (alpha
channel) as a weighted linear combination of neighboring
pixel values. He et al.’s method is based on Levin et al.’s
formulation and also proposes the acceleration using the con-
jugate gradient method. In our problem, we model the depth
as a linear function of local spatial coordinates instead of
pixel values directly, and we use a local filtered conjugate
gradient formulation instead of using an adjacency matrix.

The analysis presented in Sec. 3.3 of this paper brought to
light how using preprocessed hole-filled data as “ground
truth” may introduce potential bias in the evaluation of alter-
native methods for upsampling. Evaluation of only nonhole-
filled regions, as has been done in the results reported in
Sec. 3.1, eliminates the potential for such bias. Another alter-
native would be to consider ground truth from simulations
where all the data can be intrinsically obtained and there are
no holes to be filled. Physically based photorealistic renders,
such as Mitsuba,* may offer one option for the generation of
simulated ground-truth RGB-D images from 3-D models.
Evaluation of ground-truth datasets can be constructed from
multiple meaningful perspectives that address one or more
of the concerns regarding available data, for instance, the
dynamic range represented in the depth maps, the diversity of
scene content, and perhaps, to include hyperspectral images
beyond RGB channels. A potential issue introduced by simu-
lated photorealistic images is whether synthesized images
are statistically representative of natural scenes. Particularly,
synthesized images may use polygon-based mesh represen-
tations of surfaces, which may introduce their own artifacts.
The methodology therefore requires careful consideration
and is also worthy of further independent study.

4 Conclusion

The algorithm proposed in this paper provides an effective
method for joint depth map upsampling and hole filling
on large images. Experiments demonstrate that the proposed
method offers an improvement over the current state-of-the-
art methods. The proposed memory-efficient implementation
significantly reduces the memory requirement making the
approach feasible on typical workstation hardware. In addi-
tion to presenting a novel joint hole filling and depth map
upsampling approach, the paper also provides valuable stat-
istical analysis that highlights the fact that prior assessments
of depth upsampling using preprocessed data as “ground
truth” suffer from potential bias: the assessments are likely
evaluating conformance with the hole-filling method used in
the preprocessing rather than accuracy of the upsampling. An
implementation of the proposed algorithm can be accessed
and executed through Code Ocean: https://codeocean.com/
capsule/5103691/tree/v1.

5 Appendix A: Detailed Derivation of the Solution
Approach

Applying the first-order optimality conditions to Eq. (4), we
see that the optimum solution satisfies
d{W;ldy ni;)-Gpil}>

dp;

Wldy n(j)—GpjlG] =0. (18)

Journal of Electronic Imaging

033019-11

The solution to this linear equation is obtained as

(GTW(T“GJ) IG}W(T).jdH,N(j). (19)

The expression for the objective function Q in Eq. (6) is
obtained as

N
Q=Y {W;ldyn -

j=1
+F;

G,(GIW] ,G)7'\GIW] d}, 1}
=> (Wdy ) {E - G[(GIW] ,G))"'GIW] ]T})>?

N
=D dyny (G Wo,G))dnij) + AF,

N M
j=1 j=1

(20)

6 Appendix B: Details of Memory Efficiency
Implementation

The expression in Eq. (13) can be obtained from Eq. (10) as

Z(Sljwqul g; Z AWy + Z bkwkt

keN (i) keN (i)
=Y Sywuai— Y (& —ghaws
KEN (i)

= Z5ijwki4i
- Z - &) {Ck[ Z ijg,qj ké]k] }Wkl
keN(i) JEN (k)
= Z5ijwkiqz'
- Z (& —gi){ck[ Z Wk/(g -804 ]}Wki

keN (i) JEN (k)
:Z{ > Bywu
7 \kiigen
- wiuwk(8i — 8)TCi(g; gk)]}qj'- 21

7 Appendix C: Performance for Alternative
Weighting Functions

Table 4 compares the results obtained for the proposed
scheme with the alternative weighting functions that are
defined in Sec. 2.4. The results highlight the importance
of using depth similarity. Weights considering only color
similarity, which include Gaussian profile, Laplacian profile,
and max channel, are close to each other in performance.
However, the joint color-depth similarity weighting provides
significantly better results for all the test cases.
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Table 4 Quantitative comparison of different weighting functions for the proposed scheme. MAE depth-disparity values are reported for the

images in the Middlebury dataset®” for four different upsampling ratios, as listed in the second row. The best result for each case is highlighted
in bold font.

Images

Books Moebius

Sample rate

Methods 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x
Bicubic 0.8965 1.4298 24363 4.3456 0.7911 1.0842 17031 25419 0.6855 1.0287 1.5821 2.5527
Bilinear 0.7642 1.2300 2.1495 3.9500 0.6620 0.8993 1.4183 2.1174 0.5685 0.8578 1.3347 2.1942
Gaussian 0.5203 0.6552 1.4717 3.6534 0.2723 0.4235 0.6080 1.4223 0.3770 0.4609 0.6656 1.1064
Laplacian 0.4796  0.7499 24235 7.2141 0.1859 0.3175 1.1089 3.771 0.1766  0.2980 1.1473  3.5967
MaxChannel 0.5339 1.0258 1.7853 3.3673 0.2070 0.3816 0.6485 1.1029 0.2069 0.3743 0.6202  1.1433
Color + depth  0.2744 0.6612 1.3049 2.6243 0.1671 0.3067 0.5207 0.9030 0.1714 0.3396 0.5328 1.0317
8 Appendix D: Evaluation of Methods on Acknowledgments

Potentially Biased Ground Truth

Table 5 summarizes the potentially biased numerical perfor-
mance metrics for the different methods obtained by regard-
ing preprocessed, hole-filled data as ground truth. Other than
the ground-truth data, the evaluation procedure is identical to
the one used in Table 1. While the reported (potentially
biased) MAE values in Table 5 for the proposed method
are only slightly higher than the corresponding values in
Table 4 and comparable with the best results, the relative per-
formance of the different methods shows differences against
what is reported in Table 4 in Sec. 3.3.

We thank the Center for Integrated Research Computing,
University of Rochester, for providing access to computa-
tional resources. We are also grateful to the anonymous
reviewers for several constructive comments that have sig-
nificantly improved the paper. A workshop paper®” featured
results from preliminary work leading to this paper.
Compared to the prior publication, the paper here is more
comprehensive in exposition and includes improvements
and enhancements. Specifically, new elements in this paper
include: the joint use of depth and color information for
upsampling in the proposed formulation, the memory-efficient

Table 5 Quantitative comparison of the potentially biased performance for the different algorithms using the hole-filled data as ground truth.
MAE depth-disparity values are reported for the images in the Middlebury dataset®” for four different upsampling ratios, as listed in the second

row. The best result for each case is highlighted in bold font.

Images
Art Books Moebius
Sample rate
Methods 2x 4x 8x 16x 2x 4x 8x 16x 2x 4x 8x 16x
Bicubic 0.89 1.43 2.44 4.35 0.79 1.08 1.70 2.54 0.69 1.03 1.58 2.55
Bilinear 0.76 1.23 2.15 3.95 0.66 0.90 1.42 212 0.57 0.86 1.33 2.19
IBL® 0.57 0.70 1.50 3.69 0.30 0.45 0.64 1.45 0.39 0.48 0.69 1.14
TGV® 0.51 0.78 2.46 7.27 0.60 0.75 2.31 6.32 0.19 0.32 1.19 3.64
AD®! 0.01 0.63 1.57 3.61 0.00 0.24 0.51 1.01 0.00 0.27 0.66 1.50
DGDE?° 0.43 0.96 1.85 3.62 0.38 0.50 0.71 1.21 0.39 0.50 0.74 1.24
RCG' 0.45 0.73 1.30 2.48 0.19 0.31 0.51 0.93 0.19 0.33 0.50 1.00
Color®? 0.47 0.91 1.82 3.68 0.21 0.37 0.67 1.24 0.20 0.36 0.67 1.23
Color + depth 0.31 0.73 1.42 2.80 0.19 0.34 0.53 1.02 0.19 0.37 0.59 1.10
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implementation, and the statistical analysis for using prepro-
cessed data as ground truth.
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