Non-linear optics of metals at the interband absorption edge

Nick N. Lepeshkin
Giovanni Piredda
Aaron Schweinsberg
Robert W. Boyd

The Institute of Optics,
University of Rochester,
Rochester, NY 14627, USA
Introduction

$\chi^{(3)}$ - NLO properties of noble metals have been studied in:

- Nanoparticles
- Percolation films
- Thin films

Results:

$\chi^{(3)} >> \chi^{(3)}$ of silica
Sub-ps response time

Metals = losses!

Interaction length $L \sim$ skin depth

$\chi^{(3)}$ - mostly imaginary

Nonlinear response localized at the IB absorption edge
Artificial composite materials

Features:
Reduced loss (linear properties studied by Bloemer and Scalora [1])
Enhanced nonlinear response (theory by Bennink et al. [2])
Shifted peak of nonlinear response
Imaginary $\chi^{(3)} \rightarrow$ nonlinear phase shift
Increased damage threshold

Loss mechanisms in metals

Linear transmittance

Transmission

Cu
PBG

Cu: 40 nm film
PBG: 5x16/98 nm

Copper (80nm!) / silica
“Fermi smearing”

\[\Delta T \rightarrow \Delta \varepsilon (E_{IB}) \rightarrow \text{change in optical properties} \]

Near interband edge, “Fermi smearing” is dominant nonlinear process

Reflection/Transmission Z-scan

Pulse energy $\sim 1\text{mJ}$
$I = 100\text{ MW/cm}^2$

\[\frac{? R}{R},\quad \frac{\Delta T}{T} \rightarrow \Delta \varepsilon' + \Delta \varepsilon'' \rightarrow \chi_{\text{eff}}^{(3)} \]
Cubic susceptibility of pure Cu

\(\chi^{(3)}_{\text{eff}}, \, 10^{-8} \text{ esu}\)

Width of resonance \(\sim kT\)
Nonlinear response of PBG

\[\frac{\text{Im}(\chi^{(3)}_{\text{PBG}})}{\text{Im}(\chi^{(3)}_{\text{Cu}})} \approx 12 \]

\[\frac{\text{Re}(\chi^{(3)}_{\text{PBG}})}{\text{Re}(\chi^{(3)}_{\text{Cu}})} \approx 20 \]

Strong nonlinear features @ 650 nm!
Nonlinear phase shift in PBG

\[\Delta \varepsilon = 0.1i \rightarrow ? f \]

Phase shift

Transmittance

\[\Delta n \]

\[\lambda, \text{nm} \]
Conclusions

• Stable, artificial, solid-state NLO material
• Enhanced transmission (10X)
• Enhanced nonlinear response (20X) over extended spectral range (550-650 nm)