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Maximum time delay achievable on propagation through a slow-light medium

Robert W. Boyd
Institute of Optics, University of Rochester, Rochester, New York 14627, USA

Daniel J. Gauthier
Department of Physics, Duke University, Durham, North Carolina 27708, USA

Alexander L. Gaeta
School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA

Alan E. Willner
Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, USA
(Received 2 October 2004; published 1 February 2005

We consider the question of whether there are any fundamental limits to the maximum time delay that can
be achieved for a pulse propagating through a slow-light medium. We include in our analysis what we consider
to be the dominant competing effects, and we show that in principle they do not lead to a limitation on the
maximum achievable time delay. From this result we conclude that, through optimization, one should be able
to delay a pulse by very many pulse lengths; the ability to do so can have important implications for the use
of slow-light methods for applications in photonics.
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There is great interest in methods that can control the L Ln,

propagation velocity of light pulses through material systems Tg=—= —, (1)
R c

[1]. Early work in this area demonstrated that extremely slow Vg
group velocities(vg<c) and even superluminal velocities \;nere
(vg>c or vy negativg can be obtained.

More recently, interest has turned to the use of slow- and dn
fast-light methods for various applications. Many potential Ng=n+ wa (2

applications require that a pulse of light be delayed by one to
several times the pulse duration in a tunable and controllabl
fas_hion._Specific appl_ications ir_1 the field_of_high-speed all-
optical signal processing that might benefit significantly fromgution to the group delafge=T,—L/c, which is the differ-

such controllable optical delay lines include random-acces .
memory, network buffering, data synchronization, and pat€Nce between the group delay and the delay experienced

tern correlation. upon propagation through an equivalent distance in vacuum.
However, it has not been clear what physical processes, {fNis quantity is given by

any, can lead to a limitation on the total delay that a pulse

can experience. Equivalently, it is not clear whether there are Tyer= E(n -1 (3)

any fundamental limitations on the information storage ca- T '

pacity of a slow-light medium. For instance, the maximum

fractional time delay reported to date appears to be the valugquation (3) demonstrates that the maximal time delay is

of approximately 4 reported by Kasaei al. [2]; many ex- determined by the value of the group index and by the maxi-

perimental studies have achieved only considerably shortenum possible valuel,,,, of the propagation distance

time delays. In this paper, we perform a theoretical study ofhrough the material medium. This maximum propagation

processes that could limit the total time delay. We concludelistance can be limited by physical processes such as absorp-

that, while these processes can impose severe practical lintion and diffraction effects. Absorption effects can be quite

tations, there is no fundamental limit to how large the timeappreciable, because it is often necessary to work at or near

delay can become. Similar conclusions were reached by Hagn absorption resonance to obtain a large value of the group

ris et al.[3] for slow light based on electromagnetically in- index. However, techniques such as H&A] or coherent

duced transparencfEIT); our treatment differs in that we population oscillationdCPO) [5-7] are often used in slow-

consider EIT under somewhat different conditions and in thatight experiments to minimize or even essentially eliminate

we consider additional processes that can produce slow-liglihe effects of material absorption. Diffraction effects can also

propagation. limit the effective value oL, to the Rayleigh range of the
Let us first note that the time deldthe group delaythat  incident laser beams. However, diffraction effects can be

is experienced by an optical pulse in passing through a meeliminated entirely by working in an optical fiber or other

terial system of length. is given by guided-wave structure.

S the group index and is the conventionalphase refrac-
tive index. It is also useful to introduce the material contri-
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There are other potential limitations to the maximum timel1/T,. For a pulse centered on the transparency window, the
delay imposed by the spectral variation of the optical propspread in fractional group delay will be the difference in
erties of the material system. Since a light pulse necessarilgroup delays fors=0 and foré=1/T,, and is given by

has a nonvanishing spectral width, these effects are intrinsic T 3f ol
to the propagation of pulses through a slow-light medium. To (Lel) ~ _&3’ (9)
treat these effects explicitly, we consider the propagation of a To 2 y'Tg

ulse whose frequency is close to that of a transparency win- .
gow such as thgt crea)tled by EIT or CPO. For th(fprese)rln w&?d represents pulse spreading due to second-order group-

assume that the shape of transparency window correspon elocity dispersion at the center of the transparency window.

i o we restrict the allowed temporal spread in this quantity to
ts%ra t:;)?nrir:)té;ﬁgi-esrrl]téﬁ)jtirdilrﬁ) tlhnistheafreerqvldznggngi?j%?rlﬂzngo?% value of unity(that is, the pulse is allowed to broaden in
P ' pap time by no more than a factor of 2 in passing through the

sequences of non-Lorentzian line s_hapes. we thus assunﬂ?ediun), we find that the length of the interaction region is
that the absorption coefficient of this material can be de'limited t0 a maximum value of.. =27T%/3fa
max— 0 0

scribed by the expression Through use of Eq8), we find that the fractional delay is

f & limited by this process to the value
a(d)=ap|l-——55|~a|(1-H)-f5| (4
1+ &89 ¥ (Tdel) _ 1)/2T2 10
where oy is the value of the background absorptia?s w To max_ 37 v

—wg is the detuning of the optical frequenay from the
resonance frequenayg, andy is the linewidth of the trans-

parency window. In much of the ensuing analysis, we will : .
use the secon¢hpproximatg form, which is reasonably re- duration T, to be long °.°mp?“?‘d t0 ¥/so that the entire
spectrum of the pulse fits within the transparency window.

liable for 6<+v. In these equationsf is a parameter that e . ; : L
describes the depth of the transparency window: complet’éIOte also that the limiyTo>1 is consistent with the limit of

transparency at line center occurs fiorl. We allow this validity of the approximate form of Eqd), which was used

possibility because complete transparency cannot be o) this argument. We also see that there is no formal depen-
tained in many practical situations. dence of Eq(10) on the fractional transparend¢y However,

According to the Kramers-Kronig relations, there will be in practical situations the time delay would be limited by

a contribution to the refractive index associated with thisStrim%tigforg:frﬂ}aTrl]ilﬁ]siftsi'ns neg('}éssq?salt;g gng}étral reshap-
absorption feature so that P gp P P

ing of the incident pulse due to the frequency dependence of
agh oly agh\ \ 6 & the absorption coefficient of the material, as discussed previ-
n(5)=no+f(z>—1+52/yz ~ n0+f(z);< yz)’ ously by Harriset al. [3], Caoet al. [8], and Macke and
Segard 9]. To treat this effect mathematically, let us assume
(5 a Gaussian spectral dependence of the incident pulse such

wheren, is the background index; under most situations ofthat
interest the contribution ofy to the group index is very A (12 FT2
much smaller than that of the second term and will be A(9) = Ae o (1)

dropped from the ensuing analysis. From the definit®rof  After propagating through the medium, the pulse spectrum

We emphasize that there is no limit on how large the quantity
vT, can become. Indeed, one would usually want the pulse

the group index, we immediately find that will be given approximately by
{22 2(1-37) o T P
4 ) y\T

where k=(w/c)[ng+f(agh/4m)(5/y)]. Such a pulse will
We then find that the material delay of E®) is given by have a duratiof given by

_fagl (. 38 T2=T2+ fayl//2. (13)
del = 1 72 (7) 0
Y If we argue as above that the propagation distance is limited
and that the fractionalor normalized group delay for a by the constraint that the pulse length not broaden by more
pulse of lengthTy is given by than a factor of 2, we find thdt,,,,= T§y2/(2fao). By in-
T farl 362 troduci_ng this valu_e i_nt(_) Eq8), we find that the maximum
—del &<1 __> (8) normalized delay is limited to
To 29Ty 3’2 T 3
Let us now examine the physical processes that might <Tl:|)max: EYTO- (14)

limit the maximum value of the fractional delay. One such
process is group-velocity dispersion. We see from @&). As noted above, the quantityT, is necessarily greater than
that the fractional delay will be different for different fre- unity. Thus, Eq(14) constitutes a more restrictive condition
guency components of a spectrally broad pulse. A pulse dathan does Eq(10). Since the quantityT, possesses no ob-
duration T, will have a frequency spread of the order of vious physical upper bound, this treatment shows that long
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1.0 10 slow-light media, we turn next to an analysis of specific pro-
08 cesses that can lead to slow propagation of light.

0.8 1 81; Electromagentically induced transparendyluch of the
£ 06 - 0.0 £ S initial research on slow-light pulse propagation was con-
g -200-100 0 100 2 ducted using an EIT resonance. The transparency window is
£ 04 : : :

! vacuum approximately Lorentzian of the form given by Hd) under
0.2 1 ! de|ayed\ appropriate conditions. To make a comparison with our
0.0 | A analysis, consider the complex linear susceptibility for the

resonance, which is given H]
(1):_a0C [i((6-A) — ¥eal

o _ ® (i8= yli(8-A) = yeal +[Qd2

FIG. 1. Numerical simulation demonstrating a large pulse delay
in a slow-light medium. The intensity evolution of a Gaussian pulseWhere y, is the coherence dephasing rate for the electronic
emerging from the medium for the case of vacu(uashed ling  transition driven by an intense coupling field of Rabi fre-
and a slow-light medium(solid line) with a,L=7500, 1-f=8 quency(), A is the detuning of the coupling field from this
X 1073, and yT,=50 is shown. The relative time delay T/ Ty  transition, andy., is the ground-state dephasing rate. For a
=75, as predicted by Eq14). The inset shows the vacuum and dilute medium, the refractive index and absorption coeffi-
delayed pulses overlaid so that their peaks coincide; it is seen thaient are given by lfiy'Y]/c. Under the assumptions=0,
the delayed pulse is approximately twice as wide and remains,., < y,,, Q<< ¥, and 8<< y,,, we find
highly symmetric.

0 1000 2000 3000 4000 5000 6000
1

X 5, (16)

Q422 _lay2P?

time delays and long fractional time delays should be achiev- Yea¥oat Q27 Yba
able upon propagation through a slow-light medium. Note
however, that to achieve the delay given by Et{), it is
necessary that the medium possess a reasonably large opti
depth (before saturationgiven by aOL:(4/3)(Tde|/TO)§ax
From Eq.(14), we can also establish a relationship among

the resonance widtly, the bit rateB, and the maximum time Tael 3|042)%T,
delay. In a typical communication system, we have tBat T_o maX: EY—M

=T,', so that
Since the EIT resonance is non-Lorentzian, there is the
y= EB<TLG|) (15) possibility of partially canceling the pulse distortion resulting
3\ To/ max from frequency dependent absorption, thereby increasing

17

Thus, the first of EqS(17) demonstrates that it is possible to
acfﬂeve a high degree of transparerity- 1) when|Q/2|?
%aycayba, in which case the fractional time delay of EG4)
becomes

(18

: . Lmax @nd obtaining a time delay greater than that given b
Thus, the required resonance width must be larger than thlg'a"f‘x(w). Indeed, we find that it is possible to car?cel they

bit rate by a factor of the order of the desired maximumq et order contribution to the distortion by setting
normalized time delay. However, it should be noted that the

data signal bandwidth depends on the specific modulation Q. 'yga
format and coding scheme employed. ) = %
To illustrate these points, we show in Fig. 1 the results of a
a numerical simulation of pulse propagation though a slowHowever, under this condition one finds thit 2,/ ¥5s
light medium. The simulation was performed by solving nu-which approaches zero under normal EIT conditions. There-
merically the reduced wave equation with optical responsefore, the pulse will experience large absorption, offsetting
given by Eqgs(4) and(6) using a Fourier transform method. any benefit of canceling the lowest-order contribution to the
In this example, a pulse is delayed by 75 pulse lengths undgrulse distortion.
realistic laboratory conditions. The pulse undergoes some at- We note that Harriet al. [3] previously investigated the
tenuation and some broadening, but the overall integrity ofnaximum relative time delay for an EIT system. They as-
the pulse is well preserved. The input pulse widthTis  sumed that residual absorption at the center of the EIT reso-
=50y, the residual absorption is such thatf=8x 1075, and  nance is the limiting effect so that,,=[2(1-f)a,]™?, re-
the interaction path length is such thafL=7500. The re- sulting in a limited time delay. However, we note that it is
sidual absorption at line center is thus equal(ioe-f)agl possible to achieve very high transpareitty- 1) in an EIT
=0.6. Based only on the residual absorption, one would exsystem so that the frequency dependence of the absorption is
pect a transmission of 0.55, whereas the simulation shows the dominant source of pulse distortion, as we assumed in
peak transmission of 0.13. The lower peak height in theour model discussed above.
simulation arises from two factorét) the pulse is wider, and Coherent population oscillationsAnother process that
thus the peak is lower; an@) there is some absorption of has been used to produce slow light is coherent population
the tails of the spectruriL0]. oscillations(CPO [11-14. CPO lead to transparency win-
Now that we have established some of the basic principledows for which the absorption coefficient has a width of the
governing the time delay possible upon propagation througlorder ofTIl, whereT; is the population relaxation time of

2
(19
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the material system. CPO have been shown to lead to slow- 1 I

light propagation at room temperature, which is possible be- Ng = anc'ﬁm- (22)

cause this process is largely insensitive to the dephasing of

the atomic coherence. The CPO process was described theBince there is substantial residual absorption for the CPO

retically by Schwartz and Tafil1]. Treatments closely re- resonance, we set the maximum propagation distance

lated to that of the present work include Ref4,15. equal to the inverse of the absorption given by E20)
The experiments on SIOW propagation in rl_w and a|_ eVaIuated at the center Of the transparency WII’]dOW. We f|nd

exandrite[6] were both conducted in the rate-equation limit, that

that is, under conditions such that the dephasing'f?tewas Tael T, |

much larger than both the population relaxation fEteand (T_> ST A+ (23

; ‘e limi ; 0 / max 0
the Rabi frequency)l=2uE/#%. In this limit, a simple ana-
lytic expression for the shape of the transparency windowlhe second factor can never be larger than 0.19, which oc-

can be obtainefisee Eq.(15) of Ref.[14]]. One finds that curs forl =0.57. Sincel, must be greater than approximately
T, in order for the spectrum of the pulse to fit within the

[ transparency window, this model predicts that the fractional

ek (20)  delay cannot exceed approximately 10%, in agreement with
1 the best reported experimental res(iiso].

—02 : . . SummaryWe have developed simple physical arguments

where| =0T, T, is the saturation parameter, which can bewhich suggest that there is no fundamental limit to the frac-

interpreted as the intensity of the pump laser normalized by. - . :
the saturation intensity of the material medium. We see thal onal time delay expgrlenced by an optical pulse propagat-
Ag through a slow-light medium. Delays of four pulse

the spectral hole always has a Lorentzian shape. Thus, £H :
model of slow-light propagation developed above is directlyWldths have already been observed in the case of an EIT

: : . slow-light medium[2]. To date, only delays smaller than
?f)pl\',\(l:stf’ilﬁa '{ﬁaetrefore, by comparison of EGO0) with Eq. unity have been observed in CPO media. The analysis pre-

sented here suggests that the small fractional delays occur as
| 1 the result of operating in the rate-equation limit. There is the
f=—"—5, y=—(1+I). (21 expectation that much longer delays, which are in principle

1+ T unlimited in magnitude, can be obtained in CPO media when
operating outside of this limit, in that theoretical models pre-
dict that complete transparency can be obtained. We also
émphasize that limitations imposed by signal attenuation are
relevant only to the case of propagation through an absorbing
medium. For propagation through a saturable amplifier,
g ong modification of the group velocity unrestricted by ab-
sorption should occur.

a(d) = a0|:1

Sincef takes on its maximum value of 1/4 a1, complete
transparency is never achieved. However, this conclusion i
valid ony within the rate-equation limit; outside of this limit
complete transparency can be obtairjéd]. The fact that
complete transparency cannot be obtained can be understo
in terms of the result2l) that the linewidth shows power
broadening as the factofl+1). Conventional(non-CPQ

power broadening shows a dependencélafl)Y/?. We thank Mikhail Lukin, Nick Lepeshkin, and Matthew
The group index at line center is found from E6) to be  Bigelow for valuable discussions of the subject matter of this
given by paper. This work was supported by DARPA/DSO.
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