Enhanced Nonlinear Optical Response of 1-D Metal-Dielectric Photonic Band-Gap Structures

Nick N. Lepeshkin, Aaron Schweinsberg, Ryan S. Bennink, Robert W. Boyd

The Institute of Optics, University of Rochester, Rochester, NY 14627, USA

and

Robert L. Nelson

Air Force Research Laboratory, (AFRL/MLPO) Wright-Patterson Air Force Base, Ohio 45433-7707 and

Presented at the Optical Society of America Annual Meeting, Orlando, Florida, October 2, 2002
How to Access Optical Nonlinearity of Metals?

\[
\chi_{metal}^{(3)} \approx 10^{-8} - 10^{-7} \text{ esu} \quad \text{opaque!}
\]
\[
\chi_{SiO_2}^{(3)} \approx 10^{-14} \text{ esu} \quad \text{transparent!}
\]

Discontinuous composite materials:

- colloidal solutions
- metal doped glasses
- granular metal films

Layered periodic MD structures:

High transparency within specified spectral range (PBG effect)
Enhanced NLO response
Accessing the Optical Nonlinearity of Metals with Metal-Dielectric PBG Structures

- Metals have very large optical nonlinearities but low transmission.
- Low transmission is because metals are highly reflecting (not because they are absorbing!).
- Solution: construct metal-dielectric PBG structure.
 (linear properties studied earlier by Bloemer and Scalora)

Accessing the Optical Nonlinearity of Metals with Metal-Dielectric PBG Structures

- Metal-dielectric structures can have high transmission.
- And produce enhanced nonlinear phase shifts!

Linear transmission of PBG sample at $\lambda = 650$ nm.
- Copper layers 16 nm thick

Enhancement of NL phase shift over bulk metal
- Simple model
- Exact solution

![Graph showing linear transmission and enhancement of nonlinear phase shift over bulk metal](image)
1-D Metal/Dielectric PBG structures

1. 80 nm Cu film

2. 40/389 nm Cu/SiO$_2$ FP

3. 5 x 16/98 nm Cu/SiO$_2$ PBG

Wavelength, nm
Linear Optical Properties

Bulk: 40 nm Cu film
PBG: 5 x 16/98 nm Cu/SiO
Model of Enhanced Nonlinear Optical Response

\[\varepsilon \approx \varepsilon_{\text{lin}} + \chi_m^{(3)} I F E^2 \]

where

\[I = \frac{\langle E_{m,\text{pbg}}^2 \rangle}{\langle E_{m,\text{bulk}}^2 \rangle} \]

\[F = \frac{\Delta \phi}{\lambda} \int \Delta n \, dz \]

I = intensity enhancement factor
F = phase enhancement factor

I and F calculated numerically for our five layer design
Nonlinear Susceptibility of Bulk Copper

• We find $\text{Im} \chi^{(3)} \gg \text{Re} \chi^{(3)}$ at all wavelengths where response is measurable.
• Near interband threshold, Fermi smearing is dominant nonlinear process (Hache et al., Appl. Phys. A 47, 347-357 (1988)).
• Width of resonance is approximately $4kT$.

\text{Z-scan data} \\
\text{Fermi smearing model}
Z-Scan Comparison of M/D PBG and Bulk Sample

Open-aperture Z-scan
(measures $\text{Im} \chi^{(3)}$)

$I = 500 \text{ MW/cm}^2$
$\lambda = 640 \text{ nm}$

$\frac{\delta \phi_{\text{PBG}}^{''}}{\delta \phi_{\text{Cu}}^{''}} \approx 35$
Spectral Dependence of the Nonlinear Response

Graph:

- **Y-axis:** \(\text{Im } \phi_{NL}\)
- **X-axis:** Wavelength, nm

Legend:
- **PBG**
- **Bulk**

Graph Information:
- **OPG:**
 - \(t = 25\) ps
 - \(Q = 2\) to \(5\) mJ
 - \(I \approx 100\) MW/cm\(^2\)
Conclusions

We produced a stable, artificial, solid-state NLO material with a tunable transmission band and high damage threshold.

We experimentally demonstrated enhanced nonlinear response of 1-D MD PBG structure. The enhancement factor was measured to be as high as 35.