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Interest in Slow Light

Fundamentals of optical physics
Intrigue: Can (group) refractive index really be 10°?

Optical delay lines, optical storage, optical memories

Implications for quantum information



Challenge/Goal

Slow light in room-temperature solid-state material.

e Slow light in a structured waveguide

e Slow light in room temperature ruby

(facilitated by a novel quantum coherence effect)



Slow Light
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Artificial Materials for Nonlinear Optics

Artifical materials can produce

Large nonlinear optical response V.
. . *“, / grating
Large dispersive effects
Examples / 1
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NLO of SCISSOR Devices

(Side-Coupled Integrated Spaced Sequence of Resonators)
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Shows slow-light, tailored dispersion, and enhanced nonlinearity

Optical solitons described by nonlinear Schrodinger equation

® Weak pulses spread because of dispersion

intensity
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® But intense pulses form solitons through balance of
dispersion and nonlinearity.
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Ultrafast All-Optical Switch Based On

Arsenic Triselenide Chalcogenide Glass

* We excite a whispering gallery mode of a
chalcogenide glass disk.

FDTD simulation

* The nonlinear phase shift scales as the square of the
finesse F of the resonator. (F= 10 2 in our design)

e Goal i1s 1 pJ switching energy at 1 Tb/sec.
Input-1 —> Output-1
55
Input-2 = ;’r\,s Output-2
Ring

Resonator

J. E. Heebner and R. W. Boyd, Opt. Lett. 24, 847, 1999.
(implementation with Dick Slusher, Lucent)




A Real Whispering Gallery

St. Paul's Cathedral, London



Motivation

To exploit the ability of microresonators to enhance
nonlinearities and induce strong dispersive effects for creating
structured waveguides with exotic properties.

Currently, most of the work done in microresonators involves
applications such as disk lasers, dispersion compensators
and add-drop filters. There's not much nonlinear action!

A cascade of resonators side-coupled to an ordinary
waveguide can exhibit:

\\\"’i ";, ¢ slow light propagation \\\’\" I,,’
- ‘o : ) _ S 2
z = * Induced dispersion s s
’, S : " . &
Ui enhanced nonlinearities R



Properties of a Single Microresonator
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Assuming negligible attenuation,
this resonator is, unlike a Fabry-
Perot, of the "all-pass" device -

there is no reflected or drop port.

Intensity Enhancement ( |E;/ E,*)
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Propagation Equation for a SCISSOR
A A
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By arranging a spaced sequence of resonators, side-coupled to
an ordinary waveguide, one can create an effective, structured
waveguide that supports pulse propagation in the NLSE regime.

Propagation is unidirectional, and there is NO photonic bandgap
to produce the enhancement. Feedback is intra-resonator and
not inter-resonator.

Nonlinear Schrodinger Equation (NLSE)
LA =—i1Br2A+iv|AlPA

Fundamental Soliton Solution
A(z,r) = Ag sech(Tip )ei%‘df“)'zz




Balancing Dispersion & Nonlinearity

soliton amplitude

Ay = |l :\/ T’

Y T3 J3Y2nRTS

adjustable by controlling ratio of
transit time to pulse width

Resonator-induced dispersion can
be 5-7 orders of magnitude greater
than the material dispersion of
silica!

An enhanced nonlinearity may be
balanced by an induced anomalous
dispersion at some detuning from
resonance to form solitons

Resonator enhancement  of
nonlinearity can be 3-4 orders of
magnitude!

A characteristic length, the soliton
period may as small as the distance
between resonator units!




5 um diameter
resonators with a
finesse of 30

SCISSOR may be
constructed from 100
resonators spaced by

10 um for a total length
of 1 mm

soliton may be excited
viaa 10 ps, 125mW
pulse

simulation assumes a
chalcogenide/GaAs-
like nonlinearity

Soliton Propagation
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Dark Solitons

SCISSOR system also supports the propagation of dark solitons.

()
-
/

power (mW)
-




Slow Light and SCISSOR Structures
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Frequency Dependence of GVD and SPM Coetficients
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Pulse Distortion on Propagation through SCISSOR Structure
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"Fast" (Superluminal) Light in SCISSOR Structures

Requires loss in resonator structure
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wavelength (Lm)

SCISSOR Dispersion Relations

Single-Guide SCISSOR Double-Guide SCISSOR
No bandgap Bandgaps occur
Large intensity buildup Reduced intensity buildup
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Microdisk Resonator Design

(Not drawn to scale)
All dimensions in microns
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J. E. Heebner and R. W. Boyd



Photonic Device Fabrication Procedure

(1) MBE growth
I AlGaAs-GaAs
I st
(2) Deposit oxide
I O si02)
I AlGaAs-GaAs
I

(3) Spin-coat e-beam resist

PMMA
Oxide (SiO7)

N AlGaAs-GaAs

structure

(4) Pattern inverse with
e-beam & develop

PMMA
Oxide (Si09)

N AlGaAs-GaAs

structure

(5) RIE etch oxide

PMMA
Oxide (Si09)

N AlGaAs-GaAs

(6) Remove PMMA

l - Oxide (Si09)

N AlGaAs-GaAs

structure

(7) CAIBE etch AlGaAs-GaAs
N
I

Oxide (Si09)

AlGaAs-GaAs
structure

(8) Strip oxide
N

AlGaAs-GaAs
structure

RWB - 10/4/01



Nonlinear Optical Loop-De-Loop

J.E. Heebner and R.W.B.



Photonic Devices Written
into PMMA Resist




Pattern Etched Into Silica Mask

AFM



Photonic Devices in GaAs/AlGaAs




Slow Light in Ruby

Need a large dn/d®w. (How?)

Kramers-Kronig relations:
Want a very narrow absorption line.

Well-known (to the few people how know it
well) how to do so:

Make use of “spectral holes™ due to
population oscillations.

Hole-burning in a homogeneously
broadened line; requires T << T.

inhomogeneously homogeneously
broadened medium broadened medium

(orinhomogeneously
broadened)



Spectral Holes in Homogeneously
Broadened Materials

Occurs only in collisionally broadened media (T, << T,)
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Boyd, Raymer, Narum and Harter, Phys. Rev, A24 411, 1981.



Spectral Holes Due to Population Oscillations
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Valume 43, pumber 6 OFTICS COMMUNICATIONS 15 Mey 1983

OBSERVATION OF A SPECTRAL HOLE DUE TO POPULATION DSCILLATIONS
N A HOMOGENEOUSLY BROADENED OFTICAL ABSORFTION LINE

Lioyd W, HILLMAM, Robert ¥, BOYT, Termy KR ASIMSKLand C.R. STROUD, Jr.
Tha festitute of Opsies, University of Rachester, Rochester, NY 14827, L1514
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Fig. 3. Attenuatlon of the modulated component (probe
beam) is pletted a3 a function of modulation frequency.
The probe beam expeclences decreased ebsorption at low
modulation frequencies. The width of this hele 1s 37 Hz for
low laser powers. The spectral hole is power brozdened at
high laser powers.



Experimental Setup Used to Observe SLow-Light in Ruby

Digital
Oscilloscope

/\ Reference Detector
Function Generator
: Diffuser

\ Ruby
Argon lon Laser ] - D—

EO modulator f=40 cm f=75cm

7.25 cm ruby laser rod (pink ruby)



Normalized Intensity
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Gaussian Pulse Propagation Through Ruby

v =140 m/s
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No pulse distortion!



Measurement of Delay Time for Harmonic Modulation
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For 1.2 ms delay, v = 60 m/s and ng = 5 x 100



Summary

Artificial materials hold great promise for
applications in photonics because of
e large controllable nonlinear response

e large dispersion controllable in magnitude and sign

Demonstration of slow light propagation in ruby





