Slow-Light Fourier Transform Interferometry

Zhimin Shi and Robert W. Boyd
The Institute of Optics, University of Rochester

at FiO 2007 / LS XXIII, San Jose, CA
10:45 am, September 20th, 2007

Paper: FThG2
Session: General Optical Design and Instrumentation II
Motivation

• A desired spectroscopic interferometer
 – Fine resolution / high sensitivity
 – Compact device size
 – High stability
 – Fast measurement
 – High SNR
 – ...

Slow light can benefit interferometers in all these aspects!
Introduction of slow light

- Pulse propagation in a medium

Group velocity

\[v_g = \frac{d\omega}{dk} = \frac{c}{n_g} \]

Group index

\[n_g = n + \omega \frac{dn}{d\omega} \]

\[n_g = 2 \]
Realizations of slow light

- Absorption / gain resonances
- Electromagnetically induced transparency
- Coherent population oscillation
- Other nonlinear effects: SBS, SRS, FWM
- Bandedge effects: PhC, fiber gratings, etc.
- Ring resonators
- ...

Atomic Vapor $n_g \approx 1.76 \times 10^7$

Solid system $n_g \approx 5.2 \times 10^6$

Slow-light interferometry

- M-Z Interferometer

\[T(\omega) = \frac{1}{2} \left(1 + \cos \Delta \phi \right) = \frac{1}{2} + \frac{1}{2} \cos \left(\frac{L\omega n(\omega)}{c} \right) \]

\[\frac{d\Delta \phi}{d\omega} = \frac{L}{c} \left(n + \omega \frac{dn}{d\omega} \right) = \frac{Ln_g}{c} \]
Slow-light interferometry

- Wedged shear interferometer

\[S = \frac{1}{\Lambda} \frac{dy_m}{d\lambda} = \frac{2L_0 n_g}{\lambda^2} \]

- Spectral sensitivity

\[R = \frac{\lambda}{\Delta \lambda_{\text{min}}} = \frac{\pi L_0 n_g \sqrt{F}}{\lambda} \]

- Resolving Power
Proof-of-principle experiment

- CdSSe single crystal
- Rhodamine 6G dye laser

Fringe movement as λ is tuned

wavelength = 587.5 nm

$S = \frac{1}{\Lambda} \frac{dy_m}{d\lambda} = \frac{2L_0 n_g}{\lambda^2}$

Conventional FT interferometer

\[I_{\text{out}}(\tau_d) - 0.5 I_{\text{in}} = \int_{-\infty}^{\infty} I_{\text{in}}(\nu) e^{i2\pi\nu\tau_d} d\nu \]

Optical path delay time

\[\tau_d = nL/c \]
Conventional FT interferometer

• Pros:
 – Only need single detector;
 – High SNR (due to multiplexing);
 – Can achieve high spectral resolution.

Applications in biomedical engineering, metrology, astronomy, radiometry, etc.

• Cons:
 – Need a moving arm;
 – Need a large device size, a large # of data, and a long time of measurement.
Theory of slow-light FTI

- Tunable slow-light medium

\[n(\nu) = n(\nu_0) + \frac{n_g^{(r)}}{\nu_0} (\nu - \nu_0) \]

\[n_g(\nu) = n + \nu \frac{dn}{d\nu} \approx n(\nu_0) + n_g^{(r)} \]

Both arms are fixed
Theory of slow-light FTI

- lower arm
\[\phi_2(\nu) = 2\pi \nu n_2 \frac{L_2}{c} \]
- upper arm
\[\phi_1(\nu) = 2\pi \nu \left[n(\nu_0) + \frac{n_g^{(r)}}{\nu_0} (\nu - \nu_0) \right] \frac{L}{c} \]
- phase difference when \(n(\nu_0)L = n_2L_2 \)
\[\Delta \phi(\nu) = 2\pi (\nu - \nu_0) \frac{n_g^{(r)} L}{c} = 2\pi (\nu - \nu_0) \tau_g \]
- FT relation
\[I_{\text{out}}(\tau_g) - \frac{1}{2}I_{\text{in}} = \frac{1}{2} \int_{-\infty}^{+\infty} I_{\text{in}}(\nu)e^{i2\pi \nu' \tau_g} d\nu \]
Comparisons

<table>
<thead>
<tr>
<th></th>
<th>FT pair</th>
<th>τ_d and ν</th>
<th>τ_g and ν'</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delay</td>
<td>$\tau_d = nL/c$</td>
<td>$\tau_g = n_g^{(r)} L/c$</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>$\delta\nu_{\text{min}} = \frac{c}{2nL_{\text{max}}}$</td>
<td>$\delta\nu_{\text{min}} = \frac{c}{2n_g^{(r)}\delta\nu_{\text{min}}}$</td>
<td></td>
</tr>
<tr>
<td>Device size</td>
<td>$L_{\text{max}} = \frac{c}{2n\delta\nu_{\text{min}}}$</td>
<td>$L = \frac{c}{2n_g^{(r)}\Delta\nu_{\text{SR}}/\delta\nu_{\text{min}}}$</td>
<td></td>
</tr>
<tr>
<td># of data pts</td>
<td>$\nu_0/\delta\nu_{\text{min}}$</td>
<td>$\Delta\nu_{\text{SR}}/\delta\nu_{\text{min}}$</td>
<td></td>
</tr>
<tr>
<td>Moving arm</td>
<td>needed</td>
<td>not needed</td>
<td></td>
</tr>
</tbody>
</table>
Experiment setup

Schematic diagram of the experiment setup of an FT-interferometer using a rubidium cell as the slow-light medium.

BS: beam splitter; AOM: acoustic optical modulator; PBS: polarization beam splitter; MZM: Mach-Zehnder modulator; AWG: arbitrary waveform generator.
Experimental results

- **Output intensity vs. group delay**

 Double line separated by 80 MHz
 10 cm long rubidium cell
 Temperature from ~25 ºC to ~150 ºC
Experimental results

- Retrieved input spectrum

\[\Delta \nu \approx 15 \text{ MHz} \]

100 times better than a conventional FTI with the same size
Summary

• A slow-light Fourier transform interferometer

 – Fine resolution ☺ $\sim 1/n_{g,max}$ (15 MHz)
 – Compact device size ☺ $\sim 1/n_{g,max}$ (10 cm)
 – High stability ☺ No moving parts
 – Fast measurement ☺ $\sim \nu_0/\Delta \nu_{SR}$ reduction in data
 – High SNR ☺ Single detector
Acknowledgement

• Ryan M. Camacho, Praveen K. Vudyasetu, and Prof. John C. Howell at Univ. of Rochester

• Research Group of Nonlinear Optics at Univ. of Rochester. www.optics.rochester.edu/~boyd

• Funding Agencies

Thank you for your attention!