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1. INTRODUCTION

The problem of defining the electromagnetic
momentum density has been considered by many
authors [1]. Discussions typically center on compari-
sons of the Abraham and Minkowski forms, defined
respectively by

(1)

and

(2)

Garrison and Chiao [2] have recently discussed the
implications of these forms for the photon momentum
in a dispersive dielectric medium and, by quantizing the
field in the dielectric, have identified three photon
momenta with magnitudes

(3)

(4)

and

(5)

at frequency 

 

ω

 

, where 

 

n

 

(

 

ω

 

) and 

 

v

 

g

 

(

 

ω

 

) are the refractive
index and the group velocity, respectively. The first is
the canonical photon momentum, i.e., that associated
with the generator of space translations, while the sec-
ond and third are the Abraham and Minkowski forms,
respectively, that follow from the corresponding classi-
cal expressions when the field in the dielectric is quan-
tized (see, e.g., Eq. (42) below). Garrison and Chiao
discuss the fact that the results of the Jones–Leslie
experiment [3], in which the radiation pressure on a
mirror in a dielectric is measured, are consistent with
the assignment of the canonical momentum to the pho-
tons. They find that the reported data deviate from the
Abraham and Minkowksi forms by 405 and 22 standard
deviations, respectively.
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As discussed by Garrison and Chiao, the canonical
photon momentum finds physical justification in treat-
ments of the Cerenkov and Doppler effects and in the
phase-matching (momentum conservation) conditions
of nonlinear optics. Consider, for example, the Doppler
shift in the spontaneous radiation from an atom of mass

 

m

 

 and transition frequency 

 

ω

 

0

 

 with initial velocity 

 

v

 

 and
final velocity 

 

v

 

' after emission of a photon of frequency

 

ω

 

. Conservation of energy and linear momentum
require, in the nonrelativistic approximation [4],

(6)

(7)

and, if we take 

 

k

 

 = [

 

n

 

(

 

ω

 

)

 

ω

 

/

 

c

 

]

 

s

 

, where 

 

s

 

 points in the
direction of the emitted photon, we obtain the correct
(up to terms of order 1/

 

c

 

) Doppler shift formula

(8)

where 

 

θ

 

 is the angle between 

 

v

 

 and 

 

s

 

 and –

 

�

 

k

 

 is the
recoil momentum of the atom.

It is useful for our purposes to summarize a few per-
tinent remarks by Ginzburg [5]. From Maxwell’s equa-
tions for a nonmagnetic dielectric, one obtains the well-
known relation [5, 6]

(9)

in the usual notation. The right-hand side is the rate of
change of the “mechanical momentum.” The last term
on the left is the time derivative of the Minkowski field
momentum density; however, it is the Abraham form

 

E

 

 

 

×
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/
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 that is generally regarded as the correct field
momentum density [6]. For a nondispersive medium
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—We consider the recoil momentum of a spontaneously emitting atom in a dispersive dielectric, first
from a microscopic approach, in which the dielectric is treated as a collection of atoms and the field is quantized

 

in vacuum
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momentum differs from both the Abraham and Minkowski forms of the field momentum, and this difference is
explained in terms of a dispersive contribution to the momentum acquired by the medium.
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with dielectric constant 

 

�

 

, we can identify the Abraham
force density 

 

f

 

A

 

 by writing

(10)

i.e., 

 

f

 

A

 

 = (

 

n

 

2

 

 – 1)(

 

∂

 

/
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t

 

)

 

E

 

 

 

×

 

 

 

H/c2. fA can be interpreted as
part of a force density [ρE + J × B + fA] acting on the
medium. Ginzburg remarks that “It is in reality impos-
sible to question this [Abraham] force notwithstanding
that it has as yet not been reliably measured directly. In
that way the problem [of choosing between the
Minkowski and Abraham forms] would be solved “in
favor” of the Abraham tensor.” For a nondispersive
medium, Abraham and Minkowski photon momenta (4)
and (5) become pA = �ω/nc and pM = n�ω/c, while the
momentum pA associated with the Abraham force is
(n2 – 1)�ω/nc [5]. Thus,

(11)

From this point of view, the simple derivation of the
(correct) Doppler shift formula (8) requires a reinter-
pretation: �k is not the momentum ( pM = pc) of the
emitted photon but rather the total momentum trans-
ferred from the atom to the emitted photon and to the
medium. In the case of a dispersive medium, however,
pM ≠ pc, as noted by Garrison and Chiao. One purpose
of this paper is to explain this difference between pM

and the momentum pc delivered by a photon to an
object in the medium, or, in the example we consider,
the momentum associated with recoil in spontaneous
emission. In particular, we attempt to explain why the
Minkowski momentum only gives the correct recoil of
an atom—or, more generally, the force on an object in
the dielectric—in the case in which dispersion is
ignored.

The large literature concerned with the definition of
electromagnetic field momentum has dealt mainly with
classical fields and nondispersive media. The more
recent literature includes detailed classical and quan-
tized-field analyses for dispersive and absorbing dielec-
trics by Loudon et al. [7], which have clarified consid-
erably the difference between field momentum and the
momentum actually transferred from an incoming field
to an object in the medium. In particular, Loudon advo-
cates a direct calculation of the Lorentz force to deter-
mine the forces in and on dielectrics.

Given the fundamental importance of the subject, it
is an interesting academic exercise to obtain the recoil
momentum of a spontaneously emitting atom in a
dielectric without explicit quantization of the electro-
magnetic field in the dielectric, i.e., by quantizing the
field in free space and deducing the recoil momentum
as a consequence of the fact that, with each atom of the
dielectric, a field propagating at the vacuum speed of
light c is associated. Such an exercise is carried out in
the following section, and, in Section 3, we outline the
straightforward calculation of the same result by quan-

∂
∂t
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c
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pM pA p
A

+ pc.= =

tizing the macroscopic field in the dielectric. In Section 4
we consider the momentum transferred to the bulk
dielectric and discuss the relation of our approach to
that of Loudon et al. Our conclusions are summarized
in Section 5.

2. RECOIL OF AN EMITTER 
IN A DISPERSIVE DIELECTRIC

We consider a model used recently in a microscopic
theory of spontaneous emission in a dispersive dielec-
tric [8]. Here, however, the source atom is taken to be a
two-level atom (TLA) [9] with mass m, transition fre-
quency ω0, and transition dipole moment d, and the
dielectric consists of N identical TLAs per unit volume,
each having a transition frequency ω' and, for simplic-
ity here, the same transition dipole moment d as the
source atom. The Hamiltonian in the dipole approxima-
tion is

(12)

(13)

where operators are indicated by carets (∧). We are
using the standard notation involving the Pauli two-
state operators ( , ,  for the source atom and

, ,  for the lth dielectric atom) and the photon

annihilation ( ) and creation ( ) operators. V is the
quantization volume, and ekλ (λ = 1, 2) is a polarization
unit vector for the mode with wave vector k and polar-
ization λ. ekλ and d are taken to be real, and k = |k | =
ωk/c; i.e., the field is quantized in free space. Effects of
the dielectric on the rate of emission and the recoil of
the source atom are due explicitly to the atoms consti-
tuting the dielectric, not to “dressed” photons defined

by quantizing the field in the dielectric.  is the linear
momentum operator for the center-of-mass motion of
the source atom. We ignore, to begin with, any recoil of
the dielectric atoms, which in effect are taken to be infi-
nitely massive.

From the Hamiltonian (12), we obtain the Heisen-

berg equation of motion for the linear momentum  of
the source atom:

(14)

In the dipole approximation, the spatial variations of
the field are small over the dimensions of the atom, so
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that R in Eq. (14) is regarded in effect as the expecta-

tion value of the operator . We write  =  + ,

where  and  are, respectively, the lowering and
raising operators for the two-level source atom and

(R) = (R) + (R), where (R) and

(R) are, respectively, the photon annihilation and

creation parts of the field. (R) and (R) are
given by

(15)

where (R) is the solution of the homogeneous

(source-free) wave equation for the field and (R) is
the part of the field due to all the dipole sources. Writ-
ing (14) in normal order for the field operators and tak-
ing the expectation value in an initial state in which
there are no photons in the field, we have

(16)

Using the formal solution of the Heisenberg equa-
tion for  in Eq. (13) for the electric field operator,
we obtain, of course, formally the same expression for
the field as in classical electrodynamics for a collection
of dipoles [10]:

(17)

or, in the rotating-wave approximation (RWA) [9] of

replacing  by  in (r, t),

(18)

where (r, t) is the field from the source atom and the
second term on the right-hand side of (17) is the sum of
the fields of the dielectric atoms.

The source atom is singled out in (17) and (18)
because it is initially excited. The other atoms constitut-
ing the dielectric are initially unexcited, each of them
has a dipole moment induced by the field acting on it,
and each frequency component of this dipole moment
is linearly proportional to the field at the same fre-
quency. In the RWA, at each field frequency (t) is
proportional to the photon annihilation part of the field
at rl . But because of normal ordering, only the source

part of this field, (rl , t), contributes to the expecta-
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tion value in (16), so that, in effect, we can ignore the
source-free (vacuum) field and write the equation

(19)

for each frequency component ω of the field, where
α(ω) is the polarizability at frequency ω. In the contin-
uum approximation, we replace this equation by

(20)

where k0 = ω/c. The integration is over the volume
bounded by the surface Σ of the dielectric, and the sub-
script a on the integral sign indicates that a small sphere
of radius a about r is excluded from the integration;
a  0 after the integration.

Equation (20) is just a statement of the superposition
principle: the total field at any point in the medium is
the field from the source atom plus the field from the
atoms making up the dielectric in which the source
atom is placed. It was derived by quantizing the field in
vacuum; the field of each atom propagates with the vac-
uum speed of light c. This equation has exactly the
same form as the classical integral equation that is the
starting point in the proof of the Ewald–Oseen extinc-
tion theorem given in Born and Wolf [11], except that,
in the latter, the first term on the right-hand side is an
externally applied field incident on the medium,
whereas in Eq. (20) it is the field from an atom inside
the medium. If we assume a solution of Eq. (20) of the
form

(21)

with K ·  = 0, then, as shown in Born and Wolf, the
integral on the right-hand side of (20) is equal to

[4πNα(ω)][K2 + ]/[K2 – ] plus a surface integral
that must, for consistency, cancel the first term on the
left-hand side. Therefore,

(22)

or
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where 4πNα(ω)/3 = [n2(ω) – 1]/[n2(ω) + 1], i.e., n(ω) is
the refractive index. In other words, at each frequency
ω, the superposition of the fields from all the atoms of
the medium, each of which propagates at the velocity c,
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Â

2k0
2

k0
2

Êd
+( )

r ω,( ) 4πNα ω( )
3

------------------------
K

2
2k0

2
+

K
2

k0
2

–
---------------------Êd
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results in the phase velocity c/n(ω) for the total field.
This is all that will be required to infer that a photon in
the medium has a linear momentum of magnitude
n(ω)�ω/c. In particular, it is not necessary for this pur-
pose to quantize the field in the dielectric rather than in
vacuum.

Let us return now to the calculation of the recoil
momentum of the source atom. The formal solution of
the Heisenberg equation of motion for (t) gives

(24)

which, in the dielectric continuum limit, is just another
way of writing (20). The considerations leading from
(20) to (21) and (23) do not give us an explicit solution

for (R, t). But they determine how each frequency

component of (R, t) varies with R and, for the pur-

pose of calculating  as described below, allow
us to write (16) as

(25)

The Heisenberg equation of motion for (R', t) is

(26)

The second term on the right has contributions from the
field of the dielectric at R' plus the fields of all the other
atoms. The contribution from the atom at R', in the
Markovian or Weisskopf–Wigner approximation, is
responsible for radiative damping of the dielectric atom
at R'; i.e., it contributes –β' (R', t), where β' =
d2ω'3/6π�0�c3. We ignore radiative shifts here, which
for our purposes can be assumed to be included in the
definitions of the transition frequencies. The effect of
all the other atoms is complicated, and we approximate
it by including only the effect of the source atom. For a
dilute dielectric, the dielectric atoms make a relatively
small contribution because they are unexcited; for this
reason we also approximate (R', t) by –1, assuming
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that, with high probability, every dielectric atom
remains forever unexcited. Thus,
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In the RWA, and with (t) ≅ –i (t) and (t) ≅

− (t), we have
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where we now take R = 0 for the coordinate of the
source atom and define
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where we drop a Cauchy principal part term that gives
a “Lamb shift,” which we are ignoring, and p+(t) is the
probability at time t that the source TLA is in the upper
state. For our initially excited source atom, p+(t) =
exp(–A't), where A' is the spontaneous emission rate in
the dielectric. Then, for t � 1/A',

(34)

where  is the integral over all solid angles

about k0 and now k0 = ω0/c. Obviously the integral over
solid angles vanishes, as it must because the direction
of photon emission is equally likely in directions k0 and
–k0. However, it is straightforward to show, using the
same approximations as above, that

(35)

Now,
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and
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where Fi(R) is the imaginary part of F(R). Therefore,
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where A is the spontaneous emission rate of the source
atom in free space and δn = 2πNd2/[�(ω' – ω0)] is the
refractive index at frequency ω0 for a dilute dielectric
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consisting of N TLAs per unit volume, each having
transition dipole moment d and transition frequency ω'.

We have assumed that all the transition moments
point in the same direction; whereas, to model an iso-
tropic dielectric, we should allow the dielectric atoms
to have transition moments pointing in all three direc-
tions. Doing this, and averaging over the relative orien-
tations of the source- and dielectric-atom dipole
moments, or, alternatively, carrying out the calculation
as above but allowing the dielectric atoms to make
∆m = 0, ±1 transitions, for instance, we obtain [8]

(39)

which, as shown in [8], is the spontaneous emission rate
A of the source atom in the (dilute) dielectric; i.e., it is
the small-δn approximation to nA[(n2 + 2)/3]2, the
spontaneous emission rate, including the Lorentz–
Lorenz local field correction, in a dielectric. Thus,

(40)

The recoil momentum of the source atom has the
expected magnitude pc = n(ω0)�ω0/c. Note that,
although our derivation includes a local field correction
at the source atom, this correction has no effect on the
source atom’s recoil momentum.

3. RECOIL CALCULATION BY FIELD 
QUANTIZATION IN THE DIELECTRIC

We now calculate the recoil momentum using the
single-atom Hamiltonian

(41)

with the electric field quantized not in free space but in
the dielectric [12]:
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where k = n(ω)ω/c, ng = n(ω) + ω(dn/dω), and, of
course, the annihilation and creation operators now
refer to the “dressed” photons of the dielectric. We
assume that the field frequencies that will contribute to
recoil are far removed from any absorption resonances,
so that the field is quantized in a lossless (but disper-
sive) dielectric. Since the role of normal ordering and
other aspects of the calculation here are straightforward
and much the same as in the preceding section, we pro-
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ceed immediately to the RWA expression for the rate of

change of the expectation value of :

(43)

Going to the mode continuum limit and using dk =
(ng/c)dω and (33), we have

(44)

where again A = /3π�0c3 is the free-space sponta-
neous emission rate. Without any local field correction,
A' = n(ω0)A, and (40) follows. If there is a local field
correction � such that A' = �nA, it should be included
in the field, and, therefore, (44) should be multiplied by
�. In other words, the recoil momentum is n�ω0/c
regardless of whether there is a local field correction,
just as in the calculation in the preceding section.

4. MOMENTUM TRANSFER 
TO THE DIELECTRIC

Let us consider now the force on the dielectric
atoms. Since they are assumed to be unexcited, this
force must arise from the field of the source atom or,
more generally, any applied field. The ith component of
the force on the bulk dielectric is, in the continuum
approximation and employing the summation conven-
tion for repeated indices,

(45)

where �i is the momentum imparted to the dielectric
and Pj is the jth component of the macroscopic polar-
ization in the dielectric. For simplicity we will formu-
late the discussion here classically to begin with.

Since the field from the source atom is time-depen-
dent, we write

(46)

and

(47)

P̂
2

d
dt
----- P̂

2〈 〉 2��
�ω

2nng�0V
--------------------- 

  k
2 d ekλ⋅( )2

kλ
∑=

× t ' σ̂† t( )σ̂ t '( )〈 〉e
iω t ' t–( )

.d

0

t

∫

d
dt
----- P̂

2〈 〉 n ω0( )A
n ω0( )�ω0

c
------------------------ 

 
2

p+ t( )=

=  n ω0( )A
n ω0( )�ω0

c
------------------------ 

 
2

e
A't–

,

d
2ω0

3

Fi
d�i

dt
--------- P j

∂E j

∂xi

--------d
3
r,∫= =

E j r t,( ) = � j r t,( )e
iω0t–

 = e
iω0t–

∆�̃ j r ∆,( )e
i∆t–

d

∞–

∞

∫

P j r t,( ) �0 ∆χ ω0 ∆+( )�̃ r ∆,( )e
i ω0 ∆+( )t–

,d

∞–

∞

∫=

where χ(ω) is the susceptibility, which is taken to be
independent of r (no spatial dispersion). Assuming that
�j(r, t) is slowly varying compared with exp(–iω0t), we
have

(48)

where χ and χ' = dχ/dω are evaluated at ω = ω0. Then,

(49)

upon cycle averaging.
In the case of a plane wave,

(50)

(49) becomes

(51)

which implies, from (45) and χ = n2 – 1,

(52)

Therefore, the momentum density of the dielectric has
the magnitude

(53)

To phrase the discussion in terms of photons, we use
Eq. (42) to write, for a single plane-wave mode of the
field,

(54)

after dropping the term associated with zero-point
energy and momentum. Then, (53) implies that each
photon in the bulk dielectric imparts to the dielectric a
momentum of magnitude

(55)

P j r t,( ) �0 ∆χ ω0( )d
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∞
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p�
n
ng

-----ω dn
dω
-------�ω

c
-------.=



1438

LASER PHYSICS      Vol. 15      No. 10      2005

MILONNI, BOYD

Now, consider the conservation of momentum when the
source atom emits a photon and recoils. If we take the
direction of the emitted photon to be positive, the
source atom’s recoil momentum is –hnω0/c, as shown
earlier. The momentum of the emitted field is given by
the Abraham momentum �ω0/ngc, while the medium
picks up a momentum (n2 – 1)�ω0/ngc corresponding to
the Abraham force (n2 – 1)(∂/∂t)(E × B)/c2 [5]. Because
of dispersion, the medium also picks up the momentum
p�. Thus, the conservation of linear momentum can be
expressed in the form

(56)

which can be written equivalently as

(57)

Note that the momentum densities gM or g� can be neg-
ative but that their sum is always positive for n > 0.

5. DISCUSSION

Equation (56) explains why neither the Abraham
nor the Minkowski momenta for a photon give the
momentum imparted to an object by a field in a disper-
sive dielectric medium [2]. Both of these momenta are
part of a momentum conservation condition that must
also include the dispersive component p� of the
momentum picked up by the medium; the latter, plus
the Minkowski momentum, is equal in magnitude to the
canonical momentum pc. The sum pM + p� (=pc) may be
regarded in our example as the momentum imparted to
the field and the bulk dielectric.

In their treatment of the propagation characteristics
of energy and momentum in dispersive (and absorbing)
dielectrics, Loudon, Allen, and Nelson have also
obtained, in a rather different way, a momentum of
form (53), as did Nelson earlier [7]. These treatments,
based on a Lagrangian formulation, arrive at such a
form as a dispersive contribution to the pseudomomen-
tum, a quantity that is conserved (in the absence of dis-
sipation) when the dielectric is homogeneous. The
pseudomomentum combines with the momentum to
give the “wave momentum,” which, in the terminology
of this paper, is the canonical momentum of Garrison
and Chiao [2]. In essence this dispersive component of
the pseudomomentum is a dispersive contribution to
the Minkowksi momentum.

–n
1
ng

----- n
2

1–
ng

--------------
n
ng

-----ω dn
dω
-------+ + + 

  �ω0

c
--------- 0,=

– pc pM p�+ + 0.=

Note added in proof: Campbell et al. [Phys. Rev.
Lett. 94, 170403 (2005)] have recently reported the
results of an experiment confirming that an atom in a
dispersive medium acquires a recoil momentum of
magnitude (�ω0/c)n(ω0) when it absorbs a photon of
frequency ω0, in agreement with the conclusions of this
paper.
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