
Maximizing the opening of eye diagrams for slow-light
systems

Ravi Pant,1,* Michael D. Stenner,1,2 Mark A. Neifeld,1,2 Zhimin Shi,3

Robert W. Boyd,3 and Daniel J. Gauthier4

1College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
2Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721, USA

3Institute of Optics, University of Rochester, Rochester, New York 14627, USA
4Department of Physics and the Fitzpatrick Center for Photonics and Communication Systems, Duke University, Durham,

North Carolina 27708, USA

*Corresponding author: rpant@email.arizona.edu

Received 23 February 2007; revised 8 May 2007; accepted 20 July 2007;
posted 24 July 2007 (Doc. ID 80350); published 5 September 2007

We present a data-fidelity metric for quantifying distortion in slow-light optical pulse delay devices. We
demonstrate the utility of this metric by applying it to the performance optimization of gain-based
slow-light delay systems for Gaussian and super-Gaussian pulses. Symmetric Lorentzian double-line and
triple-line gain systems are optimized and achieve maximum delay of 1.5 and 1.7 times the single-line
gain system delay, respectively. The resulting double-line gain system design is qualitatively similar to
the double-line gain system designed with a previous metric, but is tuned specifically to constrain data
fidelity. © 2007 Optical Society of America

OCIS codes: 060.2330, 290.5900.

1. Introduction

Applications such as high-speed optical networking,
information processing, and computing can all bene-
fit from all-optical signal processing. Two important
functionalities are optical buffering and bit synchro-
nization, both of which require controlled generation
of pulse delays relative to the pulse width [1–11]. In
recent years, a number of methods have been pro-
posed for slowing light pulses [12–16]. All of these
methods exhibit a trade-off between delay-bandwidth
product and pulse distortion: pulse distortion in-
creases as the delay-bandwidth product increases. By
pulse distortion, we simply mean a change in the
pulse shape, including broadening or contraction.
Consideration of this delay-distortion trade-off is es-
sential for the design of robust communications sys-
tems [17–21].

Recently, Stenner et al. proposed a metric to quan-
tify distortion in slow-light-based systems [22]. Their

frequency-domain metric quantifies distortion by
considering the device response over a finite band-
width that is comparable to the pulse bandwidth
rather than just at the carrier frequency. Although
convenient and conceptually simple, that metric is
not directly connected to data fidelity or temporal
pulse shape.

In this paper, we present an improved metric that
quantifies pulse distortion for slow-light optical pulse
delay devices. This metric is based on the eye diagram,
which is frequently used to characterize the perfor-
mance of communication systems and is directly re-
lated to pulse detection and digital data fidelity. Using
this metric we optimize three different gain-based sys-
tems: single, double, and triple Lorentzian lines. We
optimize each of these media using two different pulse
shapes: Gaussian and super-Gaussian.

A. Distortion Metric

Any pulse propagating through a realistic slow-light
medium experiences distortion. These changes in the
pulse shape can make reliable pulse detection diffi-
cult. In this section, we present our metric to quantify
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this distortion and apply it to a single-line gain sys-
tem using two different pulse shapes.

For each pulse shape, we define the bit period T0
as the time required to transmit a logical “1” or a
logical “0”. In our study, we use a return-to-zero
(RZ) modulation scheme for which logical 0 is rep-
resented by the absence of a pulse and logical 1 is
represented by a pulse that occupies half of the bit
period. Using this definition of bit period, we define
the pulse amplitudes for RZ Gaussian and super-
Gaussian pulses as

Eg�t� � exp��
t2

�2�, (1)

Esg�t� � exp��
tn

�n�, n � 2, (2)

respectively, where � � T0�4 is the pulse half-width
at 1�e amplitude and 1�e2 intensity. The Gaussian pulse
has a power spectrum given by S��� � exp���2�2�2�
with a half-width at half-maximum (HWHM) of �g

� �2 ln�2���. We consider super-Gaussian pulses
with n � 6. The super-Gaussian power spectrum can-
not be so cleanly represented, but it has an HWHM
of �sg � 1.2�g. For all figures herein, quantities are
plotted versus the linewidth-normalized bit rate BN

� ���T0	�. Here, � is the HWHM of the Lorentzian
gain lines used to construct our slow-light systems.

Although Gaussian pulses are rarely used in com-
munication systems, we consider them here because
many of the studies of slow-light systems so far have
used Gaussian pulses. Super-Gaussian pulses are
well contained within the time interval T0�2; whereas,
Gaussian pulses extend beyond this period, as shown
in Figs. 1(b) and 1(a), respectively. Super-Gaussian
pulses, therefore, provide a good approximation of the
“square” pulses used in common systems that imple-
ment RZ. In practice, pulses from modulated lasers
are not perfectly rectangular and have smooth edges.
These pulses can be modeled using the super-
Gaussian pulses [23]. Moreover, the use of two dif-
ferent pulse shapes demonstrates that this metric
applies to different pulse shapes and leads to quali-
tatively similar medium designs.

Figures 1(a) and 1(b) show Gaussian and super-
Gaussian �n � 6� pulses, respectively, after propaga-

tion through a single Lorentzian gain-line system
described by the transfer function

T1��� � exp�j��

c 

g0	

2�� � �0 
 j	��L	, (3)

where �0 is the optical carrier frequency, g0 is the
gain coefficient, L is the length of the medium, and c
is the speed of light in vacuum. The transfer function
approach used here to propagate the pulses assumes
that the system is linear in the signal field. For small
signal field and g0L � 10, the transfer function ap-
proach and coupled wave theory yield the same re-
sults [24]. The coupled wave equations for the pump,
signal, and acoustic field, under the slowly varying
envelop approximation (SVEA), are given as [24]

�
�Ep

�z 

nfg

c
�Ep

�t �
�Ep

2 
 jg2Es�, (4)

�Es

�z 

nfg

c
�Es

�t �
�Es

2 
 jg2Ep�*, (5)

��

�t 
 �	 � j���� �
jg1EpE*s

�
, (6)

where the pump, signal, and acoustic fields are de-
noted by Ep, Es, and �;  is the absorption coefficient;
nfg is the group index of the fiber mode; g1 �
	e�0�B��4�a

2�; g2 � 	e�p0��4cnf�0�; � � �c�0nf��2; 	e is
the electrostriction coefficient of the fiber; �0 is the
vacuum permittivity; �a is the speed of the acoustic
wave; nf is the modal index of the fiber mode; ��
� �0 � �s0 is the detuning from the gain-line center;
and �0 is the material density. Under the conditions
of undepleted pump and weak signal, transforming
Eqs. (4)–(6) to the frequency domain gives

�Es

�z � j�� � �s0�
nfgEs

c � jg2Ep�*, (7)


	 � j�� � �0���* � �j
g1

�
E*pEs. (8)

Here, we have neglected the fiber attenuation �
� 0�. Substituting �* from Eq. (8) into Eq. (7) one can
rewrite the evolution of the signal field Es as

�Es

�z � jk���Es, (9)

where k��� � nf��c 
 �0Ip	���� � �0 
 j	�; 0 �
2g1g2���	�. From Eq. (9) one can see that under the
weak signal and undepleted pump approximation,
propagation of the signal field can be described by the
transfer function approach. To ensure that the sys-
tem remains linear in the signal field, we restrict the

Fig. 1. (Color online) Input (solid curve) and output (dashed
curve) (a) Gaussian pulse and (b) super-Gaussian pulse after prop-
agation through a single-line gain system with gain exponent
g0L � 10 and BN � 0.058. This bit rate is chosen to demonstrate
visible distortion even at small BN.
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gain to g0L � 10, which earlier experimental results
suggest is a reasonable constraint [10]. Recently, Zhu
et al. demonstrated Brillouin gain slow-light using a
broadband pump and 2 km long fiber [3]. The exper-
imental results are shown to be in good agreement
with the results using the transfer function approach.
Thus, the transfer function approach is also valid for
broadband pumps and long fiber as long as the pre-
viously mentioned criteria are met. The propagated
Gaussian and super-Gaussian pulses are shown in
Figs. 1(a) and 1(b). The Gaussian pulse looks slightly
broadened with otherwise little change in pulse
shape, whereas the super-Gaussian pulse experi-
ences significant distortion, visible primarily as a
smoothing of the rising and falling edges.

Although the pulse shown in Fig. 1(b) is visibly
distorted, it may still be reliably detected by observ-
ing near its peak. For threshold detection, we can
quantify the optimal time to detect pulses by using an
eye diagram. For a sequence of pulses, an eye dia-
gram is created by superimposing the pulses corre-
sponding to 0s and 1s over a fixed time interval.
Figure 2 shows an eye diagram for a random pulse
sequence of 0s and 1s before and after propagation
through a single-line gain system. The eye diagram
degrades after propagation through the medium, as
shown in Fig. 2(b). The degradation in the eye dia-
gram can be quantified using standard metrics such
as eye opening, power penalty, etc. [25–29]. The
choice of metric may vary from application to appli-
cation. Although the output eye diagram looks differ-
ent from the input eye diagram, the output pulses can
still be reliably detected by observing the pulses at
the moment when the eye opening is maximum. Eye
opening E is defined as the difference between the
minimum of the 1s and the maximum of the 0s. The
eye opening determines the amount of noise that can
be tolerated; a larger eye opening is better as it re-
duces the error probability in detection of 0s and 1s.
Herein, we have normalized all the eye diagrams so
that the maximum eye opening varies from 0 to 1.
This normalization corresponds to a physical atten-
uation of the signal after propagation through a gain
medium to preserve the desired power level at the
detector input. After normalization, a fixed amount of
noise is added to the pulses, corresponding to the
detector-noise-limited case. In this way, the signal-
to-noise ratio (SNR) remains fixed. The optimal time
to detect a pulse is the time when the eye opening is

maximum. Pulse delay can therefore be defined as
the time difference between the maximum eye open-
ings of the output and input eye diagrams.

Based on the eye diagram, we define distortion
D as

D � 1 � max�E�. (10)

Ideal noiseless input pulses will lead to max�E� � 1
and D � 0. In the case of noisy input, D � 0 indicates
that the input is itself corrupted. After propagation
through the medium, changes to the pulse shape and
additional noise will reduce the eye opening and fur-
ther increase D. In this sense, D quantifies more than
just pulse distortion, but limiting D does limit the
impact on data fidelity from pulse distortion. In our
study, we are considering detector-limited-noise and
so D � 0 for input pulses and at the output of the
pulse delay medium D therefore quantifies only the
effect of the medium. The distortion measure D can
be related to data fidelity by considering the relation-
ship between eye opening, Q factor, and bit error rate
(BER). The Q factor is defined as Q � �P1 � P0����1

 �0�, where P1 and P0 are the minimum of 1 and
maximum of 0 at the maximum eye opening instant
[29]; �1 and �0 are the noise standard deviations for
levels 1 and 0, respectively. The BER is then given by
BER � �1�2�erfc�Q���2��. This relationship between
distortion D and BER depends on the noise level. For
all of the following results, we maintain a detector-
noise-limited SNR of 35 dB at the receiver. Given this
SNR, we chose a distortion constraint D � 0.35 so
that the inter-symbol interference (ISI) is small and
BER is less than 10�12. Note that power penalty (PP),
another common metric for characterizing optical
components, is monotonically related to distortion ac-
cording to

PP � 10 log10�1 
 rex

1 � rex
�, (11)

where rex � P0�P1 [28,29]. Thus, as the eye opening
E � P1 � P0 decreases, both distortion D and power
penalty increase.

To demonstrate the use of this metric, we use it to
characterize the performance of a single-line gain
system described by Eq. (3). We characterize the
delay-distortion performance of this single-line gain
system by studying the variation of D and the frac-
tional pulse delay �T�Tpulse �Tpulse � T0�2� as func-
tions of bit rate BN. The maximum intensity gain
exponent g0L is constrained such that g0L � 10. The
maximum value of the gain exponent depends on fac-
tors such as pump power limits, the system threshold
for nonlinear optical effects, noise, etc. Therefore, the
maximum usable gain will vary from one slow-light
system to another. In this study, we simulate a
stimulated-Brillouin-scattering (SBS) slow-light me-
dium consisting of 1 km of fiber and Brillouin shifted
pump and probe lasers. The probe is modulated using
an external Mach–Zhender modulator and the pump

Fig. 2. Eye diagram for (a) input data stream and (b) output data
stream after propagation through a single-line gain system with
gain exponent g0L � 4.0 and BN � 0.42.
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power is controlled using the erbium-doped fiber am-
plifier gain module. For double-line and triple-line
gain systems (see Section 2), the pump can be mod-
ulated using a Mach–Zhender modulator to generate
the doublet sidebands. The frequency separation be-
tween the doublet lines (as described in Section 2)
is tuned by varying the modulation frequency. Based
on this choice of system, we choose a maximum g0L
value of 10, which is reasonable for Brillouin gain
systems [10].

The results of characterizing this single-line SBS
system are shown in Fig. 3. Figures 3(a) and 3(b)
show the fractional pulse delay and distortion, re-
spectively, for a random Gaussian pulse sequence
and fixed g0L � 10. For fixed g0L, fractional pulse
delay �T�Tpulse increases as we decrease Tpulse, i.e.,
increase the bit rate. This increase in the fractional
pulse delay with the bit rate comes at the cost of
greater distortion. At a normalized bit rate of 0.43 the
distortion limit is reached. Increasing the bit rate
beyond 0.43 causes the system to exceed the distor-
tion limit. This implies that a fractional pulse delay of
�1 is the largest possible under the distortion con-
straint at g0L � 10. This example demonstrates that
one cannot simply employ the maximum gain at high
bit rates because the distortion will become unaccept-
ably large.

To maximize the fractional pulse delay at each bit
rate while simultaneously limiting distortion, one
must optimize the system parameters as described in
Section 2. In the case of a single-line gain system,
there is only one free parameter: the gain. Therefore,
at each bit rate, we maximize the fractional pulse
delay by varying g0L subject to the constraints g0L
� 10 and D � 0.35. Figure 4 shows the results of this
single-line gain system optimization.

Figure 4(a) indicates that the largest fractional
pulse delay occurs when both the gain and distortion
constraints are met simultaneously. This condition
occurs at a normalized bit rate of 0.43. To the left of
this point (smaller bit rate) the system is gain-
limited, and to the right (larger bit rate) it is
distortion-limited, as shown in Figs. 4(b) and 4(c).
This implies that at larger bit rates, keeping the gain
fixed at its maximum value leads to unacceptable
distortion, and therefore the gain parameter must
reduce to satisfy the distortion constraint. This is
effectively a sacrifice in pulse delay, but a necessary
one if we insist on reliable data detection.

For optimizing the system parameters, we perform
an adaptive search over the parameter space for each
bit rate and choose the parameters that maximize the
fractional pulse delay under the distortion constraint
D � 0.35. The optimization begins with a search
using a coarse grid of parameters. The grid spacing is
then refined iteratively in the neighborhood of the
best solution. The search ends when D � 0.35 and the
best fractional delay changes by less than 2%. Be-
cause this search has finite granularity, the best
observed parameters that satisfy the constraint ine-
qualities differ slightly from the ideal parameters.
This is visible especially at higher bit rates, where D
is more sensitive to small gain fluctuations.

The delay performance of a single-line gain system
can be improved by using multiple gain lines [22]. In
Section 2, we will use multiple gain lines to improve
the delay performance at higher bit rates using this
new metric.

2. Distortion Compensation Using Multiple Gain Lines

For single-line gain systems, we observe that gain
and distortion constraints limit the maximum achiev-
able fractional delay. While this is true for any sys-
tem, choosing a system with additional degrees of
freedom can improve the maximum delay [22,30].
Recall that the single-line gain system had only one
free parameter: the gain. For multiple-line gain sys-
tems, the number of degrees of freedom increases. In
this study, we consider double-line and triple-line
gain systems, characterized by the transfer functions

T2��� � exp�j��

c 

g	

2��� � �0 � �� 
 j	�



g	

2��� � �0 
 �� 
 j	��L	, (12)
Fig. 3. Variation of (a) fractional delay and (b) resulting distor-
tion with fractional bit rate for a single-line gain system. Results
are obtained for g0L � 10.

Fig. 4. (a) Optimized fractional delay plotted against normalized
bit rate BN for a single-line gain system subject to the distortion
constraint D � 0.35 and the gain constraint g0L � 10. That the
maximum delay is approximately 1 is purely coincidental and
depends on the values of the gain and distortion constraints as well
as the pulse shape. (b) Corresponding value of the gain exponent
g0L and (c) distortion D of the transmitted pulse.
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T3��� � exp�j��

c 

g	

2��� � �0 � �� 
 j	�



g0	

2��� � �0� 
 j	�



g	

2��� � �0 
 �� 
 j	��L	,
(13)

respectively, where g0 is the gain coefficient of the
central gain line for the triple-line gain system, g is
the gain coefficient of the separated gain lines for
both the double-line and triple-line gain systems, 2�
is the frequency separation between the separated
lines, and � is the HWHM of all Lorentzian gain lines.

Figures 5(a) and 5(b) show the component and
overall gain spectra for the double-line and triple-
line gain systems, respectively. Use of multiple gain
lines makes the gain uniform over a larger band-
width compared to the single-line gain system, and
thus increases the distortion-limited bandwidth. This
suggests that the maximum gain can be extended
over a larger fractional bandwidth than in the single-
line gain system, resulting in increased fractional
delay. This slow-light gain-flattening was recently
studied analytically by Khurgin, who showed that the
delay performance of optical amplifiers can be im-
proved, but the gain required for achieving a frac-
tional delay Nst varies as Nst

3�2 even with gain
flattening [31]. It is also possible to generate a broad,
flat gain spectrum using a continuously broadened
pump [3–6].

For double-line and triple-line gain systems, we
optimize the system parameters at each normalized
bit rate BN to maximize the delay as we did for the
single-line gain system. Figures 6(a) and 7(a) show
the fractional delay for single-line, double-line, and
triple-line gain systems optimized for super-
Gaussian and Gaussian pulses, respectively. For
the double-line gain system, we optimize g and �,
whereas for the triple-line gain system we optimize
g0, g, and �. In all cases the distortion is limited to
D � 0.35, and the maximum gain at any frequency �
is limited to 10.

For normalized bit rates smaller than 0.43, the
optimal fractional delay achieved for single-line,
double-line, and triple-line gain systems is identical.
In this region, the additional degrees of freedom are
not required because the distortion limit has not been

reached, and maximum gain is achieved by a single-
line gain system. Therefore, the double-line and
triple-line gain systems mimic a single-line gain
system. For the double-line gain system, when
�BN � 0.43�, the linewidth-normalized frequency sep-
aration ���	� is zero [Figs. 6(c) and 7(c)] and the gain
exponent for each line is half of the maximum value
[Figs. 6(b) and 7(b)]. For the triple-line gain system,
only the central gain line contributes �g � 0�, and it
has the maximum gain, g0L � 10.

For larger bit rates, the single-line gain system
reaches the distortion limit, and the gain must be
reduced to maintain acceptable distortion. This re-
sults in a decrease in delay for the single-line gain
system. However, at this point, the double-line and
triple-line gain systems begin to use their additional
degrees of freedom. In the bit rate region from 0.43 to
0.94, the double-line and triple-line gain systems si-
multaneously achieve maximum gain and distortion
by acting as an optimally spaced double-line gain
system. Specifically, we note that the gain of the cen-

Fig. 5. (Color online) Gain versus detuning from carrier fre-
quency for (a) example double-line gain system with gL � 6.75 and
��	 � 0.67 and (b) example triple-line gain system with g0L
� 3.2, gL � 6.67, and ��	 � 0.99. In each case, the dotted curve
shows the net gain exponent and the solid curves show the con-
stituent Lorentzian lines.

Fig. 6. (Color online) Comparison of (a) optimized fractional de-
lay, (b) optimized gain exponent, and (c) optimized frequency sep-
aration for super-Gaussian data sequences for three gain systems.

Fig. 7. (Color online) Comparison of (a) optimized fractional de-
lay, (b) optimized gain exponent, and (c) optimized frequency sep-
aration for Gaussian data sequences for three gain systems.
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tral line of the triple-line gain system reduces making
the double-line and triple-line gain systems nearly
identical. At a bit rate of 0.94, the double-line gain
system can no longer maintain the maximum gain
without excessive distortion, and so it must reduce its
gain as the single-line gain system did before. How-
ever, at this bit rate, the central line gain g0 of the
triple-line gain system continues to increase, and the
frequency separation increases further to maintain
the maximum gain. It continues to produce increas-
ing delay until a bit rate of 1.17, when it too must
reduce its gain to avoid excessive distortion.

The overall result of this optimization is that
double-line and triple-line gain systems achieve sig-
nificantly larger distortion-constrained fractional de-
lay compared to the single-line gain system. Using a
double-line gain system improves the fractional delay
performance by factors of 4 and 7 for super-Gaussian
and Gaussian pulses, respectively, compared to a
single-line gain system at the same bit rate �BN

� 0.94�. We also note that for both pulse shapes the
double-line gain system provides 1.5 times the best
single-line gain system delay. For a Gaussian pulse
stream, the triple-line gain system improves the frac-
tional delay performance by a factor of 12 and 2 com-
pared to single-line and double-line gain systems,
respectively, at the same bit rate �BN � 1.17�. For
super-Gaussian pulses, these improvement factors
are 5.5 and 2.5, respectively. At higher bit rates, the
pulse edges are smoothed by the comparatively nar-
row gain line. As a result, the peak of the output pulse
and moment of maximal eye opening shifts toward
the trailing edge of pulse. This leads to a measured
delay �T slightly less than Tpulse�2, as shown in Fig.
6(a). The optimum triple-line gain system fractional
delay is also 1.7 and 1.15 times better than the best
single-line and double-line gain system delays, re-
spectively. These improvement factors are observed
for both Gaussian and super-Gaussian pulses.
Table 1 summarizes the delay and bandwidth values
for the single-, double-, and triple-line gain system.
The Brillouin gain linewidth in optical fibers is
50 MHz full width at half-maximum (FWHM). Note
that the double-line and triple-line gain system extend
the optimal gain spectral width 2 and 2.7 times the
single-line gain system, respectively. Using a broad-
band pump (whether discrete or continuous), the gain
bandwidth can be extended arbitrarily to design high
data-rate systems [3–6].

The optimization results obtained with this metric
show trends similar to the previously reported results
for single-line and double-line gain systems [22] and
recent results from Shi et al. and Minardo et al. for
double-line and triple-line gain systems using a

transfer-function metric [32,33]. The advantage of
working with our metric is that it deals directly with
the pulses and, being based on eye opening, directly
reflects the reliability of received data. Although the
maximum achieved fractional delay of 1.7 pulse
width observed in our study is not practical for optical
buffering, this delay can be easily tuned by adjusting
the gain. Tunable delay of one pulse width is very
useful for data synchornization [18]. Furthermore,
this method of combining multiple delay elements
based on data fidelity can be used to achieve compa-
rable improvement with other delay techniques such
as coupled resonators [13] or electromagnetically in-
duced transparency [34,35].

3. Conclusion

We have presented a data-fidelity metric for slow-
light systems based on eye diagrams. Our results are
qualitatively similar to those obtained with transfer-
function-based metrics. The qualitative similarity
supports the usefulness of those metrics, although
the approach described herein is more directly con-
nected to data fidelity. We observe fractional delay
improvement factors of 7 and 12 using double-line
and triple-line gain systems, compared to a single-
line gain system at the same bit rate.

We gratefully acknowledge the financial support of
the DARPA DSO Slow-Light Program. We would also
like to thank Alan E. Wilner for his helpful input and
discussion.
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