Progress in Slow Light and Quantum Imaging

Robert W. Boyd

Institute of Optics and Department of Physics and Astronomy University of Rochester

with Aaron Schweinsberg, Hye Jeong Chang, Colin O'Sullivan-Hale Petros Zerom, Giovanni Piredda, Zhimin Shi, Heedeuk Shin, and others.

Presented at What's Up in Optics, November 10, 2005.

Special Thanks to My Students and Research Associates

Interest in Slow Light

Intrigue: Can (group) refractive index really be 10⁶?
Fundamentals of optical physics
Optical delay lines, optical storage, optical memories
Implications for quantum information
And what about fast light (v > c or negative)?

Boyd and Gauthier, "Slow and Fast Light," in Progress in Optics, 43, 2002.

Review of Slow-Light Fundamentals

controllable delay:
$$T_{del} = T_g - L/c = \frac{L}{c}(n_g - 1)$$

To make controllable delay as large as possible:

- make *L* as large as possible (reduce residual absorption)
- maximize the group index

All-Optical Switch

Use Optical Buffering to Resolve Data-Packet Contention

But what happens if two data packets arrive simultaneously?

 $\land \land \land \land \land \land \land \land$ $\land \land \land \land \land \land \land$ **Controllable slow light for optical** buffering can dramatically increase system performance.

Daniel Blumenthal, UC Santa Barbara; Alexander Gaeta, Cornell University; Daniel Gauthier, Duke University; Alan Willner, University of Southern California; Robert Boyd, John Howell, University of Rochester

Challenge/Goal

Slow light in a room-temperature solid-state material.

Our approaches:

- 1. Stimulated Brillouin Scattering
- 2. Stimulated Raman Scattering
- 3. Wavelength Conversion and Dispersion
- 4. Coherent Population Oscillations
 - a. Ruby and alexandrite
 - b. Semiconductor quantum dots (PbS)
 - c. Semiconductor optical amplifier
 - d. Erbium-doped fiber amplifier

Also: application of slow-light to low-light-level switching

Slow Light in Ruby

Recall that $n_g = n + \omega(dn/d\omega)$. Need a large $dn/d\omega$. (How?)

Kramers-Kronig relations: Want a very narrow feature in absorption line.

Well-known "trick" for doing so:

Make use of spectral holes due to population oscillations.

Hole-burning in a homogeneously broadened line; requires $T_2 \ll T_1$.

inhomogeneously broadened medium

homogeneously broadened medium (or inhomogeneously broadened)

PRL 90,113903(2003).

Slow Light Experimental Setup

7.25-cm-long ruby laser rod (pink ruby)

Gaussian Pulse Propagation Through Ruby

No pulse distortion!

Matt Bigelow and Nick Lepeshkin in the Lab

Alexandrite Displays both Saturable and Reverse-Saturable Absorption

• Both slow and fast propagation observed in alexandrite

Bigelow, Lepeshkin, and Boyd, Science 301, 200 (2003).

Inverse-Saturable Absorption Produces Superluminal Propagation in Alexandrite

At 476 nm, alexandrite is an inverse saturable absorber

Negative time delay of 50 µs correponds to a velocity of -800 m/s

M. Bigelow, N. Lepeshkin, and RWB, Science, 2003

Numerical Modeling of Pulse Propagation Through Slow and Fast-Light Media

Numerically integrate the paraxial wave equation

$$\frac{\partial A}{\partial z} - \frac{1}{v_g} \frac{\partial A}{\partial t} = 0$$

and plot A(z,t) versus distance z.

Assume an input pulse with a Gaussian temporal profile.

Study three cases:

Slow light $v_g = 0.5 c$

Fast light $v_g = 5 c$ and $v_g = -2 c$

Pulse Propagation through a Slow-Light Medium ($n_g = 2$, $v_g = 0.5$ c)

Pulse Propagation through a Fast-Light Medium ($n_g = .2, v_g = 5 c$)

Pulse Propagation through a Fast-Light Medium ($n_g = -.5$, $v_g = -2$ c)

Some New Results

Slow and Fast Light in an Erbium Doped Fiber Amplifier

- Fiber geometry allows long propagation length
- Saturable gain or loss possible depending on pump intensity

Research in Quantum Imaging

Can images be formed with higher resolution or better sensitivity through use of quantum states of light?

Can we "beat" the Rayleigh criterion?

Quantum states of light: For instance, squeezed light or entangled beams of light.

Progress in Quantum Lithography

Robert W. Boyd, Sean J. Bentley, Hye Jeong Chang, and Malcolm N. O'Sullivan-Hale

> Institute of Optics, University of Rochester, Rochester NY,USA

Quantum Lithography

- Entangled photons can be used to form an interference pattern with detail finer than the Rayleigh limit
- Process "in reverse" performs sub-Rayleigh microscopy, etc.
- Resolution $\approx \lambda / 2N$, where N = number of entangled photons

Boto et al., Phys. Rev. Lett. 85, 2733, 2000. ("al." includes Jon Dowling)

Quantum Lithography: Easier Said Than Done

- Need an intense source of individual biphotons (Inconsistency?) Maybe a high-gain OPA provides the best tradeoff between high intensity and required quantum statistics
- Need an *N*-photon recording material
 - For proof-of-principle studies, can use *N*-th-harmonic generator, correlation circuitry, *N*-photon photodetector.

For actual implementation, use ???? Maybe best bet is UV lithographic material excited in the visible or a broad bandgap material such as PMMA excited by multiphoton absorption.

3PA in PMMA breaks chemical bond, modifying optical properties.

Non-Quantum Quantum Lithography

S. J. Bentley and R.W. Boyd, Optics Express, 12, 5735 (2004).

Spatial Resolution of Various Systems

• Linear optical medium

 $\mathbf{E} = \mathbf{1} + \cos \mathbf{k} \mathbf{x}$

- Two-photon absorbing medium, classical light $E = (1 + \cos kx)^2 = 1 + 2 \cos kx + \cos^2 kx$ $= 3/2 + 2 \cos kx + (1/2) \cos 2kx$
- Two-photon absorbing medium, entangled photons E = 1 + cos 2kx

where $k = 2(\omega/c) \sin \theta$

Demonstration of Fringes Written into PMMA

 θ = 70 degrees write wavelength = 800 nm pulse energy = 130 µJ per beam pulse duration = 120 fs period = λ / (2 sin θ) = 425 nm

PMMA on glass substrate develop for 10 sec in MBIK rinse 30 sec in deionized water

AFM

PMMA is a standard lithographic material

Demonstration of Sub-Rayleigh Fringes (Period = $\lambda/4$)

N-photon absorber

 θ = 70 degrees two pulses with 180 deg phase shift write wavelength = 800 nm pulse energy = 90 µJ per beam fundamental period = λ / (2 sin θ) = 425 nm period of written grating = 212 nm

PMMA on glass substrate develop for 10 sec in MBIK rinse 30 sec in deionized water

Significance of PMMA Grating Results

- Provides an actual demonstration of sub-Rayleigh resolution by the phase-shifted grating method
- Demonstrates an N-photon absorber with adequate resolution to be of use in true quantum lithography

Quantum Lithography Prospects

Quantum lithography (as initially proposed by Dowling) has a good chance of becoming a reality.

Classically simulated quantum lithography may be a realistic alternative approach, and one that is much more readily implemented.

Thank you for your attention!

Our results are posted on the web at:

http://www.optics.rochester.edu/~boyd