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Honeycomb Pattern Formation by Laser-Beam Filamentation in Atomic Sodium Vapor
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We have observed transverse pattern formation leading to highly regular structures in both the near
and far fields when a near-resonant laser beam propagates without feedback through an atomic sodium
vapor. One example is a regular far-field honeycomb pattern, which results from the transformation of
the laser beam within the vapor into a stable three-lobed structure with a uniform phase distribution and
highly correlated power fluctuations. The predictions of a theoretical model of the filamentation process
are in good agreement with these observations.
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In this Letter we describe our observation of a striking
form of optical pattern formation in which a single laser
beam breaks up into a stable, regularly structured beam
in passing without feedback through a sodium vapor cell.
Pattern formation [1] in optical systems [2] is an area of
widespread interest, both from the conceptual point of view
of understanding how regular patterns can emerge from
uniform or randomly structured input fields and from the
practical point of view of utilizing such patterns in image
formation and manipulation. Applications include the use
of imaging techniques that exploit the quantum nature of
the light field to increase the sensitivity or resolution of
optical systems [3,4], the construction of optical neural
networks and associative memories [5], and the use of
fractal and wavelet algorithms for image compression [6].

In our experiment (Fig. 1), the laser beam undergoes
filamentation [7] and breaks up into three nearly equally
spaced components of comparable intensity in passing
through the sodium interaction region. The far-field pattern
consists of the coherent superposition of the diffraction
pattern from each of the three beams and thus has the form
of the honeycomb pattern (the Fourier transform of the
near-field pattern) which is also shown in the figure. Note
that the k-space distribution of the optical field within the
interaction region possesses this same honeycomb struc-
ture; our procedure of observing the pattern in the far field
is simply a convenient way of monitoring the k-space dis-
tribution of the field within the interaction region. In the
particular example of Fig. 1, the pattern was produced by
a cw dye laser beam containing 150 mW of power detuned
2 GHz to the high-frequency side of the sodium D2 reso-
nance line. This beam was focused to a beam waist near
the sapphire entrance window of a 7-cm-long vapor cell.
The cell contained no buffer gas and was operated at a tem-
perature of 220 ±C and thus contained 8 3 1012 atoms per
cm3. As described in detail below, the various regions of
the near-field pattern exhibit strong phase and power corre-
lations, which show that the nonlinear interaction leading
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to this form of pattern formation fully maintains the coher-
ence of the optical field.

Pattern formation has been observed in a wide variety
of material systems, including atomic vapors, liquid crys-
tals, x�2� crystals, photorefractive materials, organic liq-
uids, glasses, semiconductors, and biological materials,
as reviewed in the literature [2]. Our particular concern
is pattern formation in atomic vapors [8]. Observations
of these patterns have often involved systems possessing
some sort of optical feedback such as a single feedback
mirror [9], resonators [10], or wave mixing of counter-
propagating beams [11]. The patterns we observe, how-
ever, occur in a homogeneous medium without feedback.
In all of our experiments, the laser beam was made to en-
ter the cell at slightly oblique incidence to avoid feedback
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FIG. 1 (color). (a) Experimental setup used to study optical
pattern formation; patterns were recorded both in the near and
far fields. Typical conditions were input power, 150 mW; input
beam diameter, 160 mm; laser frequency, 2 GHz blue-detuned
from the sodium D2 line; cell length, 7 cm; and number density,
8 3 1012 cm23. (b) Example of pattern formation as observed
in the near field (left) and far field (right).
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due to reflections from the cell windows, and we verified
that the patterns did not vary with the incidence angle.
Moreover, most previously reported patterns exhibiting a
hexagonal tile structure occurred at the exit face of the
nonlinear medium [12], whereas the honeycomb pattern
reported here occurs in the far zone of the transmitted field
[13]. We note that Vaupel et al. [14] observed patterns in
the far zone of the field generated by an optical parametric
oscillator (that is, in the presence of feedback), and that
several researchers [15] observed spatial instabilities of a
single laser beam passing through an atomic vapor but did
not report observation of hexagon formation in the far field.
In summary, we are unaware of previous observations of
honeycomb (hexagonal) pattern formation in the far field
from a single beam passing through an atomic medium
without feedback.

In addition to the honeycomb pattern illustrated in
Fig. 1(b), we have observed a wide variety of other
patterns in our experiment. Some of these patterns are
shown in Fig. 2. Figure 2(a) shows how the near-field
and k-space patterns evolve as the incident laser power is
increased at a fixed number density of 3 3 1012 cm23,
a blue detuning of 2 GHz, and an input Gaussian-beam
spot size of 2w0 � 180 mm. The beam exiting the cell is
unstructured at low powers, shrinks in size as the power is
increased, and at an input power of approximately 80 mW
begins to form three distinct spots, leading to hexagonal
cells in the far field. As the power is increased further,
the near-field spots move farther apart, and thus the size
of the cells of the honeycomb pattern decreases. Above
approximately 150 mW, the beam contains enough power
to generate additional filaments, leading to a far-field
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FIG. 2 (color). Near- and far-field intensity distributions of the
light leaving the sodium cell as functions of (a) laser power
and (b),(c) laser frequency. (a) N � 3 3 1012 cm23, D�2p �
2 GHz. (b) N � 3 3 1012 cm23, P � 0.11 W. (c) N � 8 3
1012 cm23, P � 0.05 W. In all cases the input beam diameter
was 2w � 0.18 mm and the propagation length was 7 cm.
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distribution that is highly structured but contains no
apparent regular order. At our highest accessible input
power of 400 mW, as many as eleven near-field spots were
observed. Figure 2(b) shows how the pattern evolves as
we change the laser frequency at a fixed incident power of
100 mW, again for a number density of 3 3 1012 cm23

and an input spot size of 180 mm. We see that the
beam exiting the cell retains its near-Gaussian transverse
structure when the laser frequency is far from resonance,
and that the beam first develops a small “hot” center as
resonance is approached. With decreasing detuning (and
hence increasing nonlinearity), the beam develops rings
in both the near and far fields and eventually breaks up
into a pattern with threefold symmetry. Figure 2(c) shows
the laser-frequency dependence of the pattern formation
under slightly different conditions, with a number density
of 8 3 1012 cm23 and a power of 47 mW. In this case
the beam preferentially develops a two-lobed rather than
a three-lobed structure, with corresponding stripes in
the far field. The results shown in Fig. 2 indicate that
honeycomb pattern formation occurs only under fairly
restricted experimental conditions. We speculate that it
is for this reason that this effect has not previously been
reported in the literature.

The patterns we have observed, and in particular those
shown in Fig. 1(b), are remarkably stable and show no
variation in structure over time scales of tens of minutes.
This observation suggests that these patterns may consti-
tute “quantum images” (that is, field distributions contain-
ing strong spatial quantum correlations) as described by
Lugiato and coworkers [4]. In fact, theoretical arguments
[16] show that strong quantum correlations are expected
to be produced by those interactions that lead to patterns
with hexagonal symmetry. We have studied further the
stability of these patterns by examining the coherence
properties of the transmitted light field. Figure 3 shows an
interferogram of the near-field light distribution, superim-
posed with a contour map of the near-field intensity distri-
bution, taken under conditions similar to those of Fig. 1(b).
This pattern was formed by interfering the field leaving the
cell with a (nearly planar) reference wave front inclined at
a slight angle to produce (slightly curved) tilt fringes. The
brightest portions of the interferogram were allowed to
saturate the CCD camera so that we could follow the
fringes far into the wings of the light distribution associa-
ted with each filament. The existence of stationary, high-
contrast fringes indicates that the transmitted light is
predominantly at the same frequency as the input light. In
addition, the even spacing of the fringes indicates that the
transmitted light field has an essentially uniform phase
across its entire transverse profile. Normally one would
expect the phase of a light field transmitted through a
strongly nonlinear medium to be highly nonuniform as
a consequence of transverse intensity variations. The
uniformity of the phase in the present case is reminis-
cent of similar behavior that occurs in the formation
of optical solitons, although we stress that we have no
113901-2
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FIG. 3. Interferogram of the near-field light distribution for a
case in which three filaments are formed, superimposed with a
contour map of the filament intensity. Note that the light leaving
the interaction region has a nearly uniform phase distribution.

direct evidence that soliton formation is occurring in our
experiment.

We have also found that the light leaving the sodium in-
teraction region possesses strong spatial correlations. In
performing this measurement we adjusted the input con-
ditions [see Fig. 2(c)] so that in the near field the output
consists of two spots carrying nearly equal power. We find
that the noise in the difference of the two output intensi-
ties is smaller than the noise in the sum of the two output
intensities, showing that the two components of the out-
put are correlated in their fluctuations. Efforts to lower the
noise floor of our detection apparatus and test the degree
of correlation at the level of the standard quantum limit are
in progress.

Our experimental observations are in good agreement
with the predictions of standard models of nonlinear op-
tical self-action effects. A key parameter that determines
the properties of self-action effects is the critical power
for self-focusing, which is given by Pcr � l2�8n2, where
n2 is the coefficient of the intensity dependent refrac-
tive index. It is well known that self-focusing can oc-
cur only if the laser power exceeds Pcr, and that (to first
approximation) the process of filamentation leads to the
creation of multiple components, each containing power
Pcr. Under our typical experimental conditions of a num-
ber density of N � 8 3 1012 and a detuning of D�2p �
2 GHz, the optical constants of sodium vapor have the val-
ues [17] x �1� � 1.6 3 1025 esu, x�3� � 2.5 3 1026 esu,
n2 � 9 3 1028 cm2 W21, and Isat � 1.6 kW cm22. The
critical power under these conditions is thus given by
Pcr � 5.0 mW, in good qualitative agreement with the
measured power of 2.0 mW of each spot in Fig. 3. The
intensity of the light within each spot in Fig. 3 (of diame-
ter 30 mm at the exit window) is 0.7 kW cm22. This value
is less than but of the order of the calculated value of the
saturation intensity quoted above and supports the view
that incipient saturation of the nonlinear optical response
has limited the further collapse of the optical filaments un-
der our exerimental conditions.
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To establish more explicitly the origin of pattern forma-
tion in our experiment, we have performed numerical mod-
eling of pattern formation in the propagation of a laser field
through a saturable [18] nonlinear optical medium. We be-
gin with the scalar wave equation in the formµ

2ik
≠

≠z
1 =2

T

∂
E � 24pk2 x�1�

1 1 jE�Esatj2
E , (1)

where E � E�x, y, z� is the electric field envelope function
and Esat is the saturation field amplitude. We solve this
equation numerically on a 96 3 96 transverse grid under
conditions similar to those of our experiment. The input
field was seeded with 3%, spatially d-correlated amplitude
noise. A typical outcome of the calculation is shown in
Fig. 4. The beam initially undergoes strong self-focusing,
followed by oscillations and the development of rings. Af-
ter ejecting some filaments that disperse in the transverse
dimensions, the beam breaks up into three peaks that main-
tain their size and shape as they slowly drift apart. This
behavior is similar to that described earlier by Firth and
Skryabin [19]. We find that different realizations of the in-
put noise lead to filaments with varying sizes and relative
positions, but that the final number of filaments is nearly
always 3 for the specified input conditions. Furthermore,
it is found that this three-way filamentation occurs only
for input Gaussian beams whose radius and peak intensity
are nearly equal to those given above. For slightly weaker
input beams we find that the filamentation process favors
the development of two spots, whereas for stronger input

FIG. 4. Numerical calculation of the propagation of a near-
Gaussian laser beam through a medium with a saturable nonlin-
ear response. The beam is seen to break up into three filaments,
in agreement with the experimental observations presented in
Fig. 1. The input conditions are those of the experiment, namely
the peak input intensity is 4 times the saturation intensity and
the beam diameter is 0.13 mm.
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beams more than three spots are created. In performing the
calculation shown in Fig. 4, we took the input beam to have
a peak intensity of 4 times the saturation intensity and took
the input (Gaussian) beam diameter to be 130 mm, where
the measured value is 180 mm. This agreement is quite
reasonable in light of the fact that our theoretical model
does not treat the multilevel structure of the sodium atom.

In summary, we have observed a dramatic example of
optical pattern formation in which a single laser beam
propagating through atomic sodium vapor without feed-
back develops a stable, regular transverse structure. In
particular, a three-filament near-field pattern leading to a
honeycomb far-field pattern occurs at intensities near the
saturation intensity and at powers larger than (but of the
order of magnitude of) the critical power for self-focusing.
The three-filament pattern has a uniform phase profile and
strongly correlated power fluctuations, which suggest that
it is perhaps a quantum image. These observations are also
in good agreement with numerical simulations of filamen-
tation in a two-level medium.
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