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Abstract 

Background: Periarterial spaces (PASs) are annular channels that surround arteries in the brain and contain cerebro-
spinal fluid (CSF): a flow of CSF in these channels is thought to be an important part of the brain’s system for clearing 
metabolic wastes. In vivo observations reveal that they are not concentric, circular annuli, however: the outer bounda-
ries are often oblate, and the arteries that form the inner boundaries are often offset from the central axis.

Methods: We model PAS cross-sections as circles surrounded by ellipses and vary the radii of the circles, major and 
minor axes of the ellipses, and two-dimensional eccentricities of the circles with respect to the ellipses. For each 
shape, we solve the governing Navier–Stokes equation to determine the velocity profile for steady laminar flow and 
then compute the corresponding hydraulic resistance.

Results: We find that the observed shapes of PASs have lower hydraulic resistance than concentric, circular annuli 
of the same size, and therefore allow faster, more efficient flow of cerebrospinal fluid. We find that the minimum 
hydraulic resistance (and therefore maximum flow rate) for a given PAS cross-sectional area occurs when the ellipse 
is elongated and intersects the circle, dividing the PAS into two lobes, as is common around pial arteries. We also find 
that if both the inner and outer boundaries are nearly circular, the minimum hydraulic resistance occurs when the 
eccentricity is large, as is common around penetrating arteries.

Conclusions: The concentric circular annulus assumed in recent studies is not a good model of the shape of actual 
PASs observed in vivo, and it greatly overestimates the hydraulic resistance of the PAS. Our parameterization can be 
used to incorporate more realistic resistances into hydraulic network models of flow of cerebrospinal fluid in the 
brain. Our results demonstrate that actual shapes observed in vivo are nearly optimal, in the sense of offering the least 
hydraulic resistance. This optimization may well represent an evolutionary adaptation that maximizes clearance of 
metabolic waste from the brain.
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Background
It has long been thought that flow of cerebrospinal fluid 
(CSF) in perivascular spaces plays an important role in 
the clearance of solutes from the brain [1–3]. Experi-
ments have shown that tracers injected into the suba-
rachnoid space are transported preferentially into the 
brain through periarterial spaces at rates much faster 
than can be explained by diffusion alone [4–6]. Recent 
experimental results from Bedussi et  al. [7] and Mestre 

et  al. [8] now show unequivocally that there is pulsatile 
flow in the perivascular spaces around pial arteries in the 
mouse brain, with net (bulk) flow in the same direction as 
the blood flow. The in vivo measurements of Mestre et al. 
support the hypothesis that this flow is driven primarily 
by “perivascular pumping” due to motions of the arte-
rial wall synchronized with the cardiac cycle. From the 
continuity equation (expressing conservation of mass), 
we know that this net flow must continue in some form 
through other parts of the system (e.g., along perivascular 
spaces around penetrating arteries, arterioles, capillaries, 
venules). This is supported by recent magnetic resonance 
imaging studies in humans that have demonstrated that 
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CSF tracers are transported deeply into the brain via 
perivascular spaces [9–11].

The in vivo experimental methods of Mestre et al. [8] 
now enable measurements of the size and shape of the 
perivascular spaces, the motions of the arterial wall, and 
the flow velocity field in great detail. With these in vivo 
measurements, direct simulations can in principle pre-
dict the observed fluid flow by solving the Navier–Stokes 
(momentum) equation. These studies provide important 
steps in understanding the fluid dynamics of the entire 
glymphatic system [3, 12], not only in mice but in mam-
mals generally. A handful of numerical [13–18] and ana-
lytical [19, 20] studies have previously been developed 
to model CSF flow through PASs. However, these stud-
ies have been based on idealized assumptions and have 
typically simulated fluid transport through only a small 
portion of the brain. Development of a fully-resolved 
fluid-dynamic model that captures CSF transport 
through the entire brain is beyond current capabilities 
for two reasons: (i) the very large computational cost of 
such a simulation, and (ii) the lack of detailed knowl-
edge of the configuration and mechanical properties of 
the various flow channels throughout the glymphatic 
pathway, especially deep within the brain. We note that 
these limitations and the modest number of publications 
modeling CSF transport through the brain are in contrast 
with the much more extensive body of research modeling 
CSF flow in the spinal canal, which has pursued modeling 
based on idealized [21–23], patient-specific [24, 25], and 
in  vitro [26] geometries (see the recent review articles 
[27–29]).

To simulate CSF transport at a brain-wide scale, a 
tractable first step is to model the flow using a hydrau-
lic network by estimating the hydraulic resistance of the 
channels that carry the CSF, starting with the PASs. This 
article is restricted to modeling of CSF flow through PASs 
in the brain and does not address the question of flow 
through the brain parenchyma [30, 31], a region where 
bulk flow phenomena have not been characterized in the 
same detail as in the PAS. A steady laminar (Poiseuille) 
flow of fluid down a channel is characterized by a volume 
flow rate Q that is proportional to the pressure drop �p 
along the channel. The inverse of that proportionality 
constant is the hydraulic resistance R . Higher hydraulic 
resistance impedes flow, such that fewer mL of CSF are 
pumped per second by a given pressure drop �p ; lower 
hydraulic resistance promotes flow. Hydraulic resistance 
is analogous to electrical resistance, which impedes the 
electrical current driven by a given voltage drop. The 
hydraulic resistance of a channel for laminar flow can be 
calculated from the viscosity of the fluid and the length, 
shape, and cross-sectional area of the channel. We note 
that prior numerical studies have computed the hydraulic 

resistance of CSF flow in the spinal canal [32, 33], and a 
few hydraulic-network models of periarterial flows have 
been presented, using a concentric circular-annulus con-
figuration of the PAS cross-section (e.g., [16, 34, 35]). As 
we demonstrate below, the concentric circular annulus is 
generally not a good model of the cross-section of a PAS. 
Here we propose a simple but more realistic model that 
is adjustable and able to approximate the cross-sections 
of PASs actually observed in the brain. We then calcu-
late the velocity profile, volume flow rate, and hydraulic 
resistance for Poiseuille flow with these cross-sections 
and demonstrate that the shapes of PASs around pial 
arteries are nearly optimal.

Methods
The basic geometric model of the PAS
In order to estimate the hydraulic resistance of PASs, we 
need to know the various sizes and shapes of these spaces 
in  vivo. Recent measurements of periarterial flows in 
the mouse brain by Mestre et  al. [8] show that the PAS 
around the pial arteries is much larger than previously 
estimated—comparable to the diameter of the artery 
itself. In  vivo experiments using fluorescent dyes show 
similar results [36]. The size of the PAS is substantially 
larger than that shown in previous electron microscope 
measurements of fixed tissue. Mestre et al. demonstrate 
that the PAS collapses during fixation: they find that the 
ratio of the cross-sectional area of the PAS to that of the 
artery itself is on average about 1.4 in vivo, whereas after 
fixation this ratio is only about 0.14.

The in  vivo observation of the large size of the PAS 
around pial arteries is important for hydraulic models 
because the hydraulic resistance depends strongly on the 
size of the channel cross-section. For a concentric circu-
lar annulus of inner and outer radii r1 and r2 , respectively, 
for fixed r1 the hydraulic resistance scales roughly as 
(r2/r1)

−4 , and hence is greatly reduced in a wider annu-
lus. As we demonstrate below, accounting for the actual 
shapes and eccentricities of the PASs will further reduce 
the resistance of hydraulic models.

Figure  1 shows images of several different cross-sec-
tions of arteries and surrounding PASs in the brain, 
measured in vivo using fluorescent dyes [6, 8, 36, 37] or 
optical coherence tomography [7]. The PAS around a pial 
artery generally forms an annular region, elongated in the 
direction along the skull. For an artery that penetrates 
into the parenchyma, the PAS is less elongated, assum-
ing a more circular shape, but not necessarily concen-
tric with the artery. Note that similar geometric models 
have been used to model CSF flow in the cavity (ellipse) 
around the spinal cord (circle) [21, 22].

We need a simple working model of the configura-
tion of a PAS that is adjustable so that it can be fit to 
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Fig. 1 Cross-sections of PASs from in vivo dye experiments. a We consider PASs in two regions: those adjacent to pial arteries and those adjacent 
to penetrating arteries. b PAS surrounding a murine pial artery, adapted from [8]. c PAS surrounding a human pial artery, adapted from [7]. d PAS 
surrounding a murine pial artery, adapted from [36]. e PAS surrounding a murine descending artery, adapted from [6]. f PAS surrounding a murine 
descending artery, adapted from [37]. For each image b–f, the best-fit inner circular and outer elliptical boundaries are plotted (thin and thick 
curves, respectively). The model PAS cross-section is the space within the ellipse but outside the circle. The dotted line does not represent an 
anatomical structure but is included to clearly indicate the fit. The parameter values for these fits are given in Table 1. PASs surrounding pial arteries 
are oblate, not circular; PASs surrounding descending arteries are more nearly circular, but are not concentric with the artery
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the various shapes that are actually observed, or at least 
assumed. Here we propose the model shown in Fig.  2. 
This model consists of an annular channel whose cross-
section is bounded by an inner circle, representing the 
outer wall of the artery, and an outer ellipse, represent-
ing the outer wall of the PAS. The radius r1 of the circu-
lar artery and the semi-major axis r2 (x-direction) and 
semi-minor axis r3 (y-direction) of the ellipse can be 
varied to produce different cross-sectional shapes of the 
PAS. With r2 = r3 > r1 , we have a circular annulus. Gen-
erally, for a pial artery, we have r2 > r3 ≈ r1 : the PAS is 
annular but elongated in the direction along the skull. For 
r3 = r1 < r2 , the ellipse is tangent to the circle at the top 
and bottom, and for r3 ≤ r1 < r2 the PAS is split into two 
disconnected regions, one on either side of the artery, a 
configuration that we often observe for a pial artery in 
our experiments. We also allow for eccentricity in this 
model, allowing the circle and ellipse to be non-concen-
tric, as shown in Fig. 2b. The center of the ellipse is dis-
placed from the center of the circle by distances c and d 

in the x and y directions, respectively. Using these param-
eters, we have fit circles and ellipses to the images shown 
in Fig.  1b–f. Specifically, the fitted circles and ellipses 
have the same centroids and the same normalized second 
central moments as the dyed regions in the images. The 
parameters for the fits are provided in Table  1, and the 
goodness of these fits can be quantified via the residuals. 
We define Aout as the image area excluded from the fit-
ted PAS shape even though its color suggests it should be 
included, and Ain as the image area included in the fit-
ted PAS shape even though its color suggests it should be 
excluded. Those residuals, normalized by the PAS area, 
are also listed in Table 1. The model is thus able to match 
quite well the various observed shapes of PASs. To illus-
trate the fits, in Fig. 1 we have drawn the inner and outer 
boundaries (thin and thick white curves, respectively) of 
the geometric model. We have drawn the full ellipse indi-
cating the outer boundary of the PAS to clearly indicate 
the fit, but the portion which passes through the artery 
is plotted with a dotted line to indicate that this does not 
represent an anatomical structure.

Steady laminar flow in the annular tube
We wish to find the velocity distribution for steady, 
fully developed, laminar viscous flow in our model tube, 
driven by a uniform pressure gradient in the axial (z) 
direction. The velocity u(x, y) is purely in the z-direction 
and the nonlinear term in the Navier–Stokes equation is 
identically zero. The basic partial differential equation to 
be solved is the z-component of the Navier–Stokes equa-
tion, which reduces to

(1)
∂2u

∂x2
+

∂2u

∂y2
=

1

µ

dp

dz
≡ −C = constant,

Fig. 2 Adjustable geometric models of the cross-section of a PAS, 
where the circle represents the outer boundary of the artery and 
the ellipse represents the outer boundary of the PAS. The circle and 
ellipse may be either a concentric or b non-concentric. In a, the 
geometry is parameterized by the circle radius r1 and the two axes 
of the ellipse r2 and r3 . In b, there are two additional parameters: 
eccentricities c along the x-direction and d along the y-direction

Table 1 Dimensional parameters, residuals, nondimensional parameters, and  hydraulic resistance of  our model fit 
to periarterial spaces visualized in vivo

Labels correspond to panel labels in Fig. 1. The last column gives the ratio of the hydraulic resistance R◦ of a circular annulus with the same area ratio K to the value R 
computed for the specified geometry

Label r1 (μm) r2 (μm) r3 (μm) Aart (μm2) Apas (μm2) c (μm) d (μm) Aout/Apas

b 19.92 42.1 8.09 1169 1059 − 0.0428 5.23 0.036

c 152.9 449 113.7 66,300 158,000 − 67.6 14.84 0.045

d 16.53 58.6 16.67 742 2670 − 4.18 6.55 0.089

e 4.63 6.83 5.42 59.2 113.5 − 0.513 −4.61 0.024

f 7.21 23.3 15.40 155.0 1120 0.1192 −5.74 0.024

Label Ain/Apas α β K ǫx ǫy r4
1
R/µ R◦/R

b 0.024 2.11 0.406 0.388 − 0.00215 0.263 48.0 6.45

c 0.045 2.94 0.744 1.36 − 0.442 0.0971 3.56 2.75

d 0.244 3.54 1.008 2.71 − 0.253 0.396 1.01 1.62

e 0.094 1.476 1.172 1.18 − 0.1109 − 0.997 3.30 4.29

f 0.146 3.24 2.14 5.93 0.0165 −0.797 0.173 1.38
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where µ is the dynamic viscosity of the CSF. (Note that 
the pressure gradient dp/dz is constant and negative, so 
the constant C we have defined here is positive.) If we 
introduce the nondimensional variables

then Eq.  (1) becomes the nondimensional Poisson’s 
equation

We want to solve this equation subject to the Dirichlet 
(no-slip) condition U = 0 on the inner (circle) and outer 
(ellipse) boundaries. Analytic solutions are known for 
simple geometries, and we can calculate numerical solu-
tions for a wide variety of geometries, as described below.

Let Apas and Aart denote the cross-sectional areas of 
the PAS and the artery, respectively. Now, define the non-
dimensional parameters

(Note that K is also equal to the volume ratio Vpas/Vart of 
a fixed length of our tube model.) When r1 , r2 , r3 , c, and 
d have values such that the ellipse surrounds the circle 
without intersecting it, the cross-sectional areas of the 
PAS and the artery are given simply by

and the area ratio is

In cases where the ellipse intersects the circle, the deter-
mination of Apas is more complicated: in this case, 
Eqs. (5) and (6) are no longer valid, and instead we com-
pute Apas numerically, as described in more detail below.

For our computations of velocity profiles in cases with 
no eccentricity ( c = d = 0 ), we can choose a value of 
the area ratio K, which fixes the volume of fluid in the 
PAS, and then vary α to change the shape of the ellipse. 
Thus we generate a two-parameter family of solutions: 
the value of β is fixed by the values of K and α . In cases 
where the circle does not protrude past the boundary 
of the ellipse, the third parameter β varies according to 
β = (K + 1)/α . For α = 1 the ellipse and circle are tan-
gent at x = ±r2 , y = 0 and for α = K + 1 they are tan-
gent at x = 0 , y = ±r3 . Hence, for fixed K, the circle 
does not protrude beyond the ellipse for α in the range 
1 ≤ α ≤ K + 1 . For values of α outside this range, we 

(2)ξ =
x

r1
, η =

y

r1
, U =

u

Cr21
,

(3)
∂2U

∂ξ2
+

∂2U

∂η2
= −1.

(4)α =
r2

r1
, β =

r3

r1
, K =

Apas

Aart
.

(5)
Apas = π(r2r3 − r21) = πr21(αβ − 1), Aart = πr21 ,

(6)K =
Apas

Aart
= αβ − 1.

have a two-lobed PAS, and the relationship among K, α , 
and β is more complicated.

The dimensional volume flow rate Q is found by inte-
grating the velocity-profile

where Q = Q/Cr41 is the dimensionless volume flow 
rate. The hydraulic resistance R is given by the relation 
Q = �p/R , where �p = (−dp/dz)L is the pressure drop 
over a length L of the tube. For our purposes, it is better 
to define a hydraulic resistance per unit length, R = R/L , 
such that

We can use computed values of Q to obtain values of 
the hydraulic resistance R . From Eqs. (7) and (8), we have

We can then plot the scaled, dimensionless resistance 
r41R/µ = 1/Q as a function of (α − β)/K  (shape of the 
ellipse) for different values of K (area ratio). We choose 
the quantity (α − β)/K  because it is symmetric with 
respect to exchange of α and β , larger values of this 
quantity correspond to a more elongated ellipse, and 
(α − β)/K = ±1 corresponds to the case in which the 
ellipse is tangent with the circle.

For viscous flows in ducts of various cross-sections, 
the hydraulic resistance is often scaled using the hydrau-
lic radius rh = 2A/P , where A is the cross-sectional area 
of the duct and P is the wetted perimeter. In the case 
of our annular model, however, the hydraulic radius 
rh = 2Apas/P is not a useful quantity: when the inner 
circle lies entirely within the outer ellipse, both Apas and 
P, and hence rh , are independent of the eccentricity, but 
(as shown below) the hydraulic resistance varies with 
eccentricity.

Numerical methods
In order to solve Poisson’s Eq. (3) subject to the Dirichlet 
condition U = 0 on the inner and outer boundaries of 
the PAS, we employ the Partial Differential Equation 
(PDE) Toolbox in MATLAB. This PDE solver utilizes 
finite-element methods and can solve Poisson’s equation 
in only a few steps. First, the geometry is constructed by 
specifying a circle and an ellipse (the ellipse is approxi-
mated using a polygon with a high number of vertices, 
typically 100). Eccentricity may be included by shifting 
the centers of the circle and ellipse relative to each other. 
We specify that the equation is to be solved in the PAS 

(7)

Q =
∫

Apas

u(x, y) dx dy = Cr41

∫

Apas

U(ξ , η) dξ dη ≡ Cr41Q,

(8)Q =
(−dp/dz)

R
, R =

(−dp/dz)

Q
=

µC

Q
.

(9)R =
µC

Q
=

µC

Cr41Q
=

µ

r41

1

Q
.
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domain corresponding to the part of the ellipse that does 
not overlap with the circle. We next specify the Dirichlet 
boundary condition U = 0 along the boundary of the 
PAS domain and the coefficients that define the nondi-
mensional Poisson’s Eq. (3). Finally, we generate a fine 
mesh throughout the PAS domain, with a maximum 
element size of 0.02 (nondimensionalized by r1 ), and 
MATLAB computes the solution to Eq. (3) at each mesh 
point. The volume flow rate is obtained by numerically 
integrating the velocity profile over the domain. Choos-
ing the maximum element size of 0.02 ensures that the 
numerical results are converged. Specifically, we compare 
the numerically obtained value of the flow rate Q for a 
circular annulus to the analytical values given by Eq. (11) 
or Eq. (12) below to ensure that the numerical results are 
accurate to within 1%.

For the case where the circle protrudes beyond the 
boundary of the ellipse, Eqs. (5) and (6) do not apply. We 
check for this case numerically by testing whether any 
points defining the boundary of the circle extend beyond 
the boundary of the ellipse. If so, we compute the area 
ratio K numerically by integrating the area of the finite 
elements in the PAS domain ( Aart is known but Apas is 
not). In cases where we want to fix K and vary the shape 
of the ellipse (e.g. Fig.  5a), it is necessary to change the 
shape of the ellipse iteratively until K converges to the 
desired value. We do so by choosing α and varying β until 
K converges to its desired value within 0.01%.

Analytical solutions
There are two special cases for which there are explicit 
analytical solutions, and we can use these solutions as 
checks on the numerical method.

The concentric circular annulus
For a concentric circular annulus we have c = d = 0 , 
r2 = r3 > r1 , α = β > 1 , and K = α2 − 1 . Let r be the 
radial coordinate, and ρ = r/r1 be the correspond-
ing dimensionless radial coordinate. The dimensionless 
velocity profile is axisymmetric, and is given by White 
[38], p. 114:

and the corresponding dimensionless volume flux rate is 
given by:

(10)

U(ρ) =
1

4

[

(α2 − ρ2)− (α2 − 1)
ln(α/ρ)

ln(α)

]

, 1 < ρ < α,

(11)
Q =

π

8

[

(α4 − 1)−
(α2 − 1)2

ln(α)

]

=
π

8

[

(K + 1)2 − 1−
2K 2

ln(K + 1)

]

.

The eccentric circular annulus
There is also an analytical solution for the case of an 
eccentric circular annulus, in which the centers of the 
two circles do not coincide [38, 39]. Let c denote the 
radial distance between the two centers. Then, in cases 
where the two circles do not intersect, the dimension-
less volume flow rate is given by White [38], p. 114:

where ǫ = c/r1 is the dimensionless eccentricity and

From this solution, it can be shown that increasing the 
eccentricity substantially increases the flow rate (see 
Fig.  3-10 in [38]). This solution can be used as a check 
on the computations of the effect of eccentricity in our 
model PAS in the particular case where the outer bound-
ary is a circle.

Results
The eccentric circular annulus
The eccentric circular annulus is a good model for the 
PASs around some penetrating arteries (see Fig. 1e, f ), 
so it is useful to show how the volume flow rate and 
hydraulic resistance vary for this model. This is done in 
Fig.  3a, where the hydraulic resistance (inverse of the 
volume flow rate) is plotted as a function of the dimen-
sionless eccentricity c/(r2 − r1) = ǫ/(α − 1) for various 
values of the area ratio K = α2 − 1 . The first thing to 
notice in this plot is how strongly the hydraulic resist-
ance depends on the cross-sectional area of the PAS 
(i.e., on K). For example, in the case of a concentric cir-
cular annulus ( ǫ = 0 ), the resistance decreases by about 
a factor of 1700 as the area increases by a factor of 15 
(K goes from 0.2 to 3.0).

For fixed K, the hydraulic resistance decreases mono-
tonically with increasing eccentricity (see Fig. 3a). This 
occurs because the fluid flow concentrates more and 
more into the wide part of the gap, where it is farther 
from the walls and thus achieves a higher velocity for 
a given shear stress (which is fixed by the pressure gra-
dient). (This phenomenon is well known in hydraulics, 
where needle valves tend to leak badly if the needle is 

(12)

Q =
π

8

[

(α4 − 1)−
4ǫ2M2

(B− A)

−8ǫ2M2
∞
∑

n=1

n exp(−n[B+ A])
sinh(n[B− A])

]

,

(13)

M = (F2 − α2)1/2, F =
α2 − 1+ ǫ2

2ǫ
,

A =
1

2
ln

(

F +M

F −M

)

, B =
1

2
ln

(

F − ǫ +M

F − ǫ −M

)

.
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flexible enough to be able to bend to one side of the 
circular orifice.) The increase of flow rate (decrease 
of resistance) is well illustrated in Fig.  3c–e, which 
show numerically computed velocity profiles (as color 
maps) at three different eccentricities. We refer to 
the case where the inner circle touches the outer cir-
cle ( ǫ/(α − 1) = 1 ) as the “tangent eccentric circular 
annulus.”

We have plotted the hydraulic resistance as a function 
of the area ratio K for the concentric circular annulus and 
the tangent eccentric circular annulus in Fig. 3b. This plot 
reveals that across a wide range of area ratios, the tan-
gent eccentric circular annulus (shown in Fig.  3e) has a 
hydraulic resistance that is approximately 2.5 times lower 
than the concentric circular annulus (shown in Fig.  3c), 
for a fixed value of K. Intermediate values of eccentric-
ity ( 0 ≤ ǫ/(α − 1) ≤ 1 ), where the inner circle does 
not touch the outer circle (e.g., Fig. 3d) correspond to a 
reduction in hydraulic resistance that is less than a factor 
of 2.5. The variation with K of hydraulic resistance of the 
tangent eccentric annulus fits reasonably well to a power 

law r41R/µ = 8.91K−2.78 throughout most of the range of 
observed K values, indicated by the gray shaded region in 
Fig. 3b.

The concentric elliptical annulus
Now we turn to the results for the elliptical annulus in 
the case where the ellipse and the inner circle are con-
centric. Figure  4 shows numerically computed velocity 
profiles for three different configurations with the same 
area ratio ( K = 1.4 ): a moderately elongated annulus, 
the case where the ellipse is tangent to the circle at the 
top and bottom, and a case with two distinct lobes. A 
comparison of these three cases with the concentric cir-
cular annulus (Fig. 3c) shows quite clearly how the flow 
is enhanced when the outer ellipse is flattened, leading 
to spaces on either side of the artery with wide gaps in 
which much of the fluid is far from the boundaries and 
the shear is reduced. However, Fig.  4c shows a reduc-
tion in the volume flow rate (i.e. less pink in the velocity 
profile) compared to Fig.  4a, b, showing that elongating 

Fig. 3 Hydraulic resistance and velocity profiles in eccentric circular annuli modeling PASs surrounding penetrating arteries. a Plots of hydraulic 
resistance R for an eccentric circular annulus, as a function of the relative eccentricity ǫ/(α − 1) , for various fixed values of the area ratio K = α2 − 1 
ranging in steps of 0.2, computed using Eq. (12). b Plots of the hydraulic resistance (red dots) for the tangent eccentric circular annulus (defined as 
ǫ/(α − 1) = 1 ) as a function of the area ratio K. Also plotted, for comparison, is the hydraulic resistance of the concentric circular annulus for each 
value of K. The shaded region indicates the range of K observed in vivo for PASs. Power laws are indicated that fit the points well through most of 
the shaded region. c–e Velocity profiles for three different eccentric circular annuli with increasing eccentricity (with K = 1.4 held constant): (c) 
ǫ = 0 (concentric circular annulus), (d) ǫ = 0.27 (eccentric circular annulus), and (e) ǫ = 0.55 (tangent eccentric circular annulus). The black circle, 
purple asterisk, and red dot in a indicate the hydraulic resistance of the shapes shown in c–e, respectively. The volume flow rates for the numerically 
calculated profiles shown in c–e agree with the analytical values to within 0.3%. As eccentricity increases hydraulic resistance decreases and volume 
flow rate increases
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the outer ellipse too much makes the gaps narrow again, 
reducing the volume flow rate (increasing the hydraulic 
resistance). This results suggests that, for a given value of 
K (given cross-sectional area), there is an optimal value 
of the elongation α that maximizes the volume flow rate 
(minimizes the hydraulic resistance).

To test this hypothesis, we computed the volume flow 
rate and hydraulic resistance as a function of the shape 
parameter (α − β)/K  for several values of the area ratio 
K. The results are plotted in Fig. 5a. Note that the plot is 
only shown for (α − β)/K ≥ 0 , since the curves are sym-
metric about (α − β)/K = 0 . The left end of each curve 
( (α − β)/K = 0 ) corresponds to a circular annulus, and 
the black circles indicate the value of R given by the ana-
lytical solution in Eq.  (11). These values agree with the 
corresponding numerical solution to within 1%. The 
resistance varies smoothly as the outer elliptical bound-
ary becomes more elongated, and our hypothesis is con-
firmed: for each curve, the hydraulic resistance reaches a 
minimum value at a value of (α − β)/K  that varies with K, 
such that the corresponding shape is optimal for fast, effi-
cient CSF flow. Typically, the resistance drops by at least a 
factor of two as the outer boundary goes from circular to 
the tangent ellipse. If we elongate the ellipse even further 
(beyond the tangent case), thus dividing the PAS into two 
separate lobes, the resistance continues to decrease but 
reaches a minimum and then increases. The reason for this 
increase is that, as the ellipse becomes highly elongated, it 
forms a narrow gap itself, and the relevant length scale for 
the shear in velocity is the width of the ellipse, not the dis-
tance to the inner circle. For small values of K, we find that 
the optimal shape parameter (α − β)/K  tends to be large 

Fig. 4 Example velocity profiles in concentric elliptical annuli 
modeling PASs surrounding pial arteries. The color maps show 
velocity profiles for three different shapes of the PAS, all with 
K = 1.4 : a open PAS ( α = 2 , β = 1.2 ), b ellipse just touching circle 
( α = 2.4 , β = 1 ), and c two-lobe annulus ( α = 5 , β = 0.37 ). Hydraulic 
resistance is lowest and flow is fastest for intermediate elongation, 
suggesting the existence of an optimal shape that maximizes flow

Fig. 5 Hydraulic resistance of concentric elliptical annuli modeling PASs surrounding pial arteries. a Hydraulic resistance R as a function of 
(α − β)/K  for various fixed values of the area ratio K ranging in steps of 0.2. The black circles indicate the analytic value for the circular annulus, 
provided by Eq. (11). Red dots indicate optimal shapes, which have minimum R for each fixed value of K. b Plots of the hydraulic resistance (red 
dots) for the optimal concentric elliptical annulus as a function of the area ratio K. Also plotted, for comparison, is the hydraulic resistance of the 
concentric circular annulus for each value of K. The shaded region indicates the range of K observed in vivo for PASs. The two curves in the shaded 
region are well represented by the power laws shown. For larger values of K (larger than actual PASs) the influence of the inner boundary becomes 
less significant and the curves converge to a single power law. c–e Velocity profiles for the optimal shapes resulting in the lowest hydraulic 
resistance, with fixed K = 0.4 , 1.4, and 2.4, respectively. The optimal shapes look very similar to the PASs surrounding pial arteries (Fig. 1b–d)
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and the ellipse is highly elongated, while for large values of 
K the optimal shape parameter is small. The velocity pro-
files for three optimal configurations (for K = 0.4 , 1.4, and 
2.4) are plotted in Fig. 5c–e.

The hydraulic resistance of shapes with optimal elonga-
tion also varies with the area ratio K, as shown in Fig. 5b. 
As discussed above, the resistance decreases rapidly as 
K increases and is lower than the resistance of concen-
tric, circular annuli, which are also shown. We find that 
the optimal elliptical annulus, compared to the concen-
tric circular annulus, provides the greatest reduction 
in hydraulic resistance for the smallest area ratios K. 
Although the two curves converge as K grows, they differ 
substantially throughout most of the range of normalized 
PAS areas observed in  vivo. We find that the variation 
with K of hydraulic resistance of optimal shapes fits 
closely to a power law r41R/µ = 6.67K−1.96.

The eccentric elliptical annulus
We have also calculated the hydraulic resistance for cases 
where the outer boundary is elliptical and the inner and 
outer boundaries are not concentric (see Fig. 2b). For this 
purpose, we introduce the nondimensional eccentricities

(14)ǫx =
c

r1
, ǫy =

d

r1
.

The hydraulic resistance is plotted in Fig. 6a, b as a func-
tion of ǫx and ǫy , respectively, and clearly demonstrates 
that adding any eccentricity decreases the hydrau-
lic resistance, similar to the eccentric circular annulus 
shown in Fig. 3. In the case where the outer boundary is 
a circle ( α = β > 1 , ǫ = (ǫ2x + ǫ2y )

1/2 ) we employ the ana-
lytical solution (12) as a check on the numerical solution: 
they agree to within 0.4%. Two example velocity profiles 
are plotted in Fig. 6c, d. Comparing these profiles to the 
concentric profile plotted in Fig.  4a clearly shows that 
eccentricity increases the volume flow rate (decreases the 
hydraulic resistance).

In vivo PASs near pial arteries are nearly optimal in shape
We can compute the velocity profiles for the geom-
etries corresponding to the actual pial PASs shown in 
Fig. 1b–d (dotted and solid white lines). The parameters 
corresponding to these fits are provided in Table  1 and 
are based on the model shown in Fig.  2b, which allows 
for eccentricity. Figure 7a shows how hydraulic resistance 
varies with elongation for non-concentric PASs having 
the same area ratio K and eccentricities ǫx and ǫy as the 
ones in Fig. 1b–d. The computed values of the hydraulic 
resistance of the actual observed shapes are plotted as 
purple triangles. For comparison, velocity profiles for the 
optimal elongation and the exact fits provided in Table 1 

Fig. 6 The effects of eccentricity on hydraulic resistance of elliptical annuli modeling PASs surrounding pial arteries. Hydraulic resistance R as 
a function of a ǫx or b ǫy for several values of α . Color maps of the velocity profiles for c α = 2 , ǫx = 0.4 , ǫy = 0 and d α = 2 , ǫx = 0 , ǫy = −0.4 . 
K = 1.4 for all plots shown here. Circular annuli have α =

√
2.4 , and annuli with α >

√
2.4 have r2 > r3 . For a fixed value of α , any non-zero 

eccentricity increases the flow rate and reduces the hydraulic resistance
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are shown in Fig. 7b–d. Clearly the hydraulic resistances 
of the shapes observed in vivo are very close to the opti-
mal values, but systematically shifted to slightly more 
elongated shapes. Even when (α − β)/K  differs substan-
tially between the observed shapes and the optimal ones, 
the hydraulic resistance R , which sets the pumping effi-
ciency and is therefore the biologically important param-
eter, matches the optimal value quite closely.

Discussion
In order to understand the glymphatic system, and vari-
ous effects on its operation, it will be very helpful to 
develop a predictive hydraulic model of CSF flow in the 
PASs. Such a model must take into account two impor-
tant recent findings: (i) the PASs, as measured in  vivo, 
are generally much larger than the size determined from 
post-fixation data [7, 8, 36] and hence offer much lower 
hydraulic resistance; and (ii) (as we demonstrate in this 

paper) the concentric circular annulus model is not a 
good geometric representation of an actual PAS, as it 
overestimates the hydraulic resistance. With these two 
factors accounted for, we can expect a hydraulic-network 
model to produce results in accordance with the actual 
bulk flow now observed directly in particle tracking 
experiments [7, 8].

The relatively simple, adjustable model of a PAS that 
we present here can be used as a basis for calculating 
the hydraulic resistance for a wide range of observed 
PAS shapes, throughout the brain and spinal cord. Our 
calculations demonstrate that accounting for PAS shape 
can reduce the hydraulic resistance by a factor as large 
as 6.45 (see Table 1). We estimate that the pressure gra-
dient required to drive CSF through a murine pial PAS 
ranges between 0.03 and 0.3 mmHg/cm (this calculation 
is based on the fit parameters for Fig. 1d, b, respectively, 
and an average flow speed of 18.7  μm/s [8]). Although 
CSF pressure gradients have not been measured in PASs, 
the maximum available pressure to drive such flows 
arises from arterial pulsations and an upper limit can 
be estimated based on the arterial pulse pressure, which 
gives a value on the order of 1 mmHg/cm. We note that 
our improvements to PAS modeling are also relevant for 
studies of shear-enhanced dispersion of solutes through 
PASs, a phenomenon that recent numerical works [15, 
16, 18] have investigated in the case of an oscillatory, 
zero-mean flow.

We raise the intriguing possibility that the non-circu-
lar and eccentric configurations of PASs surrounding 
pial arteries are an evolutionary adaptation that lowers 
the hydraulic resistance and permits faster bulk flow of 
CSF. The in vivo images (e.g., those in Fig. 1b–d) reveal 
that the cross-section of the PAS around a pial artery is 
not a concentric circular annulus, but instead is signifi-
cantly flattened and often consists of two separate lobes 
positioned symmetrically on each side of the artery. Trac-
ers are mostly moving within these separate tunnels and 
only to a limited extent passing between them. Our imag-
ing of tens of thousands of microspheres has revealed 
that crossing is rare, indicating almost total separation 
between the two tunnels. The arrangement of the two 
PAS lobes surrounding a pial artery not only reduces the 
hydraulic resistance but may also enhance the stability of 
the PAS and prevent collapse of the space during exces-
sive movement of the brain within the skull. Additionally, 
PASs with wide spaces may facilitate immune response 
by allowing macrophages to travel through the brain, 
as suggested by Schain et  al. [36]. We note that if CSF 
flowed through a cylindrical vessel separate from the vas-
culature (not an annulus), hydraulic resistance would be 
even lower. However, there are reasons that likely require 
PASs to be annular and adjacent to the vasculature, 

Fig. 7 Actual PAS cross-sections measured in vivo are nearly optimal. 
a Hydraulic resistance R as a function of (α − β)/K  in which α 
varies and the values of the area ratio K and eccentricities ǫx and 
ǫy are fixed corresponding to the fitted values obtained in Table 1. 
Values corresponding to plots B-D are indicated. b–d Velocity profiles 
for the optimal value of α (left column), which correspond to the 
minimum value of R on each curve in A, and velocity profiles for the 
exact fit provided in Table 1 (right column) and plotted in Fig. 1b–d, 
respectively. The shape of the PAS measured in vivo is nearly optimal
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including: (i) arterial pulsations drive CSF flow [8], and 
(ii) astrocyte endfeet, which form the outer boundary of 
the PAS, regulate molecular transport from both arteries 
and CSF [40, 41].

The configuration of PASs surrounding penetrating 
arteries in the cortex and striatum is largely unknown 
[42]. To our knowledge, all existing models are based on 
information obtained using measurements from fixed tis-
sue. Our own impression, based on years of in vivo imag-
ing of CSF tracer transport, is that the tracers distribute 
asymmetrically along the wall of penetrating arteries, 
suggesting that the PASs here are eccentric. Clearly, we 
need new in vivo techniques that produce detailed maps 
of tracer distribution along penetrating arteries. Regional 
differences may exist, as suggested by the finding that, 
in the human brain, the striate branches of the middle 
cerebral artery are surrounded by three layers of fibrous 
membrane, instead of the two layers that surround cor-
tical penetrating arteries [42]. Accurately characterizing 
the shapes and sizes of the most distal PASs along the 
arterial tree is very important, as prior work [35] suggests 
the hydraulic resistance is largest there. We speculate 
that the configuration of the PASs at these locations may 
be optimal as well.

An intriguing possibility for future study is that minor 
changes in the configuration of PAS spaces may contrib-
ute to the sleep-wake regulation of the glymphatic system 
[43]. Also, age-dependent changes of the configuration 
of PASs may increase the resistance to fluid flow, pos-
sibly contributing to the increased risk of amyloid-beta 
accumulation associated with aging [44]. Similarly, reac-
tive remodeling of the PASs in the aftermath of a trau-
matic brain injury may increase the hydraulic resistance 
of PASs and thereby increase amyloid-beta accumulation.

There are limitations to the modeling presented here, 
which can be overcome by straightforward extensions of 
the calculations we have presented. We have intention-
ally chosen a relatively simple geometry in order to show 
clearly the dependence of the hydraulic resistance on the 
size, shape, and eccentricity of the PAS. However, the fits 
presented in Fig.  1b–f are imperfect and could be bet-
ter captured using high-order polygons, which is an easy 
extension of the numerical method we have employed. 
Our calculations have been performed assuming that 
PASs are open channels, which is arguably justified—at 
least for PASs around pial arteries—by the smooth tra-
jectories observed for 1 μm beads flowing through PASs 
and the observation that these spaces collapse during the 
fixation process [8]. However, the implementation of a 
Darcy–Brinkman model to capture the effect of poros-
ity would simply increase the resistance R , given a fixed 
flow rate Q and Darcy number Da, by some multiplica-
tive constant.

The hydraulic resistances we have calculated are for 
steady laminar flow driven by a constant overall pressure 
gradient. However, recent quantitative measurements 
in mice have offered substantial evidence demonstrat-
ing that CSF flow in PASs surrounding the middle cer-
ebral artery is pulsatile, driven by peristaltic pumping 
due to arterial wall motions generated by the heartbeat, 
with mean (bulk) flow in the same direction as the blood 
flow [8]. We hypothesize that this “perivascular pump-
ing” occurs mainly in the periarterial spaces around the 
proximal sections of the main cerebral arteries: at more 
distal locations the wall motions become increasingly 
passive, and the flow is driven mainly by the pulsatile 
pressure gradient generated by the perivascular pump-
ing upstream. Viscous, incompressible duct flows due 
to oscillating pressure gradients (with either zero or 
non-zero mean) are well understood: it is a linear prob-
lem, and analytical solutions are known for a few simple 
duct shapes. The nature of the solution depends on the 
dynamic Reynolds number Rd = ωℓ2/ν , where ω is the 
angular frequency of the oscillating pressure gradient, ν 
is the kinematic viscosity, and ℓ is the length scale of the 
duct (e.g., the inner radius of a circular pipe, or the gap 
width for an annular pipe). (Alternatively, the Womersley 
number W =

√
Rd  is often used in biofluid mechanics.) 

When Rd << 1 , as it is in the case of flows in PASs,1 the 
velocity profile at any instant of time is very nearly that 
of a steady laminar flow, and the profile varies in time in 
phase with the oscillating pressure gradient (see White 
[38], sec. 3-4.2). In this case, the average (bulk) volume 
flow rate will be inversely proportional to exactly the 
same hydraulic resistance that applies to steady laminar 
flow. Hence, the hydraulic resistances we have computed 
here will apply to perivascular spaces throughout the 
brain, except for proximal sections of main arteries where 
the perivascular pumping is actually taking place.

In PASs where the perivascular pumping is signifi-
cant, the picture is somewhat different. Here, the flow 
is actively driven by traveling wave motions of the arte-
rial wall, or in the context of our model PAS, waves along 
the inner circular boundary. In the case of an elliptical 
outer boundary, we expect the flow to be three-dimen-
sional, with secondary motions in the azimuthal direc-
tion (around the annulus, not down the channel), even 
if the wave along the inner boundary is axisymmetric. 
Although we have not yet modeled this flow, we can offer 
a qualitative description based on an analytical solu-
tion for perivascular pumping in the case of concentric 
circular cylinders [19]. The effectiveness of the pumping 

1 For example, for ω = 25.13 s
−1 (corresponding to a pulse rate of 240 bpm), 

ℓ = 20µm , and ν = 7.0× 10
−7

m
2
s
−1 , we have Rd = 1.4× 10

−2.
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scales as (b/ℓ)2 , where b is the amplitude of the wall 
wave and ℓ is the width of the gap between the inner and 
outer boundaries. Although this scaling was derived for 
an infinite domain, we expect it will also hold for one of 
finite length. For the case of a concentric circular annu-
lus, the gap width ℓ and hence the pumping effectiveness 
are axisymmetric, and therefore the resulting flow is also 
axisymmetric. For an elliptical outer boundary, however, 
the gap width ℓ varies in the azimuthal direction and so 
will the pumping effectiveness. Hence, there will be pres-
sure variations in the azimuthal direction that will drive 
a secondary, oscillatory flow in the azimuthal direction, 
and as a result the flow will be non-axisymmetric and 
the streamlines will wiggle in the azimuthal direction. 
Increasing the aspect ratio r2/r3 of the ellipse for a fixed 
area ratio will decrease the flow resistance but will also 
decrease the overall pumping efficiency, not only because 
more of the fluid is placed farther from the artery wall, 
but also, in cases where the PAS is split into two lobes, 
not all of the artery wall is involved in the pumping. 
Therefore, we expect that there will be an optimal aspect 
ratio of the outer ellipse that will produce the maximum 
mean flow rate due to perivascular pumping, and that 
this optimal ratio will be somewhat different from that 
which just produces the lowest hydraulic resistance. We 
speculate that evolutionary adaptation has produced 
shapes of actual periarterial spaces around proximal 
sections of main arteries that are nearly optimal in this 
sense.

Conclusions
Periarterial spaces, which are part of the glymphatic sys-
tem [6], provide a route for rapid influx of cerebrospi-
nal fluid into the brain and a pathway for the removal of 
metabolic wastes from the brain. In this study, we have 
introduced an elliptical annulus model that captures the 
shape of PASs more accurately than the circular annu-
lus model that has been used in all prior modeling stud-
ies. We have demonstrated that for both the circular and 
elliptical annulus models, non-zero eccentricity (i.e., 
shifting the inner circular boundary off center) decreases 
the hydraulic resistance (increases the volume flow rate) 
for PASs. By adjusting the shape of the elliptical annulus 
with fixed PAS area and computing the hydraulic resist-
ance, we found that there is an optimal PAS elongation 
for which the hydraulic resistance is minimized (the vol-
ume flow rate is maximized). We find that these opti-
mal shapes closely resemble actual pial PASs observed 
in vivo, suggesting such shapes may be a result of evolu-
tionary optimization.

The elliptical annulus model introduced here offers 
an improvement for future hydraulic network mod-
els of the glymphatic system, which may help reconcile 

the discrepancy between the small PAS flow speeds 
predicted by many models and the relatively large flow 
speeds recently measured in  vivo [7, 8]. Our proposed 
modeling improvements can be used to obtain simple 
scaling laws, such as the power laws obtained for the tan-
gent eccentric circular annulus in Fig. 3b or the optimal 
elliptical annulus in Fig. 5b.
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