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Abstract. We develop simple mathematical models that lead to order-of-
magnitude predictions of the sizes of the electronic, nuclear, and electrostrictive
contributions to the nonlinear optical susceptibility. We ® nd that all three of
these processes make comparable contributions to the third-order susceptibil-
ity, even though the optical-frequency linear susceptibility is dominated by the
electronic response. We also ® nd that when the mathematical expressions
describing these contributions to the third-order susceptibility are written in
terms of fundamental physical constants, they are identical to within numerical
factors of the order of unity and are given in Gaussian units by c 3

h8 /8m4e10 4.25 10 16 cm2 s 1 V 2.

1. Introd uc tion

The intent of the present paper is to provide simple order-of-magnitude
estimates of the nonlinear optical response resulting from several di� erent physical
processes, namely, electronic polarization, nuclear (i.e. Raman) response, and
electrostriction. Of course, the arguments leading to such predictions are well
known for the case of the electronic response, dating back to the very earliest
research papers on nonlinear optics [1]. However, arguments of this sort seem to
be much less well established for the nuclear response and electrostriction. One of
the motivations for the present paper is to develop mathematical descriptions for
all three of these physical processes in a consistent manner, both to allow
comparison of the nature of these processes and to make predictions of their
expected strengths.

Another motivation for the present study is that several recent investigations
have demonstrated that the contributions to the third-order susceptibility result-
ing from these physical processes often are of comparable size [2± 8] and in special
cases are in fact equal [9]. This conclusion at ® rst sight appears surprising, because
the three physical processes depend on di� erent degrees of freedom of the material
system. The intent of the present paper is to present an elementary mathematical
description of these physical processes and to predict the sizes of their contribu-
tions to the nonlinear optical susceptibility in terms of fundamental physical
constants. We ® nd that in fact all three of these contributions depend in exactly
the same manner on the fundamental physical constants, and that the magnitudes
of these contributions are in fact equal to within numerical factors of the order of
unity.
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2. Ele c tron ic re spon se
The linear optical properties of materials typically are dominated by the

electronic contribution to the optical response. Moreover, since the electronic
response is essentially instantanteous, it is the dominant contribution to the
nonlinear optical response when measured using ultrashort laser pulses. In this
section, we present a simple description of these electronic properties.

Let us begin by estimating the optical properties of an atomic system. For
simplicity, we model the system as a collection of hydrogen atoms. Of course,
SchroÈ dinger’ s equation can be solved exactly for the hydrogen atom, but for our
present purposes it su� ces to present an estimate of its electronic properties. We
adopt the model shown in ® gure 1 (a), in which a nucleus of charge e is
surrounded by an electron cloud of characteristic dimension a and total charge

e. We use the gaussian system of units in this paper. The appendix to this paper
presents a brief description of how to express nonlinear optical quantities in
di� erent systems of units. The Hamiltonian of the system

H
e2

r
p2

2m
1

can be estimated to order of magnitude by replacing r by the characteristic size a
and by replacing p by h /a, which follows from the Heisenberg uncertainty relation
D xD p 1

2 h. One then ® nds that

H
e2

a
h2

2ma2 . 2

The value of a that minimizes this expression is found by setting dH /da 0,
leading to the result

a0
h2

me2 , 3

which is the standard expression for the ® rst Bohr radius. Numerically we ® nd that
a0 0.5 AÊ 0.5 10 8 cm. When this expression is substituted back into
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Figure 1. (a) Simple model of the hydrogen atom. (b) Displacement of the electron cloud
in the presence of an applied static electric ® eld.



equation (2), one ® nds that the ground state energy of the hydrogen atom is
given by

H0
me4

2h2
1
2

e2

a0
R, 4

where R is conventionally known as the Rydberg unit of energy and has the value
R 13.6 eV 2.17 10 11 erg.

We next estimate the linear static polarizability of the atom. If an electric ® eld
E is applied to the atom (see ® gure 1 (b)) the electron cloud will be displaced
slightly to the left by an amount x, leading to a dipole moment of size p ex.
(For simplicity and to very high accuracy, we are here considering the position of
the nucleus to remain ® xed. We examine the consequences of a nuclear motion in
more detail in section 3.) To determine the displacement x, we note that the
electron cloud will experience a force eE due to the applied ® eld and a force of
order of magnitude e2x/a3

0 due to the ® eld of the nucleus. This latter force is
calculated by assuming that the electron cloud can be described by a uniform
charge density e/ 4

3 p a3
0 for r a0 and zero charge density elsewhere, and

performing an elementary calculation using Gauss’s law. These two forces must
be equal and opposite in equilibrium, leading to the result

x a3
0E /e. 5

Since p ex, and introducing the linear polarizability a electronic de® ned by
p a electronic E, we ® nd that

a electronic a3
0. 6

For the hydrogen atom the quantum mechanical version of this problem can be
solved exactly [10, 11] leading to the very similar result a electronic 9 /2 a3

0.
Expression (6) for the polarizability was derived for a static applied ® eld, but is

expected to be valid whenever the applied ® eld frequency x is much smaller than
any atomic resonance frequency x 0. In fact, this is not an unrealistic limit, because
optical materials are often selected so that their absorption frequencies are far
removed from the frequencies of the applied optical ® eld. Under these circum-
stances, we can use equation (6) to estimate the linear refractive index n of the
material. We make use of the standard relations n ²

1/2, where the dielectric
constant is given by ² 1 4p c 1 and where (ignoring local ® eld e� ects)
c 1 N a electronic . We estimate the atomic number density as N
1/ 2a0

3 8.44 1023 cm 3. We then ® nd that ² 2.6 and n 1.6, in good agree-
ment with typical values of the refractive index of bulk matter.
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Figure 2. The Lorentz model of the atom. The atom is treated as a simple harmonic
oscillator.



A very di� erent model, the Lorentz model of the atom [12], is often used to
estimate the near-resonance linear optical properties of an atomic system. Let us
establish the connection of this model to the quasi-static model described above.
The Lorentz model describes the atom as a harmonic oscillator of resonance
frequency x 0 and damping rate C as illustrated in ® gure 2. The equation of motion
for the electron coordinate is then

m Èx kx iC Çx eE t , 7

where k mx 2
0 is the e� ective spring constant of the oscillator. This equation can

readily be solved for a ® eld of the form E t E0 exp ix 0t . One then ® nds that
the induced dipole moment p t ex t can be expressed as p t a x E t
where the polarizability a x is given by

a x
e2 /m

x 2
0 x 2

, 8

which has the low frequency value a electronic e2 /mx 2
0. To order of magnitude,

we can identify the resonance frequency x 0 with R /h, where R e2 /2a0 is
the Rydberg constant introduced in equation (4). We thus ® nd that
a electronic 4a3

0, in good order-of-magnitude agreement with our previous
result (6).

We next generalize this treatment by allowing the optical response to be
nonlinear. We assume that the atomic dipole can be expanded in a power series
in the applied ® eld as

p t a E t b E2 t g E3 t

p 1 t p 2 t p 3 t . 9

We assume that the local environment is not necessarily centrosymmetric, and
thus we allow even powers of E t as well as odd powers to appear in these
expressions. We also assume that the conditions are quasi-static, that is, E t and
p t are allowed to vary in time, but only at frequencies much smaller than the
resonance frequency of the atomic system.

We can estimate the size of the nonlinear coe� cients b and g by means of a
well-known argument [1]. We assume that the nonlinear response will become
comparable to the linear response for applied ® eld strengths E comparable to the
atomic ® eld strength Eat e/a2

0. Note that Eat m2e5 /h4 1.9 107 s V cm 1

5.7 1011 V m 1. We thus predict that, to order of magnitude,

b a electronic /Eat a5
0 /e h10 /m5e6 8.63 10 33 cm4 s 1 V 1, 10 a

g a electronic /E2
at a7

0 /e2 h14 /m7e16 5.03 10 40 cm5 s 1 V 2. 10 b

We have written these results both in terms of a0 to suggest how rapidly the
nonlinear coe� cient increases with the linear dimensions of the atom and in terms
of fundamental physical constants to show this dependence. The nature of optical
nonlinearities can also be understood by noting that equations (9) and (10) can be
combined to give the following results, valid to order of magnitude
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p 1 ea0
E

Eat
, 11 a

p 2 ea0
E

Eat

2

, 11 b

p 3 ea0
E

Eat

3

. 11 c

Often the nonlinear optical properties of materials are described in terms of nth
order susceptibilities c n , which are de® ned by the equation

P t c 1 E t c 2 E2 t c 3 E3 t , 12

where the polarization is de® ned by P t Np t and where as above we assume
that E t varies slowly compared to the inverse of the atomic resonance frequency.
We then ® nd that, to order of magnitude,

c 1 N a Na3
0

1
8, 13 a

c 2 N b Na5
0 /e a2

0 /8e

h4 /8m2e5 7.29 10 9 cm s 1 V 1, 13 b

c 3 N g Na7
0 /e2 a4

0 /8e2

h8 /8m4e10 4.25 10 16 cm2 s 1 V 2, 13 c

where as above we have set N equal to 2a0
3 8.44 1023 cm 3. We have

written each of these results in several di� erent forms to display the functional
dependences on the various parameters of the problem and to provide numerical
estimates of their values.

As a test of the validity of the simple model just presented, we recall that the
hyperpolarizability of a radiatively broadened atom in the two-level approximation
is given for near-resonant excitation by ([13], equation (5.3.37))

g
2
3

¹
4

h3 x x 0
3 , 14

where ¹ is the transition dipole moment, x is the optical frequency and x 0 is the
resonance frequency. We can estimate the value of the expression by setting ¹

equal to ea0, by ignoring x with respect to x 0 under the assumed quasi-static
conditions, and setting hx 0 equal to the Rydberg contstant R of equation (4). We
thus ® nd that g a7

0 /e2, in good agreement with the order-of-magnitude estimate
given by equation (10 b).

The discussion presented above summarizes the well known results for the
electronic contribution to the linear and nonlinear optical properties of a material
system under highly o� -resonant excitation. In the remainder of this paper, we
will see how to derive analogous results for the nuclear and electrostrictive
contributions to the nonlinear optical response.
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3. Nuc lear re spon se

Let us next consider how the motion of atomic nuclei contributes to the linear
and nonlinear optical properties of a material system. We shall ® nd that the nuclear
response typically makes a negligible contribution to the linear response at optical
frequencies, but that curiously the nuclear response can make a signi® cant
contribution to the nonlinear optical properties. Of course, explicit quantum
mechanical predictions for the nuclear contribution can be obtained, for instance
within the context of the Born± Oppenheimer approximation [14]. Here our goal is
to develop simple order-of-magnitude predictions that describe the relative size of
the nuclear and electronic responses of a material system to an applied optical ® eld.

As a simple special case, we consider the nuclear contribution to the linear
optical response of an isolated atom. In our simpli® ed treatment of section 2, we
assumed that the applied electric ® eld induced a displacement of the electron
with respect to a ® xed atomic nucleus. In reality, the electron and nucleus both
move relative to the ® xed centre of mass of the system. The displacement of
the nucleus will be smaller than that of the electron by the factor m /M, where m
is the electron mass and M is the nuclear mass. We thus conclude that the
nuclear contribution to the polarization of the medium can be described by a
nuclear polarizability given by

a nuclear
m
M

a electronic , 15

where a (electronic) is the polarizability given by equation (6). Since
m /M 1/1837 for the hydrogen atom and is much less than unity for any other
realistic condition, we see that the nuclear response makes a negligible contribu-
tion to the linear optical properties of an atomic system.

The analysis is more complicated for molecules. First, for homonuclear mol-
ecules, the conclusion represented by equation (15) should be expected to hold, at
least to order of magnitude. The situation can be considerably more complicated
for heteronuclear molecules. For simplicity, consider a diatomic heteronuclear
molecule of nuclear charges qA and qB, masses MA and MB, and equilibrium
internuclear separation x0. An applied electric ® eld E t will change the inter-
nuclear separation to x0 x t , where x t obeys the equation of motion

M Èx kx D qE t . 16

Here M Ma Mb / Ma Mb is the reduced mass of the vibrational mode,
k Mx 2

v is the e� ective spring constant where x v is the resonance frequency of
the vibrational mode, and D q qA qB /2 is the e� ective charge di� erence (see
® gure 3).

One would expect D q to be of the order of magnitude but somewhat smaller
than the electron charge e. Let us assume that the electric ® eld oscillates according
to the real part of E0 exp ix t . We can then solve equation (16) to ® nd that the
induced dipole moment p t D qx t can be described in terms of a nuclear
polarizability a (nuclear) as p t a (nuclear)E t , where

a nuclear
D q2 /M
x 2

v x 2 . 17
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Under typical conditions at optical frequencies, this response is much smaller than
the electronic response. For instance, in the typical limit x v x x 0, we ® nd
through use of equations (8) and (17) that

a nuclear
a electronic

D q2

e2

m
M

x 2

x 2
0

, 18

which by inspection is seen to be much smaller than unity. We can also consider
the nuclear contribution at very low frequencies x x v . In this case the ratio of
the nuclear response to the electronic response is given by

a nuclear
a electronic

D q2 /Mx 2
v

e2 /mx 2
0

D q2

e2

m
M

x 2
0

x 2
v

. 19

We next demonstrate that the ratio of the nuclear response to the electronic
response is of the order of magnitude of unity. We noted above that D q is of the
order of the electron charge e. Note further that the ratio of the nuclear mass to the
electron mass is of the order of 103, and that x v is of the order of 1/30 of x 0 for
typical molecules. Consequently the product of m /M with x 2

0 /x 2
v is of the order of

unity. Let us examine more fundamentally why this should be so. The interatomic
potential describing the binding of two atoms to form a molecule will be
qualitatively of the form shown in ® gure 4. Note that the depth of the potential
well will be of the order of the Rydberg constant R and that the width of the
potential well will be of the order of a0. Thus, the spring constant k that appears in
equation (16) will be of the order of R /a2

0, since U x 1
2 k x x0

2 near the
bottom of the potential well, and hence the resonance frequency x v k /M 1/2

will be of the order of x v R /a2
0M 1/2 and the product Mx 2

v will be of the order
of R /a2

0. Note next that the analogous quantity for the electronic response mx 2
0 will

also be of the order of R /a2
0. We can establish this result by noting that the

potential well that binds the electron to the atomic nucleus also has depth R and
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Figure 3. Vibrational mode of a heteronuclear diatomic molecule.
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Figure 4. Interaction potential energy of two atoms in a diatomic molecule.



width a0, and thus that its spring constant will be of the order of R /a2
0, its

resonance frequency will be of the order of x 0 k /m 1/2 R /a2
0m 1/2, and hence

mx 2
0 will be of the order of R /a2

0. We thus conclude that to order of magnitude

m
M

x 2
0

x 2
v

1. 20

It thus follows that

a nuclear
a electronic

1 for x 0. 21

We have thus shown that the nuclear contribution to the linear response is
much smaller than the electronic contribution at optical frequencies, but is of the
same order of magnitude for frequencies much smaller than the vibrational
resonance frequencies. The analysis presented here has assumed that the molecule
does not possess a permanent electric dipole moment. For materials that do possess
a permanent electric dipole moment, the nuclear contribution can be much larger
than the electronic contribution at su� ciently low frequencies. For instance, the
zero-frequency dielectric constant of water is 81 and that of one particular tensor
component of barium titanate is several thousand.

Let us next consider the nuclear contribution to the nonlinear optical
susceptibility. For de® niteness, we consider the third-order response with two
applied frequencies in the combination described by the susceptibility
c 3 x x x x , as illustrated in ® gure 5. The nuclear contribution to this
process is well known from theoretical treatments of stimulated Raman scattering.
The standard result is ([13], equation (9.3.19))

c 3 x x x x
N /12Mx v da /dx 2

0
x x x v iC

, 22

where it has been assumed that the linear polarizability (which is largely electronic
in origin) changes with the internuclear separation x0 x according to

a a 0 da /dx 0x. 23

Clearly, equation (22) predicts a resonance when x and x di� er by the vibrational
frequency of the material system, but let us here consider only the non-resonant
situation in which x and x are equal. We then ® nd that

c 3
NR nuclear c 3 x x x x N /12Mx 2

v da /dx 2
0. 24

We can make an order-of-magnitude estimate of the size of this response by
assuming that da /dx 0 is of the order of magnitude of the square of the Bohr
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Figure 5. Third order nonlinear optical response induced by a wave of frequency x on a
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radius a0 [15]. By comparing equations (13 c) and (24), we ® nd that to order of
magnitude the relative nuclear response is given by

c 3
NR nuclear

c 3 electronic
Na4

0 /Mx 2
v

Na6
0 /hx 0

m
M

x 2
0

x 2
v

1, 25

where the second-to-last form is obtained by introducing R e/2a2
0 for hx 0 and

where the last step follows from equation (20). We thus see that the non-resonant
nuclear contribution to the optical frequency nonlinear optical response is ex-
pected to be of the same size as the electronic contribution. We can also see from
equation (23) that the Raman resonant response will be x v / C times larger than the
non-resonant response.

4. Ele c trostric tive re spon se
Another contribution to the nonlinear susceptibility results from the tendency

of materials to become more dense in the presence of an electric ® eld, a phenom-
enon known as electrostriction. This process is illustrated schematically in ® gure 6.
The process of electrostriction can be understood theoretically in the following
manner ([13], section 8.2). The presence of an electric ® eld within a material
produces a pressure given by

Pstr g strE2 /8p , 26

where
g str q ¶ ² / ¶ q 27

is known as the electrostrictive constant. This pressure tends to compress the
material, which leads to a change in the dielectric constant of the material given by

D ²
¶ ²

¶ q

¶ q

¶ p
Pstr q

¶ ²

¶ q

1
q

¶ q

¶ p
Pstr g strCPstr, 28

where
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Figure 6. Physical origin of the electrostriction process. Materials become more dense in
the presence of an electric ® eld.



C
1
q

¶ q

¶ P
29

is known as the compressibility. Since ² 1 4p c , it follows that D c 1/4p D ²

and consequently with the usual ® eld conventions of nonlinear optics that

c 3 (str) g 2
strC /48p 2. 30

We now estimate the value of c 3 (str). We expect g str to be of the order of
unity, because of the relation (valid ignoring local ® eld e� ects) ² 1 4p N a
which (since the mass density q is proportional to the number density N) implies
that g str ² 1. To estimate the value of the compressibility, we begin by
expressing the compressibility as

C
D V /V
F /A

, 31

where D V /V is the fractional change in volume induced in the material by an
applied stress F /A. We note that in order to appreciably decrease the separation
between two atoms in a solid, we would have to push them together with a force
comparable to the atomic Coulomb force Fat eEat R /a0. Consider now a cubic
region of volume V L 3 with forces F applied to two opposing faces (see ® gure 7).
Any cross-section of this cube will have an area A L 2 and will contain
approximately A / 2a0

2 atoms. The force F required to compress the cube
appreciably (i.e. to produce D V /V 1

2) is of the order of the number of atoms
in each cross-sectional plane A / 2a0

2 times the force Fat eEat R /a0 per atom,
that is, F A / 2a0

2 Fat. Thus the applied strain F /A required to produce
such a compression is of the order of Fat /4a2

0 R /4a3
0. We therefore predict that,

to order of magnitude,

C
1
2

R /4a3
0

2a3
0

R
1.2 10 14 cm3 erg 1 1.2 10 13 m3 J 1. 32

We can combine this result with equation (30) to ® nd that, to order of magnitude,

c 3 (str) a3
0

24p 2R
a4

0
12 p 2e2 , 33

where the last form comes by introducing expression (4) for the Rydberg constant.
Next, by comparison with equation (13 c), we can rewrite this result as
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c 3 (str) 2
3p 2 c 3 electronic . 34

We see that the electrostrictive contribution to the third-order susceptibility is
predicted to be approximately of the same order of magnitude as the electronic
contribution.

The largest uncertainty in this result is due to the accuracy of the prediction for
the compressibility of bulk matter. In fact, inspection of tables [16] of compres-
sibilities of bulk matter (or of its inverse, the bulk modulus) shows that compress-
ibilities are typically in the range of 10 12 to 10 11 cm3 erg 1, at least 100 times
larger than the simple estimate given by equation (32). Of the various numerical
estimates presented in the present work, the estimate of the compressibility is
probably the least accurate. Reasons for this discrepancy include the simplicity of
the model presented and especially the fact that the forces that con® ne individual
atoms to their equilibrium positions in bulk matter are considerably smaller than
the force that binds electrons to the atomic nucleus, which was the assumption
made in the present calculation.

5. Conc lusion s
We have developed simple order-of-magnitude estimates of the values of a

number of physical constants that are conventionally used to describe the non-
linear optical properties of a material system. These estimates show how these
quantities depend on fundamental physical constants. We obtain the new and
somewhat surprising result that the resulting expressions for the three dominant
contributions to the third-order susceptibility show the same functional depen-
dences and predict that these contributions (electronic, nuclear, and electrostric-
tive) should be equal, at least to order of magnitude. Finally, we note that these
three processes possess di� erent response times and di� erent tensor properties,
which allow these processes to be distinguished in laboratory measurements.

Acknow led gm e nts

Valuable discussions of the material presented here with Ryan Bennink,
Nicholaas Bloembergen, Stephen Burns, Lee Casperson, James Li, Anne
Myers, and Carlos Stroud are gratefully acknowledged. This work was supported
by the National Science Foundation, the US Army Research O� ce, and the
sponsors of the University of Rochester’ s Center for Electronic Imaging Systems.

Appen d ix: system s of un its
The present paper is written in the gaussian system of units. Conversion to the

SI system can be performed using well known procedures. See for example the
appendix to Jackson [17] for a discussion of this topic in general or to appendix A
of Boyd [13] for a discussion of conversion between systems of units within the
context of nonlinear optics.

As an example of the results of such a conversion, we display one of the key
results of the present paper (equations 13) in the SI system of units. We de® ne the
material polarization within the SI system by
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P t ²0 c 1 E t c 2 E2 t c 3 E3 t . A 1

Through use of the standard procedures for converting to the SI system we then
® nd that equations (13) become

c 1 p
2
, A 2a

c 2 N 4p 2
²0a5

0 /e 2p 2
²0a2

0 /e 3.05 10 12 m V 1, A 2 b

c 3 N 4p 3
²

2
0a7

0 /e2 8p 3
²

2
0a4

0 /e2 5.95 10 24 m2 V 2, A 2 c

where we have set N equal to 2a0
3.
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