Entanglement: The Legacy of Albert Einstein and New Possibilities for the Technology of Image Formation

Robert W. Boyd
The Institute of Optics and
Department of Physics and Astronomy
University of Rochester, Rochester, NY 14627
http://www.optics.rochester.edu

with special thanks to Sean Bentley, John Howell, Hye Jeong Chang, Colin O’Sullivan-Hale, Heedeuk Shin, and many others.

Presented at “Albert Einstein and his Legacy,” the 93rd Topical Symposium of the New York State Section of the American Physical Society, Colgate University, October 14, 2005.
Research in Quantum Imaging

Can images be formed with higher resolution or better sensitivity through use of quantum states of light?

Can we "beat" the Rayleigh criterion?

Quantum states of light: For instance, squeezed light or entangled beams of light.
Major US Initiative in Quantum Imaging

Quantum Imaging MURI Team

Robert Boyd, John Howell, UR
Sasha Sergienko, Bahaa Saleh, Mal Teich, BU
Jon Dowling, LSU
Jeff Shapiro, MIT
Geraldo Barbosa, Prem Kumar, NWU
Yanhua Shih, Fow-Sen Choa, Morton Rubin, UMBC

International Collaborators
Claude Fabre, University of Paris
Mikhail Kolobov, University of Lille
Luigi Lugiato, Alessandra Gatti, Como
Quantum Imaging Research Plan

Quantum Imaging Systems
- Quantum Optical Coherence Tomography (QOCT).
- Quantum Coincidence (or Ghost) Imaging.
- Quantum Laser Radar.
- Quantum Lithography.

Quantum Imaging Technologies
- Intense Sources of Entangled Photons
 - Parametric Downconversion in Periodically Poled Waveguides.
 - Quantum Entangled Sources based on Third-Order Interactions.
 - Entanglement Utilizing Complex Pump Mode Patterns.
- High-Order Entanglement.
- Pixel Entanglement and Secure Transmission of Images.
- Unified Theoretical Framework for Classical and Quantum Imaging.
Progress in Quantum Lithography

Institute of Optics, University of Rochester, Rochester NY, USA
Quantum Lithography

- Entangled photons can be used to form interference pattern with detail finer than the Rayleigh limit.
- Process "in reverse" performs sub-Rayleigh microscopy, etc.

("al." includes Jon Dowling)
Quantum Lithography: Easier Said Than Done

• Need an N-photon recording material

 For proof-of-principle studies, can use N-th-harmonic generator, correlation circuitry, N-photon photodetector.

 For actual implementation, use ????

 Maybe best bet is UV lithographic material excited in the visible or a broad bandgap material such as PMMA excited by multiphoton absorption.

• Need an intense source of individual biphotons (Inconsistency?)

 Maybe a high-gain OPA provides the best tradeoff between high intensity and required quantum statistics

 3PA in PMMA breaks chemical bond, modifying optical properties.

 Problem: self healing
Use of High-Gain Parametric Amplifier

Is two-photon interference pattern preserved?

- Transfer equations of OPA
 \[
 \hat{a}_1 = U\hat{a}_0 + V\hat{b}_0^\dagger, \quad \hat{b}_1 = U\hat{b}_0 + V\hat{a}_0^\dagger
 \]
 where
 \[
 U = \cosh G \quad V = -i \exp(i\varphi) \sinh G
 \]

- Field at recording medium
 \[
 \hat{a}_3 = \frac{1}{\sqrt{2}} \left[(-e^{i\chi} + i)(U\hat{a}_0 + V\hat{b}_0^\dagger) + (ie^{i\chi} - 1)(U\hat{b}_0 + V\hat{a}_0^\dagger) \right]
 \]

- Two-photon absorption probablility
 \[
 \langle 0,0|\hat{a}_3^\dagger\hat{a}_3^\dagger\hat{a}_3\hat{a}_3|0,0 \rangle = 4|V|^2\left[|U|^2 \cos^2 \chi + 2|V|^2 \right]
 \]

Visibility = \[
\frac{|U|^2}{|U|^2 + 4|V|^2}
\]

(Phys. Rev. Lett. 86, 1389, 2001)
QUANTUM LITHOGRAPHY RESEARCH

Experimental Layout
Non-Quantum Quantum Lithography

Concept: average M shots with the phase of shot k given by $2\pi k/M$

Spatial Resolution of Various Systems

- Linear optical medium
 \[E = 1 + \cos kx \]

- Two-photon absorbing medium, classical light
 \[E = (1 + \cos kx)^2 = 1 + 2 \cos kx + \cos^2 kx \]
 \[= \frac{3}{2} + 2 \cos kx + \frac{1}{2} \cos 2kx \]

- Two-photon absorbing medium, entangled photons
 \[E = 1 + \cos 2kx \]

where \(k = 2(\omega/c) \sin \theta \)
Demonstration of Fringes Written into PMMA

\[\theta = 70 \text{ degrees} \]
\[\text{write wavelength} = 800 \text{ nm} \]
\[\text{pulse energy} = 130 \, \mu \text{J per beam} \]
\[\text{pulse duration} = 120 \, \text{fs} \]
\[\text{period} = \frac{\lambda}{2 \sin \theta} = 425 \text{ nm} \]

PMMA on glass substrate
develop for 10 sec in MBIK
rinse 30 sec in deionized water

PMMA is a standard lithographic material
Demonstration of Sub-Rayleigh Fringes (Period = $\lambda/4$)

$\theta = 70$ degrees

two pulses with 180 deg phase shift
write wavelength = 800 nm
pulse energy = 90 μJ per beam
fundamental period = $\lambda / (2 \sin \theta) = 425$ nm
period of written grating = 212 nm

PMMA on glass substrate
develop for 10 sec in MBIK
rinse 30 sec in deionized water
Significance of PMMA Grating Results

• Provides an actual demonstration of sub-Rayleigh resolution by the phase-shifted grating method

• Demonstrates an N-photon absorber with adequate resolution to be of use in true quantum lithography
Quantum Lithography Prospects

Quantum lithography (as initially proposed by Dowling) has a good chance of becoming a reality.

Classically simulated quantum lithography may be a realistic alternative approach, and one that is much more readily implemented.
Progress in Ghost Imaging

Robert W. Boyd, Ryan S. Bennink, Sean J. Bentley, Irfan Ali Khan and John C. Howell

Institute of Optics and
Department of Physics and Astronomy,
University of Rochester, Rochester NY, USA
Ghost (Coincidence) Imaging

- Obvious applicability to remote sensing!
- Is this a purely quantum mechanical process?

We have performed coincidence imaging with a demonstrably classical source.

Gatti et al. (PRA and PRL, 2004) argue that thermal sources can mimic the quantum correlations produced by parametric down conversion. (Related to Brown-Twiss effect.)

Experimental confirmation of ghost imaging with thermal sources presented by Comot and UMBC groups

But the contrast of the images formed in this manner is limited to 1/2 or 1/N (depending on the circumstances) where N is the total number of pixels in the image.
Remote (Ghost) Spectroscopy

Can this idea be implemented with thermal light?

The EPR Paradox

In 1935, Einstein, Podolsky, and Rosen argued that quantum mechanics must be "incomplete."

entangled particles, perfectly correlated in position & momentum

measure x or p

- measure $x_1 \implies$ know x_2 with certainty ($\Delta x_2 = 0$)
- measure $p_1 \implies$ know p_2 with certainty ($\Delta p_2 = 0$)
- measurement of particle 1 cannot affect particle 2 (?!)

$\implies \Delta x_2 = 0$ and $\Delta p_2 = 0$ simultaneously (?!)

in conflict with $\Delta x_2 \Delta p_2 \geq \frac{1}{2} \hbar$
Quantum Imaging and the EPR Effect

- The quantum signature of ghost imaging is simultaneous correlations in both x and k.
- EPR thought that simultaneous correlations in both x and p contradicted Heisenberg’s uncertainty principle.

The criterion for quantum features in coincidence imaging,

$$
\left((\Delta x_2)_{x_1} \right)^2 \left((\Delta k_2)_{k_1} \right)^2 \leq 1
$$

is equivalent to that for violating the EPR hypothesis.

- With entangled photons, one can perform the original EPR experiment (not Bell's). EPR were considering continuous variables (momentum and position) not the spin variable.
We find that \((\Delta x_2)_{x_1} (\Delta p_2)_{p_1} = 0.1\hbar\)
We find that \((\Delta x_2)_{x_1}^2 (\Delta p_2)_{p_1}^2 = 0.01\hbar^2\), where according to EPR the product could be no smaller than unity.

The spread in \(p\) is determined by the momentum uncertainty of the pump beam, which is limited by the pump spot size.

The spread in \(x\) is determined by the angular bandwidth of the PDC process, which is limited by phase matching requirements.

We find that \((\Delta x_2)_{x_1}^2 (\Delta p_2)_{p_1}^2 = 0.01\hbar^2\), where according to EPR the product could be no smaller than unity.

EPR Entanglement: previous work

- Squeezed light fields (quadrature squeezed correlations)
 - Reid and Drummond, PRL 60, 2731 (1988)
 - Ou et al, PRL 68, 3663 (1992)
 - Silberhorn et al, PRL 86, 4267 (2001)
 - Bowen et al, PRL 89, 253601 (2002)

- Collective atomic spin variables (spin observables)
 - Julsgaard, Nature 413, 400 (2001)

- Modern rephrasing of continuous entanglement
 - Duan et al, PRL 84, 2722 (2000)
 - Simon, PRL 84, 2726 (2000)
Pixel Entanglement: Entanglement In A Very Large Hilbert Space

Quantum pixel: discrete average of a non-commuting, continuous variable (e.g., x or p).

Possible application: generalization of cryptographic protocols to qudits of higher dimension.

O'Sullivan-Hale, Khan, Boyd, and Howell, PRL 2005
Summary

Quantum lithography has a good chance of becoming a reality.

The quantum vs. classical nature of ghost imaging is more subtle than most of us had appreciated.

Many of our cherished “quantum effects” can be mimicked classically.

There is still work to be done in the context of quantum imaging to delineate the quantum/classical frontier.
Special Thanks to my Students and Research Associates
Thank you for your attention!

Our results are posted on the web at:

http://www.optics.rochester.edu/~boyd
Research in Quantum Imaging

Quantum Imaging or Quantum Imogene?
Entangled Imaging and Wave-Particle Duality: From the Microscopic to the Macroscopic Realm

A. Gatti, E. Brambilla, and L. A. Lugiato

INFM, Dipartimento di Scienze CC.FF.MM., Università dell’Insubria, Via Valleggio 11, 22100 Como, Italy
(Received 11 October 2002; published 3 April 2003)

We formulate a theory for entangled imaging, which includes also the case of a large number of photons in the two entangled beams. We show that the results for imaging and for the wave-particle duality features, which have been demonstrated in the microscopic case, persist in the macroscopic domain. We show that the quantum character of the imaging phenomena is guaranteed by the simultaneous spatial entanglement in the near and in the far field.

DOI: 10.1103/PhysRevLett.90.133603

PACS numbers: 42.50.Dv, 03.65.Ud