Exotic Nonlinear Pulse Propagation Effects in Microresonators

John E. Heebner
Robert W. Boyd
University of Rochester
Motivation

Microresonators are natural building blocks for integrated photonics

**Applications have thus far included:**
- Whispering Gallery Lasers (Slusher, Vahala, Lefevre, Chang)
- Add-drop filters (Ho, Little, Dapkus)
- Dispersion Compensators (Madsen, Lenz)
- Optical Delay Lines (Madsen, Slusher)
- Chemical / Biological Sensing (Arnold, Driessen)
- Cavity QED (Ilchenko, Imamoglu)

**Applications that hold promise:**
- All-Optical Switching / Logic (Ho, Boyd)
- Engineerable/tunable nonlinear waveguides
# Ring Resonators

<table>
<thead>
<tr>
<th>Guided-Wave</th>
<th>Free Space</th>
<th>Transfer Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>All-Pass Filter</strong></td>
<td><strong>100%</strong></td>
<td><strong>phase</strong></td>
</tr>
<tr>
<td><img src="#" alt="Circular Diagram" /></td>
<td><img src="#" alt="Diamond Diagram" /></td>
<td><img src="#" alt="Graph" /></td>
</tr>
<tr>
<td></td>
<td><strong>Gires-Tournois Interferometer</strong></td>
<td><strong>transmission</strong></td>
</tr>
<tr>
<td></td>
<td><strong>OR</strong></td>
<td><img src="#" alt="Graph" /></td>
</tr>
<tr>
<td><strong>Add-Drop Filter</strong></td>
<td><strong>OR</strong></td>
<td></td>
</tr>
<tr>
<td><img src="#" alt="Parallel Path Diagram" /></td>
<td><img src="#" alt="Diagonal Path Diagram" /></td>
<td></td>
</tr>
<tr>
<td></td>
<td><img src="#" alt="Graph" /></td>
<td></td>
</tr>
</tbody>
</table>

- **Phase** graph shows the phase shift as a function of frequency $\omega$.
- **Transmission** graph shows the transmission $T$ and reflection $R$ coefficients as a function of frequency $\omega$. 

- **Guided-Wave** configurations include a simple feedback loop with a single resonating element.
- **Free Space** configurations demonstrate interferometric setups with reflective and transmissive paths.
- **Transfer Characteristics** graphs illustrate the response of the resonator configurations to changes in frequency.
All-Pass Ring Resonators

Assuming negligible attenuation, a ring resonator coupled in this manner is, unlike a Fabry-Perot, a fully-transmissive system - there is no mechanism for reflection or existence of a “drop” port.

\[
\begin{bmatrix}
    E_4(\omega) \\
    E_2(\omega)
\end{bmatrix} =
\begin{bmatrix}
    r & it \\
    it & r
\end{bmatrix}
\begin{bmatrix}
    E_3(\omega) \\
    E_1(\omega)
\end{bmatrix}
\]

internal phase

\[
E_3(\omega) = \tau e^{in_{\text{eff}}\omega 2\pi R / c} E_4(\omega)
\]

internal transmission
Intensity Build-Up

- Near resonance, the circulating field experiences a coherent build-up of intensity.
- Optical energy is stored and effectively compressed within the resonator volume.

\[
E_4 = rE_3 + itE_1 = r(\tau e^{i\phi}E_4) + itE_1 = \frac{it}{1-r\tau} e^{i\phi} E_1
\]

\[
B = \frac{|E_4|^2}{|E_1|^2} = \frac{1-r^2}{1-2r\tau \cos\phi + r^2\tau^2}
\]

Finesse
\[
F = \frac{FSR}{FWHD} = \frac{2}{1-r}
\]

Quality Factor
\[
Q = \frac{v_0}{\Delta v} = \frac{n2\pi R}{\lambda F}
\]

![Diagram showing build-up factor, FWHD, FSR, single-pass phase shift, and quality factor formulae.](image)
Phase Sensitivity / Group Delay

- The effective phase shift is sensitively dependent on frequency near resonance.
- The slope of the curve is related to the group delay of a pulse envelope traversing the resonator. The maximum slope is exactly equal to the peak intensity build-up factor (lossless case).

\[
E_2 = rE_1 + itE_3 = rE_1 + it\left(\tau e^{i\phi} \frac{it}{1 - r\tau e^{i\phi}} E_1\right) = \frac{r - \tau e^{i\phi}}{1 - r\tau e^{i\phi}} E_1
\]

\[
T = \frac{|E_2|^2}{|E_1|^2} = \frac{r^2 - 2r\tau \cos\phi + \tau^2}{1 - 2r\tau \cos\phi + r^2\tau^2} \to 1, \quad \Phi = \arg\left(\frac{r - \tau e^{i\phi}}{1 - r\tau e^{i\phi}}\right)
\]

Violates Kramers Kronig relations, but not Hilbert relations or causality.
FDTD Simulation Results
Enhanced Nonlinear Phase

Change in effective phase with respect to input power:

\[
\frac{d\Phi}{dP_1} = \frac{d\Phi}{dP} \frac{dP_C}{dP} \frac{dP}{dP_1}
\]

near resonance

\[
\Delta \Phi = \frac{4}{\pi^2} F^2 \frac{\pi}{P_\pi} \Delta P_1
\]

- increased phase sensitivity
- single-pass switching threshold
- coherent build-up of power
- finesse-squared enhancement

Bandwidth:

\[
\Delta v = \frac{v_0}{Q} = \frac{c}{n2\pi RF}
\]

Unfortunately, the bandwidth is reduced. But fortunately the tradeoff is not a balanced one. The nonlinear enhancement scales quadratically while the bandwidth is reduced linearly!

“Enhanced All-Optical Switching Using a Nonlinear Fiber Ring Resonator”
Enhanced All-Optical Switching

Pulse Transfer characteristics for a single side-coupled resonator driven to $\pi$ NL phase shift

Enhanced Self-Phase Modulation (SPM) (rigorous simulation)

Cross Phase Modulation (XPM) could similarly be enhanced for integrated, chip-level light by light switching:

time multiplexed signal pulses

control pulses

demultiplexed signal 1

demultiplexed signal 2
Saturation / “Pulling”

- While the transmitted nonlinear phase shift is enhanced, the enhancement drops off as the resonator is power-detuned away from resonance.
- With an initially resonant resonator, this saturation effect prevents a $\pi$ phase shift from being extracted.
- However, if the resonator is initially red-detuned, a $\pi$ phase shift is readily achievable within a factor of 2 of the finesse-squared prediction.
Pulse Response

Pulses propagating through a resonator must be longer than the cavity lifetime or else the resonator output will "ring"

(Cavity Lifetime = 1ps)

![Graphs showing pulse response](image-url)
Pulse Energy / Bandwidth Tradeoff

Decreasing Disk Radius

Switching Energy (picoJoules)

<table>
<thead>
<tr>
<th>m</th>
<th>mm</th>
<th>μm</th>
</tr>
</thead>
</table>

Bandwidth (Hertz)

<table>
<thead>
<tr>
<th>$10^6$</th>
<th>$10^9$</th>
<th>$10^{12}$</th>
</tr>
</thead>
</table>

1 pJ
1 THz
Optical Whispering Gallery Modes

Field plot of weakly confined WGM

- azimuthal mode number: \( m = 6 \)
- index contrast: \( \frac{n_1}{n_2} = 2:1 \)
- polarization: out of plane
- Q-factor: 61

Guidance is between disk edge and *inner caustic*

Bending radiation loss is due to coupling to cylindrical continuum existing beyond *outer caustic*
The bending-loss-limited finesse vs. normalized radius is plotted for a variety of index contrasts.

The plot is generated by numerically solving the complex whispering gallery dispersion relation:

\[
\tilde{n}_1 J'_m(\tilde{k}_1 R) = \frac{\tilde{n}_2 H'_m(\tilde{k}_2 R)}{J_m(\tilde{k}_1 R)}
\]

(For most semiconductors at 1.55 μm, n_1ω/c~12)
All-Optical Switching

- Channel rates exceeding 40 Gbit/s are difficult to achieve with high-speed electronics.
- Significantly higher channel rates (> 100 Gbit/s) require optical time division multiplexing, switching and/or logic which in turn rely on optical nonlinearities.
- Semiconductor excited carrier nonlinearities are strong but limited by recombination time (~10 ps)
- The optical Kerr effect / AC Stark effect are non-material-resonant third-order nonlinearities that possess femtosecond response and are ideal

Kerr Effects:

Self-phase modulation (SPM) \[ P^{(3)}(\omega_1) = 3\chi^{(3)} E(\omega_1)E^*(-\omega_1)E(\omega_1) \]

Cross-phase modulation (XPM) \[ P^{(3)}(\omega_1) = 6\chi^{(3)} E(\omega_2)E^*(-\omega_2)E(\omega_1) \]

Intensity dependent refractive index \[ n = n_0 + n_2 I_{\text{self}} + 2n_2 I_{\text{cross}} \]
Optical Switching Materials

- **Strong nonlinearity** – the refractive nonlinearities in semiconductors can be 2-3 orders of magnitude larger than in silica glass, due to a smaller bandgap (dependence on bandgap is to the $-4$ power).

- **Fast, sub-picosecond response** – If the photon energy is slightly less than the half-gap energy, two-photon absorption may be avoided, leaving a reasonably strong nonlinearity. [Sheik-Bahae, Hagan, Van Stryland]

- **Good NL figure of merit (NLFOM)** – If carrier generation via two-photon absorption is avoided, a fast (femtosecond response) bound nonlinearity remains.

$\text{Al}_{0.2-0.4}\text{Ga}_{0.8-0.6}\text{As}$ and chalcogenide glasses (e.g. AsSe$_3$) satisfy these requirements [Stegeman, Slusher].
Switching Thresholds

...but there are still problems

Nonlinear phase shift:
\[ \Delta \phi_{NL} = \frac{2\pi}{\lambda A_{eff}} n_2 P \Delta L = \gamma P \Delta L \]

Switching threshold:
\[ P_\pi = \frac{\lambda A_{eff}}{2n_2\Delta L} = \frac{\pi}{\gamma \Delta L} \]

Unbalanced NL MZ
\[ \Delta L \sim 3\text{cm} \]

<table>
<thead>
<tr>
<th></th>
<th>( n_2 )</th>
<th>( \gamma )</th>
<th>1pJ,1ps pulse requires:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silica SMF:</td>
<td>(3?10^{-20}\text{m}^2/\text{W} )</td>
<td>0.0025 \text{W}^{-1}\text{m}^{-1}</td>
<td>1.25 \text{km}</td>
</tr>
<tr>
<td>AlGaAs, AsSe\textsubscript{3}:</td>
<td>(1.5?10^{-17}\text{m}^2/\text{W} )</td>
<td>100 \text{W}^{-1}\text{m}^{-1}</td>
<td>3 \text{cm}</td>
</tr>
</tbody>
</table>

3 cm is TOO LONG for photonic LSI!

A microresonator has the potential of 1000X reduction to 30 microns

Microresonator-Enhanced
\[ 2\pi R \sim 30\mu\text{m}, \Delta L \sim 0 \]
By coupling resonators to an ordinary optical waveguide, the propagation parameters governing nonlinear pulse propagation may be dramatically modified, leading to exotic and controllable nonlinear pulse evolution.

Feedback is intra-resonator, not inter-resonator.

**Thus, there is NO PHOTONIC BANDGAP!**

Nevertheless, the system exhibits many properties similar to PBGs (eg. Bragg gratings) such as reduced group velocities, induced dispersion, and enhanced nonlinearities.
SCISSOR Dispersion Relation

The diagram illustrates the dispersion relation for SCISSOR, showing the relationship between frequency ($\omega$) and the wave number ($k$). The curves represent different values of $r^2$, with $r^2 = 0.00$, $r^2 = 0.25$, $r^2 = 0.75$, and $r^2 = 0.95$. The axes are labeled as follows:

- Vertical axis: $k_{eff} - k_0$, $k_R + \frac{2\pi}{L}$, $k_R$, $k_R - \frac{2\pi}{L}$
- Horizontal axis: $\omega_R - \frac{c}{n_0 R}$, $\omega_R$, $\omega_R + \frac{c}{n_0 R}$

The frequency ($\omega$) is plotted against the wave number ($k$) for different values of $r^2$. The dispersion relation is a fundamental concept in wave mechanics, describing how the frequency of a wave relates to its wave number in a medium.
Resonator Induced Dispersion

Resonator induced dispersion can be 5-7 orders of magnitude greater than material dispersion in silica!

Pulse dispersion is independent of finesse for finesse > 10.

Thus, while an ultra-high finesse is required for propagating ultra-slow light an ultra-high finesse is *not required* for dispersing or delaying a pulse arbitrarily.

1) SMF-28 Silica Fiber
\[ \beta_2 = 20 \text{ ps}^2/\text{km} \]

2) SCISSOR
\[ \beta_2 = \frac{T^2}{L} \frac{-2r(1-r^2)\sin\phi_0}{(1-2r\cos\phi_0+r^2)^2} \frac{3\sqrt{3}}{4\pi^2} \frac{5^2T^2}{L} \]
\[ \phi_0 = \phi_0 \]
\[ \beta_2 = 20 \text{ ps}^2/\text{mm} \]

N resonators allow one to tailor dispersion profile with 2N degrees of freedom (coupling strength & radius)

A single resonator can roughly delay a pulse by one pulse width or disperse a pulse by one dispersion length.

**Group Velocity Dispersion (\( \beta_2 \))**

**Higher Order Dispersion (\( \beta_3 \))**
Derivation of Envelope Equation

Only the phase is modified in the frequency domain

\[ E_2(\omega) = e^{i\Phi(\omega)} E_1(\omega) \approx e^{i\Phi(\omega_0)} \left\{ 1 + i \left[ \Phi(\omega) - \Phi(\omega_0) \right] \right\} E_1(\omega) \]

Expand effective phase in a Taylor's series where internal phase is a perturbation

\[ \Phi(\omega) - \Phi(\omega_0) \approx \Phi'(\omega_0) \Delta \phi + \frac{1}{2} \Phi''(\omega_0) \Delta \phi^2 + \ldots \]

Include linear and nonlinear perturbations

\[ \Delta \phi = T\Delta \omega + \gamma L B |E_1|^2 \]

Expand transmitted field with detuning and nonlinearity as perturbations

\[ E_2(\omega) = e^{i\Phi(\omega_0)} \left\{ 1 + i B \left[ T\Delta \omega + \gamma L B |E_1|^2 \right] + \frac{i}{2} B' \left[ T\Delta \omega + \gamma L B |E_1|^2 \right]^2 + \ldots \right\} E_1(\omega) \]

Fourier Transform to time domain to relate output pulse envelope to that of input

\[ A_2(t) = A_1(t) - B \left[ T \frac{\partial}{\partial t} A_1(t) \right] + i \gamma L B^2 |A_1(t)|^2 A_1(t) - i/2 B'T^2 \frac{\partial^2}{\partial t^2} A_1(t) + \ldots \]

Next take the continuum limit of distributed resonators...
Nonlinear Schrödinger Equation (NLSE) Limit

NLSE:
\[
\frac{\partial A}{\partial z} = -\frac{i\beta_2}{2} \frac{\partial^2 A}{\partial t^2} + i\gamma |A|^2 A
\]

Fundamental Soliton Solution:
\[
A(z,t) = A_0 \text{sech}(t/T_p)e^{i \frac{1}{2} \gamma |A_0|^2 z}
\]

soliton amplitude
\[
A_0 = \sqrt{\frac{|\beta_2|}{\gamma T_p^2}} = \sqrt{\frac{T_R^2}{\sqrt{3} \gamma 2\pi R T_p^2}}
\]

adjustable by controlling ratio of transit time \( T_R \) to pulse width \( T_p \)

An enhanced nonlinearity may be balanced by an induced anomalous dispersion at some detuning from resonance to form solitons

The characteristic length scale for nonlinear pulse evolution (soliton period) may as small as the distance between resonator units!

“Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide”
SCISSOR Solitons

5 µm diameter resonators with a finesse of 30

SCISSOR may be constructed from 100 resonators spaced by 10 µm for a total length of 1 mm

soliton may be excited via a 10 ps, 125mW pulse

simulation assumes a chalcogenide/AlGaAs-like nonlinearity

Weak Pulse

Fundamental Soliton

pulse disperses

pulse preserved
Soliton Splitting & Pulse Compression

The dispersive nature of the nonlinear enhancement (self-steepening) leads to an intensity-dependent group velocity which splits an $N$-order soliton into $N$ fundamental solitons of differing peak intensities and widths.

Here, a 2nd-order "breathing" soliton splits into 2 fundamental solitons:

"SCISSOR Solitons & other propagation effects in microresonator modified waveguides"
Other Exotic Nonlinear Effects

- dark solitons
- non-dispersing
- intensity dips

modulation instability

or

four wave mixing
Engineerable Parameters

- The dispersive and nonlinear behavior of microresonator-modified waveguides can be engineered and/or even controlled in real-time via electro-optic / thermo-optic means.
- Linear: a) group velocity, b) group velocity dispersion, c) third order dispersion
- Nonlinear: d) self-phase modulation, e) self-steepening
Bragg Stacks and CROWs

Bragg grating / multi-layer stack

1-D Coupled Resonator Optical Waveguide (Yariv)

mathematically equivalent structures - no new physics is introduced

Band diagrams
Double-Channel SCISSORs

- The addition of a second waveguide fundamentally and qualitatively alters the guiding properties of a single-guide SCISSOR
- The possibility for inter-resonator feedback and contradirectional coupling is introduced
- This structure can possess a photonic bandgap (PBG) with controllable parameters
Double-Channel SCISSORs

Band diagrams

Photonic band-gaps:
- correspond to dropped channels
- resonator gaps due to intra-resonances
- Bragg gaps due to inter-resonances

Flat bands:
- low group velocity
- low dispersion
Ideals for delay lines

“Gap solitons in a two-channel SCISSOR structure”
“Twisted” Double-Channel SCISSORs

Simple forward-only coupling between guides
No photonic bandgaps
Has analogies with vector solitons

Structure behaves like a resonator-enhanced directional coupler
Loss-Limited Finesse

When the single-pass loss, $\alpha 2\pi R$ is high enough to be nearly equal to the cross-coupling coefficient, $t^2$, the net transmission through the resonator is poor. When the two quantities are equal, net transmission is zero (critically-coupled). In general, a resonator based switch design requires over-coupling ($\alpha 2\pi R < t^2$)

Silica SMF     $\alpha \sim 0.2 \text{ dB/km}$
Air-clad AlGaAs $\alpha \sim 1 \text{ dB/mm}$

This translates to an upper boundary on the finesse:

$$\mathcal{F} < \frac{10}{\ln 10 \alpha_{\text{dB}} R}$$

For a 5 micron diameter high-contrast AlGaAs resonator, finesse limit $\sim 1000$
Scattering Losses in a SCISSOR

Attenuation in high index contrast waveguides is typically dominated by scattering due to edge roughness resulting from etch processes which in practice cannot produce perfectly smooth sidewalls.

RMS roughness:

- 60 nm
- 30 nm

Attenuation in an N-resonator SCISSOR $\alpha_{\text{eff}} \sim \alpha N F 2\pi R/L$
Nanofabrication Process

- MBE vertical growth done in Rochester (Dr. Gary Wicks)
- Lateral patterning processes done at Cornell Nanofabrication Facility (CNF)
Patterned Structures
Waveguide Coupling Setup

Sources:
Tunable (1530-1570nm) Modelocked Fiber Laser
1ps, 10 kW peak power
Tunable (400-1800nm) Nd YAG Pumped OPG
25ps, 1 MW peak power

High index-contrast guides with N.A.>1 require high N.A. objectives to mode-match the free-space spot size to the mode field.
Nonlinear Transverse Self-Focusing

for characterizing the nonlinearity

AlGaAs planar waveguide, $\lambda=1.51\mu m$

geometry:

input

output

1mm

100\mu m

 exiting intensity profile for increasing pulse energies ($\tau = 25$ps)

60 nJ

74 nJ

85 nJ

95 nJ
Conclusions

• Studied the nonlinear phase transfer characteristics of microresonators

• All-optical switching thresholds may be reduced without compromising bandwidth by shrinking resonator size

• Demonstrated numerically, the propagation of SCISSOR solitons based on a balance between resonator enhanced nonlinearities and resonator induced group-velocity dispersion.

• SCISSOR structures allow the possibility for controllable nonlinear pulse evolution on a chip
  - Pulse compression in an integrated device
  - Optical Time Division Multiplexing (OTDM)

• In the process of testing several resonator-enhanced Kerr switches and SCISSORs grown in AlGaAs
Acknowledgements & Publications

Professor Robert W. Boyd
Professor Gary Wicks
Professor John Sipe
Dr. Richart Slusher
Dr. Q-Han Park
Dr. Nick Lepeshkin
Aaron Schweinsberg

- “SCISSOR Solitons & other propagation effects in microresonator modified waveguides”

- “Slow light, induced dispersion, enhanced nonlinearity, and optical solitons in a resonator-array waveguide”

- “Gap solitons in a two-channel SCISSOR structure”

- “Beyond the absorption-limited nonlinear phase shift with microring resonators”

- “Sensitive disk resonator photonic biosensor”

- “Enhanced All-Optical Switching Using a Nonlinear Fiber Ring Resonator”