Metal-dielectric composites as nonlinear optical materials

Nick N. Lepeshkin
Department of Physics and Astronomy
San Francisco State University
1600 Holloway Avenue, San Francisco, CA 94132

Giovanni Piredda
Aaron Schweinsberg
Robert W. Boyd
The Institute of Optics
University of Rochester
Rochester, New York 14627
Composite Materials for Nonlinear Optics

Want large nonlinear response for applications in photonics

Specific goal: Composite with $\chi^{(3)}$ exceeding those of constituents

Approaches:

- Nanocomposite materials
 Distance scale of mixing $<< \lambda$
 Enhanced NL response by local field effects

- Microcomposite materials (photonic crystals, etc.)
 Distance scale of mixing $\approx \lambda$
 Constructive interference increase E and NL response
Material Systems for Composite NLO Materials

All-dielectric composite materials
Minimum loss, but limited NL response

Metal-dielectric composite materials
Larger loss, but larger NL response
Note that $\chi^{(3)}$ of gold $\approx 10^6$ $\chi^{(3)}$ of silica glass!
Also, metal-dielectric composites possess surface plasmon resonances, which can further enhance the NL response.

Comment 1: surface plasmons play no role in the work I am presenting today

Comment 2: I have worked on many of these approaches, see www.optics.rochester.edu/~boyd for details
Accessing the Optical Nonlinearity of Metals with Metal-Dielectric Photonic Crystal Structures

- Metals have very large optical nonlinearities but low transmission
- Low transmission is because metals are highly reflecting (not because they are absorbing!)
- Solution: construct metal-dielectric photonic crystal structure
 (linear properties studied earlier by Bloemer and Scalora)

Greater than 10% enhancement of NLO response is predicted!

“Loss” mechanisms in copper

- Intraband (d-p) absorption
- Drude reflection region

Plot showing k'' and ε'' against λ in nm.
Accessing the Optical Nonlinearity of Metals with Metal-Dielectric Photonic Crystal Structures

- Metal-dielectric structures can have high transmission.
- And produce enhanced nonlinear phase shifts!

- Imaginary part of $\chi^{(3)}$ produces a nonlinear phase shift! (And the real part of $\chi^{(3)}$ produces nonlinear transmission!)

Linear transmission of PBG sample at $\lambda = 650$ nm.

- Copper layers 16 nm thick

Enhancement of NL phase shift over bulk metal

- Simple model
- Exact solution
Linear Transmittance of Samples

Material (interband) feature

Structural (M/D PC) feature

Cu: 40 nm film

M/D PC: Cu / silica

5x16/98 nm (80 nm total Cu)
Mechanism of nonlinear response: “Fermi smearing”

\[\Delta T \rightarrow \Delta \varepsilon (E_{IB}) \rightarrow \text{change in optical properties} \]

Near the interband absorption edge, “Fermi smearing” is the dominant nonlinear process

\(\chi(3) \) is largely imaginary

Reflection/Transmission Z-Scan

Pulse energy ~ 1 mJ
$I = 100$ MW/cm2
We observe a large NL change in transmission
But there is no measurable NL phase shift for either sample

Nonlinear Transmission and Reflectance

Material (interband) feature

Structural (M/D PC) feature

$\Delta T/T (M/D PC)$

$\Delta R/R (M/D PC)$

$\Delta T/T (bulk)$

$-\Delta T/T, -\Delta R/R$

wavelength, nm

560 600 640 680
Nonlinear phase shift in PC (numerical simulations)

\[\Delta \varepsilon = 0.1i \rightarrow \Delta n \]
Conclusions

• Stable, artificial, solid-state NLO material
• Enhanced transmission (10X)
• Enhanced nonlinear response in transmission (12X) over an extended spectral range (550-650 nm)
• Nonlinear phase shift resulting from $\Delta \varepsilon$? Theory yes; experiment no.
 New design needed?