
2310 J. Opt. Soc. Am. B/Vol. 14, No. 9 /September 1997 Gehr et al.
Nonlinear-optical response of porous-glass-based
composite materials
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We formed composite materials with geometries approximating that of the Bruggeman model by filling the
pores of a porous glass with optically nonlinear fluids spanning a range of linear refractive indices. The ef-
fective linear refractive indices of the composites were measured with a Mach–Zehnder interferometer. The
effective nonlinear refractive indices were determined by the Z-scan method. In both cases good agreement
between the experimental data and theoretical predictions was found. © 1997 Optical Society of America
[S0740-3224(97)00808-4]
There is great interest in studying the linear- and
nonlinear-optical properties of composite materials. Re-
cent interest has been motivated by the hope that compos-
ite materials can display desirable nonlinear-optical be-
havior for photonic devices. However, even the
determination of the linear-optical properties of compos-
ites is a problem of long standing. One of the earliest
theoretical analyses was performed by Maxwell Garnett1

in 1904 in an attempt to explain the colors exhibited by
metal-doped glasses. He modeled the metal particles as
spheres whose diameters were much smaller than an op-
tical wavelength, replaced the spheres in the analysis
with their equivalent electric dipoles, and used the
Clausius–Mossotti relationship to determine the effective
dielectric constant. This theory is one of the two pre-
dominant effective-medium theories in use today. The
other widely used theory is that of Bruggeman,2 which de-
scribes composites consisting of two interdispersed mate-
rials (see Fig. 1). The Maxwell Garnett model treats the
two constituent materials asymmetrically (inclusion par-
ticles in a host material), whereas the Bruggeman model
treats the constituents symmetrically. There are condi-
tions for which the predictions of the two models differ
greatly. The Maxwell Garnett theory correctly predicts
features (such as the surface plasmon resonance fre-
quency for metallic particles) when one constituent occu-
pies a small volume fraction of the whole but becomes in-
accurate when the two constituents occupy comparable
volume fractions. On the other hand, the Bruggeman
theory may be accurate when the two materials occupy
comparable volume fractions of the composite. One of
the important predictions of the Bruggeman model is the
percolation threshold; as the volume fraction of one mate-
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rial is increased, the grains of the material link and form
chains percolating through the composite. Because of as-
sumptions regarding the composite geometry used in the
derivation,3 the model predicts that this threshold will oc-
cur at a volume fraction of 33%. The Maxwell Garnett
model does not predict a percolation threshold.

The effective nonlinear-optical properties of composites
have received considerable interest only in recent years.
Jain and Lind4 first measured the nonlinear refractive in-
dex of semiconductor-doped glasses in 1983. Flytzanis
and coworkers performed the first measurement of the
nonlinear response of metal colloids.5 Subsequently they
performed experiments on and formulated theories
describing glasses doped with metal colloids or semicon-
ductor nanocrystallites to determine their effective non-
linear refractive indices.5–7 Numerous other authors8–16

have contributed to our understanding of such compos-
ites.

Whereas a large volume of research has been directed
toward Maxwell Garnett–style composites, only a small
volume has been directed toward Bruggeman-style com-
posites. Several theories17,18 derive general expressions
for the effective optical constants of composites into which
one can place the geometric parameters of a Bruggeman
composite to determine an explicit prediction. Zeng
et al.17 derived a simple theory based on the assumptions
that the electric field within each constituent is uniform
and that the nonlinearity makes only a small contribution
to the refractive index. In this case one can simply per-
form a Taylor expansion of the expression for the effective
dielectric constant to determine the effective nonlinear
susceptibility. The expression derived in this manner is
1997 Optical Society of America
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where for a Bruggeman-type composite the effective lin-
ear dielectric constant is given by
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To achieve some intuition regarding the predictions of
Eq. (1), we plotted the effective third-order susceptibility
versus fill fraction of constituent a, assuming that only
constituent a displays a nonlinear response (see Fig. 2).
The ratio of the linear dielectric constants of the constitu-
ents is used as a parameter. From Fig. 2 it is seen that
the effective nonlinearity is below the weighted average
value @faxa

(3)# if the ratio eb /ea is less than unity and is
above this value if the ratio is greater than unity. This is
due to the local field effects; the electric field is nonuni-
formly distributed between the two constituents. When
the dielectric constant of constituent a is smaller than
that of constituent b, the electric field in a is larger than
the average, so the effective nonlinear response is also
larger than the weighted average (and vice versa). Note
that this local field effect can lead to an enhancement of
the overall nonlinearity, i.e., there are conditions for
which the effective nonlinearity of the composite is larger
than that of the pure nonlinear material.

Previous studies describing the nonlinear optical prop-
erties of Bruggeman geometry composites are entirely
theoretical. To our knowledge, no experimental determi-
nation of the effective nonlinear susceptibility of such
composites has been performed. In this paper we de-
scribe our efforts along this line. We have formed com-
posites of porous glass saturated with various nonlinear
fluids.

The glass matrix used for the composite was Corning
Vycor glass,19–21 which is a mostly silica glass (with ap-
proximately 4% impurities) whose linear refractive index
is 1.46.20,21 It is an open-cell, porous glass with void
space of approximately 28% of the volume19,20 and an av-
erage pore diameter of 4 nm. The pores interconnect
throughout the samples. Therefore it is reasonable to ex-
pect that composites made with porous Vycor should be
described by a Bruggeman model, which predicts a perco-
lation threshold. (However, it is important to remember
that the Bruggeman model predicts a percolation thresh-
old of 33%, whereas this actual material exhibits percola-
tion at a lower volume fraction.)

The first step in preparing the samples was to clean the
Vycor glass by placing it in a 30% hydrogen peroxide so-
lution and heating it to approximately 100 °C. After

Fig. 1. Bruggeman composite geometry.
cooling, the Vycor was rinsed in deionized water and then
baked under an oxygen atmosphere. The temperature of
the oven was slowly increased from room temperature to
100 °C (at a rate of 1 °/min) to allow the water to escape
the glass without causing damage. After the samples
were baked at this temperature for 1 h the temperature
was increased rapidly to 300 °C and the glass was baked
for several hours. The samples were then cooled and im-
mersed in the nonlinear fluids immediately to avoid con-
tamination. The glass absorbed the liquids quickly; the
samples appeared completely saturated within minutes of
immersion.

The fluids were selected for their range of linear refrac-
tive indices. At a wavelength of 532 nm the refractive in-
dex of methanol is approximately 1.32; that of carbon
tetrachloride, 1.46; that of carbon disulfide, 1.63; and that
of diiodomethane, 1.72. For the measurement of the ef-
fective linear refractive index several additional fluids,
air, water, and a Cargille index fluid with a linear refrac-
tive index of 1.78, were used to increase this range.

Most methods used to determine refractive indices (re-
fractometry, ellipsometry, prism angular deviation, etc.)
rely on reflection and refraction at surfaces. However,
effective-medium theories are based on volume averages;
the surface may not be a valid representation of the
whole. Additionally, the nature of the composites pre-
cludes the possibility of a high-quality, optically flat sur-
face. Thus it was unlikely that any of the aforemen-
tioned methods would yield a reliable estimate of the
refractive index. A method that depends on propagation
of light through the bulk material was required.

The solution was to use a Mach–Zehnder interferom-
eter (see Fig. 3). A helium–neon laser was used as the
source. Each sample was mounted upon a high-
resolution rotation stage with rotational accuracy of 1 arc-
min and was immersed in a large cell containing the same
fluid that filled the pores of the Vycor glass. This proce-
dure avoided the potential difficulty of fluid evaporation
from the surface of the composite. First the sample was
rotated until the laser beam was normally incident. This
result was accomplished by observation of the fringes:

Fig. 2. Theoretical predictions of the Bruggeman model for the
effective third-order susceptibility plotted versus volume fill frac-
tion of constituent a. It is assumed that only constituent a dis-
plays a third-order nonlinearity. The ratio of the linear dielec-
tric constants is used as a parameter.
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As the sample rotated, the fringes shifted in one direction
until normal incidence was achieved, after which the
fringes shifted in the opposite direction. From this posi-
tion the sample was rotated so the fringes shifted an in-
tegral number of periods, typically 5, 10, 25, or 50 periods,
corresponding to phase shifts of 610p, 620p, 650p, and
6100p, respectively. (The sign of the phase shift de-
pended on the refractive index of the fluid: Fluids with
smaller indices than that of silica glass yielded positive
phase shifts; fluids with larger indices than that of silica
glass yielded negative phase shifts.) The angle corre-
sponding to each phase shift was recorded. Based on this
angle and on knowledge of the linear refractive index of
the fluid, the linear refractive index of the composite was
determined. (Note: The porosity of several of the glass
samples was measured and found to be nearly 28% in all
cases, so this number was used in all the analyses.)

The results of the measurements are given in Table 1
and displayed in Fig. 4, which plots the effective index
versus the index of the fluid. The solid line depicts the
Bruggeman prediction assuming a volume fill fraction of
the fluid of 28% and a refractive index of the glass of 1.46.
Very good agreement between theory and experiment was
found, implying that the Bruggeman theory models the
linear-optical properties of these composites well.

The nonlinear susceptibilities of the composites were
measured with a standard Z-scan22 setup. The samples
were pressed between two microscope cover slips to pre-
vent fluid evaporation from the surface. (A fluid-filled
cell was not used for these measurements because any
layer of pure fluid between the sample and the cell win-
dow would make the data analysis difficult.) For those
samples filled with a fluid that evaporated readily, a drop-
per was used to wet the sample edges during the scan so
that no fluid could escape from the region intersecting the
laser beam. The laser used for the measurements was a
Q-switched, mode-locked Nd:YAG laser, which produced
30-ps pulses at a 10-Hz repetition rate. The pulses were
doubled to a wavelength of 532 nm. Before the beam
reached the sample, a beam splitter directed part of the
energy onto a pulse energy meter. In this way a com-
puter could select only those pulses within a narrow en-
ergy range, thus minimizing the effects of shot-to-shot
fluctuations. The signal was detected in the far field
(through an aperture) by another pulse energy meter
head. The computer collected a user-defined number of
shots (typically 10 to 50) at each sample z position and

Fig. 3. Experimental setup used to measure the linear refrac-
tive index of the composites.
controlled a translation stage to move the sample. Two
scans were necessary for each data point: one of the com-
posite and one of a cell of the pure fluid. These two scans
were performed one immediately following the other at
the same reference energy to ensure that the laser char-
acteristics were the same in each case.

Data analysis was performed in two ways. In the first
method the data were normalized to unity at sample po-
sitions far from the beam focus and the difference be-
tween the maximum signal energy and the minimum sig-
nal energy was determined. This was a direct
measurement of the desired Z-scan parameter DTpv .
The ratio of the values of DTpv for the two scans yielded a
value proportional to the ratio of the two nonlinear sus-
ceptibilities. (To determine the actual ratio of the non-
linear susceptibilities, it was necessary to multiply by the
ratio of the linear refractive indices of the samples.) In
the second method, the data were fitted to a curve de-
scribing the results of a Z scan of a thin sample with a
weak nonlinearity (see, e.g., Ref. 22). The formula used
was the following:

T 5 Tn 1
4xDw
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, (3)

where

Fig. 4. Effective refractive index of porous Vycor glass filled
with fluids of various refractive indices versus the fluid refractive
index. Solid line, theoretical prediction of the Bruggeman
model.

Table 1. Comparison of Experimentally
Determined Effective Refractive Indices

with Those Predicted by the Bruggeman Theory

Fluid n (fluid)

n (Effective)

Experiment Theory

Air 1.00 1.34 1.327
Methanol 1.32 1.40 1.420
Water 1.33 1.42 1.423
Carbon tetrachloride 1.46 1.46 1.460
Carbon disulfide 1.63 1.50 1.507
Diiodomethane 1.72 1.51 1.531
Index fluid 1.78 1.54 1.547
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Inasmuch as the data were not normalized and the beam
focus was not at the zero position of the translation stage,
four parameters were used in the fit: the phase shift Dw,
the confocal parameter z0 , the position of the focus zf ,
and a normalization parameter Tn . The desired result is
the phase shift divided by the normalization parameter.

Fig. 5. Typical Z-scan data. Error bars, one standard deviation
to each side of the mean. Solid curves, best fits of Z-scan thin
sample formula. (a) 4-mm-thick sample of pure carbon tetra-
chloride. (b) 4-mm-thick Vycor glass–carbon tetrachloride com-
posite.
The ratio of the normalized phase shifts of the two scans
again yielded a value proportional to the ratio of the sus-
ceptibilities. This second method should, of course, yield
the same value as the first method. Typically the values
were indeed very close to each other. The benefit of us-
ing two methods occurs when the data set is of poor qual-
ity. Poor quality data do not produce agreement between
the two methods, and also the second method yields a
large chi-square value describing the fit of the theoretical
curve.

A typical pair of Z scans is shown in Fig. 5. In this
case the composite consists of porous Vycor glass filled
with carbon tetrachloride. The filled circles represent
the average signal, and the error bars represent plus and
minus one standard deviation from the mean. The solid
curves are the best-fit theoretical curves for the data. A
comparison of the results of the two data analysis meth-
ods shows good agreement. The ratio of the change in
transmission parameters (DTpv) yields a value of 0.48;
the ratio of the phase shifts (Dw) yields a value of 0.46.
In addition, the chi-square values for the fits are small,
indicating good fits.

This particular scan is an important one for the follow-
ing reason: The linear refractive index of carbon tetra-
chloride is to high accuracy the same as that of the glass,
so the local field effects are trivial for this composite.
Thus the total nonlinear susceptibility is simply the
weighted average of the nonlinear susceptibilities of the
constituents, i.e.,

xeff
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~3 ! 1 fbxb
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Therefore it is possible to use this measurement to deter-
mine the nonlinearity of the glass relative to that of car-
bon tetrachloride. We determined the relation to the
other fluids by measuring the nonlinearities of the fluids
relative to that of carbon tetrachloride. This procedure
was necessary because the nonlinear susceptibility of the
glass was not negligible compared with those of several of
the nonlinear fluids.

The results of the measurements are given in Table 2.
(The asterisk next to the theoretical entry for carbon tet-
rachloride is a reminder that this value agrees with the
experimental result by assumption according to our data
analysis procedure.) We see by comparison with the ex-
perimental results that the predictions of the Bruggeman
model give reasonable estimates of the effective nonlin-
earity. In all cases the experimental results follow the
trend indicated by the theory, and the differences be-
tween the theoretical and the experimental values are
Table 2. Comparison of Experimentally Determined Nonlinear Susceptibilities with Those Predicted by
Bruggeman and Maxwell Garnett Theories

Fluid Fluid Index

Experiment Nonlinear
Bruggeman

Theory, xeff
(3) /xfluid

(3) a
Naive

Theory, (fix i
(3)xglass

(3) /xfluid
(3) xeff

(3) /xfluid
(3)

Methanol 1.33 0.62 0.80 0.750 0.726
Carbon tetrachloride 1.46 0.32 0.51 0.51* 0.510
Carbon disulfide 1.63 0.00 0.25 0.231 0.280
Diiodomethane 1.72 0.03 0.20 0.222 0.302

a Asterisk, theory and experiment for carbon tetrachloride in Vycor glass agree by assumption according to our data analysis procedure.
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small. Thus this theory does model the optical properties
of these composites well. For comparison purposes, we
have included the predictions of a naı̈ve model in Table 2.
In this simple model the effective nonlinear susceptibility
is taken to be the weighted average of the nonlinear sus-
ceptibilities of the constituents. It can be seen from the
table that this model yields predictions worse than those
of the Bruggeman model in all cases except that of carbon
tetrachloride in Vycor, for which by construction the pre-
dictions are identical. To quantify this comparison, we
note that the normalized mean-square difference between
theory and experiment, that is, Q 5 ( i@ri(expt)/
ri(theory) 2 1]2, where ri 5 xeff

(3)/xfluid
(3) for fluid i, is given

by Q 5 0.021 for the nonlinear Bruggeman model and
Q 5 0.136 for the naı̈ve model. Therefore the Brugge-
man model is the superior model for these materials.

In summary, we have measured the effective linear and
nonlinear refractive indices of porous-glass-based compos-
ites and compared the results with the predictions of the
Bruggeman model. Good agreement between theory and
experiment was found, indicating the utility of this effec-
tive medium theory. These results are significant be-
cause the model predicts that it is possible to construct
composites that display enhanced nonlinear-optical re-
sponse. For the Bruggeman model the maximum en-
hancement that can be reasonably expected is approxi-
mately 50%, but models for other composite
geometries14,23 predict larger enhancements. The good
agreement between theory and experiment found in the
present study suggests that these large enhancements
may be achievable and that these composite materials
may be useful for improving the performance of photonic
devices.
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