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Motivation

Densely integrated & ultrafast photonicson a chip

Switching, logic, and pulse manipulation require afast nonlinear optical
mechanism that is sensitive with low absorptive dissipation.

Compared with other nonlinearities, the Kerr effect below half-gap is
ultrafast and dissipates little heat (limited by 3-photon absorption).

Problem is that waveguide devices have required >5 mm of path length
to achieve p phase shifts.

Side-coupled ring resonators: enhance the nonlinearity
while decreasing bandwidth (but from 200 THz to 1 THz).

Can resonator sreduce thislength scale by 100X ? or even 1000X ?



Variable Coupler Fiber Ring Resonator
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Variable Coupler Fiber Resonator Spectral Phase

Fiber REMZ
spectral transmission data vs. coupler setting
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Variable Coupler Fiber Resonator Spectral Phase
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“Optical Transmission Characteristics of Fiber Ring Resonators”
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Phase Sensitivity & Intensity Build-Up

The effective phase shift is sensitively
dependent on frequency near resonance
(related to increased group delay).
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Near resonances, the circulating field
experiences a coherent build-up of
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Phase Sensitivity & Intensity Build-Up
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Scaling Laws

Bandwidth Ql
Sengitivity Q
Group velocity = ¢/n, F1
Intensity ~ n, F
Linear attenuation ~alL Q
Nonlinear attenuation (2-photon) ~a | L QF
GVD =D(n/c) / Dw QF
Nonlinear phase~n, | L QF
FWM conversion efficiency ~c® I, |, L? Q2F2

sensing

slow light

loss budgets

dispersion-comp,
switching,
solitons

| -conversion

(Figures of merit can be intuited from products and ratios)



SCISSOR Solitons
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“SCISSOR Solitons & other propagation effectsin microresonator modified waveguides’
J. E. Heebner, R. W. Boyd, and Q. Park, JOSA B, 19 (2002)




SCISSOR Applications

Delay Lines Pulse Compression on a Chip
® 160 Gb/s ® High-order soliton splitting
® 4 bitdot delay (by self-stegpening)

® Clean, pedestal-free
pulse compression results
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“Strong Dispersive and Nonlinear Optical Properties of Microresonator-M odified Optical Waveguides'’
J. E. Heebner and R. W. Boyd, SPIE, 3, 4969-41, (2003)
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“Engineerable Photonic Media...”
J. E. Heebner, P. Chak, S. Pereira, J. E. Sipe and R. W. Boyd, JOSAB, (2004)
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Lets Builld ONE Resonator First!
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Fabrication Process

(1) MBE growth
I A lGaAs
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® MBE vertical growth done in Rochester by Gary Wicks
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® | ateral patterning processes done at Cornell Nanofabrication Facility (CNF)
® Final etch done at Laboratory for Physical Sciences (UMD)



Fabricated Devices (Al ;;Gag,AS)

MBE grown, E-BEAM patterned, | CP etched 10 microns
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Microresonator Add-Drop Transmission
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Normalized transmission
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; .
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A high Q isnot our goal — remember: Q<200 for 1THz bandwidth
Can do alot with Q=200 due to quadratic scaling laws



Microresonator Effective Phase Shift

(Inferred from MZI spectral interferogram)
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AlGaAs Kerr Nonlinearity

® Strong nonlinearity — the refractive nonlinearities in semiconductors can be 2-3 orders of magnitude larger than in
silicaglass, due to a smaller bandgap (dependence on bandgap is to the -4 power)

® Fadt, sub-picosecond response — If the photon energy is slightly less than the half—gap energy, two-photon
absorption may be avoided, leaving a reasonably strong nonlinearity. [ Sheik-Bahae, Hagan,Van Stryland]

® Good NL figureof merit (NLFOM) — If carrier generation via two-photon absorption is avoided, afast

(femtosecond response) bound nonlinearity remains.

Aly,.Ga,q,AS and chalcogenide glasses (e.g. As,Se;) satisfy these requirements [Stegeman, Slusher, Wiseg].
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P- Kerr Phase Shift from a Single Resonator?

What injected power is hecessary?

Well, for comparison SM silicafiber requires 500 W-m
® n, ishigher in AlGaAs by ~100X

® Confinement istighter (air-cladding) by 50nmm? / 0.5mm? ~100X
® Resonator enhancement of ~100X

At extracted phase of p, (strongly driven) sensitivity saturates ~1/2

Power Threshold = 1000W-mm/35mm ~ 30W




Microresonator Nonlinear Self-Switching
Implying an NL phase shift of ~p
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“Enhanced Linear and Nonlinear Optical Phase Response of AlGaAsMicroring Resonator s’
Heebner, L epeshkin, Schweinsberg, Wicks, Boyd, Grover, Ho, Accepted Opt. Lett, (2004).




Conclusions

® The nonlinearity and group velocity dispersion can be 6-8 orders of magnitude
greater than in fiber. Pulse propagation (asin solitons) behaves similarly but
evolves at the 100 micron scale rather than the kilometer scale.

® A SCISSOR connects all-pass filters without feedback so phase is cumulative
while bandgaps ar e nonexistent rather than complicated with transmission
ripple found in other unapodized PBG media.

® Lossesand irreproducibilitiesare still too high for microresonator arrays.
Ultimately losses are of the same order as high dielectric contrast photonic
crystals.
The technical barriers to high transmission and precise fabrication in
microresonator and photonic crystal systemsis being overcome.

® To be feasible as elements in exotic engineerable nonlinear media,
we snowed that microresonators can indeed display f , ~ p.
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