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ABSTRACT

The filamentary structure of a sunspot penumbra is believed to be magnetoconvective in origin. In the outer pen-
umbra there is a difference in inclination of up to 30°—40° between the magnetic fields associated with bright and dark
filaments, and the latter fields plunge downward below the surface toward the edge of the spot. We have proposed that
these fields are dragged downward by magnetic pumping caused by the external granular convection. In this paper we
model this process in a more elaborate idealized configuration that includes the curvature force exerted by an arched
magnetic field in addition to magnetic buoyancy, and demonstrate that magnetic pumping remains an efficient mech-
anism for holding flux submerged. We discuss the implications of these results for the magnetic structure of the outer

penumbra.

Subject headings: MHD — Sun: magnetic fields — Sun: photosphere — sunspots

1. INTRODUCTION

High-resolution measurements of the vector magnetic field
in sunspots over the past decade have revealed the intricate and
distinctive structure of the magnetic field in the penumbra. The
configuration of the magnetic field, which we prefer to call an
“interlocking comb structure,” involves a systematic difference
in the inclination of the fields in the bright and dark penumbral
filaments, with the inclination being greater in the dark filaments
(Degenhardt & Wiehr 1991; Title et al. 1993; Lites et al. 1993;
Solanki & Montavon 1993; Bellot Rubio et al. 2004; Langhans
etal. 2005). Precise values of the inclination angles given by dif-
ferent observers differ, most likely due to differences in the inver-
sion procedures (which are model dependent), but the general
picture is the following. At the umbra-penumbra boundary the
fields in the bright filaments are inclined (with respect to the local
vertical direction) by about 30° and the fields in the dark filaments
are inclined at about the same or a slightly greater angle. The in-
clinations of the fields in both components increase monotoni-
cally across the penumbra, but increase somewhat faster in the
dark filaments. At the outer edge of the penumbra the inclination
has reached about 70° in the bright filaments and 90°~120° in the
dark filaments. In some cases the field in a dark filament has be-
come horizontal by the middle of the penumbra.

Of particular interest in this configuration is the existence of
many “returning” flux tubes, i.e., bundles of magnetic flux in
the dark filaments that dive back below the visible surface near
the outer edge of the penumbra. Naively, their existence is un-
expected because the inherent magnetic buoyancy of any isolated,
submerged magnetic flux tube in the field-free subphotosphere
outside the sunspot would be expected to bring the tube quickly
back up to the surface. The returning flux tubes demand an ex-
planation, and the solution to the puzzle provides important in-
sights into the overall structure and evolution of a sunspot.
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‘We have proposed that the submergence of the returning flux
tubes is caused by downward pumping of magnetic flux by the
turbulent granular convection in the quiet photosphere surround-
ing the spot (Thomas et al. 2002; Weiss et al. 2004, hereafter
Paper 1). We have demonstrated the effectiveness of this flux
pumping in a series of idealized numerical experiments involv-
ing three-dimensional, fully compressible magnetoconvection
in a rectangular box consisting of two layers: an upper super-
adiabatic layer with vigorous convection, representing the solar
granulation layer; and a lower layer, taken to be variously weakly
stable, neutrally stable, or weakly unstable, representing the more
quiescent interior region of the solar convection zone. These
experiments have examined the fate of a thin layer of uniform
horizontal magnetic field introduced suddenly in the upper layer
of the box, in which the nonmagnetic convection has already
reached a fully developed, statistically steady state. The results
have all shown the flux pumping mechanism to be effective and
robust.

We believe that the process of magnetic flux pumping can best
be studied, at the moment, through a series of idealized numer-
ical experiments of increasing realism (and hence increasing
complexity) that contain the essential physics of the problem but
are not aimed at reproducing the observations. Our numerical
experiments so far have indicated that flux pumping in the gran-
ulation layer is vigorous enough to push initially horizontal mag-
netic fields down to the base of the granulation layer in spite of
magnetic buoyancy. In a sunspot, however, the magnetic field con-
figuration is such that magnetic curvature forces can also oppose
the submergence of the field; depression of the penumbral flux
tubes outside the spot increases the downward curvature of the
tubes, producing an upward force. Our purpose in this paper is
to present the results of new model calculations that include the
effects of such magnetic curvature forces. In § 2 we present a new
version of our two-layer convective model in which the initial
magnetic field is in the form of a two-dimensional periodic ar-
cade of magnetic arches, which may be thought to represent the
field in a row of bipolar sunspot pairs. (Similar field structures
have also been considered by Thompson [2006] and by Heinemann
etal. [2007].) In our new configuration, downward flux pumping
will be opposed by both buoyancy and curvature forces in much
the same way as in a real sunspot. The results of our numerical
experiments with this model are presented and interpreted in
§ 3. In § 4 we explain how these idealized results relate to the
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behavior of magnetic fields protruding from the penumbra of a
sunspot and extending into the vigorously convecting region
that surrounds it. Then we go on to consider some additional as-
pects of sunspot structure, emphasizing the important distinc-
tions between the inner and outer penumbra, and conclude with a
critique of the cluster model of sunspot structure and the “gappy”’
penumbra (Spruit & Scharmer 2006).

Magnetic flux pumping is an essential ingredient in an over-
all scenario that we have proposed for the formation and main-
tenance of a sunspot penumbra (Thomas et al. 2002; Thomas &
Weiss 2004, 2008; Paper I). In brief, the sequence of events is the
following. The development of an active region begins with the
emergence of a large, fragmented flux tube into the photosphere.
The magnetic field at the surface initially consists of numerous
small magnetic flux elements that accumulate at the boundaries
between granules and mesogranules to form pores without pen-
umbrae. Magnetohydrostatic equilibrium of an individual pore
requires that its magnetic field fan out with height near and above
the surface because of the rapid decrease in gas pressure with
height in its surroundings. Thus, the magnetic field at the outer
edge of the pore is inclined to the vertical (by an average amount
of about 35°). As the growing pore accumulates more magnetic
flux, the inclination of the field at the outer edge of the pore in-
creases until, at some critical angle, a convective fluting insta-
bility sets in (Tildesley & Weiss 2004). This instability, which is
due to the superadiabatic temperature gradient in the layers im-
mediately below the surface, produces a corrugation of the outer
surface of the flux tube with a sinusoidal azimuthal variation of
the field inclination around the circumference of the pore. (The
existence of this convective fluting instability is indicated by ide-
alized model calculations; see the discussion in § 8 of Paper 1.)
The nonlinear development of this instability leads to a config-
uration in which the spokes of more inclined field are depressed
sufficiently to subject them to magnetic flux pumping by the sur-
rounding granulation, which depresses them yet further below
the surface outside the spot, thus producing the returning flux
tubes.

2. THE MODEL PROBLEM

We represent key aspects of magnetic pumping around a sun-
spot by an idealized local model in Cartesian geometry. The equa-
tions governing three-dimensional, fully compressible, nonlinear
magnetoconvection in an ideal gas (with v = 5/3) are solved
numerically in a rectangular box {0 < x < x,,,0 <y < y,,0 <
z < z,}, where x, y, z are Cartesian coordinates with the z-axis
pointing downward. The evolution of the density (p), velocity (u),
temperature (7), and magnetic field (B) is governed by the con-
tinuity, momentum, energy, and induction equations, respectively.
The nondimensional versions of these equations are given in
Paper 1. In order to ensure that the magnetic field is solenoidal,
we introduce poloidal and toroidal potentials, P and 7, such that

B =V xVx[P(x,,2)2] +V x [T (x,,2)Z] (1)
PP PP, oT  oT
- (axaz’ayaz’vhp) * <ay’ ax’0>’ @)

where 7 is a unit vector pointing downward and V; = 92/9x? +
0%10y2.

Once again, we describe the depth dependence of convection
by a two-layer model. The static basic state consists of a piece-
wise polytropic atmosphere with a polytropic index m; in the
upper layer (0 < z < 1) and a polytropic index my (m; > m)) in

the lower layer (1 < z < z,,). To achieve a constant heat flux, the
thermal conductivity varies continuously with depth, and there
is a thin transition region between the two layers. The top layer is
superadiabatically stratified, with m; = 1, and the relative stabil-
ity of the lower layer is then controlled by the stiffness parameter

S = (mz - mad)/(mad - m1)7 (3)

where m,q = 3/2. We shall consider two cases: S = 0.5, where
the lower layer is mildly stable, and S = —0.01, where it is mar-
ginally unstable. The remaining parameters, the Rayleigh number
(Ra), the Chandrasekhar number (Q), and the diffusivity ratios
(o and () are as defined in Paper I. Unless otherwise specified, we
seto =(=0.1,Ra=5x10°,and Q = 3000 in a domain with
geometry x,, = y, = 6 so that the convective layer has an aspect
ratio of 6 x 6 x 1. The depth of the lower layer and the computa-
tional resolution depend on S and are described with each case.

We impose periodic boundary conditions in the x- and
y-directions, with impenetrable, rigid (zero-velocity) upper and
lower boundaries; the thermal boundary conditions are that 7'is
fixed at the top and OT/0z is fixed at the bottom (cf. Paper ). In
order to model the evolution of an arched structure, we require
that the field be localized and predominantly vertical at the bot-
tom boundary and horizontal at the top. The corresponding mag-
netic boundary conditions differ from those previously used and
are more subtle. We shall restrict our attention to fields that have
no mean vertical or horizontal components, when averaged over
the entire domain. We assume that the upper boundary is perfectly
conducting, with B, = 0 at z = 0, and consider two options for
the lower boundary. The more obvious choice is that the vertical
field is prescribed in such a way that B; is a given function of y
only. In this way, we could prescribe the vertical magnetic struc-
ture emanating from the lower boundary. In this case, since the
tangential components of the electric field vanish at these bound-
aries, it follows that

0B, /0z = 0B,/0x — (1/n)u,B.,
0B, /0z = 0B./0y — (1/n)u,B:, (4)

where n = C;( and Cy, is a dimensionless thermal diffusivity.

Unfortunately, this choice of boundary condition inevitably
produces configurations where the strongest horizontal fields are
concentrated at the lower boundary. This is demonstrated by the
potential field shown in Figure 1, drawn for an example of the
type of boundary variation we might want to use to produce
arching structures. This field could be approximated by that of
a periodic array of monopoles with alternating sign; it is then
obvious that the strongest horizontal fields are at the bottom
midway between the monopoles. We therefore adopt a simpler
boundary condition in which the magnetic field is constrained to
be vertical at the lower boundary for all time, i.e., B, = B, = O at
z = z,,; together with the solenoidality condition this gives, in
terms of potentials,

aP
T_E_Oa Z=Zm, (5)
while
PP T
e 70 ©)
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Fic. 1.—Potential field. Arrows show the magnitude and direction of a two-

dimensional current-free magnetic field, with the vertical field prescribed at the
lower boundary. Note that the strongest horizontal fields are at the base of the
layer.

The governing equations, subject to these boundary condi-
tions, are solved numerically using the pseudospectral scheme
described by Tobias et al. (2001). The runs to be described in § 3
are initiated as purely hydrodynamic states, with no magnetic
field, and are continued until a statistically steady turbulent solu-
tion is attained. At this point, a purely poloidal two-dimensional
double-arched magnetic field, with B, = 0, is imposed on the
domain. The poloidal components of this field are derived
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from a flux function 4 via B, = 04/0z and B, = —0A/0y,
where

A(y,2) = 873((9;1, 2__ BZ;’” <ln{cosh [Lyy_ yl)} }

" m{mh [ﬁ@y—ﬂ] } . m{cosh [ﬂuy—yq }

w222 s[5

Here, we set y; = 0.05y,,, v» = 045y, V3 =V — V2, ya =
Ym — Y1, and = 1 = 35, so that the field adopts the configura-
tion shown in Figures 2a—2¢ and satisfies the boundary conditions
above to machine accuracy. The gas density is then adjusted to
maintain a magnetohydrostatic equilibrium, while keeping the
temperature unchanged. The initial magnetic field is chosen to be
relatively strong—but not so extreme as to force p to be negative.
In practice, we choose the value of By so that it corresponds to a
Chandrasekhar number Q = 3000.

Our aim here is to identify the efficacy of convection in re-
distributing the magnetic flux from this initial arched configu-
ration. Our choice of magnetic boundary conditions means that
the magnetic field runs down and ultimately decays to zero on a
resistive timescale. In order to isolate flux pumping by convec-
tion from this type of diffusive relaxation of the field, we in-
troduce a fiducial case where no convection exists. We calculate
an S = 0.5 case with a subcritical Rayleigh number Ra = 500,
maintaining the magnetic diffusion at the same rate as before

FiG. 2.—Initial conditions used. (¢—c) Volume renderings of the magnetic energy density and magnetic field components comprising the initial magnetic arch con-
ditions. Bright and opaque colors represent strong values, whereas weak values appear dark and translucent. The magnetic energy density is shown in blue-green tones, and
signed magnetic fields are shown as red (positive field) and blue (negative field) tones. Also shown is a representative set of magnetic field lines (white). Clearly, the hor-
izontal component is concentrated near the upper boundary. (d, e) Volume renderings of the vertical velocity, w, for the flows of the two cases run with varying S, using a
red (upward) and blue (downward) color table. These color schemes will be used for all subsequent volume renderings.
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Fic. 3.—Evolution of the fiducial case. Left: Beginning (t = 2.0) and end (¢ = 134.0) of the fiducial evolution as a volume rendering of the magnetic energy density
with field lines. Middle: Evolution of the x-averaged magnetic energy density [<Bz( ¥, z)> 1. Right: Arrows showing the magnitude and direction of the x-averaged two-

x

dimensional magnetic field [<By( ¥, z)>x, (B.(y,2)),]. Note the very gradual change over an extremely long time.

(for constant Pr, the thermal diffusivity Cy is increased, and there-
fore, ¢ must be reduced accordingly). This nonconvective case
can be run at lower resolution (64 x 64 x 98). Figure 3 shows the
time evolution of this fiducial case. Since the initial field is not
force-free, it drives local motions at the start. These flows become
weak and the field passes through a series of pressure-balanced
configurations as the current gradually decays through ohmic dif-
fusion. Note the degree of relaxation of the configuration in the
time range (0 < ¢ < 134) in this simulation.

We shall find it convenient to characterize magnetic pumping
in terms of the half-box average of B,, defined as

By(2) = ((By))s. (8)

where in this case the y-average is taken over 0 < y < y,,/2—as
is clearly necessary in order to obtain a nonzero result. Figure 4
shows this half-box average at a number of different stages for
the fiducial problem. Although some small redistribution of the
field has occurred, most of the horizontal flux at the end of the
run is still contained in the upper layer. In § 3 we contrast this
behavior with two cases where turbulent convection acts so as
to rearrange the field.

3. RESULTS OF THE NUMERICAL EXPERIMENTS

We now proceed to investigate the effects of magnetic pump-
ing on this arched field configuration for two different model
atmospheres. In the solar convection zone the superadiabatic
gradient is large immediately below the surface, where a layer
of turbulent granular convection is formed. The superadiabatic
gradient falls off rapidly below this layer and convection becomes
less vigorous. We first set § = 0.5 (cf. Thomas et al. 2002) so
that the lower layer is actually stable to convection. This case is
instructive as it identifies the important physical mechanisms,
although the assumption of a stable lower layer is an obvious
oversimplification. For this case, we set z,, = 3.5 with a com-
putational resolution of 256 x 256 x 385. In the second case the

lower layer is weakly superadiabatic, with S = —0.01 (cf. PaperI).
This configuration is more representative of the effects of gran-
ular and supergranular convection in the moat cell that surrounds
a sunspot. Here, we use z,, = 2.0 with a computational resolu-
tion of 256 x 256 x 350.

31.§=05

In the absence of a magnetic field the overall pattern of con-
vection is fully three-dimensional and as described in Paper I
(see Fig. 2d and also Tobias et al. 2001). Motion is dominated
by vigorous sinking plumes which penetrate downward into the
stable layer below. These plumes originate at the corners of a net-
work of cooler sinking fluid that encloses broad, gently rising,
warm upflows. The sinking plumes are decelerated through buoy-
ancy braking in the lower stable region and are brought to rest
before they hit the lower boundary.

Once the magnetic field is inserted there is an immediate
interaction between it and the convection. Figure 5 shows the
evolution of the simulation through a number of measures. The
leftmost panels of this figure show volume renderings of the mag-
netic energy density, where bright, light blue tones represent
strong field, together with a set of magnetic field lines. It is clear
from the evolution shown in the three panels that magnetic field
is quickly redistributed, or “pumped,’ such that the strongest
magnetic energy is found lower down, and field lines are moved
generally lower in the domain.

The examples of magnetic pumping considered in Paper I,
and also those discussed by Tobias et al. (2001), showed that the
magnetic field evolves on two distinct timescales. The first phase
is rapid, as magnetic flux is redistributed via the action of con-
vection. In the second slower phase, the magnetic field relaxes
through diffusion, as in Figure 3. The same distinction holds
here, and we shall confine our attention to the physically relevant
pumping phase only. In order to quantize the effects of pumping,
we project the behavior of the three-dimensional magnetic field
onto the two-dimensional y-z plane. The middle panels of Figure 5
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Fic. 4—Fiducial case. Half-box averages of the horizontal field [Ey(z)] as defined in eq. (8). Note that the field is exactly antisymmetric. Profiles are at regular intervals
between times ¢ = 0 and 134.0 corresponding to the panels in Fig. 3. The thick lines denote the beginning and end of the calculation. Almost all the flux remains in the

upper layer.

show density plots of the x-averaged magnetic energy £y = (B?),
as it evolves from its initial state. At first the field is mixed
throughout the upper layer and then it is quickly pumped down-
ward toward the interface between the two layers and eventually
into the stable layer below. In this phase (¢ < 4) the rest of the
field in the lower layer is scarcely altered. The evolution of the
field structure is displayed in the rightmost panels of Figure 5,
which show the x-averaged magnetic field, lying in the y-z plane
since (By), = 0. Note that the mirror symmetry of the initial field
is broken owing to the effects of convection. A more quantitative
measure of this process is given by following the evolution of
By(z) as defined in equation (8). This is shown in Figure 6. The
redistribution of this flux from a strong layer centered around
0.25 toward a new peak centered just below the convective layer
(at about z = 1.5) demonstrates what we term pumping. Note
that the distribution continues to evolve slowly due to diffusion
after a fast initial pumping phase.

32.8=-0.01

When the lower layer is unstably stratified, convective plumes
penetrate almost to the bottom of the box, and there are asso-
ciated weak upflows (see Fig. 2¢). Motion in the upper layer does
not differ significantly from the case already considered in § 3.1.
Details of the purely hydrodynamic solution are displayed in
Figures 5-7 of Paper 1.

Figures 7-8 show the evolution of the magnetic field for this
second case. As expected, the behavior in the upper layer is
qualitatively similar to that found with § = 0.5; the magnetic

field is first mixed and then pumped down toward the interface.
Behavior in the lower layer is different, however, and the con-
vective motions that are now present there have two separate
effects. First, they promote the downward pumping of mag-
netic flux toward the base of the box, and second, they disrupt
the predominantly vertical fields that were initially imposed. By
t =~ 4 the field is pushed out of the upper layer, and by = 10, the
field is distributed throughout the computational domain and has
lost all memory of the initial conditions, in contrast to the case
with § = 0.5.

3.3. Summary

The results in this section, for both values of S, are summa-
rized in Figure 9, which shows the evolution with time of the
quantity ®;, defined as

® — fz 1m Ey(z)dz

_ , 9
" P B ©)

This quantity measures the proportion of the horizontal flux that
is contained in the lower layer. In this figure we display the re-
sults for all three cases that we have considered. For both cases
with a vigorously convecting upper layer, a significant fraction
of the flux ends up in the lower layer after the fast pumping phase
is completed. When S = 0.5, this flux is concentrated near the
interface, while it is more uniformly distributed when S = —0.01.
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Fic. 5.— Evolution of the case with a stable lower layer, S = 0.5. The same series of plots is used as in Fig. 3. The average ( large-scale) field is rapidly pumped out of the
upper layer and concentrated at the interface with little remaining in the upper reaches of the convecting layer (right). The magnetic energy is also very rapidly transported
away from the upper surface and toward the interface with the lower layer, but some magnetic energy associated with the small-scale magnetic field remains appreciable
throughout the convecting layer (left and middle). Note that the evolution is completed on an interval shorter than that required to reach the second frame of Fig. 3 (# < 43).

By contrast, in the fiducial case, where convection is absent, flux
is still trapped in the upper layer after the same amount of time has
elapsed. It is only on a much longer diffusive timescale that the
field eventually relaxes toward the current-free solution (Fig. 1).

4. DISCUSSION

Our new results presented above provide further support for
the penumbral model described in § 1. Although the arched mag-
netic field configuration we employ here is still idealized, it bears
a significantly greater resemblance to a sunspot than did the ini-
tially horizontal fields in Paper 1. These new numerical experi-
ments demonstrate that downward pumping of magnetic flux is
indeed able to overcome the combined effects of the curvature
force due to magnetic tension and the magnetic buoyancy force,
and thus to submerge a significant fraction of the initial magnetic
flux beneath the vigorously convecting ”granulation” layer rep-
resented by the upper layer in our model. Figures 5 and 7 show
many examples of bundles of strong magnetic fields that are
pumped downward into the layer beneath the granulation and
held there throughout the run of the calculation. Although con-
torted magnetic fields remain in the vigorously convecting re-

gion, the large-scale component of the field, Ey(z), is effectively
pumped downward.

4.1. Flux Pumping and Convection outside
the Penumbra of a Sunspot

It is apparent that, while these results have no immediate
application to magnetic fields in the umbra or penumbra of a
sunspot, they are directly relevant to the behavior of the steeply
inclined magnetic fields that protrude from the penumbra into the
vigorously convecting plasma that surrounds it. Granules, with
diameters of around 1000 km, are assembled into a mesogranular
pattern that overlies the larger scale, more placid outflow in the
annular moat cell that surrounds a spot. Thus, turbulent convec-
tion in granules corresponds to the motion in the upper layers of
our models, while the radial outflow in the moat corresponds to
the lower, more nearly stable layers. As in our models, the mag-
netic flux contained in almost horizontal fields is expelled either
upward or downward. The fields expelled upward form a mag-
netic canopy that lies above the level of convective overshoot, at
a height of about 300 km above 7509 = 1 (Solanki 2002, 2003;
Rutten et al. 2004; Puschmann et al. 2005; Cheung et al. 2007).
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Fic. 6.—Stable lower layer, S = 0.5. Half-box averages of the horizontal field at times corresponding to the panels of Fig. 5. The large-scale field is pumped toward the
interface. Since the convection is not constrained by symmetry considerations, the two half-boxes are no longer related by mirror symmetry as they were in Fig. 4.

Fig. 7.—Evolution of the case with an unstable lower layer, S = —0.1. The same series of plots are used as in Figs. 3 and 5. The magnetic energy is rapidly transported
downward and mixed throughout the whole layer. In this case, by # =~ 10 the vertical field is reconnected and eliminated by the weak convection in the lower layer, in con-
trast to Fig. 5, where the vertical field at the bottom boundary remains coherent.
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Fic. 8.—Unstable lower layer, S = —0.1. Half-box averages of the horizontal field at times corresponding to the panels of Fig. 7. The flux is first pumped down toward
the interface and then spread throughout the layer and reduced via the interaction of convection and diffusion.
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FiG. 9.— Comparison of the transport of horizontal field in the three cases. The
evolution with time of the fraction of flux in the lower layer ®,, as defined by eq.
(9), for the three cases we have considered. Clearly, both cases with convection
transport the magnetic field into the lower layer much faster than would happen
by nonconvective processes.

The flux expelled downward accumulates below the granules, at
depths of 1000 km or more, to form an intermittent horizontal
layer with radial fields that extend outward to the perimeter of
the moat. Samples of these fields then appear as moving mag-
netic features at the photosphere (cf. Paper I).

Since the magnetic field is solenoidal, field lines are contin-
uous and downward pumping in the moat must influence the
form of the more steeply inclined fields within the penumbra. We
emphasize, however, that our scenario for the origin and main-
tenance of the interleaved penumbral magnetic field structure does
not involve flux pumping alone, but instead involves a combina-
tion of convectively driven fluting within the spot and downward
pumping of the more depressed magnetic flux by turbulent con-
vection in the external granulation. We now turn to a more qualita-
tive discussion of this scenario and how it relates to observations.

4.2. Inner and Outer Penumbra

It is important to distinguish first between behavior in the
inner and the outer penumbra, although the boundary between
them is not uniquely determined. We find it convenient to adopt
as this boundary the line separating inward- and outward-moving
grains in bright filaments, at about 60% of the radial distance
from the inner to the outer edge of the penumbra (Sobotka et al.
1999; Sobotka & Siitterlin 2001; Marquez et al. 2006); this line
divides the penumbra into two parts with roughly equal areas. The
boundary between the umbra and the inner penumbra corresponds
to a transition from isolated convective plumes (in the umbra) to
elongated roll-like structures in the penumbra; such a transition
arises naturally as a consequence of increasing inclination of the
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Fic. 10.—Schematic diagram of the model of the outer penumbra. Shown here is the fluted magnetopause (A) and two slabs of nearly horizontal magnetic field (dark
filaments; B), extending downward to some depth below the solar surface and separated by a slab of less steeply inclined magnetic field (bright filament; C).

mean field (Thompson 2006). The outer edge of the penumbra is
a ragged boundary, and prominent dark filaments protrude into
the lanes between bright granules.

In the inner penumbra the bright filaments contain slender
dark cores (Scharmer et al. 2002; Rouppe van der Voort et al.
2004; Langhans et al. 2007). A dark core originates at a bright
feature containing an upflow (Rimmele & Marino 2006), which
quickly bends over into an extended outflow along an inclined
magnetic field running along the dark core (Langhans et al.
2005, 2007; Bellot Rubio et al. 2005). The fields in dark cores
differ in inclination from those in the bright features that sur-
round them (Langhans et al. 2007; Bellot Rubio et al. 2007).
Estimates of this difference range from only 4°, in spectropolar-
imetric measurements from Hinode (Bellot Rubio et al. 2007), to
10°-20°, in the ground-based measurements of Langhans et al.

(2007). Spruit & Scharmer (2006) have provided a convincing
explanation for these dark cores, as absorption features produced
by a density excess above the rising two-dimensional plume.
Schiissler & Vogler (2006) point out that this corresponds to the
pressure excess produced by buoyancy braking (e.g., Spruit et al.
1990) in their model of umbral convection. Furthermore, the
umbral dots in their numerical model have oval shapes with dark
cores and rapid flows along them; analogous fine structure has
actually been detected in sunspot umbrae by observations both
from the ground (Bharti et al. 2007; Rimmele 2008) and from
space (Bharti et al. 2007). The same effect produces slender,
elongated features in the numerical model of Heinemann et al.
(2007; Scharmer et al. 2008). Near the umbra-penumbra bound-
ary we might expect the pattern of magnetoconvection to resemble
atwo-dimensional version of their picture (cf. Weiss etal. 1990),
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with only a modest difference in field inclination between bright
and dark filaments (apart from the dark cores). Marquez et al.
(2006) have exploited the technique of local correlation tracking
in order to determine proper motions within the penumbra. They
find apparent motions that converge on dark filaments in the in-
ner penumbra and then move inward along them. We interpret
the transverse motions as corresponding to roll-like convective
flows, while the inward radial velocity is more likely to be a travel-
ing pattern than bodily motion, as suggested by studies of traveling
waves in magnetoconvection when the imposed field is inclined
(Matthews et al. 1992; Hurlburt et al. 1996, 2000; Thompson
2005).

In the outer penumbra there are two distinct families of mag-
netic fields, with a difference in inclination of about 30° between
the two interlocking field components. The magnetic fields asso-
ciated with darker filaments are almost horizontal. A small frac-
tion of the corresponding flux escapes above the surface, forming
amagnetic canopy that carries an outflow and extends beyond the
outer edge of the spot (Bellot Rubio et al. 2006; Rezaei et al.
2006) and is presumably related to the superpenumbra in Ha.
However, the majority of the magnetic flux is actually directed
downward in the outermost part of the penumbra (Langhans
et al. 2005; Bellot Rubio et al. 2005).

The relationship between the outward velocity in dark cores
within bright filaments and the Evershed flow in the outer pen-
umbra remains controversial. Both Rimmele & Marino (2006)
and Scharmer et al. (2008) suggest that the latter is just an ex-
tension of the former. Given the large difference in inclination
between the fields in bright filaments and those in the darker
filaments where the almost horizontal Evershed outflow appears,
such a connection does, however, seem unlikely. We prefer to
regard these features as distinct effects.

Magnetic field lines emerging from bright filaments in the
outer penumbra extend upward into the corona, while those from
dark filaments either hug the surface to form a canopy or plunge
below the photosphere (Thomas & Weiss 2004). Thus, there can
be no possibility of convective “interchanges” linking the two
families. Flux pumping appears necessary in order to maintain
this configuration; the penumbra has a ragged boundary, and it is
significant that the most prominent dark features project outward
into the lanes between adjacent rows of granules, where any mag-
netic fields are dragged downward by the sinking flow.

The downward extent of the horizontal fields in the outer pen-
umbra cannot be directly observed (Borrero et al. 2006, 2008).
However, the field geometry itself implies a depth not less than
several hundred kilometers, for fields inclined at about 10° to the
horizontal extend over 10% of the radius of the spot. Since these
slabs of highly tilted field are dark, they must be deep enough for
energy transport to be impeded; that suggests a depth of at least a
megameter. In Paper I we put forward a rough estimate that gave
a depth of around 6 Mm. Here, in the Appendix, we present a
simple model that suggests that the submerged horizontal field
extends over a depth of at least a quarter of the width of the pen-
umbra and contains roughly one-sixth of the total penumbral
magnetic flux.

Thus, we obtain the structure shown schematically in Figure 10,
where the slab of almost horizontal magnetic field extends from
just above the visible surface down to a depth of, say, 5 Mm. This
differs from the “uncombed” model of Solanki & Montavon
(1993), where the steeply inclined fields occupy only a thin layer
that is bounded above and below near the surface. It follows from
our sketch that the surface separating the sunspot from the ex-
ternal plasma (the magnetopause) should be corrugated. Energy
radiated from the darker filaments must be supplied by transport
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across the field, while the brighter filaments can be supplied with
energy by transport along fields that are less inclined.

4.3. Are There Field-free Intrusions beneath the Umbra
and Penumbra of a Sunspot?

Since the magnetopause is corrugated, with fields protruding
into the surrounding moat, we should also expect there to be in-
trusions of field-free plasma from the moat cell into the penum-
bra, although it is not obvious how far such intrusions may be
expected to penetrate. There has in fact been a long-standing con-
troversy between proponents of a model in which the sunspot
field is composed of a tight cluster of isolated flux tubes sepa-
rated by field-free regions (Parker 1979; Spruit 1981; Choudhuri
1992) and supporters of a monolithic model of the field beneath
a sunspot (e.g., Cowling 1976; Jahn & Schmidt 1994), with a
coherent but inhomogeneous structure (see Fig. 5 of Thomas &
Weiss 1992). More recently, Spruit & Scharmer (2006; see also
Thomas et al. 2006) have criticized our treatment of flux pump-
ing and have advocated a “gappy” penumbra, with field-free
regions beneath the bright filaments. It should be noted that
their model is purely two-dimensional; it represents azimuthal
variations of the magnetic structure in the penumbra but not ra-
dial variations.

So far as the umbra is concerned, magnetoconvection in an
initially uniform vertical field offers a natural explanation of
umbral dots as the bright crests of hot plumes penetrating into
a stably stratified layer (e.g., Weiss et al. 1996, 2002), and this
picture has now been confirmed by the realistic computations of
Schiissler & Vogler (2006), which include both ionization and ra-
diative transfer. Moreover, the cluster model might be expected
to give rise to a bright network enclosing isolated dark patches
(or perhaps to star-shaped bright features at junctions in such a
network), contrary to the pattern of isolated umbral dots that ap-
pears in observations (e.g., Sobotka & Hanslmeier 2005) and is
reproduced in the numerical simulations of Schiissler & Vogler
(20006).

The field-free gaps in the penumbral model of Spruit &
Scharmer (2006; see also Scharmer & Spruit 2006) are best
regarded as an extreme idealization of the actual magnetocon-
vective situation, where the rising and expanding plumes nat-
urally lead to local reductions of the field strength. This effect
is familiar from many two- and three-dimensional model cal-
culations (e.g., Parker 1979; Weiss et al. 1990, 2002) and is ap-
parent also in the model of Heinemann et al. (2007). Indeed,
Scharmer et al. (2008) have recently reinterpreted the gaps as
being “‘nearly field-free.”

Observations show that the magnetic field in the penumbra is
more steeply inclined to the vertical above dark filaments than it
is above bright filaments (e.g., Langhans et al. 2005). The more
inclined component is apparently embedded in the less inclined
component, for its upward extent is limited. Borrero et al. (2006)
find that the more horizontal component extends no higher than
Ts00 2~ 3 x 1072, while the Hinode measurements of Juréak &
Bellot Rubio (2008) indicate that it only appears as 75 approaches
unity; the downward extent is undetermined.

In their two-dimensional model of penumbral convection,
Spruit & Scharmer (2006) do not address the radial dependence
of the structure. They propose that radially elongated plumes rise
from field-free plasma below the bright penumbral filaments,
pushing aside the ambient magnetic flux to produce stronger and
more nearly vertical fields in the dark filaments. Their Figure 4
indicates that in their model the field above the bright filaments
is both weaker and more steeply inclined in meridional planes.
On the contrary, the observed fields above the bright filaments
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are stronger and less steeply inclined (Bellot Rubio et al. 2004;
Langhans et al. 2005). We do not see how their “gappy” pen-
umbra can be compatible with these observations.

We are grateful to Thomas Rimmele and Goran Scharmer for
discussing their observational results prior to publication and to

Vol. 686

the referee for helpful comments. The research described here
was initiated during the program on MHD of Stellar Interiors at
the Isaac Newton Institute in 2004; N. H. B.,, S. M. T.,and N. O. W.
are also grateful for the opportunity of further discussion dur-
ing the Workshop on Magnetic Self-Organization in Laboratory
and Astrophysical Plasmas at the Aspen Center for Physics in
2006.

APPENDIX

Here we present a simple estimate of the downward extent of the submerged horizontal magnetic field in the dark filaments at the
outer edge of the penumbra. Consider a bright filament and a dark filament, each represented by a sector of a circular annulus of an-
gular extent Af. The inner radius  of the annulus corresponds to the umbra-penumbra boundary, and the outer radius , corresponds
to the outer boundary of the penumbra. We take the magnetic field strength and inclination in the two components to be the same
at radius 7y, and the field strength to drop as 7~! over each component. In the bright filament, we assume that the field inclination
increases monotonically with radius such that the vertical component of the field is given by

A r—r

forr; < r < r,p, where 4 is a constant; thus, the inclination of the field reaches 60° at » = r,. We also take the magnetic field to be zero
beyond the outer field lines passing through » = r,, z = 0. The total magnetic flux emerging from the bright filament is hence

"2 4 r—nr 3
fb _/’:1 7 |:1 —m}rAedr—ZAAe(rz —7"1). (AZ)

In the dark filament, we assume that the vertical component of the field varies as

Bz(r)—A<l - r‘”) (A3)

r rh—n

for r; < r < 1y, so that the field becomes horizontal at » = r,, and we assume that the purely radial field B, = A/r, at r = r, extends
uniformly to a depth / below the surface z = 0. The total magnetic flux emerging from the dark filament is then

rzA _ hA —
}'d:/ _<1_ ! ”)medr+/ —rzA&dz:AAG(r22r1+h). (A4)
r 0

r rp —n I

Because this fluted magnetic field configuration can be considered to arise from an initially axisymmetric configuration, it is rea-
sonable to assume that the magnetic fluxes 7, and F, are equal. In this case we find that
NN

=" (A5)

i.e., that the submerged horizontal magnetic field at the outer edge of the dark filament extends over a depth equal to one quarter of the
radial width of the penumbra. Since flux pumping will further submerge this flux, we may consider this value of /4 to be a lower bound
on the depth to which the submerged flux penetrates. Also, for this value of / the fraction of the total penumbral magnetic flux that is
submerged is AAOR/(Fp + F4) = 1/6.
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