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§ 1. Elementary concepts 

Recent research has estabHshed that it is possible to exercise extraordinary 
control of the velocity of propagation of light pulses through a material system. 
Both extremely slow propagation (much slower than the velocity of light in 
vacuum) and fast propagation (exceeding the velocity of light in vacuum) have 
been observed. This article summarizes this recent research, placing special 
emphasis on the description of the underlying physical processes leading to the 
modification of the velocity of light. 

To understand these new results, it is crucial to recall the distinction between 
the phase velocity and the group velocity of a light field. These concepts will 
be defined more precisely below; for the present we note that the group velocity 
gives the velocity with which a pulse of light propagates through a material 
system. One thus speaks of "fast" or "slow" light depending on the value of the 
group velocity Ug in comparison to the velocity of light c in vacuum. 

Slow light refers to the situation u^ <C c. In fact, group velocities smaller than 
17m/s have been observed experimentally (Hau, Harris, Dutton and Behroozi 
[1999]). Fast light refers to light traveling faster than the speed of light in 
vacuum. This circumstance can occur either when t;g > c or when Ug is negative. 
A negative group velocity corresponds to the case when the peak of the pulse 
transmitted through an optical material emerges before the peak of the incident 
light field enters the medium (Garrett and McCumber [1970]), which is indeed 
fast! 

Some of these ideas can be understood in terms of the time sequences shown 
in fig. 1. It is also worth noting that the transit time T through an optical medium 
can in general be represented as 

T=-, (1) 

where L is the physical length of the medium. Thus, when Vg is negative, 
the transit time through the medium will also be negative. The validity of the 
description given here and leading to fig. 1 assumes that the pulse does not 
undergo significant distortion in propagating through the material system. We 
shall comment below on the validity of this assumption. 
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Fig. 1. Schematic representation of a pulse propagating through a medium for various values of 
the group velocity. In each case we depict the spatial variation of the pulse intensity for increasing 

values of time. 

We next review the basic concepts of phase and group velocity. We begin by 
considering a monochromatic plane wave of angular frequency co propagating 
through a medium of refractive index n. This wave can be described by 

^(z ,0 = ^e'^ '''̂  + c.c., (2) 

where k = nco/c. We define the phase velocity Up to be the velocity at which 
points of constant phase move through the medium. Since the phase of this wave 
is clearly given by 

0 = kz- cot, (3) 

points of constant phase move a distance Az in a time A ,̂ which are related by 

kAz = (oAt 

Thus Up = Az/At or 

w c 

k n 

(4) 

(5) 

Let us next consider the propagation of a pulse through a material system. 
A pulse is necessarily composed of a spread of optical frequencies, as illustrated 
symbolically in fig. 2. At the peak of the pulse, the various Fourier components 
will tend to add up in phase. If this pulse is to propagate without distortion, these 
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Fig. 2. Schematic representation of an optical pulse in terms of its various spectral components. 
Note that these contributions add in phase at the peak of the pulse. 

components must add in phase for all values of the propagation distance z. To 
express this thought mathematically, we first write the phase of the wave as 

nwz 
(p = (Ot, 

c 
(6) 

and require that there be no change in 0 to first order in co. That is, d^/do; = 0 
or 

dn coz nz 
+ - - ^ = 0, 

aco c c 

which can be written as z = i;ĝ  where the group velocity is given by 

c doj 

(7) 

(8) 
^ n + 0) dn/dco 

The last equality in this equation results from the use of the relation k = nco/c. 
Alternatively, we can express this result in terms of a group refraction index rig 
defined by 

c 
(9) 

with 
dn 

nQ = n-\- CO -—. 
^ dw 

(10) 

We see that the group index differs from the phase index by a term that depends 
on the dispersion dn/do) of the refractive index. 
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Slow and fast light effects invariably make use of the rapid variation of 
refractive index that occurs in the vicinity of a material resonance. Slow light can 
be achieved by making dn/d(0 large and positive (large normal dispersion), and 
fast light occurs when it is large and negative (large anomalous dispersion) ̂ . 

1.1. Pulse distortion 

What is perhaps most significant about recent research in slow and fast light is 
not the size of the effect (that is, how fast or how slow a pulse can be made to 
propagate) but rather the realization that pulses can propagate through a highly 
dispersive medium with negligible pulse distortion. Let us examine why it is that 
pulse distortion effects can be rendered so small. 

In theoretical treatment of pulse propagation (Boyd [1992]), it is often 
convenient to expand the propagation constant k((D) in a power series about the 
central frequency ô o of the optical pulse as 

k((J)) = ko-\-ki(W-COo)-\- ^k2i(J)-COof -\- • • •, (11) 

where ko = k(coo) is the mean wavevector magnitude of the optical pulse, 

1 Ha dk 
do; 

(12) 
c 

is the inverse of the group velocity, and 

^ d ( l A ^ ^ l d « g ^j3^ 
d(o c da; 

is a measure of the dispersion in the group velocity. Since the transit time through 
a material medium of length L is given by T = L/Ug = Lk\, the spread in transit 
times is given approximately by 

AT^Lk2A(o, (14) 

where Aco is a measure of the frequency bandwidth of the pulse. 
The significance of each of the terms of the power series can be understood, 

for example, by considering solutions to the wave equation for a transform-

' We use the terms normal dispersion and anomalous dispersion to describe the change in the 
refractive index as a function of frequency (the traditional usage). In more recent texts on optical-
fiber communication systems, the terms normal or anomalous dispersion refer to the change in the 
group index as a function of frequency. Normal (anomalous) group-velocity dispersion is the case 
when d«g/dco > 0 (d«g/d(x> < 0). 
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Fig. 3. Effects of group-velocity dispersion and higher-order dispersion on a Gaussian shaped pulse, 
from Agrawal [1995]. (a) Dispersion-induced broadening of a Gaussian pulse propagating through 
glass at z = 2 I D and z = 4 I D . The dashed curve shows the incident pulse envelope, (b) Influence of 
higher-order dispersion. Pulse shapes at z = 5L'^ for an initially Gaussian pulse at z = 0 are shown. 
The solid curve is for the case when ki ^ ^ {jh in the notation of Agrawal) in the presence of 
higher-order dispersion; the dashed curve is the case when the characteristic length associated with 
group-velocity dispersion LQ and higher-order dispersion L'^ are equal. The dotted curve shows the 

incident pulse envelope. 

limited Gaussian-shaped pulse (of characteristic pulse width To) incident upon 
a dispersive medium (Agrawal [1995]). When the propagation distance through 
the medium is much shorter than the dispersion length 

rr2 

^D - 7 7 7 , (15) 

the pulse remains essentially undistorted and travels at the group velocity. For 
longer propagation distances (or shorter To and larger Aw), the pulse broadens 
but retains its Gaussian shape, as shown in fig. 3a. In addition, the pulse 
acquires a linear frequency chirp; that is, the instantaneous frequency of the light 
varies linearly across the pulse about the central carrier frequency of the pulse. 
Red (blue) components travel faster than blue (red) components in the normal 
(anomalous) group-velocity dispersion regime where fe > 0 (ki < 0). 

For situations where 2̂ ~ 0 or for large Aa;, higher-order terms in the 
power series expansion (11) must be considered. It is found that an incident 
Gaussian pulse becomes distorted significantly, as shown in fig. 3b, when the 
pulse propagates farther than a characteristic distance 

(16) 

associated with higher-order dispersion, where k^ ^ d^k/dco^. 
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To observe pulse propagation through a dispersive medium without significant 
pulse distortion, it is necessary that the spread of transit times AT given 
by eq. (14) be much smaller than the characteristic pulse duration TQ. AS 
discussed below, experiments on slow and fast light are typically conducted under 
conditions such that the group index rig is an extremum, so that drig/dco = 0 
and hence k2 vanishes. It is for this reason that slow- and fast-light experiments 
are accompanied by negligible distortion so long as the propagation distance 
through the dispersive medium is much less than Vp (implying a narrow spectral 
bandwidth for the pulse). Limitations to the accuracy of the group-velocity 
description for propagation through an absorptive medium have been pointed 
out by Xiao and Oughstun [1997, 1999]. 

§ 2. Optical pulse propagation in a resonant system 

Propagation of light pulses through resonant atomic systems has attracted great 
interest since the early 1900's because of the possibility of fast-light behavior 
and its implications for Einstein's Special Theory of Relativity. Sommerfeld, 
independently (Sommerfeld [1907, 1914]) and together with his student Brillouin 
(Brillouin [1914]), developed a complete theory of pulse propagation through a 
collection of Lorentz oscillators. Their work was published during World War I 
and is not widely available. For this reason, Brillouin compiled and augmented 
their earlier work in a beautiful treatise entitled Waue propagation and group 
velocity (Brillouin [I960]). They were most interested in the case in which 
the carrier frequency of the pulse coincides with the atomic resonance so that 
the pulse experiences anomalous dispersion and consequently Vg > c. They 
considered the case of an optical pulse that has an initial rectangular shape so 
that its amplitude vanishes before the beginning of the pulse - the so-called 
front of the pulse. They found that the speed of the front of the pulse is always 
equal to the speed of light in vacuum even in the anomalous-dispersion regime 
where Vg > c ox Ug < 0, and that the pulse experiences substantial distortion. 
In hindsight, the fact that the pulse experiences distortion is due to the wide 
bandwidth of the pulse resulting from the infinitely sharp turn on. 

To understand the unusual slow and fast light properties of pulse propagation 
through resonant systems, we review the solutions to the wave equation, paying 
particular attention to the manner in which the refractive index is modified in the 
immediate vicinity of each transition frequency. We express the refractive index 
as 

n = ^/e= yj\+4jtx, (17) 
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where e is the dielectric constant, and the susceptibihty is given (in Gaussian 
units) by 

X = 
Ne^/lmcoo 

(a)o-a))-iy' 
(18) 

for a near resonant light field. The transition frequency is denoted by COQ, ^Y 
is the width (FWHM) of the atomic resonance, and e (m) denote the charge 
(mass) of the electron. For an atomic number density N that is not too large, the 
refractive index n = n' + in" can be expressed as « ~ 1 + 2KX, whose real and 
imaginary parts are given by 

n' = \ + 
jzNe^ 2(a;o - w)y ^ ^ ̂  ^^^ .̂̂ ^ 2(a>o - a))y 

ImcooY (COQ - (JOY + y- (o^o - (JoY + y2 ' 

JzNe^ 
ImcDoy {O)Q- coY + y^ 

= bn^ max) 
{WQ - (jof + y2' 

(19) 

(20) 

where 8«̂ "̂ ^̂ ^ is the maximum deviation of the phase index from unity. These 
functional dependences are shown in fig. 4, along with the group index 

+ 5n (max) 

i+l^^n'-^^^Vsr) 

(ft)*!'"^^"*//) 

Fig. 4. The real {n') and imaginary {n") parts of the phase index and the real part of the group index 
(«g) associated with an isolated atomic resonance. 
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n^ = n' + oj dn'/dco. Note that the scale of the variation of the group index 
from unity is given by the quantities 

g„(max) ^ C ^ g rmin) ^ _ ( ^ ( 2 1 ) 

Typical values for an atomic vapor are oj = lir [5 x 10̂ "̂ ) s ', bn^"^^^^ = 0.1, and 
7 = 2;r (l x 10^) s ^ leading to the value 

bnf'''^ = 5 X 10^ (22) 

This is a remarkable result! Even though phase indices of atomic vapors are 
rarely larger than 1.5 (and the phase index is 1.1 for the numerical example just 
given) the group index can be of the order of 5 x 10"̂ . Group indices this large 
are not routinely measured in atomic vapors because of the large absorption that 
occurs at frequencies where «g is appreciable. As one can deduce from eq. (20), 
the linear absorption coefficient a = ln"wlc is of the order of lO'^cm' under 
the same conditions used to obtain result (22). 

2.1. Early observations of 'slow' and fast' light propagation 

While there was considerable theoretical interest in pulse propagation through 
resonant systems over a 100 years ago, experimental investigations in the optical 
spectral region increased substantially with the advent of the laser. In 1966 
Basov, Ambartsumyan, Zuev, Kryukov and Letokhov [1966] and Basov and 
Letokhov [1966] investigated the propagation of a pulse propagating through 
a laser amplifier (a collection of inverted atoms) for the case in which the 
intensity of the pulse was high enough to induce a nonlinear optical response. 
They found that nonlinear optical saturation of the amplifier gave rise to fast 
light, a surprising result since the linear dispersion is normal at the center of 
an amplifying resonance so that u^ < c is expected for low intensity pulses. 
They attributed the pulse advancement to a nonlinear pulse reshaping effect 
where the front edge of the pulse depletes the atomic inversion density so that 
the trailing edge propagates with much lower amplification. In addition, they 
found that the effects of dispersion give a negligible contribution to the pulse 
propagation velocity in comparison to the nonlinear optical saturation effects. 
Such pulse advancement due to amplifier saturation is now commonly referred to 
as superluminous propagation. Throughout this review, we are mainly concerned 
with propagation of pulses that are sufficiently weak so that the linear optical 
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properties of the medium need only be considered, although these properties 
may be modified in a nonlinear fashion by the application of an intense auxiliary 
field. 

Soon after the experiment of Basov, Ambartsumyan, Zuev, Kryukov and 
Letokhov [1966], Icsevgi and Lamb [1969] performed a theoretical investigation 
of the propagation of intense laser pulses through a laser amplifier. They 
attempted to resolve the apparent paradox of pulses propagating "faster than 
the velocity of light" predicted in the work of Basov and Letokhov [1966], 
and it appears that Icsevgi and Lamb were unaware of the earlier work by 
Brillouin [1914] discussing the distinction between group velocity and front 
velocity and its implications for the Special Theory of Relativity. Icsevgi and 
Lamb distinguish between two types of pulses in their work. A pulse is said to 
have compact support if its amplitude is nonzero only over some finite range of 
times, and is said to have infinite support if the pulse is nonzero for all times. 
By way of example, a hyperbolic secant pulse has infinite support. Icsevgi and 
Lamb find in their numerical solutions of the pulse propagation equation that 
pulses with infinite support can propagate with group velocities exceeding that 
of light in vacuum c. However, there is no violation of causality because the 
input pulse exists for all values of time. For a pulse with compact support, they 
find that the region of the pulse where it first becomes nonzero cannot propagate 
faster than c (the front velocity in the terms of Brillouin [1914]). Their results 
are consistent with the work of Brillouin [1914] and extend the analysis to a 
nonlinear optical medium. 

These issues have been clarified fiarther in the work of Sherman and Oughstun 
[1981], who present a simple algorithm for the description of short pulse 
propagation through dispersive systems in the presence of loss. More recently, 
Diener [1996] shows that in cases in which a pulse propagates superluminally, 
that part of the pulse which propagates faster than c can be predicted my means 
of analytic continuation of that part of the pulse that lies within the "light cone", 
that is, the extreme leading wing of the pulse. In subsequent work, Diener [1997] 
introduced an energy transport velocity 

Cf = T^c, (23) 

which is less than or equal to c for any value of n. 
Subsequent experiments conducted in the late 1960s by Carruthers and Bieber 

[1969] and Frova, Duguay, Garrett and McCall [1969], and in early the 1970s 
by Faxvog, Chow, Bieber and Carruthers [1970] on weak pulses propagating 
through amplifying media observed slow light as expected for a linear amplifier. 
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However, the effect was small because of the smallness of the available gain. 
Using a high-gain 3.51-(im xenon amplifier, Casperson and Yariv [1971] were 
able to achieve group velocities as low as c/2.5. 

In this same period, Garrett and McCumber [1970] made an important 
contribution to the field when they investigated theoretically the propagation of 
a weak Gaussian pulse through either an amplifier or absorber. They were the 
first to point out that the pulse remains substantially Gaussian and unchanged 
in width for many exponential absorption or gain lengths and that the location 
of the maximum pulse amplitude propagates at u^, even when t;g > c or 6;g < 0. 
For this distortion-free propagation, the spectral bandwidth of the pulse has to 
be narrow enough so that higher-order dispersive effects are not important, as 
discussed in § 1.1. Note that a Gaussian pulse is of infinite support and hence 
the predictions of Garrett and McCumber [ 1970] are consistent with the earlier 
work of Icsevgi and Lamb [1969]. 

Following up on the predictions of Garrett and McCumber [1970], Chu 
and Wong [1982a] investigated experimentally both slow and fast light for 
picosecond laser pulses propagating through a GaP:N crystal as the laser 
frequency was tuned through the absorption resonance arising from the bound 
^-exciton line. Typical experimental traces are shown in fig. 5 and are 
summarized in fig. 6. Both positive and negative group delays are observed and 
the pulse shape remains essentially unchanged. The data points are found to be 
in good agreement with the theoretical predictions, which were obtained from a 
model that is a slight generalization of the model presented above. Note that the 
fast light observed in this experiment was obtained in the presence of a large 
absorptive background. This report is of significance in that it is one of the first 
studies to establish experimentally that the group velocity is a robust concept 
in the optical part of the spectrum even under conditions of significant pulse 
advance or delay. 

We note that the pulse shapes observed by Chu and Wong [1982a] and shown 
in fig. 5 are effected by the measurement process, as pointed out by Katz 
and Alfano [1982]. The pulse shapes were measured using an autocorrelation 
method, which is insensitive to pulse asymmetries or oscillations, but is sensitive 
to pulse compression. Katz and Alfano find that the pulses shown in fig. 5 
experience significant compression, which may be due to true compression 
or due to pulse asymmetries. In response, Chu and Wong [1982b] agree that 
pulse compression is present in their data and can be explained theoretically 
by the inclusion of higher order dispersion. However, they also point out that 
the group velocity remains a meaningful concept even in the presence of pulse 
compression. Later numerical simulations by Segard and Macke [1985] of 
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Fig. 5. Experimental results of Chu and Wong [1982a] showing the transmitted pulse shapes as their 
laser frequency is tuned through an exciton resonance line in GaP:N. 
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Fig. 6. Summary of the experimental results of Chu and Wong [1982a] demonstrating that the 
group delay can be either positive or negative (solid line). For comparison the absorption spectrum 

of their sample is also shown (dashed line). 
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the experiments of Chu and Wong [1982a] show that the pulses experience 
significant ringing, not just compression as suggested by Chu and Wong [1982b]. 
In the same paper, Segard and Macke [1985] also describe a fast-light experiment 
via a millimeter wave absorption resonance in OCS. They observe significant 
pulse advancement and negative group velocities with essentially no pulse 
distortion using a detector that directly measured the pulse shape, confirming 
the theoretical predictions of Garrett and McCumber [1970]. As in the previous 
experiments, the pulses experienced large absorption. 

§ 3. Nonlinear optics for slow light 

The conclusion of the previous sections is that in linear optics the group 
refractive index can be as large as 

^ g (max) jj.'KT 2 

6 . = 1 + "^^ where 6« -̂̂ ^^ = ^ , (24) 
^ 87 mwlY ^ 

but is accompanied by absorption of the order of 

4;f§„(max) 

^ - A ' ^ ^ 

where A is the vacuum wavelength of the radiation. Recent demonstrations 
of slow light have been enabled by nonlinear optical techniques which can 
be used to decrease the effective linewidth 7 of the atomic transition and 
also to decrease the level of absorption experienced by the pulse. A typical 
procedure for producing slow light is to make use of electromagnetically induced 
transparency (EIT), a technique introduced by Harris, Field and Imamoglu [1990] 
to render a material system transparent to resonant laser radiation, while retaining 
the large and desirable optical properties associated with the resonant response of 
a material system. See also review articles by Harris, Yin, Jain, Xia and Merriam 
[1997], Harris [1997], and Lukin and Imamoglu [2001]. 

The possibility of modifying the linear dispersive properties of an atomic 
medium using an intense auxiliary electromagnetic field was first noted by Tewari 
and Agarwal [1986] and by Harris, Field and Imamoglu [1990]. In addition, 
Scully [1991] pointed out that the refractive index can be enhanced substantially 
in the absence of absorption using similar methods, with possible applications in 
magnetometry [1992]. In a later paper Harris, Field and Kasapi [1992] performed 
detailed calculations to estimate the size of the slow-light effect. They estimate 
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Fig. 7. Energy-level structure utilized in a typical EIT, slow-light experiment. 

that Ug = c/250 could be obtained for a 10-cm-long Pb vapor cell at an atom 
density of 7 x 10̂ ^ atoms/cm^ and probed on the 283-nm resonance transition. 
This small group velocity is accompanied by essential zero absorption and 
zero group-velocity dispersion. More recently, Bennink, Boyd, Stroud and Wong 
[2001] have predicted that slow- and fast-light effects can be obtained in the 
response of a strongly driven two-level atom. 

Following an approach similar to that used by Harris, Field, and Kasapi, we 
review the relation between EIT and slow light using a density matrix calculation. 
We consider the situation shown in fig. 7, and for simplicity assume that in the 
absence of the applied laser fields all of the population resides in level a. We 
want to solve the density matrix equations to first order in the amplitude E of 
the probe wave and to all orders in amplitude ^s of the saturating wave. In this 
order of approximation, the only matrix elements that couple to Paa (which can 
be taken to be constant) are p/,,, and pea, which satisfy the equations 

pha = - (^(Oha + Yha)pha " T {Vi^apaa + Vhcpca) , (26) 

pea = - i}(Oca + Yea)pea " T {Vchpha) • (27) 

In the rotating-wave and electric-dipole approximations, V^a ^ -lUtaEe'^^'^^ and 
Vhc = -jJihc-E^e'^^'^''^ We now solve these equations in the harmonic steady state, 
that is, we find solutions of the form 

Pha - Ohae pea " OcaC , ( Z 6 ) 

where Oha and Oca are time-independent quantities. We readily find that 

'" (i<5-yU[i(<5-4)-y„,] + | a / 2 P ' ^ ^ 

where 6 = 0)- co/,„, A = (o^- (O/K, and Q^ = li-ihcEs/h is the Rabi frequency 
associated with the strong drive field. From this equation, we determine the 
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Fig. 8. Frequency dependence of (a) the absorption coefficient and (b) the group index in the 
absence (dashed curves) and in the presence (solid curves) of the intense coupling field that induces 
the EIT effect. The parameters are estimated from the conditions of the experiments of Hau, 
Harris, Dutton and Behroozi [1999] and are given by 2jTN\i^f,^\~/yi,^,h = 0.013, y/,^/2;r - 5MHz, 

y,.,/ = 0.038MHz, and OJ/V/^^^ = 1.02x 10^. 

susceptibility for the probe wave by means of the equations P = NfiahOha = X^^^^^ 
which, when solved for x^^\ yields 

/(•) = - W | M 'ha\ [i{d~A)-y,.a] 

( i (3-y ,J [ i (5-Z^)-n ,J + |r2,/2|2 
(30) 

Let us recall why this result leads to the prediction of EIT. For simplicity 
we assume that the strong saturating wave is tuned to the co/,,. resonance so that 
A = 0. One finds that as the intensity of the saturating field (which is proportional 
to |Osp) is increased, the absorption line splits into two components separated 
by the Rabi frequency |Os|- Figure 8a shows a{8,A = 0) for the experimental 
conditions of Hau, Harris, Dutton and Behroozi [1999] for two values of Q^ to 
show the emergence of the EIT spectral "hole" at line center (i.e., 3 = 0). In 
detail, one finds that (for d = A = 0) 

A 
YcaYha +\^s/2\^' 

(31) 
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Note that x^^^ is purely imaginary, that x^^^ is a monotonically decreasing 
function of |Osp, and for \Q^\^ > YcaYha that x '̂̂  is proportional to Yea, which 
under many experimental conditions has very small value. Thus, the presence 
of the strong saturating field leads to transparency at the frequency of the probe 
field, although only over a narrow range of frequencies. 

Let us also estimate the value of the group refractive index under EIT condi­
tions. To good approximation, we ignore the first contribution in the expression 
n^ = n' + 0) dnWdco (here n' is the real part of the phase index n) and approximate 
the phase index by its low-density expression « ~ 1 + 2JTX^^^. We take the 
expression for ^̂ ^̂  in the limit of large-field amplitude |^s | and vanishing strong-
field detuning (A = 0) so that 

n)_-iN\^ha\^ id-Yea .^^. 

^ h |Os/2|2' ^^^^ 

By combining these equations we find that 

%jza)N\iiijci\^ 

/^lap 
(33) 

Equation (33) was used by Hau, Harris, Dutton and Behroozi [1999] in the 
analysis of their experimental results. They find that it gives predictions that 
are in reasonably good agreement with their experimental data. Note, however, 
from their fig. 4, that the scaling of group velocity with drive-field intensity is 
not accurately described by eq. (33) for a range of temperatures slightly above 
the Bose-Einstein transition temperature. 

Figure 8b shows n^{d,A = 0) for two values of Q^. For Q^ = 0, the group 
index is extremely large and negative, but this is accompanied by extremely large 
absorption (see fig. 8a). The curve is dramatically different for Q^/2K = 12 MHz, 
taking on a large positive value of the order of 10^ with little dispersion and 
absorption. The group velocity aX 6 = 0 corresponds to approximately 300 m/s. 
For lower Q^, Ug as low as 17 m/s were observed by Hau, Harris, Dutton, and 
Behroozi, although with slightly increased absorption. 

3.1. Kinematics of slow light 

While we noted above that a smooth pulse can propagate undistorted through 
a medium with an EIT hole, the fact that the pulse travels with such slow 
speed implies that the light pulse undergoes an enormous spatial compression, 
as pointed out by Harris, Field and Kasapi [1992] and illustrated schematically 
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nc^ l 

Fig. 9. Schematic illustration of pulse compression that occurs when a pulse enters a medium with 
a low group velocity. 

in fig. 9. In particular, the pulse undergoes a spatial compression by the ratio of 
the group velocities inside and outside of the optical medium. Since the group 
velocity in vacuum is equal to c, this ratio is just the group index n^ of the 
material medium, which as we have seen can be as large as c l̂O .̂ Since the 
energy density of a light wave is given (in SI units) by 

u=\e^n^\E\\ (34) 

one sees that the energy density increases by this same factor. However, the 
intensity (power per unit area) of the beam remains the same as the pulse enters 
the medium, as one can see from the relation 

/ = uv^. (35) 

One also sees that the electric field strength remains (essentially) constant as the 
pulse enters the material medium, as can be seen from the relation 

/=^eoc«|£ ' |^ (36) 

and there is little if any discontinuity in n at the boundary of the medium. These 
results have been discussed in greater detail by Harris and Hau [1999]. Their 
report also notes that large nonlinear optical effects often accompany the creation 
of slow light. One sees from the discussion just given that the linear response 
tends to be large not because the electric field is enhanced within the optical 
medium but rather because the conditions that produce slow light also tend to 
produce a large nonlinear optical susceptibility. 

§ 4. Experimental studies of slow light 

One of the first experiments to measure the dispersive properties of an 
EIT system was performed by Xiao, Li, Jin and Gea-Banacloche [1995] 
using a gas of hot rubidium atoms and using a slightly different energy 
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level configuration than that considered in the previous section. They directly 
measured the phase imparted on a wave propagating through the rubidium 
vapor and tuned near the ^Si/2 -^ ^^3/2 transition using a Mach-Zehnder 
interferometer. A strong continuous wave laser beam tuned near the ^^3/2 -^ 
^D5/2 transition (the so-called iadder' configuration) and counterpropagating 
with the probe beam created a Doppler-free EIT feature, thereby reducing a 
and increasing «g. While they did not directly measure the delay of pulses 
propagating through the vapor, they indirectly determined that Ug = c/13.2 for 
their experiment via the measurement of the phase shift of the wave. 

Soon thereafter Kasapi, Jain, Yin and Harris [1995] measured the temporal 
and spatial dynamics of nanosecond pulses propagating through a hot, dense 
10-cm-long Pb vapor cell in an EIT configuration similar to that described in 
the previous section. In the absence of a coupling field, they inferred a probe-
beam absorption coefficient of 600 cm ^ With the coupling field applied, they 
measured a probe-beam transmission of 55% (corresponding to a = 0.026 cm"^) 
and Ug = c/165. 

These initial experiments demonstrated that it is possible to achieve slow light 
with dramatically reduced absorption, and they set the stage for later experiments 
on ultraslow light where the group velocities are extremely small. The key to 
achieving lower group velocities was to reduce significantly the dephasing rate 
Yea of the ground-state coherence, thereby narrowing the width of the EIT feature 
and increasing dn/dco. As mentioned in § 1.1, narrowing the EIT feature requires 
the use of significantly longer pulses in comparison to the nanosecond pulsed 
used by Kasapi, Jain, Yin and Harris [1995]. 

4.1. Ultraslow light in a ultracold atomic gas 

Hau, Harris, Dutton and Behroozi [1999] performed an experiment in 1999 
that is largely responsible for the recent flurry of interest in slow light. This 
experiment made use of a laser-cooled sodium atomic vapor at a temperature 
of 450 nK near that of the transition to a Bose-Einstein condensation. The 
experimental setup for this study is shown in fig. 10. Briefly, they laser-cool 
and trap a cloud of atoms, spin-polarize the atoms by optically pumping them 
into the |F = 1, w/̂  = -1) ^Si/2 ground state, and load the atoms into a magnetic 
trap at an approximate temperature of 50 |iK and a density of ~6 x 10̂  ^ cm"^. At 
such low temperatures, the Doppler width of the optical transitions is less than 
the natural (spontaneous) width of the transition and hence the stationary-atom 
theory presented in § 3 is applicable. The temperature is further decreased via 
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Fig. 10. (a) Experimental setup and (b) energy levels and laser frequencies used in the slow-light 
experiment of Hau, Harris, Dutton and Behroozi [1999]. 

evaporative cooling of the cloud, resulting in fewer trapped atoms but slightly 
higher atomic number densities and hence lower Ug. We note that the magnetic 
trap is asymmetric, leading to an oblong cloud of cold atoms. 

In the slow-light phase of the experiment, a strong coupling laser at 
frequency cOc drives the |2) -^ |3) transition of the sodium D2 resonance line 
(see fig. 10b) and propagates along one of the short axes of the cloud, as shown 
in fig. 10a. The group velocity of a pulse of light of center-frequency cOp is 
then determined as it propagates along the long axis of the cloud. The group 
velocity is monitored as probe beam frequency is scanned through the |1) —> |3) 
transition. 
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Fig. 11. (a) Theoretically predicted probe absorption spectrum, and (b) resulting modification of the 
phase refractive index under the experimental conditions of Hau, Harris, Dutton and Behroozi [1999]. 

The conceptual understanding of this method is illustrated in the theoretical 
simulations of the experiment shown in fig. 11. The upper part of this figure 
shows that a narrow transparency feature has been induced by the coupling field 
into the broad absorption profile of the gas. Note that this induced feature is 
of the order of 2 MHz in spectral width. Under their experimental conditions, 
the width of this feature is determined by power broadening effects (that is, 
the (Ds/2)^ term in eq. (38), although fiandamentally the narrowness of this 
feature is limited by the relaxation rate between the |1) and |2) levels). The 
lower part of this figure shows the resulting modification of the refractive index 
of the vapor. Note the steep, nearly linear increase of refractive index with 
frequency near the transition frequency. It is this behavior that leads to the 
large group index of this system. In fact, Hau, Harris, Dutton and Behroozi 
[1999] shows that the group index is given (in the power-broadened limit) by 
the expression 

lOc, he 
SjTCOp ||l(i3p7V' 

(37) 

Note that the group velocity decreases with decreasing control field intensity 
so long as this expression is valid. Some of the results of this experiment are 
shown in fig. 12. Here the open circles show a transmitted pulse propagating 
at the velocity of light in vacuum and the solid circles show the pulse 
induced to propagate slowly. Note that the induced pulse delay is considerably 
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Fig. 12. Some of the experimental results of Hau, Harris, Dutton and Behroozi [1999] demonstrating 
ultra-slow propagation of a light pulse. The open circles show the input pulse; the solid circles show 

the transmitted, delayed pulse. 

greater than the duration of the pulse. In this example, the group velocity was 
measured to be 32.5 m/s corresponding to a group index of the order of 10^. 
In other measurements, these researchers observed group velocities as low as 
17 m/s. 

4.2. Slow light in hot vapors 

One might incorrectly deduce that the experiment of Hau, Harris, Dutton and 
Behroozi was enabled through use of a cold atomic gas. In fact, very similar 
experimental results have been obtained by Kash, Sautenkov, Zibrov, Hollberg, 
Welch, Lukin, Rostovtsev, Fry and Scully [1999] in a coherently driven hot 
( r = 360K) gas of rubidium atoms using the apparatus shown in fig. 13. The 
key idea is that a narrow EIT resonance can be obtained by suppressing line-
broadening mechanisms arising from the motion of the atoms and Zeeman 
splitting of the magnetic sublevels arising from stray magnetic fields. 

The dominant broadening mechanism in a hot gas is the Doppler effect. The 
EIT resonance can be rendered Doppler-free by making the strong continuous-
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Fig. 13. Experimental set-up of Kash, Sautenkov, Zibrov, Hollberg, Welch, Lukin, Rostovtsev, Fry 
and Scully [1999] for creating HIT features in a dense hot atomic vapor of rubidium. Note that their 
notation for the atomic energy levels (part a of the figure) is different from that of § 3 of the present 

chapter. 

wave coupling beam copropagate precisely with the probe beam. To see why this 
is the case, recall that the susceptibility for a hot gas is given by 

,.(i)_-i^lM/>aP 
A * 

{i[d-A + (k-k,)^u)]-y,,} 
(38) 

^ [i(d + k-v)- YtaMd -A + {k-h)'v)\- n , J + \Qs/l\ 

where k (ks) is the propagation vector for the probe (saturating) beam, u is the 
velocity of an atom, and (• • •)D denote an average over the thermal velocity 
distribution. It is seen that the term in the numerator, primarily responsible 
for the EIT resonance, contains the difference of the two propagation vectors. 
A narrow EIT resonance can thus be obtained for copropagating, nearly equal 
frequency probe and saturating waves so that (k - ks) essentially vanishes. For 
this configuration, the condition for the formation of a well-defined EIT hole is 
given approximately by |OsP > Yca^c^o, where AO^D is the Doppler width of 
the transition. Therefore, it is imperative to reduce Yea as much as possible. 

For a single stationary atom, YaJ^^ can be of the order of 1 Hz or less 
since transitions between the ground state of alkali-metal atoms are electric-
dipole forbidden. In a hot dense gas, the observed widths are much greater, due 
primarily to the finite time an atom spends in the laser beam as it moves through 
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the vapor cell and, to a lesser extent, due to collisions with surrounding atoms 
that can induce transitions between the states. The transit-time broadening can 
be reduced significantly by introducing a buffer gas to the vapor cell that reduces 
the mean-fi-ee-path of the alkali-metal atoms. Noble gas elements are preferred 
because there is little interaction between the buffer gas atoms and the alkali-
metal atoms, thereby minimizing collision-induced transitions. Typical buffer gas 
pressures are of the order of 10 Torr for a 1 mm diameter laser beam. 

The final step in achieving narrow EIT resonances involves magnetic 
shielding. The energy level structure of an alkali-metal atom is more complex 
than that shown in fig. 13a; for each level there are (2F + 1) degenerate quantum 
states in zero magnetic field, where F is the total angular momentum quantum 
number. Because of the Zeeman effect, these states experience a shift in energy 
of the order of 1 MHz/Gauss. Therefore, to realize an approximation to the 
idealized three-level atomic system considered in § 3, stray magnetic fields must 
be reduced to better than 1 mGauss for y^a of the order of 1 kHz. Well-designed 
containers for the vapor cell constructed from high-permeability metals can 
achieve such low ambient fields. 

Using all of these techniques, Kash, Sautenkov, Zibrov, Hollberg, Welch, 
Lukin, Rostovtsev, Fry and Scully [1999] were able to attain y^a — 1 kHz in 
the laser-pumped rubidium vapor with a 30 Torr neon buffer gas and magnetic 
shielding. They measured directly the dispersive properties of the vapor using 
a modulation technique and from this data inferred a group velocity as low as 
90m/s. They did not directly launch pulses of light through the vapor and hence 
did not address issues related to possible pulse distortion discussed in § 1.1. Some 
of their results are summarized in fig. 14 where it is seen that the group velocity 
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Fig. 14. Experimental results of Kash, Sautenkov, Zibrov, Hollberg, Welch, Lukin, Rostovtsev, Fry 
and Scully [1999] demonstrating slow-light propagation in a hot atomic vapor. 
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decreases with decreasing laser power for reasons mentioned above. We note that 
group velocities as low as 8 m/s have been inferred in a rubidium experiment by 
Budker, Kimball, Rochester and Yashchuk [1999] using a similar technique. 

43. "Stopped" light 

Liu, Dutton, Behroozi and Hau [2001] have provided experimental evidence 
that a light pulse can effectively be brought to a halt in a material medium 
by proper control of the coupling field in an HIT configuration. Such processes 
hold considerable promise for applications such as coherent optical storage of 
information. 

The coupling configuration used in this work is shown in fig. 15. The 
propagation of a probe beam tuned near the |1) - |3) transition is monitored in 
the presence of a coupling beam tuned to the |2) - |3) transition. This experiment 

192 MHz 

Na D1 line 
X= 589.6 nm 

1.8 GHz 

- | ^ - — |3> = |F=2, MF=0> 

J _ X |4> = |F=1, MF=0> 

\Coupling 

I Probe 

|2> = |F=2.Mp=+1> 

.|1> = |F=1,/Wp=-1> 

Fig. 15. Energy levels and laser frequencies used in the stopped-light experiment of Liu, Dutton, 
Behroozi and Hau [2001]. 

can be understood by noting that the probe beam would be very quickly 
absorbed were it not for the presence of the coupling beam. This experiment 
was performed in a laser-cooled atomic sodium vapor near the temperature for 
Bose-Einstein condensation. 

Some of the experimental resuhs of Liu, Dutton, Behroozi and Hau are shown 
in fig. 16. The upper panel shows three traces. The sharp peak centered at ^ = 0 
(dotted line) shows a time reference obtained from the transmission of an input 
pulse so far detuned from the atomic resonance that it propagates essentially 
at the velocity of light in vacuum. The smaller peak centered at 12 [is is the 
transmitted, delayed pulse obtained under EIT conditions (solid line). The dashed 
curve shows the time evolution of the saturation field (referred to as the coupling 
field in the figure). 

The lower panels of fig. 16 shows data illustrating the storage of the probe 
pulse. In this experiment, the coupling field is turned on before the arrival of 
incident probe pulse. However, at time t = 10 |is after the pulse has fially entered 
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Fig. 16. Experimental results of Liu, Dutton, Behroozi and Hau [2001] showing the stopping of 
light in an ultra-cold atomic medium. See the text for details. 

the interaction region but before it has emerged from the exit side, the coupling 
field is abruptly turned off and is left off until / = 45 |is, at which point it is 
turned back on. During the time interval in which the coupling pulse is turned 
off, the probe pulse cannot propagate and remains stored in the medium. We see 
from the graph that in this case the pulse has been delayed by 25 |is, the time 
that the coupling beam has been turned off. In other experiments Liu, Dutton, 
Behroozi and Hau [2001] have observed pulse delays as long as 1 ms. 

The interpretation of this experiment is that when the coupling field is turned 
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off the probe beam is almost immediately absorbed. The excitation associated 
with the incident probe beam is not however thermalized; phase and amplitude 
information regarding the pulse is stored as a coherent superposition of states 
|1) and |2), that is, knowledge of the incident probe pulse is stored as a ground-
state spin coherence. The energy of the probe pulse is coherently scattered into 
the direction of the coupling field. When the coupling field is later turned on 
again, light from the coupling field scatters coherently from the ground-state 
spin coherence to re-create the probe pulse. 

Note that the spatial compression of the light pulse as it enters the material 
medium (as described in § 3.1 above) is crucial to the process of light storage, as 
it is necessary that the entire pulse be contained within the interaction region. It is 
largely a matter of semantics whether the light has been temporarily "stopped" 
within the medium (the wording of the original workers) or whether the light 
pulse has temporarily been transformed to a material degree of freedom and 
later turned back into an optical field. It is also worth noting that the physics of 
the process of light storage is quite similar to that of the generation of Raman 
echos (Hartmann [1968], Hu, Geschwind and Jedju [1976]). 

As in the case of the creation of slow light, one might mistakenly assume that 
the use of a cold atomic vapor was crucial to the success of the temporary storage 
of light pulses. In fact, Phillips, Fleischhauer, Mair, Walsworth and Lukin [2001] 
have demonstrated very similar results through use of a hot Rb vapor. 

An additional physical mechanism for stopping the propagation of light has 
recently been proposed by Kocharovskaya, Rostovtsev and Scully [2001]. This 
mechanism is based on the spatial dispersion of the refractive index in a Doppler-
broadened atomic medium. 

§ 5. Experimental studies of fast light 

As described above in the discussion of slow light, a practical requirement for 
the production of slow light is the attainment of a very large normal dispersion 
in the absence of higher-order dispersion and absorption. The natural question 
arises as to whether it is possible to obtain large anomalous dispersion, also 
with low absorption and low higher-order dispersion, and thereby produce fast 
(superluminal) light. Recall the work of Chu and Wong [1982a] described above 
where they observed large anomalous dispersion but in the presence of very 
large absorption. This work has been extended recently by Akulshin, Barreiro 
and Lezama [1999] who used electromagnetically induced absorption in a driven 
two-level atomic system to obtain very large anomalous dispersion (with an 
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inferred Vg of -c/23 000), but still in the presence of large absorption. Another 
demonstration of superluminal effects, also in the presence of large absorption, 
has been observed by Steinberg, Kwiat and Chiao [1993] in the context of single-
photon tunnelling through a potential barrier. 

One possible approach for avoiding absorption is to use the nonlinear (satu­
rating) optical response of an amplifier as in the work of Basov, Ambartsumyan, 
Zuev, Kryukov and Letokhov [1966] describe above. Alternatively, one can 
make use of the cooperative (superfluorescence-like) response of a collection of 
inverted two-level atoms to produce superluminal propagation (Chiao, Kozhekin 
and Kurizki [1996]). Both of these approaches necessarily require the use of 
intense pulses. Another approach, described by Bolda, Garrison and Chiao 
[1994], is to make use of a nearby gain line to create a region of negative group 
velocity. In the present section, we describe a related scheme that has recently 
been realized experimentally based on the use of a pair of gain lines. 

5.1. Gain-assisted superluminal light propagation 

We have seen above how EIT can be used to eliminate probe wave absorption, 
and in doing so produces slow light. An alternative procedure, proposed initially 
by Steinberg and Chiao [1994] and recently demonstrated by Wang, Kuzmich 
and Dogariu [2000] makes use of a pair of Raman gain features to induce 
transparency and to induce a large dispersion of the refractive index. The sign 
of d«/dco in this circumstance is opposite to that induced by EIT, with the result 
that the group velocity is negative in the present case. 

The details of this procedure are shown in the accompanying figures. Figure 17 
shows the energy level description of the experiment. Two pump fields E\ 

|F=4,m=-3) 
6P3/2 10) A 

|F=4.m=-4> 

Fig. 17. Energy levels and laser frequencies used in the superluminal pulse propagation experiment 
of Wang, Kuzmich and Dogariu [2000]. 
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Fig. 18. Theoretically predicted gain spectrum and associated variation of the phase refractive index 
under the experimental conditions of Wang, Kuzmich and Dogariu [2000]. 

and E2 with a frequency separation of 2 MHz are sufficiently detuned from a 
particular Zeeman component of the cesium resonance line that the dominant 
interaction is the creation of two Raman gain features. These gain features and 
the resulting modification of the refractive index are shown in fig. 18. The probe 
wave is turned midway between these gain features to make use of the maximum 
dispersion of the refractive index. 

Some experimental results are shown in fig. 19. Here the solid curve shows 
the time evolution of the probe pulse in the absence of the pump beams, and the 
dashed curve shows the time evolution in the presence of the pump beams. One 
sees that in the presence of the pump beams the probe pulse is advanced by 62 ns, 
corresponding to Vg = -c/310. The ratio of the pulse advancement to pulse width 
in this case is of the order of 1.5%. The fractional size of the effect clearly is not 
large. One of the motivations for performing this experiment was to demonstrate 
that superluminal light propagation can occur under conditions such that the 
incident laser pulse undergoes negligible reshaping. Indeed, it is remarkable how 
closely the input and output pulse shapes track one another. At one time, it had 
been believed that severe pulse reshaping necessarily accompanies superluminal 
propagation. 

While these experimental results are consistent with semi-classical theories 
of pulse propagation through an anomalous-dispersion media, there is continued 
discussion about the propagation of pulses containing only a few photons where 
quantum fluctuations in the photon number are important. Aharonov, Reznik 
and Stem [1998] argue that quantum noise will prevent the observation of 
a superluminal group velocity when the pulse consists of a few photons. In 
a subsequent analyses, Segev, Milonni, Babb and Chiao [2000] find that a 
superluminal signal will be dominated by quantum noise so that the signal-to-
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Fig. 19. Experimental results of Wang, Kuzmich and Dogariu [2000], demonstrating superluminal 
propagation without absorption or pulse distortion. The solid curve shows the pulse propagating 
through vacuum; the dashed curve shows the transmitted pulse. The insets are blow-ups of the 

leading and falling edges of the pulse. 

noise ratio will be very small, and Kuzmich, Dogariu, Wang, Milonni and Chiao 
[2001] have introduced a "signal" velocity defined in terms of the signal-to-
noise velocity that should be useful for describing the propagation of few-photon 
pulses. More recently, Milonni, Furuya and Chiao [2001] predict that the peak 
probability for producing a "click" at a detector can occur sooner than it could 
if there were no material medium between it and the single-photon source. We 
await experimental verification of these concepts and predictions. 

5.2. Causality 

One might fear that the existence of negative group velocities would lead to 
a violation of the nearly universally accepted notion of causality. Considerable 
discussion of this point has been presented in the scientific literature, with the 
unambiguous conclusion that there is no violation of causality, as discussed by 
Chiao [1993] and by Peatross, Glasgow and Ware [2000]. Thorough reviews 
of the extended scientific discussion have been published by Chiao [1996] and 
Chiao and Steinberg [1997]. 

One can reach this conclusion by noting that the prediction of negative 
group velocity follows from a frequency-dependent (linear, for simplicity) 
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susceptibility that is the Fourier transform of a causal time-domain response 
function. Thus, there is no way that the predictions of such a theory could 
possibly violate causality. But this argument does not explain how causality 
can be preserved, for instance, for situations in which the (peak of a) pulse 
emerges from a material medium before the (peak of the) same pulse enters the 
medium. The explanation seems to be that any physical pulse will have leading 
and trailing wings. The distant leading wing contains information about the entire 
pulse shape, and this information travelling at normal velocities such as c will 
allow the output pulse to be fully reconstructed long before the peak of the input 
pulse enters the material medium. For any physical pulse that has a non-compact 
support, the front velocity is limited to c while the group velocity, signal velocity, 
etc. can exceed c. For the case in which the front is located close to but before 
the peak of the pulse and t;g > c or d;g < 0, pulse distortion will occur leading to 
a "pile-up" of the pulse at the front as discussed by Icsevgi and Lamb [1969]. 

The nature of superluminal velocities can also be understood from a frequency 
domain description of pulse propagation. In such a description, each frequency 
component is present at all times; the coherent superposition of these frequency 
components constitute a pulse that is localized in time. When such a pulse enters 
a dispersive medium, the various components propagate with different phase 
velocities, leading to pulse distortion and/or propagation with a modified group 
velocity. 

While these ideas have not been tested experimentally for propagation of 
electromagnetic waves, Mitchell and Chiao [1997] have studied the propagation 
of voltage pulses through a very low frequency bandpass electronic amplifier. 
They show that the amplifier transmits Gaussian-shaped pulses with a negative 
group delay as large as several milliseconds with little distortion, as shown in 
fig. 20a. They also created an abrupt discontinuity (a front) on the waveform 
and found that it propagates in a causal manner, as shown in fig. 20b. It is seen 
that the peak of the output is produced in response to earlier input, which does 
not include the input peak. This result is expected for a causal system where 
the output depends on the input at past and present, but not on fiiture times. 
For a front at the beginning of the pulse, they observe that the front reaches the 
output no earlier than it reaches the input and that no signal precedes the front, 
as expected. 

In summary, even though t;g > c or t;g < 0, relativistic causality is not expected 
to be violated in electromagnetic wave propagation experiments. Specifically, the 
front of any physical pulse of compact extent should travel at a speed less than c, 
and it should distort to avoid overtaking the front, consistent with the dispersion 
properties of the medium. 
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Fig. 20. Experimental results of Mitchell and Chiao [ 1997] demonstrating negative group delays, but 
causal propagation, (a) Input/output characteristics of a chain of low-frequency bandpass amplifiers. 

(b) Input/output characteristics for a pulse with a sharp "back". 

§ 6. Discussion and conclusions 

This very recent research on slow and fast Hght demonstrates that our 
understanding of atom-field interactions has truly developed to a high degree. 
It is now possible to tailor the absorption, amplification, and dispersion of 
multi-level atoms using intense electromagnetic fields. The developments are of 
fundamental interest, and they hold promise for advances in practical areas from 
optical communications and devices to quantum computing. Fundamentally, they 
challenge our understanding of century-old physical laws. 
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