Enhancing the Spectral Sensitivity and Resolution of Interferometers Using Slow-Light Media

Zhimin Shi1, Robert W. Boyd1, Daniel J. Gauthier2, and C. C. Dudley3

1The Institute of Optics, University of Rochester, Rochester, NY 14627 USA
URL: http://www.optics.rochester.edu/~boyd

2Department of Physics and The Fitzpatrick Institute for Photonics, Duke University, Durham, North Carolina, 27708 USA

3was at Naval Research Laboratory, Remote Sensing Division, Code 7211, Washington, DC 20375 USA
Introduction to Slow Light

Pulse Propagation in a slow-light medium

Group velocity

\[v_g = \frac{d\omega}{dk} = \frac{c}{n_g} \]

\[n_g = 2 \]
Introduction to Slow Light

Group index

\[n_g = n + \omega \frac{dn}{d\omega} \]

Atomic Vapor \(n_g \approx 1.76 \times 10^7 \)

Solid system \(n_g \approx 5.2 \times 10^6 \)

Application in Optical Communications

- All-optical buffer / delay line

Slow-light device
A slow-light medium has other applications

\[T(\omega) = \frac{1}{2} \left(1 + \cos \Delta \phi \right) = \frac{1}{2} + \frac{1}{2} \cos \left(\frac{L \omega n(\omega)}{c} \right) \]

\[\frac{d\Delta \phi}{d\omega} = \frac{L}{c} \left(n + \omega \frac{dn}{d\omega} \right) = \frac{Ln_g}{c} \]
Spectral sensitivity

- Transmission varies as wavelength changes
- Spectral Resolution can be enhanced n_g times

\[n_g = 1 \]
\[\Delta \lambda \approx 0.01 \text{ nm} \]

\[n_g = 10 \]
\[\Delta \lambda \approx 0.001 \text{ nm} \]

$(\lambda = 500 \text{ nm}, L = 2 \text{ cm})$
Multi-Beam Interferometers

- Transmission

\[T(y) \approx \frac{T_s^2 T_L}{(1 - R_s T_L)^2} \frac{1}{1 + \mathcal{F} \sin^2 \Delta \phi(y)} \]

\(T_s / R_s \) : Transmissivity / reflectivity at air-medium interface,

\(T_L \) : Transmissivity through the medium,

\(\mathcal{F} \) : Finesse
Spectral Performance

- **Spectral sensitivity**

\[S = \frac{1}{\Lambda} \frac{dy_m}{d\lambda} = \frac{2L_0 n_g}{\lambda^2} \]

- **Resolving Power**

\[R = \frac{\lambda}{\Delta \lambda_{\text{min}}} = \frac{\pi L_0 n_g \sqrt{F}}{\lambda} \]
Experiment

- **Slow-light medium:** CdS$_{0.75}$Se$_{0.25}$
 - Absorption band edge: 2.15 eV (577 nm)
 - $L_0 \approx 0.5$ mm thick, c-cut, single crystal

- **Laser:** Rhodamine 6G Dye laser
 - Range: 585 - 605 nm

Jensen et al., JOSA B, 3(6) p.857, 1986
Observation of Fringes Movement

wavelength = 587.5 nm
Calculation of Spectral Sensitivity

Measure the movement rate of fringes at different wavelengths

wavelength = 587.5 nm

Intensity (a.u.)

Lateral position y (a.u.)
Experimental Results

- Spectral sensitivity

\[S = \frac{1}{\Lambda} \frac{dy_m}{d\lambda} = \frac{2L_0 n_g}{\lambda^2} \]

Shi et al., Optics Lett. 32, p.915-917 (2007)
Summary

- The sensitivity and resolution of spectroscopic interferometers are proportional to the group index n_g of the media in its optical paths.

- The spectral performance can be greatly enhanced by introducing a slow-light medium into it. In our proof-of-principle experiment, $n_g = 3.5$, but n_g up to 10^7 is possible.
Acknowledgement

- Dr. Gary W. Wicks and Renee Pedrazzani

- Research Group of Nonlinear Optics at Univ. of Rochester.

- Funding Agencies

Thank you for your attention!