Slow Light in Optical Fibers: Applications of Slow Light in Telecom

Robert W. Boyd

Institute of Optics and Department of Physics and Astronomy
University of Rochester

with Aaron Schweinsberg, Petros Zerom, Giovanno Piredda, Zhimin Shi, Heedeuk Shin, and others

Slow Light in Optical Fibers: Applications of Slow Light in Telecom

1. Introduction, motivation, our research team
2. Modeling of slow light systems: maximum time delay
3. Progress in laboratory implementation of slow light methods
4. Physics of slow-light interactions, causality issues
5. Summary and conclusions
Review of Slow-Light Fundamentals

slow-light medium, \(n_g \gg 1 \)

group velocity: \(v_g = \frac{c}{n_g} \)

group index: \(n_g = n + \omega \frac{dn}{d\omega} \)

group delay: \(T_g = \frac{L}{v_g} = \frac{Ln_g}{c} \)

controllable delay: \(T_{\text{del}} = T_g - \frac{L}{c} = \frac{L}{c}(n_g - 1) \)

To make controllable delay as large as possible:
• make \(L \) as large as possible (reduce residual absorption)
• maximize the group index
"Slow light": group velocities < $10^{-6} c$!

Proposed applications: controllable optical delay lines, optical buffers, true time delay for synthetic aperture radar.

Key figure of merit:
normalized time delay = total time delay / input pulse duration
≈ information storage capacity of medium

Best result to date: delay by 4 pulse lengths (Kasapi et al. 1995)

But data packets used in telecommunications contain ≈ 10^3 bits

What are the prospects for obtaining slow-light delay lines with 10^3 bits capacity?
Use Optical Buffering to Resolve Data-Packet Contention

But what happens if two data packets arrive simultaneously?

Controllable slow light for optical buffering can dramatically increase system performance.

Daniel Blumenthal, UC Santa Barbara; Alexander Gaeta, Cornell University; Daniel Gauthier, Duke University; Alan Willner, University of Southern California; Robert Boyd, John Howell, University of Rochester
Slow Light in Optical Fibers: Applications of Slow Light in Telecom

1. Introduction, motivation, our research team
2. Modeling of slow light systems: maximum time delay
3. Progress in laboratory implementation of slow light methods
4. Physics of slow-light interactions, causality issues
5. Summary and conclusions
Review of Slow-Light Fundamentals

Slow-light medium, \(n_g \gg 1 \)

- group velocity: \(v_g = \frac{c}{n_g} \)
- group index: \(n_g = n + \omega \frac{dn}{d\omega} \)
- group delay: \(T_g = \frac{L}{v_g} = \frac{Ln_g}{c} \)
- controllable delay: \(T_{\text{del}} = T_g - \frac{L}{c} = \frac{L}{c} (n_g - 1) \)

To make controllable delay as large as possible:
 - make \(L \) as large as possible (reduce residual absorption)
 - maximize the group index
Generic Model of EIT and CPO Slow-Light Systems

probe absorption

\[\alpha(\delta) = \alpha_0 \left(1 - \frac{f}{1 + \frac{\delta^2}{\gamma^2}} \right) \approx \alpha_0 \left[(1 - f) - f \frac{\delta^2}{\gamma^2} \right] \text{ where } \delta = \omega - \omega_0 \]

probe refractive index (by Kramers Kronig)

\[n(\delta) = n_0 + f \left(\frac{\alpha_0 \lambda}{4\pi} \right) \frac{\delta}{\gamma} \frac{1}{1 + \frac{\delta^2}{\gamma^2}} \approx n_0 + f \left(\frac{\alpha_0 \lambda}{4\pi} \right) \frac{\delta}{\gamma} \left(1 - \frac{\delta^2}{\gamma^2} \right) \]

probe group index

\[n_g \approx f \left(\frac{\alpha_0 \lambda}{4\pi} \right) \frac{\omega}{\gamma} \left(1 - \frac{3\delta^2}{\gamma^2} \right) \]

induced delay

\[T_{\text{del}} \approx \frac{f \alpha_0 L}{2\gamma} \left(1 - \frac{3\delta^2}{\gamma^2} \right) \]

normalized induced delay (\(T_0 = \text{pulse width} \))

\[\frac{T_{\text{del}}}{T_0} \approx \frac{f \alpha_0 L}{2\gamma T_0} \left(1 - \frac{3\delta^2}{\gamma^2} \right) \]
Limitations to Time Delay

Normalized induced delay
\[\frac{T_{\text{del}}}{T_0} \approx \frac{f \alpha_0 L}{2 \gamma T_0} \left(1 - \frac{3 \delta^2}{\gamma^2} \right) \]

Limitation 1: Residual absorption limits \(L \); Solution: Eliminate residual absorption

Limitation 2: Group velocity dispersion
A short pulse will have a broad spectrum and thus a range of values of \(\delta \)
There will thus be a range of time delays, leading to a range of delays and pulse spreading
Insist that pulse not spread by more than a factor of 2. Thus
\[L_{\text{max}} = 2 \gamma^3 T_0^3 / 3 f \alpha_0 \quad \text{and} \quad \left(\frac{T_{\text{del}}}{T_0} \right)_{\text{max}} = \frac{1}{3} \gamma^2 T_0^2. \]

Limitation 3: Spectral reshaping of pulse (more restrictive than limitation 2)
Pulse will narrow in frequency and spread in time from \(T_0 \) to \(T \) where \(T^2 = T_0^2 + f \alpha_0 L / \gamma^2 \).
Thus
\[L_{\text{max}} = 3 T_0^2 \gamma^2 / (2 f \alpha_0) \quad \text{and} \quad \left(\frac{T_{\text{del}}}{T_0} \right)_{\text{max}} = \frac{3}{2} \gamma T_0. \]

Note that \(\gamma / T_0 \) can be arbitrarily large!
Summary: Fundamental Limitations to Time Delay

- If one can eliminate residual absorption, the maximum relative time delay is

\[
\left(\frac{T_{\text{del}}}{T_0}\right)_{\text{max}} = \frac{3}{2} \gamma T_0,
\]

which has no upper bound.

- But to achieve this time delay, one needs a large initial (before saturation) optical depth given by

\[
\alpha_0 L = (4/3)(T_{\text{del}}/T_0)^2_{\text{max}}.
\]

- For typical telecommunications protocols, the bit rate \(B \) is approximately \(T_0^{-1} \) and the required transparency linewidth must exceed the bit rate by the relative delay

\[
\gamma = \frac{2}{3} B \left(\frac{T_{\text{del}}}{T_0}\right)_{\text{max}}
\]
Numerical Example Showing Large Relative Delay

\[\alpha_0 L = 7500 \]
\[1 - f = 8 \times 10^{-5} \]
\[\gamma T_0 = 50 \]

Relative time delay \(T_{\text{del}} / T_0 = 75 \).
Modeling of Slow-Light Systems

We conclude that there are no *fundamental* limitations to the maximum fractional pulse delay [1]. Our model includes gvd and spectral reshaping of pulses.

However, there are serious *practical* limitations, primarily associated with residual absorption.

Another recent study [2] reaches a more pessimistic (although entirely mathematically consistent) conclusion by stressing the severity of residual absorption, especially in the presence of Doppler broadening.

Our challenge is to minimize residual absorption.

Prospects for Large Fractional Delays Using CPO

Strong pumping leads to high transparency, large bandwidth, and increased fractional delay.

Boyd et al., Laser Physics 2005.
Slow Light in Optical Fibers: Applications of Slow Light in Telecom

1. Introduction, motivation, our research team
2. Modeling of slow light systems: maximum time delay
3. Progress in laboratory implementation of slow light methods
4. Physics of slow-light interactions, causality issues
5. Summary and conclusions
Our Approach

Slow light in a room-temperature solid-state material.

Systems under investigation:
1. Stimulated Brillouin Scattering
2. Stimulated Raman Scattering
3. Wavelength Conversion and Dispersion
4. Coherent Population Oscillations
 a. Ruby and alexandrite
 b. Semiconductor quantum dots (PbS)
 c. Semiconductor optical amplifier
 d. Erbium-doped fiber amplifier
Slow-Light via Stimulated Brillouin Scattering

- Rapid spectral variation of the refractive response associated with SBS gain leads to slow light propagation
- Supports bandwidth of 100 MHz, large group delays
- Even faster modulation for SRS

Related results reported by Song, González Herráez and Thévenaz, Optics Express 13, 83 (2005).
• Use of a flattened gain line leads to significantly improved performance.
• Double gain line can cancel lowest-order contribution to pulse distortion

Study of SBS Gain Spectrum Broadening

Expand the BW by phase modulating the pump

Without Phase Mod.

With 10M Clock Phase Mod.

Gain (dB)

Gain BW: 28 MHz

10 MHz clock phase modulating the pump

10 MHz clock phase modulating the pump

• Gain BW: 28 MHz

• Gain BW: 60 MHz

Frequency spacing between pump and signal (GHz)
Slow-Light by Stimulated Raman Scattering

- The Raman linewidth (~3 THz) is adequate for foreseeable applications.
- 370 fs delay observed for 430 fs input pulse (85% of pulse width).
- Alex Gaeta, Cornell.
Slow Light Using SRS in a Silicon Nanostructure

- SRS medium is an 8-mm silicon-on-insulator (SOI) planar waveguide (Fabricated by M. Lipson’s Group).
- The Raman linewidth is 1 nm and the gain coefficient $g_R = 4.2 \text{ cm/GW}$ in the waveguide.
- Up to 14 dB of Raman gain has been observed [Xu et al. (2004)].

- System allows for flexibility in the operating wavelength ($> 1 \mu m$).
- Planar waveguide allows for CMOS-compatible all-optical tunable delay.
Slow Light via Coherent Population Oscillations

- Ultra-slow light ($n_g > 10^6$) observed in ruby and ultra-fast light ($n_g = -4 \times 10^5$) observed in alexandrite at room temperature.

- Slow and fast light in an EDFA

- Slow light in a SC optical amplifier

- Slow light in PbS quantum dots

![Graph showing fractional advancement vs. modulation frequency for different input powers.](image1)

![Graph showing normalized power vs. delay with 3 ps delay marker.](image2)
FWM-Dispersion Delay Method

- Results:
 - 800 ps of delay
 - Pulse quality is preserved
 - No wavelength shift
 - Phase information is preserved
 - 10 Gb/s simulation implies a 3-dB received power penalty
Slow Light in Optical Fibers: Applications of Slow Light in Telecom

1. Introduction, motivation, our research team
2. Modeling of slow light systems: maximum time delay
3. Progress in laboratory implementation of slow light methods
4. Physics of slow-light interactions, causality issues
5. Summary and conclusions
Interest in Slow Light

Intrigue: Can (group) refractive index really be 10^6?

Fundamentals of optical physics

Optical delay lines, optical storage, optical memories

Implications for quantum information

And what about fast light ($v > c$ or negative)?

Group Velocity

Pulse (wave packet) → \(\mathbf{v}_g \)

Group velocity given by

\[
\mathbf{v}_g = \frac{d\omega}{dk}
\]

For

\[
k = \frac{n\omega}{c} \quad \text{and} \quad \frac{dk}{d\omega} = \frac{1}{c} \left(n + \omega \frac{dn}{d\omega} \right)
\]

Thus

\[
\mathbf{v}_g = \frac{c}{n + \omega \frac{dn}{d\omega}} = \frac{c}{n_g}
\]

Thus \(n_g \neq n \) in a dispersive medium!
Switch to Overheads
Approaches to Slow Light Propagation

- Use of quantum coherence (to modify the spectral dependence of the atomic response)
 e.g., electromagnetically induced transparency

- Use of artificial materials (to modify the optical properties at the macroscopic level)
 e.g., photonic crystals (strong spectral variation of refractive index occurs near edge of photonic bandgap)
Slow Light in Atomic Vapors

Slow light propagation in atomic vapors, facilitated by quantum coherence effects, has been successfully observed by

Hau and Harris
Welch and Scully
Budker
and others
Challenge/Goal

Slow light in a room-temperature solid-state material.

Solution: Slow light enabled by coherent population oscillations (a quantum coherence effect that is relatively insensitive to dephasing processes).
Recall that $n_g = n + \omega (dn/d\omega)$. Need a large $dn/d\omega$. (How?)

Kramers-Kronig relations:
Want a very narrow feature in absorption line.

Well-known “trick” for doing so:
Make use of spectral holes due to population oscillations.

Hole-burning in a homogeneously broadened line; requires $T_2 << T_1$.

\[\frac{1}{T_2} \quad \text{inhomogeneously broadened medium} \]
\[\frac{1}{T_1} \quad \text{homogeneously broadened medium (or inhomogeneously broadened)} \]

PRL 90,113903(2003).
• Ground state population oscillates at beat frequency δ (for $\delta < 1/T_1$).

• Population oscillations lead to decreased probe absorption (by explicit calculation), even though broadening is homogeneous.

• Rapid spectral variation of refractive index associated with spectral hole leads to large group index.

• Ultra-slow light ($n_g > 10^6$) observed in ruby and ultra-fast light ($n_g = -4 \times 10^5$) observed in alexandrite by this process.

• Slow and fast light effects occur at room temperature!

PRL 90,113903(2003); Science, 301, 200 (2003)
Spectral Holes in Homogeneously Broadened Materials

Occurs only in collisionally broadened media \((T_2 << T_1)\)

Slow Light Experimental Setup

7.25-cm-long ruby laser rod (pink ruby)
Measurement of Delay Time for Harmonic Modulation

For 1.2 ms delay, $v = 60$ m/s and $n_g = 5 \times 10^6$
Gaussian Pulse Propagation Through Ruby

No pulse distortion!

\(v = 140 \text{ m/s} \)

\(n_g = 2 \times 10^6 \)
Matt Bigelow and Nick Lepeshkin in the Lab
Advantages of Coherent Population Oscillations for Slow Light

- Works in solids
- Works at room temperature
- Insensitive of dephasing processes
- Laser need not be frequency stabilized
- Works with single beam (self-delayed)
- Delay can be controlled through input intensity
Alexandrite Displays both Saturable and Reverse-Saturable Absorption

• Both slow and fast propagation observed in alexandrite

Inverse-Saturable Absorption Produces Superluminal Propagation in Alexandrite

At 476 nm, alexandrite is an inverse saturable absorber

Negative time delay of 50 μs corresponds to a velocity of -800 m/s

M. Bigelow, N. Lepeshkin, and RWB, Science, 2003
Numerical Modeling of Pulse Propagation Through Slow and Fast-Light Media

Numerically integrate the paraxial wave equation

\[\frac{\partial A}{\partial z} - \frac{1}{v_g} \frac{\partial A}{\partial t} = 0 \]

and plot \(A(z,t) \) versus distance \(z \).

Assume an input pulse with a Gaussian temporal profile.

Study three cases:

- Slow light \(v_g = 0.5 \ c \)
- Fast light \(v_g = 5 \ c \) and \(v_g = -2 \ c \)
Pulse Propagation through a Slow-Light Medium ($n_g = 2$, $v_g = 0.5 \, c$)
Pulse Propagation through a Fast-Light Medium ($n_g = 0.2$, $v_g = 5 \text{ c}$)
Pulse Propagation through a Fast-Light Medium ($n_g = -0.5$, $v_g = -2 \text{ c}$)
Slow and Fast Light in an Erbium Doped Fiber Amplifier

- Fiber geometry allows long propagation length
- Saturable gain or loss possible depending on pump intensity

Observation of Backward Pulse Propagation in an Erbium-Doped-Fiber Optical Amplifier

We time-resolve the propagation of the pulse as a function of position along the erbium-doped fiber.

Procedure
- cutback method
- couplers embedded in fiber
Experimental Results: Backward Propagation in Erbium-Doped Fiber

Normalized: (Amplification removed numerically)
Experimental Results: Backward Propagation in Erbium-Doped Fiber

Un-Normalized
Observation of Backward Pulse Propagation in an Erbium-Doped-Fiber Optical Amplifier
Observation of Backward Pulse Propagation in an Erbium-Doped-Fiber Optical Amplifier

Summary:

“Backwards” propagation is a realizable physical effect.
Causality and Superluminality

Fig. 6 Coordinates of two inertial observers A (0, 0) and B with O(x, t) and O'(x', t') moving with a relative velocity of 0.75c. The distance L between A and B is 2000000 km. A makes use of a signal velocity v_s = 4c and B makes use of v'_s = 2c. The numbers in the example are chosen arbitrarily. The signal returns −1 s in the past in A.

G. Nimitz and A. Haibel, Basics of Superluminal Signals

Information Velocity in a Fast Light Medium

Pulses are not distinguishable "early."

\[v_i \leq c \]
Propagation of a Truncated Pulse through Alexandrite as a Fast-Light Medium

Smooth part of pulse propagates at group velocity
Discontinuity propagates at phase velocity (information velocity?)

In principle, the information velocity is equal to c for both slow- and fast-light situations. **So why is slow and fast light even useful?**

Because in many practical situations, we can perform reliable measurements of the information content only near the peak of the pulse.

In this sense, useful information often propagates at the group velocity.

In a real communication system it would be really stupid to transmit pulses containing so much energy that one can reliably detect the very early leading edge of the pulse.
Slow Light in Optical Fibers: Applications of Slow Light in Telecom

1. Introduction, motivation, our research team
2. Modeling of slow light systems: maximum time delay
3. Progress in laboratory implementation of slow light methods
4. Physics of slow-light interactions, causality issues
5. Summary and conclusions
Summary

Slow-light techniques hold great promise for applications in telecom and quantum information processing

Good progress being made in developing new slow-light techniques and applications

Different methods under development possess complementary regimes of usefulness
Special Thanks to My Students and Research Associates
Thank you for your attention.

And thanks to NSF and DARPA for financial support!
Thank you for your attention!