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ABSTRACT

This paper offers the first coherent picture of the interactions between convection and magnetic fields that lead
to the formation of the complicated filamentary structure of a sunspot penumbra. Recent observations have
revealed the intricate interlocking-comb structure of the penumbral magnetic field. Some field lines, with
associated Evershed outflows, plunge below the solar surface near the edge of the spot. We claim that these field
lines are pumped downward by small-scale granular convection outside the sunspot. This mechanism is
demonstrated in numerical experiments. Magnetic pumping is a key new ingredient that links several theoretical
ideas about penumbral structure and dynamics; it explains not only the abrupt appearance of a penumbra as a
pore increases in size but also the behavior of moving magnetic features outside a spot.

Subject headings: MHD — Sun: magnetic fields — Sun: photosphere — sunspots

On-line material: color figures

1. INTRODUCTION

Sunspots have been observed through telescopes for almost
400 years, but they still raise fundamental questions that are
hard to answer. Galileo and Scheiner were already aware of
the distinction between the dark umbra and the annular pe-
numbra that surrounds it. Two hundred years later, with the
development of much larger telescopes, it was recognized that
the penumbra is composed of alternating bright and dark
filaments. Since then, the attainable resolution has progres-
sively improved, culminating in the remarkable images that
are now being obtained with the Swedish 1 m Solar Telescope
(Scharmer et al. 2002). Figure 1 shows part of the penumbra of
a spot, with the individual filaments revealed in unprecedented
detail. Hale showed, a century ago, that sunspots resulted from
the presence of a strong magnetic field, but the intricate three-
dimensional geometry of the field in penumbral filaments has
only been revealed in the last 10 years (Thomas &Weiss 1992;
Martı́nez Pillet 1997; del Toro Iniesta 2001; Solanki 2003).
This interlocking structure is surprisingly complicated, and its
origin has remained a puzzle. Here we argue that it is formed
as a consequence of magnetic pumping by the turbulent
convection that shows up as solar granulation. Magnetic
pumping provides a key new ingredient that links several
theoretical ideas about the formation and structure of the
penumbra into a coherent picture.

It has long been known that the azimuthally averaged
magnetic field in a sunspot is inclined to the vertical at an angle
that increases with increasing radius, reaching a value of about
70

�
at the edge of the spot, as sketched in Figure 2a (Bray &

Loughhead 1964; Skumanich 1992; Stix 2002). Thus, it was
natural to suppose that bright and dark filaments were alternate
phases of some convectively driven interchange. Such a picture

would be appropriate for a shallow penumbra with an almost
horizontal field (Danielson 1961), but it was soon realized that
this raised a contradiction. On the one hand, much of the spot’s
magnetic flux emerges through the penumbra, and so the field
must have a substantial vertical component; on the other, the
horizontal Evershed outflow must be parallel to the magnetic
field, which therefore also has to be horizontal. This suggests
that there should be some systematic difference between the
inclinations of magnetic fields in bright and dark filaments, as
first proposed by Beckers & Schröter (1969). High-resolution
observations (Degenhardt &Wiehr 1991; Title et al. 1993; Lites
et al. 1993; Solanki & Montavon 1993) have revealed that this
is indeed so and that the two components differ in inclination by
30�–40�. At the umbral-penumbral boundary, the fields in the
bright and dark filaments are inclined at about 30� and 60�,
respectively, to the vertical, while at the outer edge of the
penumbra the field in the dark filaments is almost horizontal,
as sketched in Figure 2b. This interlocking-comb (or ‘‘un-
combed’’) geometry is confirmed by velocity measurements
(Title et al. 1993; Solanki, Montavon, & Livingston 1994).
Furthermore, while the fields from dark filaments typically
emerge to form a shallow canopy that hugs the solar surface
(or even dive beneath it), loops that emerge from bright
filaments extend over great distances across the Sun, as shown
by both X-ray observations (Sams, Golub, & Weiss 1992) and
the striking EUV images from TRACE (Winebarger, DeLuca, &
Golub 2001; Winebarger et al. 2002). Figure 3 shows bright
loops that connect the penumbrae of a well-spaced pair of
sunspots. There is no way that fields in these long loops can
interchange with the horizontal fields that carry the Evershed
flow. Thus, the bright and dark filaments must remain distinct.

We are therefore led to a new picture of a two-component
penumbra, which differs fundamentally from the old picture of
interchanges in an almost axisymmetric system. This raises two
important questions. First, how is this extraordinary structure
maintained, and second, what is the origin of this geometry?
We propose here that the filamentary structure is caused by
downward pumping of magnetic flux by turbulent convection
in the granulation outside the sunspot, following an initial
convectively driven instability. As a preliminary step, we
present numerical simulations that illustrate one aspect of
this process.
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In the next section we describe our physical picture and use
some recent observations to argue that flux pumping has to be
important. This process is discussed in x 3, and x 4 presents
some new model calculations that demonstrate flux pumping
in idealized configurations. In x 5 we consider the implications
of the two-component model for penumbral convection. Next,
we discuss the Evershed flow in x 6, followed in x 7 by an
account of moving magnetic features in the moat cell that
surrounds a spot. Then, in x 8 we attempt to explain how the
filamentary penumbra (which distinguishes sunspots from
pores) is formed. The final section provides a summary of the
paper. Our main results were announced by Thomas et al.
(2002b) and have also been summarized in a conference
proceedings (Thomas et al. 2002a).

2. PHYSICAL PICTURE

The key to understanding the magnetic field configuration
in the penumbra is the existence of numerous arched, ‘‘return-
ing’’ magnetic flux tubes that emerge from below the surface
in the inner or middle penumbra and dive back down below
the surface in the outer penumbra or just outside the penumbra.
The existence of these returning flux tubes has gradually been
revealed over the last decade by high-resolution observations
and more sophisticated inversions of Stokes profiles.

The returning penumbral flux tubes are intimately con-
nected with the photospheric Evershed flow. Because of the
relatively high electrical conductivity of the gas, the Evershed
outflow is constrained to be along magnetic field lines, and
thus measurements of the Evershed velocity indirectly reveal
some aspects of the configuration of the penumbral magnetic
field. The Evershed flow is largely confined to the dark pe-
numbral filaments (Beckers 1968), in which the magnetic field
is more nearly horizontal (Beckers & Schröter 1969). Some of
the nearly horizontal magnetic field extends radially outward
beyond the penumbral boundary along a magnetic ‘‘canopy,’’

elevated slightly above the surrounding quiet photosphere. A
small fraction of the Evershed flow is observed to continue
outward along the canopy (Solanki et al. 1994), but we now
know that most of the Evershed flow runs along returning flux
tubes and plunges back down below the surface at points
either just within or just beyond the outer penumbral bound-
ary. This configuration was hinted at in earlier velocity
measurements (Börner & Kneer 1992; Rimmele 1995a). Next
came more solid evidence of downflows in the descending
parts of arched flux tubes, apparently ending at outer foot-
points corresponding to strong magnetic elements (Rimmele
1995b; Stanchfield, Thomas, & Lites 1997). Then Westendorp
Plaza et al. (1997) established this configuration convincingly
through careful inversions of the Stokes profiles that de-
termine the magnetic field and flow velocity as functions of
optical depth, thus allowing them to trace flow velocity and
magnetic field along the arched flux tube. Subsequent ob-
servations have confirmed this configuration (Krivtsov et al.
1998; Rüedi, Solanki, & Keller 1999; Schlichenmaier &
Schmidt 2000).
The returning flux tube configuration of the Evershed flow

nicely explains the sudden disappearance of the Evershed
effect near the outer edge of the penumbra. Furthermore, this
configuration is in good agreement with the siphon flow model
of the Evershed flow (e.g., Montesinos & Thomas 1997), in
which a flow along an arched magnetic flux tube is driven by a
drop in gas pressure between the two footpoints of the arch
(see x 6). Indeed, recent observations have even revealed
supersonic Evershed flows in the downstream legs of the
returning flux tubes (del Toro Iniesta, Bellot Rubio, &
Collados 2001; Hirzberger & Kneer 2001), as predicted by
the siphon flow model.
The well-established existence of the returning penumbral

flux tubes raises an important question, the answer to which
provides new insight into the structure of a sunspot. The
question is, what holds the submerged part of the flux tube

Fig. 1.—G-band image of a portion of a sunspot penumbra, taken with the Swedish 1 m solar telescope (courtesy of the Royal Swedish Academy of Sciences)
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down below the surface, in opposition to the magnetic
buoyancy and curvature forces that might be expected to
bring the tube quickly up to the surface? We claim that flux
tubes are dragged downward as a result of turbulent pumping
by the granular convection in the immediate surroundings of
the sunspot (the ‘‘moat’’). We have already demonstrated the
effectiveness of this mechanism with idealized numerical
simulations (Thomas et al. 2002a, 2002b), and here (in x 4) we
add further support by extending these calculations to a more
appropriate parameter regime.

The new ingredient of magnetic flux pumping leads us to
the overall picture of a sunspot sketched in Figure 4. The
bright radial filaments, where the magnetic field is tilted (at
about 40

�
to the horizontal in the outer penumbra), alternate

with dark filaments in which the field is nearly horizontal.
Within the dark filaments, some magnetic flux tubes extend
radially outward beyond the penumbra along the elevated
magnetic canopy, while other, returning flux tubes dive back
below the surface. The submerged parts of the returning flux

tubes are held down as a result of turbulent pumping (large
red vertical arrows) by the small-scale granular convection
(small black squiggly arrows) in the immediate surroundings
of the sunspot. Superimposed on the granular convection is
the slow radial outflow associated with a long-lived annular
supergranule (the moat cell; large curved red arrow).

3. FLUX PUMPING

In this section we first explain the various mechanisms that
lead to the expulsion of magnetic flux from laminar and
turbulent flows, emphasizing the role of sinking plumes in
pumping fields preferentially downward. Then we discuss the
relevance of flux pumping in the Sun, both at the base of the
convection zone and at the photosphere.

3.1. Flux Expulsion and Flux Pumping

Flux expulsion is a common feature of cellular convection in
a highly conducting fluid (Weiss 2003). The simplest examples

Fig. 2.—Sketches of (a) an axisymmetric magnetic field configuration in a sunspot and (b) the interlocking-comb magnetic field configuration in a sunspot
penumbra.
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are purely kinematic, with no back-reaction from the distorted
field on the motion. For instance, if an initially horizontal field
is embedded in a layer of persistent two-dimensional eddies
with up-down symmetry, then the magnetic flux will be ex-
pelled into a symmetrical pair of boundary layers at the top and
bottom of the fluid layer, provided that the magnetic Reynolds
number is sufficiently large (Parker 1963, 1979; Weiss 1966).
This effect extends to inhomogeneous turbulent flows in two
dimensions, where magnetic flux is pumped down the gradient
of turbulent intensity (Rädler 1968; Moffatt 1983). This tur-
bulent diamagnetism operates in both Cartesian and spheri-
cal geometry (Zel’dovich 1956; Spitzer 1957; Mestel 1998).
It has also been demonstrated numerically for fully dynam-
ical two-dimensional motion, driven either convectively or as

forced turbulence (Nordlund et al. 1992; Tao, Proctor, & Weiss
1998).
In three dimensions, flux expulsion becomes more compli-

cated (Tobias et al. 2001). If the convecting layer is stratified,
up-down symmetry is broken and hexagonal cells are initially
preferred. There is then a topological distinction between the
isolated rising and expanding plume at the center of a hexagon
and the network of sinking fluid that surrounds it. Drobyshevski
& Yuferev (1974) suggested that magnetic flux would therefore
be pumped preferentially downward by the connected down-
flow network (see also Moffatt 1983). Actually, there is a much
more powerful effect. Numerical simulations of stratified
compressible convection all agree in showing a strong contrast
between the gently rising plumes and the sinking fluid, which
is focused into rapidly falling plumes at the corners in the
network (Stein & Nordlund 1989, 1998; Spruit, Nordlund, &
Title 1990; Cattaneo et al. 1991; Brummell, Clune, & Toomre
2002). Now magnetic fields are governed by the induction
equation and ‘‘feel’’ velocity rather than momentum density.
Since the rising plumes expand, they transfer magnetic flux to
the vigorous sinking plumes, which contract as they descend.
Hence, magnetic fields are pumped preferentially downward.
Such asymmetric turbulent pumping has indeed been demon-
strated in various numerical experiments (Nordlund et al 1992;
Brandenburg et al. 1996; Tobias et al. 1998, 2001; Dorch &
Nordlund 2001; Ossendrijver et al. 2002).

3.2. Pumping in the Sun

In a star, flux pumping has to compete with magnetic
buoyancy. An isolated magnetic flux tube that is in pressure and
thermal equilibrium with its surroundings will be less dense
and therefore float upward (Parker 1979). Which process is
more effective therefore depends on the vigor of convection
and the strength of the magnetic field (as measured by the
inverse of the plasma �). Previous calculations have in general
been motivated by the dynamo problem and have focused on
pumping at the base of the solar convection zone, with the aim
of showing that poloidal magnetic flux can be pumped
downward toward the tachocline where strong toroidal fields
can be generated by differential rotation. This situation has
been modeled by placing a strongly superadiabatic layer above
a layer that is stably stratified, so that convective plumes can
penetrate downward from the unstable region into the stable
zone below. These numerical experiments confirm that flux
pumping is extremely effective (Tobias et al. 1998, 2001;
Dorch & Nordlund 2001).
Our aim here is to show that pumping is also effective near the

photosphere, where three distinct scales of cellular convection
are observed. The most vigorous motion is associated with the
granules that are visible around the sunspot in Figure 1 and have
a characteristic diameter of 1400 km. There are also meso-
granules with a scale of around 6000 km (Shine, Simon, &
Hurlburt 2000); these features appear in numerical simulations
(Stein & Nordlund 1989, 1998) and are apparently caused by
collective interactions between the granules (Cattaneo, Lenz, &
Weiss 2001). Then there are the supergranules, with typical
diameters of 20,000–30,000 km,which can be followed for long
periods from space (Duvall & Gizon 2000; Shine et al. 2000).
Helioseismology indicates that they are at least 8000 km deep
(Kosovichev, Duvall, & Scherrer 2000), and they apparently
correspond to a different scale of convection (Lawrence,
Cadavid, & Ruzmaikin 2001).
There is as yet no consensus on the deep structure of

convection in the Sun or on the nature of the relationship

Fig. 3.—TRACE image of coronal loops connecting two sunspots, along
with a white-light image of the sunspots (courtesy of the Lockheed Martin
Solar and Astrophysics Laboratory). [See the electronic edition of the Journal
for a color version of this figure.]
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between the small-scale granular and mesogranular patterns
and the larger scale supergranules. One hypothesis is that the
horizontal scale of convection increases continuously with
depth as a result of self-similar merging of the sinking plumes
(Stein & Nordlund 1989). Another is that supergranules
represent the preferred convective scale near the surface, with
granules and mesogranules as a strongly superadiabatic
turbulent boundary layer. For our purposes it suffices to adopt
the latter picture. We assume therefore that there is a clear
distinction between a shallow, strongly unstable layer with
vigorous small-scale convection, dominated by rapidly sinking
plumes, and a deeper, weakly unstable layer with more placid
large-scale motion.

The moat cell that surrounds a well-developed sunspot is a
large, anchored supergranule with a radial outflow that carries
the smaller granules and mesogranules with it. Around the
penumbra itself there is a narrow ring or ‘‘collar,’’ with a higher
outward velocity, which can be found even if the moat cell is
absent (Shine et al. 1994; Shine & Title 2001). This is
associated with an upflow at the edge of the penumbra. (There
may also be a slender counterflow cell that contains the sunspot
flux tube below the surface, as suggested by Hurlburt &
Rucklidge 2000.) We expect that the vigorous sinking plumes
in granules and mesogranules in the moat will overcome
magnetic buoyancy and pump magnetic flux downward. In the
lower supergranular region, magnetic buoyancy and curvature
forces become relatively more important and pumping is less

effective. Thus, we should expect the moat flow to be relatively
neutral, allowing magnetic flux to accumulate below the upper
layer. This configuration can therefore be modeled by placing a
strongly unstable layer (representing the granular and meso-
granular stratification) above a very weakly superadiabatic
layer that represents the stratification in the moat cell. Then a
horizontal field can be inserted and its evolution can be
followed.

4. MODEL CALCULATIONS

In this section we describe numerical experiments designed
to demonstrate the effectiveness of magnetic pumping. It
should be stressed that the calculations included here are
designed to investigate the physical processes believed to play
an important role around the penumbrae of sunspots. They are
not intended to represent every aspect of sunspot dynamics,
including geometry and large-scale flows. For this reason the
model we describe is deliberately designed to be the simplest
possible, while still retaining the important physics. We begin
by describing briefly the setup and geometry of our three-
dimensional configuration, including the equations that are to
be solved and their method of solution. The model discussed
here is similar to that of Tobias et al. (2001), although
the latter was designed to investigate the interaction between
magnetic fields and convection at the base of the solar con-
vection zone. The reader is directed to that paper for further
details.

Fig. 4.—Sketch showing the interlocking-comb structure of the magnetic field in the filamentary penumbra of a sunspot (from Thomas et al. 2002b, with
modifications courtesy of Eric Priest). The bright radial filaments, where the magnetic field is inclined (at about 40� to the horizontal in the outer penumbra),
alternate with dark filaments in which the field is nearly horizontal. Within the dark filaments, some magnetic flux tubes (i.e., bundles of magnetic field lines) extend
radially outward beyond the penumbra along an elevated magnetic canopy while other, ‘‘returning’’ flux tubes dive back below the surface. The sunspot is
surrounded by a layer of small-scale granular convection (squiggly arrows) embedded in the radial outflow associated with a long-lived annular supergranule (the
moat cell; large curved arrow). The submerged parts of the returning flux tubes are held down by turbulent pumping (vertical arrows) by the granular convection in
the moat.
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4.1. Setting Up the Model

We consider an idealized model with a cuboidal local
computational domain containing a fully compressible, electri-
cally conducting gas, confined between two horizontal,
impenetrable, stress-free boundaries. This domain represents a
local region of plasma located just below the solar surface. In
nondimensional Cartesian coordinates, the extent of the do-
main is given by 0 � x � xm, 0 � y � ym, and 0 � z � zm,
with x and y being the horizontal directions and the z-axis
pointing vertically downward. The physics is simplified by
taking a perfect gas with � ¼ 5=3 and assuming that the
specific heats, the shear viscosity, the electrical conductivity,
and the gravitational acceleration are all constant. The non-
dimensionalization is based on the surface values of the ref-
erence polytropic static state, together with lengths measured
in terms of the depth of a fiducial upper layer, times measured
in relation to an isothermal sound crossing time, and magnetic
fields normalized with respect to an imposed field strength B0.
Here we consider convective motions on a scale smaller than
the Rossby radius of convection, and, for this reason, rotation
is not included in the model; the effect of rotation on transport
of magnetic flux has been considered by Tobias et al. (2001)
and Ossendrijver et al. (2002).

The static nondimensional polytropic state is given by

T ¼ ð1þ �zÞ; � ¼ ð1þ �zÞm; pg ¼ ð1þ �zÞmþ1; ð1Þ

where � is the nondimensional heat flux of the polytrope and m
is its polytropic index. For the choice of nondimensionalization
described above, the equations for the temporal evolution of
the velocity u ¼ ðu; v;wÞ, the magnetic field B ¼ ðBx;By;BzÞ,
the density �, the temperature T, the gas pressure pg, and the
total pressure pt become

@t�þrrrr G �uð Þ ¼ 0; ð2Þ

@t �uð Þ þ rrrr G �uu� �BBð Þ ¼ � rrrr ptð Þ þ ��ðmþ 1Þẑ
þ �Ck rrrr2uþ 1

3
rrrrðrrrr GuÞ

� �
; ð3Þ

@tT þrrrr G ðuTÞ þ ð� � 2ÞTrrrr Gu ¼ �Ck�
�1rrrr G �ðzÞrrrrT½ �

þ�Ck�ð� � 1Þ��1 rrrr������� Bj j2þV	; ð4Þ

@tB ¼ rrrr������� ðu������� BÞ þ Ck�rrrr2B; rrrr GB ¼ 0; ð5Þ

pg ¼ �T ; pt ¼ pg þ
� Bj j2

2
; ð6Þ

where V	 is the rate of viscous heating, given by

V	 ¼ ð� � 1ÞCk

�
�@iuj @iuj þ @jui �

2

3
@kuk
ij

� �
: ð7Þ

Here Ck is a dimensionless thermal diffusivity, defined at
z ¼ 0, and � is the corresponding conductivity, which takes
different values in the two layers; both the Prandtl number �
(the ratio of the thermal to the viscous diffusivity) and � (the
ratio of the magnetic to the thermal diffusivity) are also
functions of z, and their values given here are evaluated at
z ¼ 0. The field strength is determined by the parameter
� ¼ ��C2

kQ. Here Q is the Chandrasekhar number, related to
the initial field intensity B2

0, the magnetic permeability 	0, the
resistivity �, and the shear viscosity 	 by Q ¼ B2

0d
2=ð	0	�Þ.

The parameter � is related to the commonly cited plasma � by

� ¼ pg=ð0:5�B2Þ. The values of � found in these simulations
are greater than unity but are within an order of magnitude of
the expected solar value.
We build a two-layer model by considering a fluid whose

material properties vary rapidly with depth near an interface
given by z ¼ 1. In particular, both the polytropic indices (m1 in
the upper layer and m2 in the lower layer) and thermal
conductivities are allowed to differ significantly between the
two layers, leading to potentially different dynamics in those
layers. The stability of the polytrope in each layer to convec-
tion is determined by its polytropic index; for an adiabat-
ically stratified layer the polytropic index is mad ¼ 3=2. In our
model the upper layer (0 � z � 1) is chosen to be convectively
unstable (m1 ¼ 1:0) and the relative stability of the two layers is
measured by the stiffness parameter, S, defined by

S ¼ m2 � mad

mad � m1

ð8Þ

(Hurlburt et al. 1994). An adiabatically stratified lower layer is
therefore given by S ¼ 0. For S > 0 the lower layer is stable to
convection, while S < 0 signifies a lower layer that is con-
vectively unstable. For the calculations contained in Tobias
et al. (2001), designed to mimic the base of the solar convection
zone, the lower layer was extremely stably stratified, with S ¼
15 mainly. In our initial calculations designed to mimic the
surface layers of the Sun (Thomas et al. 2002b), the stiffness
parameter was S ¼ 0:5 and the lower layer was only mildly
subadiabatic. Those results will be contrasted with the
atmospheres chosen here, where S ¼ 0:0 or �0.01, correspond-
ing to adiabatic (m2 ¼ 1:5) or weakly superadiabatic (m2 ¼
1:495) lower layers.
It is convenient to introduce two other nondimensional

parameters in order to describe the state of the system. These are
the Chandrasekhar number, Q ¼ �=��C2

k , which measures the
strength of the imposed field B0 relative to diffusive effects, and
the Rayleigh number, Ra, which measures the supercriticality
of convection in the upper layer. Since the Rayleigh number
varies with depth, we evaluate Ra at the middle of the upper
layer in the initial polytrope. Thus,

Ra ¼ ðm1 þ 1Þ�2

��C2
k

m1 þ 1� m1�ð Þ 1þ �

2

� �2m1�1

: ð9Þ

Periodic boundary conditions are imposed on all the fields
in both horizontal directions, while on the horizontal surfaces
the boundary conditions are given by

@zu ¼ @zv ¼ w ¼ 0 at z ¼ 0; zm; ð10Þ

T ¼ 0 at z ¼ 0; @zT ¼ �ð0Þ
�ðzmÞ

� �
� at z ¼ zm: ð11Þ

These correspond to stress-free, impermeable boundary con-
ditions for the velocity field, a constant temperature on the
upper surface and a constant heat flux on the lower boundary.
The boundary conditions on the magnetic field are chosen so
that the horizontal components of the magnetic field vanish on
the upper and lower surfaces, i.e.,

Bx ¼ By ¼ 0 at z ¼ 0; zm: ð12Þ

The role of magnetic boundary conditions in pumping cal-
culations was discussed extensively by Tobias et al. (2001);
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these boundary conditions allow magnetic flux to escape either
upward or downward from the domain, and the calculation
therefore takes the form of a run-down experiment for the
magnetic flux.

The equations together with the boundary conditions
described above are integrated numerically as an initial value
problem using a mixed finite-difference pseudospectral
scheme. The equations are discretized and then advanced in
time using an explicit three-level Adams-Bashforth scheme for
the nonlinear terms and an implicit Crank-Nicolson scheme for
the linear terms. Details of the numerical scheme can be found
in Tobias et al. (2001). It should be noted that these are far
from trivial computations. The runs described below used a
mesh of 256� 256� 350 grid points, and each one consumed
about 30,000 processor hours on a massively parallel Silicon
Graphics Origin 2000 supercomputer (at the National Center
for Supercomputing Applications, University of Illinois,
Champaign-Urbana, Illinois).

4.2. The Pattern of Convection

We now describe the results of two numerical experiments
designed to explore the role of pumping in, transporting, and
submerging magnetic flux at the edge of a sunspot penumbra. In
previous calculations that modeled the base of the solar
convection zone, the highly superadiabatic convection layer
lies above a lower layer that is very stably stratified. In contrast,
as discussed earlier, the highly turbulent surface layers of the
Sun lie above a region of both more laminar and larger scale
convection. The latter convection, with a larger horizontal scale
and amuch longer turnover time, acts so as to produce an almost
adiabatic stratification in the deeper layer below. Thomas et al.
(2002b) introduced a model where the lower layer was chosen
to have a mildly subadiabatic stratification. However, on the
timescales of turbulent granular and mesogranular motion this
deeper layer will appear adiabatic or only very weakly super-
adiabatic. In this subsection we investigate the role of such a
lower layer in modifying the form of the convection in the upper
layer. After that, we wish to ascertain whether the modified
convection successfully transports magnetic flux out of the
upper layer into the layer below.

We begin by investigating the properties of a purely
hydrodynamic model (with no magnetic field), for two different
values of the stability parameter S but with all other parameters
held fixed. We set � ¼ � ¼ 0:1, � ¼ 10, xm ¼ ym ¼ 6, and
zm ¼ 2. Thus, the upper unstable layer has an initial temperature
and density contrast of 11 and the effects of compressibility are
substantial. With these parameter values, the Rayleigh number
is Ra ¼ 2400=C2

k and we choose Ck ¼ 0:07 so that this layer is
very strongly unstable to convection, giving a Rayleigh
number, Ra ¼ 4:9� 105, that is many times larger than the
critical Rayleigh number for the onset of convection. (These
parameters in the upper layer correspond to the ‘‘turbulent’’
pumping case of Tobias et al. 2001.) The properties of the lower
layer are controlled by the stability parameter. Here we consider
two cases: S ¼ 0:0, corresponding to an adiabatically stratified
lower layer, and S ¼ �0:01, corresponding to a very weakly
superadiabatic lower layer.

For these two values of the stability parameter S, the purely
hydrodynamic equations are integrated until the solution
settles down to a vigorous time-dependent flow with statisti-
cally steady properties. Volume renderings of the solutions for
both S ¼ 0:0 and �0.01 are shown in Figure 5. This figure
shows a color-coded three-dimensional image of the vertical

velocity w in the purely hydrodynamic solution, with cool
downflows shown in blue and warm upflows in red. The
volume renderings demonstrate that the solution for both
parameter values takes a similar form. The general properties
of the convection for both parameter values can be seen clearly
from this figure. The turbulent convection in the upper layer
takes the form of strong, downward-sinking plumes in a dy-
namic network surrounding broad, weaker upflows. It is well
known (see, e.g., Hurlburt et al. 1994) that this asymmetry
between the upflows and downflows is due to the stratification
and compressibility of the flow and is enhanced by the
presence of a lower layer of fluid (Brummell et al. 2002). The
lower panels in Figure 5 show color-coded volume renderings
of the enstrophy density (the square of the vorticity) on a
logarithmic scale for clarity. Strong enstrophy is contained in
downward-sinking plumes (shown in red and orange), which
are visible in both the upper and lower layers.

The boundary between the upper and lower layer (delineated
by dashed white lines in the volume renderings) can also be
seen in the nature of the convection. The flows in the upper
layers are very similar to those found in the upper layer of
previous calculations (e.g., Brummell et al. 2002). It is in the
lower layer that the presence of a weakly unstable or neutrally
stable stratification has a large effect. Figure 6 compares the
properties of the vertical velocity as a function of depth with
those for a representative calculation with a very stable lower
layer (S ¼ 30) described by Brummell et al. (2002). For the
stably stratified lower layers of Tobias et al. (2001) and Thomas
et al. (2002b), the downward-sinking plumes were decelerated
as they entered the lower layer as a result of the action of
buoyancy braking, with the deceleration being more rapid in a
more stable lower layer. Sufficiently far below the interface
between the unstable and stable layers, the plumes came to rest
and the vertical flux of kinetic energy, h1

2
� uj j2wi, dropped to

zero as shown in the top panel of Figure 6. (Here the angle
brackets denote a horizontal average and the plots are further
averaged over a significant portion of time during the
simulation.) Below this penetration depth, the fluid was
essentially static with no convection being driven. Here, with
the lower layer not convectively stable, the situation is different.
For both nonpositive values of the stability parameter, the
downward plumes again overshoot the base of the strongly
unstable region. However, since the layer below is not stable, a
plume is free to continue without being braked, and thus does
so, triggering further flows as it moves toward the bottom of the
lower layer. The action of stratification and changes in the
thermal conductivity do act to slow the progress of the plume,
but substantial vertical velocities are possible throughout the
lower layer until the plume is stopped by the impenetrable
bottom boundary. The second panel of Figure 6 shows w2

� �
as

a function of z. This plot clearly demonstrates that the strongest
vertical flows arise in the middle of the upper layer, but there is
also a significant amount of energy in the vertical motion in the
lower layer (z > 1), and this (like the kinetic energy flux for
these cases in the top panel of Fig. 6) falls to zero only very
close to the base of the domain. Clearly, we cannot mean-
ingfully define a penetration depth for convection (Brummell
et al. 2002) unless the lower layer is stably stratified.

The third panel of Figure 6, which shows hwi as a function
of z, confirms, however, that the nature of these vertical flows
is different in the upper and lower layers. In the upper layer,
there is a strong asymmetry between the upflows and down-
flows, with the downflows being stronger, more dense, and
narrow while the upflows are broad, less dense, and slow. Since

ORIGIN OF PENUMBRAL STRUCTURE IN SUNSPOTS 1079No. 2, 2004



h�wi ¼ 0 in a steady state, this leads to a clear net vertical
upward velocity in the upper layer. The asymmetry between
upflows and downflows is further demonstrated by the plots of
w3
� �

as a function of z in the bottom panel of Figure 6:
because of the dominance of vigorous sinking plumes, w3

� �
,

like the kinetic energy flux, is positive throughout the domain.
In the lower layer, however, hwi decreases rapidly toward zero
as z increases past unity. This is because, although there are
substantial vertical flows in this region, the density varies much
less than in the upper layer. Because the convection is locally
only weakly supercritical, the flows are much more symmetric
and cellular in this lower layer. Figure 7 shows wðx; yÞ averaged
vertically over first the upper and then the lower layer. In the
upper layer it is clear that there is a network of down-
flows defining the boundaries of the upflows, with about six
or seven convection cells in the computational domain. The
pattern of convection in the lower layer apparently corre-
sponds to the additional presence of a single mesocell in the
upper layer (Stein & Nordlund 1998; Cattaneo et al. 2001). The

presence of this change of scales is not entirely obvious from a
power spectrum of the flows at different depths (Fig. 7b). No
new peak is apparent in the power spectrum at depths in the
lower layer, although in general the power has increased at
lower wavenumbers.
We shall see that the change in flow pattern of the lower layer

compared to the upper has important consequences for the
transport of magnetic flux in this region. It should be stressed
again that there is very little difference in the hydrodynamic
properties of the flows between the adiabatic and weakly
superadiabatically stratified lower layers. In both cases the
flows are apparently driven by the dynamics in the strongly
unstable upper layer. We note also another property of these
solutions, although one that does not have an immediate effect
on the transport of magnetic flux, namely, the presence of
significant horizontal flows near both the top and bottom
boundaries of the domain. Further investigation of the nature of
these flows reveals strong mean flows along the stress-free
bottom boundary, driven by the variable temperature that is

Fig. 5.—Volume renderings of the instantaneous vertical velocity w and the logarithm of the enstrophy density !2 for fully developed, purely hydrodynamical
(B ¼ 0) penetrative convection, for two values of the stability parameter, S ¼ 0:0 and �0.01. In the volume renderings, each value is assigned a color and an opacity.
Color tables are as shown (warm red-orange colors depict upflows, and cool blue-white colors represent downflows; bright red-yellow-white colors exhibit strong
enstrophy density). Strong values are opaque, while weak values are translucent.
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allowed by the fixed-flux boundary condition. Similar behavior
has been found by Robinson et al. (2003).

4.3. Magnetic Pumping

Having established a statistically steady convecting state, we
wish to identify its transport properties when magnetic flux is
added. To achieve this, we insert a thin sheet of horizontal
magnetic field (Bx ¼ 0, By ¼ B0) between z ¼ 0:55 and 0.60 in
the middle of the upper layer (as in Tobias et al. 1998, 2001).
In order to keep the total pressure, pt, continuous between the
layer of magnetic field and the surrounding field-free fluid,
the density is decreased within the magnetized layer, while the
temperature remains continuous. The local decrease in density
leads to the development of instabilities driven by magnetic
buoyancy. These instabilities combine with convectively
driven motion to produce strands of locally strong magnetic
fields. Magnetic buoyancy then competes with advection of
magnetic flux by convective flows in the subsequent evolution
of the magnetic and velocity fields.

For the calculations described below, B0 is chosen so that
the Chandrasekhar number is initially fixed at Q ¼ 105 within
the thin magnetic layer. (This is the strongest initial field that
can be accommodated in the model setup without requiring
the density in the layer to drop unphysically below zero, and
this large value is chosen since pumping would be most
difficult in this case.) Figure 8 gives volume renderings of
the magnetic energy density and vertical velocity near the
beginning and end of the calculation for S ¼ �0:01 (the
figures for S ¼ 0:00 have a very similar form). It is clear that a
significant redistribution of the magnetic energy has occurred.
At early times, the horizontal layer of magnetic field has
merely begun to rise by the action of magnetic buoyancy,
although some crinkling due to advective effects can already
be seen. At later times, a statistically steady state exists where
the majority of the magnetic field is confined to the lower
layer. The advective action of the strong downflowing plumes
has dominated and dragged the magnetic field down. In the
process, the fields have been stretched and amplified by the
advection and by the strong vortical nature of the plumes,
especially where they are decelerated. The result is that the
strongest magnetic field is concentrated around the plumes in
the lower layer. Notice that this is not a static situation: strong
elements of field are rising through magnetic buoyancy all the
time, but that field is eventually caught in the downflows and
recirculated back to the lower layer. This behavior is similar to
that observed in Tobias et al. (2001), and thus downward
magnetic pumping appears to remain a robust feature of the
upper convective layer even when the lower layer also is
unstable (or neutrally stable) to convection.

This process can be analyzed in detail using various mea-
sures described by Tobias et al. (2001). The initial transport of
magnetic flux is clearly visible in Figure 9, which shows
vertical profiles of horizontal averages of the y-directed
magnetic field hByi at successive times as the calculations
progress. For both cases, the maximum of hByi, initially lo-
cated at around z ¼ 0:575, at first rises and then migrates
toward a more steady position below z ¼ 1. The initial rise and
subsequent migration downward of magnetic flux is perhaps
more clearly demonstrated by the color-coded spacetime
diagram for the transport of magnetic flux in Figure 10, which
charts the evolution of hByi as a function of time and depth. For
both cases, the evolution is similar: an initial rise of the flux
due to the combination of magnetic buoyancy and advection by

Fig. 6.—Horizontally averaged values of the kinetic energy flux, the ver-
tical velocity w, the square of the vertical velocity, and the cube of the vertical
velocity for the two hydrodynamic calculations shown in Fig. 5 plus a sim-
ulation with a very stable lower layer (S ¼ 30 from Brummell et al. 2002) for
comparison.
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the upflows (shown by the white and red ridge that runs
diagonally from the imposed position of the initial flux to the
top of the box) is followed by a redistribution of the flux,
largely due to advection by the downflows.

Figure 11 shows the distribution of flux for the S ¼ 0:0 and
�0.01 simulations performed in this study, together with that
for the calculation with a mildly stable lower layer (S ¼ 0:5),

described by Thomas et al. (2002b), all at later stages during
their evolution, well after the initial buoyant rise and sub-
sequent dominant pumping phase. By this stage, all the cal-
culations have flux distributions that peak in the lower layer
below the interface and that have a significant proportion of
the remaining flux residing in the lower layer, as did the earlier
models of Tobias et al. (2001). In each case, the strong

Fig. 7.—Gray-scale plots of the horizontal distribution of the vertically averaged values of the instantaneous vertical velocity wðx; yÞ in the (a) upper (0 � z � 1)
and (b) lower (1 � z � 2) layers for the purely hydrodynamical calculation with S ¼ �0:01. Light tones indicate downflow; dark tones, upflow. (c) Power spectra of
the flows at various depths.

Fig. 8.—Volume renderings of the instantaneous vertical velocity w and the magnetic energy density B2 at stages near the beginning and near the end of the
calculation for S ¼ �0:01. The magnetic energy is shown with color going from dark blue, through light blue and green, to yellow, as its value becomes stronger.
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downward-sinking plumes have advected magnetic flux into
the lower layer. However, the nature of the lower layer
significantly affects the next phase of the evolution and
therefore the ultimate flux distribution. For the case (S ¼ 0:5)
in which the lower layer is stable, the strong motions are
limited by the penetration depth (around z ¼ 2:5 in this case),
and therefore magnetic flux does not reach the lower boundary
(at z ¼ 3:5) at this stage. For the cases (S ¼ 0:0 and �0.01) in
which the lower layer is not stable and therefore more active,
the continued (but different) action of the convective motion
in the lower layer continues to pump and redistribute the
magnetic flux. This can be seen easily in Figure 11 since the
flux distributions for these cases are significant near the lower
boundary of these simulations (at z ¼ 2). When S � 0, the
vertical motion in the lower layer is still reasonably strong
( w2
� �

is still large; Fig. 6) with the downflows dominating

( w3
� �

positive), although there is little significant asymmetry

between the strengths of the upflows and downflows ( wh i � 0).
Once magnetic flux has reached the lower layer, it is trans-
ported by the generally more symmetric, slower convection
(after allowing for the structure produced by advection), while
more flux is continually added from the upper layer. However,
regardless of the details, a significant redistribution of the
magnetic flux has occurred in all cases, removing much of the
magnetic field from the upper layer.

It should be noted that our choice of magnetic boundary
conditions allows flux to leave the computational domain.
Thus, a significant amount of the horizontal flux is lost
through the top of the box. By the end of the calculation, if the
flux has also been carried as far as the lower boundary, some
of it has also been lost through the bottom of the box. In other
words, the simulation is of the ‘‘run-down’’ variety. The flux
distribution that develops therefore eventually decays in a
self-similar manner, but generally with more flux in the lower

Fig. 9.—Horizontally averaged values of the magnetic field component By as functions of depth at uniformly spaced times over the course of the flux-pumping
simulations with S ¼ �0:01 and 0.0. The initial and final states are shown as thick lines.

Fig. 10.—Color-coded spacetime diagrams showing the redistribution of magnetic flux for the two calculations (S ¼ �0:01 and 0.0). The horizontally averaged
value of By is shown as a function of depth z and time t, with increasing magnetic field strength indicated by color in the order black-blue-green-yellow-red-white.
The horizontal dotted line indicates the boundary between the upper and lower layers of the model.
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than in the upper layer. In cases in which the lower layer is
convectively stable (e.g., the S ¼ 0:5 case shown), magnetic
flux can only leak down below the penetration depth through
the action of diffusion. Here (cases S ¼ 0:0 and �0.01) the
magnetic field in the lower layer is further transported by
convection by pumping processes on an advective timescale
for the slower motion in the lower layer. The peak in the
distribution does, however, appear to remain just below the
interface in all cases.

The run-down nature of these simulations means that it
would be somewhat confusing to add absolute values, for
instance, of the peak magnetic energy in Figure 8, since the
later values will be significantly smaller as a result of the flux
losses. A more meaningful measure is the proportion of
remaining magnetic flux (i.e., the magnetic flux that has not
been lost from the computational domain) in the upper and
lower layers, and this is shown in Figure 12. This figure shows
that the evolution of the flux distribution is very similar for the
two cases considered here. In both cases, flux is rapidly
transported, so that by about 6 sound crossing times (cor-
responding to approximately one turnover time of the vig-
orous convection) more than 50% of the remaining flux
resides in the lower layer. This timescale is similar to that for
calculations with a stable lower layer; up to this stage, the
presence of a convecting lower layer seems to make little
difference to the dynamics of the magnetic flux. Later, how-
ever, magnetic flux continues to be redistributed by con-
vection in the lower layer as it is expelled from the upper layer
by the downward turbulent plumes. This process is compli-
cated by events such as the one visible in the S ¼ �0:01 case
between t ¼ 10 and 15. The redistribution of magnetic flux by
advection and stretching acts in competition with magnetic
buoyancy, but by this stage the magnetic field there is
relatively weak and so the effects of magnetic buoyancy are
presumably small. Hence, even the weak convection in the
lower layer is able to transport this flux efficiently.

To sum up, what we have demonstrated here and in our
earlier calculations is that magnetic pumping is a robust
phenomenon. After an initial phase, in which magnetic flux
escapes through the upper boundary, the vigorous downward-
sinking plumes in the strongly superadiabatic layer redistribute
magnetic flux and expel it into the layer below. This
occurs whether the layer below is mildly subadiabatic
(S ¼ 0:5), as in the model of Thomas et al. (2002b), or
adiabatic (S ¼ 0:0) or weakly superadiabatic (S ¼ �0:01), as
in the runs presented here. In each case the details of the
dynamics are different, but the mechanism for flux transport
remains essentially the same.
This mechanism relies on turbulent transport of mean

magnetic fields by convective motions, as a result of cor-
relations between small-scale magnetic fields and small-scale
flows. Physically these correlations occur as a result of
asymmetry in the convection, where broad expanding upflows
are surrounded by a dynamic network of contracting sinking
plumes. Compressibility and stratification lead not only to the
peak velocities in the downflows being larger than those in the
upflows but also to preferential advection of the small-scale
fields into the downflows and hence a significant correlation.
Mathematically, this effect can be seen on examining the
induction equation (5) in a compressible flow, which can be
rewritten as

@tBþ u Grrrrð ÞB ¼ B Grrrrð Þu� B rrrr Guð Þ þ Ck�rrrr2B: ð13Þ

For turbulent flows, the most significant term governing the
evolution of the magnetic field is the advective term u GrrrrB.
To determine the evolution of the mean (i.e., horizontally
averaged) magnetic field, it is instructive to decompose the
magnetic and velocity fields into their mean and fluctuating
parts (in the same spirit as in mean field dynamo theory). If we
set u ¼ hui þ u0 and B ¼ hBi þ B0, where again the average is
taken horizontally, then the advective term has a large-scale
(laminar) contribution given by hui Grrrrð ÞhBi and a contribu-
tion from the mean interaction of small-scale field and small-
scale flow given by h u0 Grrrrð ÞB0i. For turbulent flows (at high

Fig. 11.—Horizontally averaged values of the magnetic field component By

as functions of depth at the final state of each of three calculations: a mildly
stable lower layer (S ¼ 0:5, from Thomas et al. 2002b), a neutrally stable
lower layer (S ¼ 0:0), and a weakly unstable lower layer (S ¼ �0:01).

Fig. 12.—Proportions of the remaining magnetic flux residing in the upper
and lower layers as functions of time for the calculations with S ¼ �0:01 and
0.0.
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Reynolds and magnetic Reynolds numbers) this second con-
tribution dominates. Transport therefore depends on the cor-
relations between small-scale fields and flows. The physical
argument outlined above provides a mechanism for correlating
the small-scale fields with the downflows, and so the turbulent
transport will be dominated by these flows, hence the net
downward transport of magnetic fields.

We have found through this and the preceding sets of
simulations that turbulent convection can hold down a re-
markably strong field, with intensity up to the order of
equipartition with the peak kinetic energy of the flow. For
solar surface granulation then, with a maximum convective
velocity of at least 2–3 km s�1 and a density (at 1000 km depth)
of 3� 10�6 g cm�3, we would expect pumping to be able to
hold down a magnetic field of at least 1500 G. It should be
remarked again, however, that this is an average effect. The
distribution of flux that is maintained, with a peak just below
the interface, is not a static equilibrium. Rather, magnetic field
is coming and going at all times to maintain this average.
Pumping is continually operating and elements of the magnetic
field are continually escaping the lower layer by magnetic
buoyancy. These escaping elements tend to be the strongest,
most concentrated fluctuations in the field and may therefore
often be identified as rising magnetic flux tubes or moving
magnetic features (see x 7).

We have perforce adopted a highly idealized configuration
for these numerical experiments. The structure of the field
around a sunspot penumbra, as sketched in Figure 3, is very
different, since the field lines are anchored at one end to the
flux tube that lies below the spot. As a result, flux pumping has
to compete not only with magnetic buoyancy but also with
magnetic curvature forces (caused by tension along the field
lines). Although we have not attempted to model this more
complex field geometry, our models support the idea that
turbulent granules and mesogranules are able to drag magnetic
flux down below the solar photosphere. Since the speed of
convection decreases with depth beneath the surface, the
sinking plumes would become too weak to transport the
magnetic flux eventually and a balance between advection and
buoyancy might be reached. Moreover, the outward flow in the
moat cell requires a large-scale upflow around the spot, which
must limit the extent to which the flux in dark penumbral
filaments can be pumped downward. We expect therefore that
flux pumping should lead to submerged fields with the form
suggested in Figure 4. Moreover, this physical process plays
an important role in determining the global structure of a
sunspot.

5. CONVECTION IN THE PENUMBRA

In this section we attempt to interpret features observed in the
penumbra in the light of our theoretical understanding of
magnetoconvection (Hurlburt, Matthews, & Rucklidge 2000;
Weiss 2002). Most nonlinear studies have been concerned with
the effect of an imposed vertical magnetic field on convection
(e.g., Weiss, Proctor, & Brownjohn 2002), which is appropriate
for modeling umbral convection but not for the penumbra. With
a vertical field there is a magnetically dominated regime in
which the cells are very slender and the plumes are closely
spaced. In the parameter range relevant to a sunspot umbra,
there will only be small-scale convection; we expect to find a
pattern of aperiodic spatially modulated oscillations, which can
explain the existence of umbral dots. So long as the imposed
field B0 is vertical there can be no preferred horizontal direction

and the convection pattern can remain stationary in space. Once
B0 is inclined, this degeneracy is broken. The tilt then defines
a horizontal direction in the vertical plane that containsB0. This
loss of symmetry implies that convection in a stratified layer has
to set in as a pattern of traveling waves (Matthews et al. 1992).
In two dimensions, the direction in which the waves travel is
found to depend sensitively on the inclination and strength of
the imposed field and also on the vigor of convection (Hurlburt,
Matthews, & Proctor 1996). Hurlburt et al. (2000) obtained
three-dimensional numerical solutions and found that the
pattern changed as the inclination was increased. With a
modest inclination (22

�
) there was a modulated traveling wave:

the pattern of spatially modulated oscillations drifted away
from the direction of tilt. As the inclination was increased, the
cells developed into distorted rolls, still drifting in the same
direction. In a strong horizontal field, rolls with their axes along
the field are naturally preferred (Danielson 1961).

Within a sunspot, it is possible that there may be some
interchanges between fields with different inclinations at the
umbral-penumbral boundary, or even sporadic episodes of
reconnection within the penumbra itself. Nevertheless, as we
saw in x 1, the overall geometry of the magnetic field precludes
significant interchanges between bright and dark penumbral
filaments. Hence, each family must be considered separately.
The bright filaments have typical widths of around 300 km
and lifetimes of order an hour. Detailed observations show that
they are made up of separate, elongated, bright grains (Muller
1992). These grains travel inward in the inner penumbra,
penetrating into the umbra itself, but travel outward in the outer
penumbra (Lites et al. 1998; Sobotka, Brandt, & Simon 1999;
Sobotka & Sütterlin 2001; Scharmer et al. 2002). We interpret
the bright grains as hot rising plumes but regard their apparent
motion as a traveling wave phenomenon, rather than as due to
actual radial inflows or outflows of the plasma. It follows that
the penetration of bright filaments into the umbra is associated
with a migrating pattern of convection and not with material
motion. The reversal of the direction in which the bright grains
move can be ascribed to the increasing tilt of the magnetic field
with increasing radius.

In the dark filaments, where the field is strongly inclined (to
the vertical) and almost horizontal at the outer edge of the spot,
we expect to find radially oriented convection rolls. Here there
is more likely to be overturning motion, which may be either
quasi-steady or oscillatory. The observations show that this
form of convection is relatively inefficient. Model calculations,
involving an asymptotic treatment of magnetoconvection in
very narrow cells (Julien, Knobloch, & Tobias 2000, 2003),
indicate that a number of transitions may occur as the
inclination angle of themagnetic field is increased. Predominant
among these is a sharp transition to a qualitatively different,
and much less efficient, mode of convection as the field
becomes more inclined. This transition occurs both for con-
vection rolls in the plane of the inclined magnetic field and for
those whose axis is perpendicular to this plane. This transition
to a ‘‘horizontal field’’ branch is suggestive but has yet to be
demonstrated in a fully consistent model where the horizontal
scale of convection arises naturally.

It is instructive to compare our description of penumbral
convection with one in which an isolated flux tube is allowed
to move in an axisymmetric background field (Schlichenmaier,
Jahn, & Schmidt 1998a, 1998b; Schlichenmaier 2002). This
approach is based on a picture of interchanges between the
bright and dark filaments and cannot therefore represent them as
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two families of field lines that are permanently distinct. In
these calculations, a thin flux tube is embedded in a magneto-
hydrostatic sunspot model, starting in contact with the outer
boundary of the spot. As the tube heats up, it moves inward and
plasma flows upward and outward along it. The flux tube
maintains its identity throughout the calculation, whereas
convection is a spatially continuous process. The results can,
however, be related to the upward phase of a spatially
modulated oscillation and it would be possible to represent
the complementary downward motion as well.

6. THE EVERSHED FLOW

As discussed in x 2, most of the photospheric Evershed flow
runs along the returning penumbral flux tubes and hence may
be intimately connected with the flux-pumping mechanism
that submerges these flux tubes. The flux-pumping scenario is
quite consistent with the siphon flow theory of the Evershed
flow, in which a flow is driven along an arched flux tube by a
pressure drop between the two footpoints of the arch (Meyer
& Schmidt 1968; Thomas 1988; Montesinos & Thomas 1997;
Schlichenmaier et al. 1998a, 1998b). Indeed, siphon flow
models for the photospheric Evershed flow have generally
assumed that some unspecified force holds down the outer,
submerged part of the arched flux tube against magnetic
buoyancy (e.g., Thomas & Montesinos 1990), and we now
suggest that magnetic flux pumping provides this force.

A typical returning flux tube emerges in the inner or middle
penumbra and returns below the surface in the outer penumbra
or just beyond the outer penumbral boundary. For a thin flux
tube in equilibrium, the total pressure (gas plus magnetic)
inside the flux tube must balance the total pressure just outside
the flux tube. If we consider the two footpoints where the flux
tube arch crosses a gravitational equipotential surface, along
which the total pressure is constant, then the total pressure
inside the flux tube is the same at the two footpoints. An
outward siphon flow in the flux tube will be driven when the
gas pressure in the tube is lower at the outer footpoint than at
the inner footpoint, which requires that the magnetic pressure
in the tube be higher at the outer footpoint than at the inner
footpoint. As first pointed out by Spruit (1981), this is precisely
the situation for many penumbral flux tubes, for which the
magnetic field strength at the inner footpoint is around 1000 G
(a typical penumbral field strength) but at the outer footpoint
is of order 1500 G, corresponding to a typical intense, collapsed
photospheric magnetic element.

Most of the magnetic flux in the quiet photosphere is
concentrated into such highly evacuated flux tubes, which form
naturally because of a convective collapse mechanism asso-
ciated with the strongly superadiabatic temperature gradient in
the thin upper boundary layer (the granulation layer) of the
solar convection zone. Early work on the convective collapse
mechanism treated it as an instability of a vertical flux tube at
rest in a static superadiabatic atmosphere (see the review by
Spruit & Roberts 1983). However, in the granulation layer on
the Sun, convective collapse and flux expulsion are different
aspects of the same dynamical process (Hughes & Proctor
1988; Schüssler 2001). Numerical simulations of compressible
magnetoconvection show that strong, partially evacuated
magnetic flux tubes are formed in the rapidly sinking plumes
(Hurlburt & Toomre 1988; Grossmann-Doerth et al. 1994;
Grossmann-Doerth, Schüssler, & Steiner 1998; Weiss et al.
1996; Steiner et al. 1996, 1998) merely by the action of the
converging flows and the subsequent concentration of magnetic

field as the fluid attempts to maintain total pressure equilibrium.
Because the strong downward plumes are also responsible for
the flux pumping, we now see that there is an intimate
connection between flux pumping and convective collapse.
Penumbral flux tubes that are pumped downward by the
descending plumes in intergranular lanes will quite naturally
collapse to an intense magnetic element at the outer footpoint,
producing the drop in gas pressure that drives the Evershed
outflow.
This outflow is known to be time dependent, with flows

along individual flux tubes waxing and waning on a timescale
of order 10–15 minutes (Shine et al. 1994; Rimmele 1994;
Rouppe van der Voort 2003). This time dependence may be
associated with variations in the gas pressure and magnetic
field strength at the footpoints: at the outer footpoint as a result
of the interaction with the granular convection (Thomas 1994),
or at the inner footpoint as a result of variations associated with
convection within the penumbra itself (Schlichenmaier et al.
1998a). Alternatively, the time dependence could be due to
vertical excursions of flux tubes containing nearly steady flows
(Rouppe van der Voort 2003). The outward-moving Evershed
‘‘clouds’’ seen in Dopplergrams of the penumbra (Shine et al.
1994) apparently originate from disturbances at the inner
footpoints, although the fact that these features are coherent
across several filaments suggests that they are associated with
some larger scale wave motion rather than independent
disturbances in individual flux tubes.
A variant of the siphon flow model has been proposed by

Schlichenmaier (2002), in which cooling of a time-dependent
flow along the flux tube is strong enough to produce a local
density enhancement sufficient to render the tube negatively
buoyant, causing it to sink locally and leading to a serpentine
configuration for the flux tube. (The possibility of such a
sinusoidal configuration of the flux tube was demonstrated
earlier for steady state siphon flows by Thomas & Montesinos
1990, but they did not attach any particular significance to this
configuration for the Evershed flow.) The serpentine config-
uration is associated with quite high flow velocities along the
flux tube, however, so it is not clear whether this configuration
actually occurs in a sunspot penumbra.

7. MOVING MAGNETIC FEATURES AND THE MOAT

Most sunspots are surrounded by an annular moat cell,
10–20 Mm wide, in which there is a persistent horizontal,
radial outflow. The moat cell is essentially a large, annular
supergranule, centered on the sunspot. The moat contains no
permanent magnetic field, but small magnetic elements are
observed to move radially outward across the moat with speeds
ranging from a few tenths to 3 km s�1 (Sheeley 1969; Vrabec
1971; Harvey & Harvey 1973; Zwaan 1992). These moving
magnetic features (MMFs) have been classified into three types
and their properties have been summarized by Shine & Title
(2001); our discussion below closely follows their summary of
the observations. Each of these types of MMFs can be
interpreted physically in terms of the flux-pumping scenario,
as shown schematically in Figure 13.
Type I MMFs consist of bipolar pairs of magnetic ele-

ments, with the inner element having the same polarity as the
sunspot. The pairs of elements move outward together across
the moat at speeds of 0.5–1 km s�1. They usually first appear
just outside the sunspot along a radial line extending from a
dark penumbral filament. These features can be interpreted
quite naturally as the footpoints of magnetic loops that have
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erupted through the solar surface at places along a submerged
(downward-pumped) flux tube where there are particularly
strong convective updrafts. These magnetic loops are then
swept outward along with the granulation pattern by the moat
flow, although the outward motion is often somewhat faster
than the flow speed, indicating that the motion is at least partly
due to the propagation of the loop as a kink wave along the
flux tube. This picture is essentially the same as the model
proposed by Harvey & Harvey (1973; see their Fig. 6), except
that here we give a physical explanation for the origin of the
loops (called ‘‘twists’’ by Harvey & Harvey 1973) that form
along the flux tube. Several loops can emerge at different
positions and at different times along the same flux tube, and
this is reflected in the fact that successive type I MMFs tend to
follow nearly identical paths across the moat. As long as the
submerged flux tube remains attached to the sunspot, the type I
MMFs that form along it are not associated with a decay of the
sunspot.

Type II MMFs are single magnetic elements with the same
polarity as the sunspot, moving outward across the moat at
speeds similar to that of type I MMFs. These features may be
interpreted as flux tubes that have separated from the flux
bundle forming the sunspot and are being carried away by the
moat flow. This process is the primary means by which a
sunspot decays.

Type III MMFs are single magnetic elements with polarity
opposite to that of the sunspot, moving rapidly outward at
speeds of 2–3 km s�1. These features can be explained by
noting that the flux pumping is an average effect and that the
downward-pumping force on an individual, strong flux tube
may occasionally be too weak (perhaps because of the par-
ticular alignment of the tube with the convective pattern) to
prevent that tube from rising under magnetic buoyancy and
curvature forces. In this case the tube will emerge through the
surface at a shallow angle, producing a rapid outward horizontal
motion of the footpoint in the moat. Even while a returning flux
tube remains submerged, buffeting by the turbulent convection
will cause it to bob up and down somewhat, producing the
inward and outward excursions of the outer edges of the dark
penumbra filaments that are seen in movies of sunspots (Title
et al. 1993).

Long-term averages of the moat flow show that the radial
outflow is modulated azimuthally, with a superimposed pattern
of azimuthal motions. These take the form of radial rolls, with
alternating radial rays (or spokes) of convergence and di-
vergence extending across the moat (Shine & Title 2001).
Within this pattern, the various MMFs seem to be preferentially
channeled along the rays where the flow converges, whose
separation is an order of magnitude greater than that of the
penumbral filaments. This modulation may have a purely
hydrodynamical origin, for axisymmetric Boussinesq convec-
tion in a cylindrical domain is known to be unstable to
nonaxisymmetric modes (Jones & Moore 1979), although any
such instability is likely to be enhanced by the presence of
submerged magnetic flux (Tildesley 2003).

The moat cell is surrounded by an irregular ring of magnetic
field, with the same sign as that emerging from the spot, that
gives rise to plages in Ca ii emission. We can estimate the
depth of the horizontal magnetic channels below the dark
filaments as follows. Assume that the magnetic flux that
emerges horizontally from the main sunspot flux tube below
the solar surface is held pumped down across the entire moat
cell and then pokes upward through the surface in an annular
plage region at the periphery of the moat cell. Then the total
flux emerging horizontally from the spot is equal to that
emerging through the annular plage region. Let us take the
radius of the moat cell to be twice the penumbral radius and
assume that there is a plage annulus 5 Mm wide around the
moat with an average field strength of 300 G and that
magnetic flux emerges horizontally through about 70% of the
circumference of the spot (consistent with the inclinations of
the fields in bright and dark filaments and of the mean field)
with a field strength of 1000 G just outside the spot. Then we
obtain a channel depth of 5–6 Mm, which seems quite
reasonable. (Of course, not all the emerging flux may break
through the surface in the plage region, and some of the flux in
the plage region may come from fields that have escaped from
the spot and are no longer connected to it.)

8. FORMATION OF THE FILAMENTARY STRUCTURE

The development of an active region starts with the
emergence of a fragmented flux tube into the photosphere

Fig. 13.—Sketch of MMFs in the moat around a sunspot (from Thomas et al. 2002b). In x 7 the three types of MMFs (types I, II, and III) are interpreted in the
context of magnetic flux pumping by granular convection in the moat. [See the electronic edition of the Journal for a color version of this figure.]
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(Zwaan 1992). Magnetic fields are initially confined to tiny flux
elements, which accumulate between granules and meso-
granules to form small pores, without penumbrae (Keppens &
Martı́nez Pillet 1996; Leka & Skumanich 1998). Some of these
pores may then coalesce to form a sunspot. A typical pore has a
central field of 1500–2000 G, and the inclination of the field to
the vertical increases to an average value of around 35� at the
edge of the pore. Since the pore has to be in overall magneto-
hydrostatic equilibrium with its surroundings and the ambient
gas pressure increases rapidly with depth, the flux tube beneath
the pore must fan out as it approaches the surface (as in Fig. 2a).
Simple models indicate that the inclination of the field at the
boundary of the pore must increase as the total flux increases,
and they suggest that there is a critical value of this inclination
at which the pore develops a penumbra and becomes a sunspot
(Simon & Weiss 1970; Rucklidge, Schmidt, & Weiss 1995;
Hurlburt & Rucklidge 2000). Observations show that this
transition is associated with hysteresis: the largest pores are
bigger than the smallest spots (Bray & Loughhead 1964;
Rucklidge et al. 1995; Skumanich 1999).

If we consider a simple pore model, with the flux tube
embedded in a stratified atmosphere, the field at the edge of the
flux tube (the magnetopause) is concave toward the plasma.
Such a configuration is liable to magnetically driven inter-
change (or fluting) instabilities. It can be shown, however, that
in an adiabatically stratified atmosphere the flux tube is
stabilized by magnetic buoyancy provided that the radial
component of the field at the magnetopause decreases upward
(Meyer, Schmidt, & Weiss 1977). Of course, the solar
atmosphere is superadiabatically stratified and therefore
unstable to convection both inside and outside the pore. Indeed,
theoretical models of the umbrae of pores and spots show that
most of the energy transport is by convection, up to a level just
below the visible surface (Maltby 1992). The conjecture,
therefore, is that, as the flux contained in the pore and hence the
inclination of the field at the magnetopause are progressively
increased, the configuration becomes unstable to convectively
driven filamentary perturbations. The nonlinear development of
this instability can then lead to fluting at the boundary and,
eventually, to the formation of a penumbra with its interlocking-
comb magnetic field.

To verify this conjecture, it is necessary first to construct an
appropriate equilibrium model and then to study its stability.
Hurlburt & Rucklidge (2000) investigated axisymmetric,
compressible magnetoconvection numerically and obtained
steady nonlinear solutions. Preliminary results indicate that this
configuration gives way to nonaxisymmetric patterns, with
strong azimuthal variations in the magnetic field (Hurlburt et al.
2000; Hurlburt & Alexander 2003). Now the scale of
filamentation in a sunspot is small compared with the spot
radius and the cylindrical geometry should not therefore be
essential. A clearer picture of the filamentary instability
emerges from a highly idealized Boussinesq model in Cartesian
geometry (Tildesley 2003). This calculation starts from a fully
nonlinear, asymmetric, two-dimensional equilibrium state, with
a magnetic field that fans out in a manner similar to that in a pore
(Weiss 1981). This state is subjected to perturbations that are
periodic in the transverse (‘‘azimuthal’’) direction, and it is
found that there is a range of transverse wavenumbers for which
the original two-dimensional configuration is unstable. In the
nonlinear domain this instability saturates after developing into
a broad spokelike pattern (Tildesley &Weiss 2004). It turns out
that, in this geometry and in the absence of a magnetic field,

finite-amplitude two-dimensional rolls can become unstable to
purely hydrodynamic modes; however, this only occurs for a
very restricted range of wavenumbers, and the growth rate of
the instability is considerably increased by the magnetic field.
These results demonstrate the existence of three-dimensional,
convectively driven, filamentary instabilities of two-dimen-
sional magnetoconvective equilibria. In due course it should be
possible to develop this approach so as to produce a more
realistic model of a sunspot.
In the recent high-resolution images obtained by the Swedish

1 m Solar Telescope (Scharmer et al. 2002) even the smallest
pores are surrounded by a thin ‘‘skirt,’’ i.e., an annular ring with
delicate fine-scale striations. This suggests that the convec-
tively driven instability sets in at a very early stage in the
formation of a sunspot. The initial perturbation apparently has a
high azimuthal wavenumber, and it saturates at a low level. We
conjecture that, as the inclination of the field increases, modes
with larger and larger azimuthal scales become unstable, and
that this process continues until the fluting matches the scale of
the ambient granulation. Flux pumping by turbulent granular
convection then adds an extra ingredient to the nonlinear
development of this filamentary instability, for depressed flux
can then be dragged downward by the sinking gas in
intergranular lanes. Then there will be an abrupt transition to
a new configuration with a fully developed penumbra. Indeed,
observations show that the dark filaments appear abruptly and
extend outward between the granules (Zwaan 1992). Con-
versely, as a sunspot decays, pumping can still keep fields
in the dark filaments submerged when the total flux is less
than that at which the transition from pores to spots occurs.
This hysteresis indicates that the instability is associated with
a subcritical bifurcation, as proposed by Rucklidge et al.
(1995). Thus, the formation and maintenance of the penumbra,
as well as its intricate magnetic structure, may well depend on
magnetic pumping.
Following the onset of the convectively driven filamentary

instability, the more horizontal spokes of magnetic field are
brought into greater contact with the granular convective layer
in the surroundings and hence are subject to downward
pumping by the turbulent granular convection. As suggested
by our simulations, some fraction of this more horizontal
magnetic field will be pumped downward, forming the
returning magnetic flux tubes, while the remainder will either
stay above the surface or rise buoyantly to the surface out of the
granulation layer, to form the magnetic canopy. The relative
amounts of magnetic flux in the returning flux tubes and in the
canopy remain an open question, both observationally and
theoretically.

9. CONCLUSIONS

Our aim has been to show that downward pumping of
magnetic flux by turbulent convection provides a mechanism
that explains the structure and properties of the filamentary
penumbra. We have argued that the fields in bright and dark
filaments must remain distinct and that the latter are dragged
downward by small-scale granular convection in the region
outside the spot. To support this claim, we have carried out
idealized numerical simulations of the flux pumping that occurs
in the granular convection outside the sunspot. These simu-
lations, carried out for a range of parameters, establish that the
flux pumping is indeed a robust effect. This mechanism also
explains the bistability associated with the transition from a
pore to a sunspot and clarifies the behavior of the Evershed flow
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and the movingmagnetic features in the moat cell surrounding a
spot. Although some details of penumbral magnetoconvection
can be understood, there is still much that needs to be explained.
Nevertheless, it is clear that the gross structure of a sunspot,
with its umbra and penumbra, can only be explained as a
consequence of the processes that lead to fine structure in the
penumbra. Fortunately, we are now able to resolve that fine
structure on the Sun.

So far, we have not attempted to describe the subphoto-
spheric structure of a sunspot. The field lines that emerge at low
inclinations to form bright filaments form part of a flux bundle
that is known to extend downward for at least 10 Mm and may
even continue to the base of the convection zone. The inner
ends of the field lines in dark filaments must join this flux
bundle too, but the depth of these filaments cannot be
determined. We presume that the channels that contain them
extend to a level at which downward pumping becomes
ineffectual. The discussion in x 4.3 implies that this level
corresponds to the base of the layer of granular and
mesogranular convection, at a depth of only a few megameters,
and this is consistent with the behavior of moving magnetic
features in the moat. Thus, these channels can only contain a
small fraction of the total magnetic flux in the sunspot.
Moreover, they will be embedded in the steeper fields of the
bright filaments and convective transport will therefore be less
effective in them. None of this implies, however, that the

sunspot has to be a tight cluster of isolated flux tubes. Rather,
we expect that at depths greater than a few megameters the
magnetic field is contained within a single coherent but
inhomogeneous flux bundle.

It is clear that much work has to be done in order to clarify the
nature of convection in the bright and dark filaments and in the
underlying plasma. In the near future, higher resolution
observations of velocities and magnetic fields will become
available. Meanwhile, more elaborate numerical simulations
will reveal the pattern of convection and the deeper structure of
the fields. The sunspot penumbra may be an old problem, but it
raises subtle issues and there are many opportunities for new
research.
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M. Núñez-Jimenez (London: Taylor & Francis), 195

Keppens, R., & Martı́nez Pillet, V. 1996, A&A, 316, 229

Kosovichev, A. G., Duvall, T. L., & Scherrer, P. H. 2000, Sol. Phys., 192,
159

Krivtsov, A. M., Hofmann, A., Staude, J., Klvaňa, M., & Bumba, V.
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