
1818 J. Opt. Soc. Am. B/Vol. 21, No. 10 /October 2004 Heebner et al.
Distributed and localized feedback in
microresonator sequences

for linear and nonlinear optics

John E. Heebner

Institute of Optics, University of Rochester, Rochester, New York 14627

Philip Chak

Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

Suresh Pereira

Institut für Theorie der Kondensierten Materie, Universität Karlsruhe, Germany

John E. Sipe

Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada

Robert W. Boyd

Institute of Optics, University of Rochester, Rochester, New York 14627

Received November 3, 2003; revised manuscript received April 4, 2004; accepted May 19, 2004

Sequences of optical microresonators can be used to construct densely integrated structures that display slow
group velocity, ultrahigh or low dispersion of controllable sign, enhanced self-phase modulation, and nonlinear
optical switching. We consider four archetypal geometries consisting of effectively one-dimensional sequences
of coupled microresonators. Two of these cases exhibit distributed feedback such as is found in a traditional
multilayered structure supporting photonic bandgaps. The other two exhibit localized feedback and resonant
enhancement but are free from photonic bandgaps. All of these structures offer unique properties useful for
controlling the propagation of light pulses on a chip. © 2004 Optical Society of America
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1. INTRODUCTION
The strengths of dispersion and optical nonlinearity are
two key parameters that control the length scale over
which pulses evolve, acquire phase, or perform switching
operations in a photonic medium.1 It has been argued
that of all photonic devices, microresonators currently
provide the highest dispersion per unit volume.2 Mi-
croresonators also effectively increase interaction lengths
and produce increased circulating intensities.3–5 These
two ingredients, when combined, can dramatically en-
hance nonlinear optical properties. As a consequence of
their compact geometry and tailorable dispersive and
nonlinear optical properties, microresonators are ex-
pected to play a key role in the large-scale integration of
photonic devices.

In this paper, we compare and contrast the light-
propagation characteristics associated with different con-
nection geometries for sequences of microring (or
whispering-gallery microdisk) resonators. We restrict
our attention to four archetypal building blocks from
which sequences can be constructed. For each of these
four ring-based units, a direct analog in the form of a tra-
0740-3224/2004/101818-15$15.00 ©
ditional Fabry–Perot cavity is depicted in Fig. 1. With
the insight provided by these Fabry–Perot analogs, it is
clear that these geometries identify the four ways of con-
necting four-port resonators6 to form sequences.

A sequence based on Fig. 1(a), (cavity version) repre-
sents the traditional multilayered structure or Bragg
grating. The ring-based version of such a multilayer is a
sequence of directly coupled rings, often termed a
coupled-resonator optical waveguide7,8 (CROW). An-
other way to couple the rings is indirectly through a com-
mon waveguide, as depicted in Fig. 1(b). Such is the case
in a side-coupled integrated spaced sequence of resona-
tors, or SCISSOR.9 The other two ways [(c) and (d)] are
characterized by indirect coupling of rings via two com-
mon waveguides. Note that these four structures are
identical in terms of their fundamental building block and
differ only in the manner in which they are intercon-
nected. Of the cavity versions, only geometry (a) forms a
building block that is naturally sequenced as in a multi-
layered structure. The other three geometries possess
interchanged ports that do not sequence naturally in
their cavity embodiments and can be constructed only
with greater complexity. Ring resonators are, however,
2004 Optical Society of America
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more naturally suited to sequencing in any of these geom-
etries because the two input and two output ports occupy
spatially distinct channels. Furthermore, their planar
nature is compatible with current fabrication

Fig. 1. Illustrations of four archetypal ring-resonator unit cells
for (a) a CROW, (b) a single-channel SCISSOR, (c) a double-
channel SCISSOR, and (d) a twisted double-channel SCISSOR,
along with their cavity versions. These unit cells can serve as
building blocks for constructing sequences of resonators that
serve as novel photonic guidance architectures.
technologies.10–12 We expect that it is generally not ap-
preciated that coupled microring resonator structures of-
fer three more possible configurations, and it is hoped
that this paper will help elucidate the fundamental fea-
tures and differences associated with the propagation of
light in each of these photonic microstructures.

2. RESONATOR FUNDAMENTALS
We first review the basic properties of coupled ring reso-
nators. Resonance frequencies occur at nm
5 mc/2pnR, where the resonance order m is an integer,
and it is assumed that the refractive index n and radius R
are effective values for the circulating mode in the reso-
nator.

For the sake of simplicity, we parameterize the cou-
pling strengths by lumped self-coupling r and cross-
coupling t coefficients. These symbols are deliberately
chosen analogously to the field reflection and transmis-
sion coefficients associated with cavity mirrors or dielec-
tric interfaces. The resulting resonances are often char-
acterized by a finesse parameter, F, which depends on
these coupling strengths.13 The finesse provides a conve-
nient estimate of the effective number of round trips light
makes through the resonator and of the peak of the inten-
sity buildup of light, defined as the ratio of the intensity
in the ring to the input intensity.

In Fig. 2, we compare the transmission characteristics
of single- and double-coupled ring resonators. A single-
Fig. 2. Amplitude transmission (solid curves) and effective phase shift (dashed curves) for (a) an all-pass resonator, (c) through port of
an add-drop resonator, and (e) drop port of an add–drop resonator. Plots (b), (d), and (f) display the coherent intensity buildup (solid
curves) and group delay normalized with respect to single-pass transit time (dashed curves) for the same ports as in (a), (c), and (e),
respectively. The independent variable on all plots is the normalized detuning (radian frequency multiplied by ring transit time), and
all coupling coefficients are t2 5 0.1814.
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coupled ring resonator behaves like a Gires–Tournois
resonator (a Fabry–Perot resonator with a 100% reflect-
ing back interface). Provided that the internal losses are
negligible, all frequencies are passed with unit transmis-
sion, and the device is termed an all-pass filter.14 Spec-
tral components in the vicinity of a resonance spend more
time circulating in the resonator, or more precisely, expe-
rience a larger group delay. Figure 2(a) shows the (flat)
transmission and effective phase shift F, due to passage
through the resonator plotted against normalized fre-
quency f 5 vTR , where the normalizing parameter is
the ring transit time, TR 5 2pnR/c. The coherent
buildup of intensity B and the normalized group delay in
units of the ring transit time, dF/df, are shown in Fig.
2(b). Note that both are equally enhanced near a reso-
nance.

The addition of a second waveguide qualitatively
changes the behavior of the device. Functionally, it has
found use as an add–drop filter15 such that spectral com-
ponents near resonances are diverted to one (drop) port,
while the rest pass to another (through) port. Spectral
components near a resonance can be introduced to the
through port by means of the remaining (add) port. Fig-
ures 2(c) and 2(e) show the amplitude and phase of the
transmission function at each of the output ports. The
coherent buildup of intensity in the resonator and the
group delay for each port are shown in Figs. 2(d) and 2(f).
In the case of balanced couplers, the peak buildup is 1/4
times as large as that attained in an all-pass resonator for
the same coupling strength. The peak group delay at the
drop port is also reduced by 1/4, while the resonant group
delay at the through port diverges at the point of zero
transmission.

The field of optical filter synthesis has adopted these
two basic ring resonators as fundamental amplitude- and
phase-filtering elements.16,17 In the next section, we de-
velop a formalism that extends these concepts to se-
quences.

3. BLOCH-MATRIX FORMALISM
We now describe a simple matrix-based technique that
can generate the linear spectral properties of a single
resonator as well as that of an infinite sequence of
coupled resonators. The fields at a single coupling point
as depicted in Fig. 3 are related by the real self- and
cross-coupling parameters, r and t, according to

E3 5 rE1 1 itE2 ,

E4 5 itE1 1 rE2 .

Neglecting loss allows the simple relation r2 1 t2 5 1 to
hold for each coupler. Using these relations for each cou-
pling point as required, we can calculate the matrix M
that relates the fields at the two right ports of a coupled
resonator, Aj11 and Bj11 , to the fields at the two left ports
Aj and Bj . For a generic four-port optical device, this
takes the form

S Aj11

Bj11
D 5 FM11 M12

M21 M22
G S Aj

Bj
D , (1)
and in Table 1, we show the components Mij that repre-
sent the port-to-port relations associated with each of the
building blocks in Fig. 1.

We are now ready to consider an infinite sequence of
resonators, each of the same building block and connected
to its neighbors, with spatial periodicity L. Bloch’s theo-
rem states that we can find solutions for the fields that at
periodic intervals in the infinite lattice are simply related
by a phase factor:

S Aj11

Bj11
D 5 exp~ikeffL !S Aj

Bj
D . (2)

That is, exp(ikeffL) must be an eigenvalue of the matrix
formed from Mij ; for this to hold, we require

detFM11 2 exp~ikeffL ! M12

M21 M22 2 exp~ikeffL !
G 5 0. (3)

The quadratic formula is applied to the expanded form of
this equation to obtain the dispersion relation (v versus
keff) based on the matrix coefficients that in general are
frequency dependent:

exp~i2keffL ! 2 ~M11 1 M22!exp~ikeffL ! 1 ~M11M22

2 M12M21) 5 0, (4)

keff 5
1

L
argF ~M11 1 M22!

2
6 S ~M11 2 M22!2

4

1 M12M21D 1/2G . (5)

In the following sections, we apply this technique to de-
rive dispersion relations for the four archetypal infinite
periodic lattices that result from connecting the unit cells
in Fig. 1.

4. DIRECTLY COUPLED RESONATORS
A sequence of directly coupled resonators18 with no auxil-
iary waveguides is depicted in Fig. 4. One interpretation
of this geometry results from considering every other
resonator to act as two auxiliary waveguides that connect
the unit cells of Fig. 1(a) together in sequence. Conse-
quently, the optical properties are analogous to the famil-
iar multilayered Bragg stack.

In order to allow for a richness of greater complexity,
we consider a structure with two length scales where the
resonator circumference alternates between 2pR1 and
2pR2 . In what follows, we will restrict ourselves to the
case where light propagates clockwise in the larger reso-

Fig. 3. Schematic depicting the fields associated with a
resonator-to-waveguide coupling point. The field amplitudes
across the coupling point are related by the self- and cross-
coupling coefficients (r and t) as described in the text.
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Fig. 4. Dispersion relation, normalized group index, and GVD for (a) a low-finesse and (b) a high-finesse coupled-resonator optical wave-
guide. The dispersion relation is analogous to that of a multilayered structure with alternating layer indices and/or thicknesses.
Bandgaps are always of the direct type and result from distributed Bragg reflection. Parameters include a refractive index of n
5 3.1, alternating radii of R1 5 2.5 mm, and R2 5 1.5R1 . Resonances mR1 5 31 and 32 and mR2 5 46, 47, and 48 are shown. In (a),
a high coupling strength, t2 5 0.75, results in narrow bandgaps, while in (b), a low coupling strength, t2 5 0.1814, results in wide band-
gaps. These qualitative features are directly opposite those found in the double-channel SCISSOR.

Table 1. Matrix Elements Mij , for the Four Coupled Microresonator Unit Cells Shown in Fig. 1a

Structure M11 M12 M21 M22

(a) CROW
2 expFi ~f2 1 f1!

2 G 1 r2 expF2i
~f2 2 f1!

2 G
t2

r

t2 FexpSi f2

2 D 2 expS2i
f2

2 DG M12* M11*

(b) One-channel
SCISSOR

@1 2 r exp~2if !#exp~iu!

r 2 exp~2if !

0 0 0

(c) Two-channel
SCISSOR

@1 2 r1r2 exp~2if !#exp~iu!

r1 2 r2 exp~2if !
2 t1t2 expSi f

2D
r2 2 r1 exp~if !

2 t1t2 expS2i
f

2D
r1 2 r2 exp~2if !

@1 2 r1r2 exp~if !#exp~2iu!

r2 2 r1 exp~if !

(d) Twisted
SCISSOR

@r1 2 r2 exp~if !#exp~iu!

1 2 r1r2 exp~if !
2 t1t2 expSi f

2Dexp~iu!

1 2 r1r2 exp~if !

2 t1t2 expSi f

2Dexp~iu!

1 2 r1r2 exp~if !

@r2 2 r1 exp~if !#exp~iu!

1 2 r1r2 exp~if !

a Here f 5 2pRnv/c and u 5 Lnv/c.



1822 J. Opt. Soc. Am. B/Vol. 21, No. 10 /October 2004 Heebner et al.
nators and counterclockwise in the smaller resonators.
Implementing Eq. (5) and Table 1 entry (a), the dispersion
relation for an infinite sequence is given by

keff 5
2i

2~R1 1 R2!
argXF21

t2
cosS f1 1 f2

2 D
1

r

t2
cosS f2 2 f1

2 D G
6 H F21

t2
cosS f1 1 f2

2 D
1

r

t2
cosS f2 2 f1

2 D G 2

21J 1/2C, (6)

where the two phase degrees of freedom, f j
5 2pRjnv/c, are proportional to the two characteristic
length scales. The two solutions represent the forward-
and backward-going waves throughout the structure. As
a consequence of distributed feedback, photonic bandgaps
emerge where the Bragg condition is satisfied @2pRj
5 (m 1 1/2)l/n#. The dispersion relation, normalized
group index @(c/n)dkeff /dv#, and group-velocity disper-
sion (GVD) (d2keff /dv2) are plotted in Fig. 4 for a se-
quence of resonators at wavelengths near 1.55 mm. The
shaded areas represent bandgaps, while the bands are la-
beled according to the nearest resonance order (m). The
structure may be used to support Bragg soliton
propagation,19 particularly near the band edges where
the group-velocity dispersion is strong20 and the nonlin-
earity is enhanced.

5. SINGLE-CHANNEL SCISSORS
A single-channel SCISSOR as depicted in Fig. 5 is com-
posed of a sequence of all-pass resonators as in Fig. 1(b).
Because no mechanism for contradirectional coupling is
present, light of all frequencies is simply transmitted in a
feed-forward sequential manner from resonator to resona-
tor ‘‘pausing’’ for localized feedback at each. As a result,
no photonic bandgaps can exist in this geometry. The op-
tical properties are in fact independent of whether or not
Fig. 5. Dispersion relation, normalized group index, and GVD for (a) a low-finesse and (b) a high-finesse single-channel SCISSOR.
Note that the dispersion relation does not display photonic bandgaps. Nevertheless, at the resonances (lm 5 2pnR/m), the group
index (and the intensity buildup) is maximized. Parameters include a refractive index of n 5 3.1 and a radius of R 5 2.5 mm. Reso-
nances mR 5 31 and 32 at 1.571 mm and 1.522 mm are shown. In (a), a high coupling strength, t2 5 0.75, results in a wide bandwidth,
while in (b), a low coupling strength, t2 5 0.1814, results in a narrow bandwidth. To avoid redundancy, and because the forward- and
backward-traveling waves do not couple, only the dispersion relation for the forward-traveling wave is shown.
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all the spacings between neighboring resonators are the
same; only the average density of resonators in a given
length (or simply the total number) dictates the optical
properties of the structure. For an infinite periodic
SCISSOR, the only surviving matrix coefficient is M11
(see Table 1).

The dispersion relation (5) takes the form

keff 5
n

c
v 1

1

L
argF r 2 exp~if !

1 2 r exp~if !
G 5

n

c
v 1

F~v!

L
,

(7)
where f 5 2pRnv/c, and F(v) is the accumulated phase
shift of a single resonator [see Fig. 2(a)]. The dispersion
relation, normalized group index, and GVD are plotted in
Fig. 5 for a series of 2.5-mm radius resonators at wave-
lengths near 1.55 mm. To avoid confusion, the dispersion
relation is shown only for forward-going propagation, de-
fined by the arrows in the schematic. For resonance fre-
quencies, light experiences group delays of the order of
the cavity lifetime (2F/p)2pnR/c at each resonator.
From a macroscopic point of view, the discrete delays may
be considered to be distributed along the channel result-
ing in an effective group velocity that can be slower than
that in the common waveguide. On resonance, the group
index scales directly with finesse as ng 5 @1
1 (4R/L)F#n for r ' 1. As a consequence of the
frequency-dependent nature of the effective group veloc-
ity, which peaks at resonance, the lowest-order dispersion
vanishes on resonance but can be very strongly normal
(positive) or anomalous (negative) below or above each
resonance, respectively. Furthermore, because light
pulses effectively traverse each resonator many times and
the circulating intensity in the resonators is coherently
increased, the accumulation of nonlinear phase shift or
self-phase modulation21 is enhanced in quadratic propor-
tion to the finesse.5 This fact suggests that high values
of finesse need not be required to see strong nonlinear ef-
fects. In a previous paper, it was demonstrated that the
propagation of pulse envelopes through such a structure
can be accurately modeled with a reduced wave equation
such as the nonlinear Schrödinger equation.22 SCISSOR
soliton formation, modulation instability, self-steepening,
pulse compression, and many other effects resulting from
an interaction between nonlinearity and dispersion tradi-
tionally require large pulse energies and/or kilometers of
interaction length in optical fiber. However, these effects
can be observed with modest pulse energies and a six
order-of-magnitude reduction in length scale with SCIS-
SORs. Other coupled-cavity structures have been shown
to enhance nonlinearities23 and support soliton
propagation.24 The SCISSOR structure is interesting in
its ability to slow, disperse, and/or intensify light pulses
while maintaining a transmission spectrum free from
bandgaps—a feature which, to the best of our knowledge,
does not bear direct analogy with any traditional artificial
medium. Fundamentally, this results from disabling dis-
tributed feedback throughout the structure and localizing
it to the all-pass resonators.

6. DOUBLE-CHANNEL SCISSORS
The addition of a second common coupling channel to a
SCISSOR as depicted in Fig. 6 enables distributed feed-
back. The unit cell for this structure is an add–drop
resonator oriented as in Fig. 1(c). In contrast to the
single-channel case, the spacing between resonators is
now important because resonances can develop not only
within the resonators but also among them. Photonic
bandgaps emerge around each type of resonance in the
dispersion relation of an infinite periodic structure. One
type of bandgap emerges when the periodicity of the
structure satisfies the Bragg condition (2L 5 mBl/n,
with mB an integer), and another type emerges when the
circumference of the microresonator is an integer mul-
tiple of the wavelength (2pR 5 mRl/n, with mR an inte-
ger). Compared with a multilayered structure or CROW,
the output port connections (drop and through) at each
unit cell are reversed. This reversal couples what were
distributed Bragg reflections to the feed-forward direction
and diverts resonance frequencies to the retroreflected di-
rection. In the case of a multilayered structure or
CROW, high reflectivity can be achieved by distributed
feedback from many partially reflecting unit cells, and
100% transmission is always obtained at a resonant fre-
quency. In contrast, in a double-channel SCISSOR,
100% reflection is readily achieved at any of the resona-
tor’s resonant frequencies irrespective of the coupling pa-
rameter r, provided that the coupling coefficients are
matched. This result is attributed to the well-known
phenomena of critical coupling, whereby incident light is
completely attenuated at the resonance frequency owing
to complete destructive interference of the bypassed in-
coming field with the out-coupled circulating field. For
this condition to be met, the sum of the tap coupling due
to the second channel (and losses if present in the ring)
must equal the cross coupling from the excitation chan-
nel.

Implementing Eq. (5), the dispersion relation for the
double-channel SCISSOR structure takes the form

keff 5
1

L
argX1

2

1 2 r1r2 exp~2if !

r1 2 r2 exp~2if !
exp~iu!

1
1

2

1 2 r1r2 exp~if !

r2 2 r1 exp~if !
exp~2iu!

6 H F1

2

1 2 r1r2 exp~2if !

r1 2 r2 exp~2if !
exp~iu!

2
1

2

1 2 r1r2 exp~if !

r2 2 r1 exp~if !
exp~2iu!G2

1
~1 2 r1

2!~1 2 r2
2!

@r2 2 r1 exp~if !#@r1 2 r2 exp~2if !#
J 1/2C,

(8)

where the two phase degrees of freedom, f 5 2pRnv/c
and u 5 Lnv/c, are proportional to the two characteristic
length scales. The two solutions represent the bottom-
channel forward- and top-channel backward-going waves
in the photonic structure. The dispersion relation, group
index, and GVD are plotted in Fig. 6 for 2.5-mm-radius
resonators spaced by 1.5pR at wavelengths near 1.55 mm.
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Fig. 6. Dispersion relation, normalized group index, and GVD for (a) a low-finesse and (b) high-finesse double-channel SCISSOR. Note
that unlike the dispersion relation for the single-guide SCISSOR, the double-guide variety displays photonic bandgaps. Two qualita-
tively different bandgaps manifest themselves. For spectral components satisfying the Bragg condition (lmB

5 2nL/mB), the bandgap
is direct and results from distributed Bragg reflection. At the resonances of the rings (lmR

5 2pnR/mR), the bandgap is indirect and
results from strong resonator-mediated backcoupling. Parameters were chosen such that one Bragg gap was coincident with one reso-
nator gap within the figure: refractive index n 5 3.1, radii R 5 2.5 mm, and spacing L 5 1.5pR. Resonator resonances mR 5 31 and
32 and Bragg resonances mB 5 46, 47 and 48 are shown. The coincident resonator (mR 5 32) and Bragg (mB 5 48) resonance results
in a wide direct gap. In (a), a high coupling strength, t2 5 0.75, results in wide bandgaps, while in (b), a low coupling strength, t2

5 0.1814, results in narrow bandgaps.
Of the two types of gaps mentioned above, those associ-
ated with the periodicity of the structure (interresonator
spacing) are called ‘‘Bragg gaps’’ and are always direct.
The indirect gaps are termed ‘‘resonator gaps’’ and are
those associated with the internal resonances of the reso-
nators. A comparison of the qualitative features of the
dispersion relation reveals that the bandgaps are wider
for low-finesse resonators. The interpretation is simple:
In the high-finesse case, the band over which the indi-
vidual resonators are reflecting is narrow, while in the
low-finesse case it is wide. This directly carries over to
the widths of the bandgaps in the infinitely periodic struc-
ture and is in stark contrast to the situation of a multi-
layered structure where high reflectivity results in a
wider bandgap. As a consequence of the efficient excita-
tion of the resonators near stop gaps, this structure is
ideal for exploring nonlinear effects within the bandgap,
such as gap solitons.25,26

7. TWISTED DOUBLE-CHANNEL SCISSORS

A ‘‘twist’’ on the double-channel SCISSOR, which pos-
sesses qualitatively different optical properties, is con-
structed by interchanging the top ports (add and drop) of
each unit cell, as in Fig. 1(d). For optical fiber ring reso-
nators, this configuration may be implemented by twist-
ing each of the resonators to form figure-8 loops. In an
integrated geometry, it is easier to build two resonators
that are nearly 100% coupled. This ‘‘twisted’’ double-
channel SCISSOR is depicted in Fig. 7. As a result of the
port interchange, there is no longer any mechanism for
contradirectional coupling, but codirectional coupling
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across the channels is now mediated by the resonators
with localized feedback enhancement. Thus light in-
jected into one of the ports only couples to either of the
channels in the forward-going direction. The structure
therefore behaves as a resonator-enhanced directional
coupler. In Table 1, the matrix coefficients are given tak-
ing the coefficients characterizing the couplings between
the waveguides and resonators to be r1 and r2 , and as-
suming that the twisted structure is implemented by use
of two resonators that are 100% coupled to each other.

For an infinite periodic structure, the resulting disper-
sion relation (5) is
keff 5
1

L
arg

F
exp~iu! 1

F r1 2 r2 exp~if !

1 2 r1r2 exp~if !
1

r2 2 r1 exp~if !

1 2 r1r2 exp~if !
G

2

6 X$@r1 2 r2 exp~if !# 2 @r2 2 r1 exp~if !#%2 1 4~1 2 r1
2!~1 2 r2

2!exp~if !

4@1 2 r1r2 exp~if !#2 C1/2G
, (9)

Fig. 7. Dispersion relation, normalized group index, and GVD for (a) a low-finesse and (b) a high-finesse twisted double-channel SCIS-
SOR. Bandgaps are absent in the dispersion relation, which resembles that of the single-channel SCISSOR, but with the presence of a
second branch. The two branches correspond to the two decoupled forward-traveling normal modes. Near the ring resonances (lm
5 2pnR/m), the two branches are strongly coupled, as in the case of a directional coupler. Parameters used are the same as in Fig. 6
except that there are two resonators, each half in circumference and 100% coupled. Resonances mR 5 31 and 32 at 1.571 mm and 1.522
mm are shown. In (a), a high coupling strength, t2 5 0.75, results in wide-bandwidth channel-to-channel coupling, while in (b) a low
coupling strength, t2 5 0.1814, results in narrow-bandwidth channel-to-channel coupling. To avoid redundancy, and because the two
forward- and two backward-traveling waves do not couple, only the two forward-traveling dispersion relation branches are shown.
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Fig. 8. Qualitative comparison of the transmission properties of three structures possessing bandgaps: (a) a Fabry-Perot, (b) a mul-
tilayered stack, (c) an add–drop resonator, (d) a CROW, (e) a double-channel resonator, and (f) an add–drop resonator (reoriented). Note
that the qualitative features of the transmission peaks and valleys are equivalent for multilayered stacks and CROWs but reversed for
double-channel SCISSORs. With increasing finesse, the bandgap widths increase in both multilayered stacks and CROWs, while they
decrease in double-channel SCISSORs.
where f 5 2pRnv/c and u 5 Lnv/c. The solutions
represent the two coupled forward-going waves in the
photonic structure. The dispersion relation, normalized
group index, and GVD are plotted in Fig. 7 for the sym-
metric case of r1 5 r2 . Two branches are present, each
one corresponding to one of two normal modes of the
structure.

8. BANDGAP ENGINEERING IN
DISTRIBUTED-FEEDBACK STRUCTURES
Figure 8 qualitatively compares the transmission proper-
ties of unit structures and infinite periodic structures for
a double-guide SCISSOR and a multilayered structure.
While a multilayered structure or CROW allows propaga-
tion on resonance and takes advantage of maximum co-
herent buildup of intensity within the resonators, propa-
gation is not allowed at resonances of the double-channel
SCISSOR around which bandgaps form.

We next compare the qualitative features of the trans-
mission for a finite double-channel SCISSOR and CROW
with the corresponding infinite periodic structures. The
finite structures are termed parallel and serial resonator-
coupled structures, respectively, in the literature.27–31

Figure 9 displays the transmission spectra for low-finesse
1, 5, and infinite unit-celled structures. Figure 10 dis-
plays the transmission spectra for equivalent high-finesse
structures. The displayed plots show that the dispersion
relation can provide a heuristic guide to the location and
width of the transmission dips in a finite structure. It is
evident that the infinite double-channel SCISSOR and
Fig. 9. Transmission spectra for a low-finesse (t2 5 0.75) finite
double-channel SCISSOR and finite CROW. Parameters are the
same as in Figs. 4 and 6. Here, five unit cells are used to ap-
proximate the structures. For comparison, the transmission for
a single resonator is shown in each case, and shaded regions cor-
respond to one-dimensional photonic bandgaps in the corre-
sponding infinite structure. The labels B and R correspond to
the double-channel SCISSOR’s Bragg and resonator gaps, while
the labels R1 and R2 correspond to the alternating CROW reso-
nances.



Heebner et al. Vol. 21, No. 10 /October 2004 /J. Opt. Soc. Am. B 1827
CROW possess complementary transmission characteris-
tics; that is, band and bandgap locations are inter-
changed. Typically, waveguide or fiber Bragg gratings
possess low reflectivity (and thus low finesse) per unit
cell, resulting in small ripples in the passbands. Here,
the deep ripples in the transmission bands result from the
abruptly terminated ends of the structure as encountered
in unapodized high-reflectivity multilayered stacks.
First, note that the ripple depth across the passbands is
controlled by the transmission of a single resonator and
results from the ‘‘splitting’’ of individual interacting reso-
nances. Second, note that in going from low to high fi-
nesse, the widths of the single-resonator transmission
dips (and peaks) shrink faster than the corresponding
gaps (and bands) in the infinite structure. Analysis of
the bandwidths show that, while the single resonator dip
(and peak) bandwidth scales as F21 ' t2/p, the widths of
infinite resonator gaps (and bands) scale as F`

21 ' 2t/p
} AF21. This explains why the passband ripples are of
similar depth in the low-finesse cases while are strong
only in the high-finesse case for the CROW.

9. SLOW-LIGHT AND GROUP-VELOCITY
DISPERSION
The dispersion relations associated with the
microresonator-based photonic structures considered in
this paper reveal greatly reduced group velocities (vg
5 dv/dkeff) near structural resonances.32 The reduction

Fig. 10. Transmission spectra for a high-finesse (t2 5 0.1814) fi-
nite double-channel SCISSOR and finite one-dimensional CROW.
Parameters are the same as in Figs. 4 and 6. Here, five unit
cells are used to approximate the structures. For comparison,
the transmission for a single resonator is shown in each case, and
shaded regions correspond to one-dimensional photonic band-
gaps in the corresponding infinite structure. The labels B and R
correspond to the double-channel SCISSOR’s Bragg and resona-
tor gaps, while the labels R1 and R2 correspond to the alternat-
ing CROW resonances.
of group velocity may be intuitively understood by noting
that near a structural resonance light spends extra time
circulating localized within the resonators or in propagat-
ing back and forth between distributed components of the
periodic structure. There are several criteria by which
one can compare different optical mechanisms that in-
duce slow-light effects. Furthermore, different applica-
tions demand different criteria. For some applications,
the slowest attainable group velocity may be desirable.
Many optical systems have demonstrated such slow-light
capability33 but typically only over bandwidths that are
too narrow for practical use in optical communications or
logic. For such applications, a large fractional group de-
lay (L/t)dkeff /dv is a better measure. This dimension-
less quantity is interpreted as the number of pulse widths
t by which a pulse or train of pulses can be delayed, while
still maintaining the integrity of the pulses. Many in-
stances of slow-light phenomena, while impressive in
their ability to slow the speed of pulse propagation to a
small fraction of c, would fail to delay an incoming pulse
by more than a fraction of a pulse width without seriously
distorting it, simply because of a large accompanying
group-velocity dispersion or narrow spectral window.

Microresonator-based structures have been proposed34

for use as optical delay lines because, when designed
properly, they can exhibit a large fractional delay. Addi-
tionally, because the group velocity can be made tunable
by shifting resonances thermally35 or electrically,36 con-
trollable optical delay lines can be constructed. The
shortest pulse for which the group delay is meaningful,
and thus that for which the fractional delay is largest, is
one with a pulse width that matches the cavity lifetime.
Shorter pulses become distorted as a consequence of high-
order dispersive effects, while longer pulses, which expe-
rience the same physical delay, exhibit a lower fractional
delay.

These considerations remind us that a vanishingly
small group velocity is often not the sole important fea-
ture. An optical delay line or buffer based on microreso-
nator structures will in general be useful only if slow
group velocity is accompanied by high transmission and
low pulse-distorting dispersion. Near resonances of a
single-channel SCISSOR, the fractional group delay can
approach unity. The single-channel SCISSOR exhibits
maximum pulse delay on resonance with a wide open
transmission window, albeit with nonnegligible third-
order dispersion. In an earlier publication,37 it was
shown that in sacrificing some slowness by detuning
above resonance and implementing self-phase modulation
to balance the group velocity dispersion, third-order dis-
persion may be eliminated, and slow solitons may be
propagated with high fidelity limited by residual fourth-
order dispersion. In distributed-feedback structures, the
edges of two bandgaps can be engineered so that they are
close in frequency but not overlapping, resulting in a flat,
defect like band generated between them.

Alternatively, the strong group-velocity dispersion en-
countered at certain frequencies can be put to use for the
construction of photonic devices that perform dispersion
compensation in an ultracompact geometry. Each of the
structures in this paper can display group-velocity disper-
sion values that greatly exceed 20 ps2 per millimeter.
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These are at least 6 orders of magnitude higher than
what is conventionally measured in typical single-mode
silica fiber (20 ps2 per kilometer). The situation is simi-
lar to that encountered in photonic crystal defect guides,
which exhibit ultrastrong dispersive effects.38 Just as an
intrinsically high group-velocity reduction is not as im-
portant in many applications as a large fractional group
delay, many photonics applications require strong frac-
tional group-delay dispersion irrespective of the actual
group-velocity dispersion. Microresonator-based struc-
tures have been implemented as dispersion
compensators39 because, when designed properly, can ex-
hibit a fractional group-delay dispersion near unity (of ei-
ther sign) per resonator. Additionally, the soliton period
for a SCISSOR soliton is governed by the dispersion
strength and dictates the length scale over which soliton
pulse evolution can take place.

10. ENHANCED SELF-PHASE MODULATION
WITH LOCALIZED FEEDBACK
Nonlinear effects in microresonators have been studied
experimentally both in lasers and switching devices.40–47

Coupled microresonator structures have been shown to
possess propagation characteristics associated with ex-
tended nonlinear Schrödinger equations. The phenom-
ena of slow light, light trapping,48 soliton propagation,9

soliton compression,22 soliton switching,49 gap solitons,26

self-steepening, modulation instability, and four-wave
mixing are all directly transferrable to the much more
compact scale afforded by a microresonator-based photo-
nic structures.

The enhancement of nonlinear effects in microresona-
tors is attributed to two different though related effects.
First, because the group velocity is reduced in such a way
that light circulates through a longer path length within a
photonic structure, the interaction length (or time) for a
nonlinear process is increased. This is directly related to
the well-known enhancement of phase sensitivity in
ring-resonator,5 multilayered,50 and photonic
crystal-based51 structures. Second, because the light cir-
culating within the resonators is coherently builtup to a
higher intensity than that which is initially injected into
the structure, stronger nonlinear effects are possible. As
a result of these two effects, nonlinear processes like self-
phase modulation are enhanced in proportion to the
square of the resonator finesse.5 This scaling law holds
for single resonators and localized-feedback structures.
For example, in the case of the single-channel SCISSOR,
the phase sensitivity and buildup are coincident and
equal, and the enhancement of accumulated nonlinear
phase shifts is directly proportional to the square of the
group index, (c/vg)2. This is a general result that is typi-
cally found in many nonlinear photonic systems display-
ing slow-light effects resulting from structural reso-
nances. The finesse provides a good estimate of the
scaling of nonlinear effects, even if the losses due to scat-
tering and absorption that we have neglected in this pa-
per are taken into account. For example, linear attenu-
ation and group delay, which are length dependent but
not intensity dependent, are each increased in linear pro-
portion to the finesse. Nonlinear phase shifts, which de-
pend on the intensity-length product, are increased in
quadratic proportion to the finesse. But the efficiency of
some nonlinear frequency-conversion processes can be en-
hanced in even greater proportions.52

We next examine the trade-off between bandwidth and
nonlinear strength for enhanced self-phase modulation in
a single-channel SCISSOR. The bandwidth of a resona-
tor is primarily governed by its radius and finesse,

Dn 5 c/~2pRnF!. (10)

For a single add–drop filter, this bandwidth corresponds
to the width of the narrow-band add or drop transmission
windows. For a single all-pass filter, this bandwidth cor-
responds to the frequency interval over which the phase
varies sensitively and in a nearly linear manner over p
radians. Outside this interval, the sensitivity falls and
the phase significantly departs from linear behavior such
that a pulse with a larger bandwidth can become severely
distorted by higher-order dispersive terms. There is an
exact trade-off for linear properties. A resonator’s life-
time, group delay, and interaction length may be in-
creased at the expense of bandwidth in direct proportion
to the finesse. Such trade-offs can be fortuitously cir-
cumvented for certain nonlinear properties. The
strength of the enhanced self-phase modulation may be
characterized by how much power is required to achieve a
nonlinear phase shift of p radians in a structure com-
posed of a few resonators. To good approximation, the
threshold power required to achieve a p nonlinear phase
shift in just a single all-pass resonator is given by

Pp '
lAeff

4F2n2R
. (11)

The ratio of the reduced threshold power to the reduced
bandwidth for a resonator of a given finesse is a form of
figure of merit and is related to the threshold pulse en-
ergy. The minimum pulse energy required to achieve the
p nonlinear phase shift is obtained when the pulse width
is of the order of the inverse of the resonator bandwidth.
This is easily understood because a longer pulse with the
same peak power will carry more energy but not be any
more effective at accumulating nonlinear phase. A

Fig. 11. Inherent trade-off between bandwidth and energy re-
quired to achieve a p nonlinear phase shift per resonator in a
single-channel SCISSOR structure. The diagonal lines corre-
spond to constant resonator diameter for AlGaAs or
chalcogenide-based systems near 1.55 mm. Increasing finesse is
directly proportional to decreasing energy.
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shorter pulse will not allow the resonator sufficient time
to buildup in intensity and thus will experience a weak-
ened nonlinear response in addition to being severely dis-
torted. For a high-contrast dielectric waveguide, the ef-
fective area to which the power is confined may be as
small as l2/8n2, where n is the refractive index of the
guiding layer. The threshold energy required to achieve
a p nonlinear phase shift is accordingly reduced in linear
proportion to finesse:

Ep 5
l3Ap ln~2 !

16Fnn2c
. (12)

Fig. 12. Nonlinear pulse simulation assuming a Kerr nonlinear-
ity in a double-channel SCISSOR structure with ten unit cells.
A schematic of the structure is shown in (a). A 100-ps Gaussian
(FWHM) pulse is injected into the two-channel structure at the
input port (lower channel). Parameters include a refractive in-
dex of 3.1, radii of R 5 4.1 mm, and spacing L 5 16 mm. The
apodization profile is discussed in the text. The carrier wave-
length of the pulse is at l 5 1.58 mm, which is close to the 51st
resonance of the resonator. A plot of the linear transmission
spectrum of the structure is displayed in (b). The carrier wave-
length of the input pulse is indicated by a black dot in the figure.
A plot of the transmission versus peak input intensity for the
Gaussian pulse is displayed in (c). Notice that the switching
threshold is at approximately 15 MW/cm2 and may be obtained
with picosecond pulses with energies less than 0.15 pJ when the
effective areas of the guides are less than one square micron.
In order to reduce the parameter space, we make some
practical choices (n 5 3, n2 5 1.5 3 10217 m2/W) corre-
sponding to AlGaAs53,54 or chalcogenide55–57 glass
waveguides operating near 1.55 mm. Figure 11 displays
the trade-off between the energy requirement for a
p-radian nonlinear phase shift per resonator and band-
width for resonators of varying diameter. It is of techno-
logical interest to note that a p nonlinear phase shift is
obtainable with a 1-picosecond, 1-picojoule pulse by use of
a single ultracompact microresonator of moderate finesse.

11. NONLINEAR OPTICAL SWITCHING
To demonstrate the nonlinear effect in a microresonator
structure that exhibits bandgaps, we consider nonlinear
switching in a double-channel SCISSOR structure. The
numerical technique employed here is similar to that
found in previous work.22,52,58 The ten-celled two-
channel structure that we consider is shown in Fig. 12(a).
To improve the transmission spectrum of the structure,
we apodized the cross-coupling coefficient of the structure
using a linear apodization profile. The middle four cells
were characterized by r 5 0.98, while the first and the
last three cells of the structure were apodized, according
to r 5 0.995, 0.99, 0.985. The resulting (linear) trans-
mission spectrum is shown in Fig. 12(b). At the input
port, a 100-ps pulse centered at the wavelength l
5 1.58 mm is injected into the structure. A plot of the
transmission versus peak input intensity of the pulse is
shown in Fig. 12(c). It is apparent that the transmission
rises abruptly when the peak input intensity is higher
than a certain threshold. The abrupt change in trans-
mission near the threshold suggests that the structure is
potentially useful as a switching device.59

12. PRACTICAL ISSUES
In practice, it is currently difficult to fabricate high-
dielectric contrast ring and disk resonators with low loss.
Losses are high primarily due to scattering at rough
edges.60 Microsphere-based resonators have displayed
ultrahigh quality factors and finesse values61–67 but are
difficult to integrate and make reproducibly. It has been
shown that, for a given fixed figure of merit in a lossy non-
linear medium, significant improvement can be made
over an ordinary straight channel by forming the channel
into a resonator.68 The introduction of loss into the
structures considered in this paper reduces transmission
and circulating intensity buildups while broadening reso-
nances. The phase sensitivity, however, often increases
with additional loss. As a result, the enhancement of
nonlinear phase shift, which is proportional to phase sen-
sitivity and buildup, is interestingly somewhat insensi-
tive to loss. Transmission, of course, ultimately suffers
with too much loss.

The photonic structures analyzed thus far in this paper
have involved lossless infinite periodic structures. In
practice, finite structures consisting of one or many unit
cells may be implemented to achieve close approxima-
tions to these transfer characteristics. The number of in-
teracting resonators will be limited by losses, reproduc-
ibility, and intrinsic dispersion of effective refractive
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index of all guiding structures. Ultimately, the higher
the intrinsic finesse (unloaded, before coupling), the bet-
ter the fabricated resonators will perform as desired. Be-
ing able to accomplish useful tasks with low loaded fi-
nesse relaxes tolerances on the design and fabrication of
multiple interacting resonators that require l/nF preci-
sion. Fortunately, while low-finesse devices do not make
good high-resolution add–drop filters or sensors, they can
still possess strong nonlinear effects owing to the scaling
laws presented.

13. SUMMARY
Microresonators confine light to circulate within and
among compact photonic structures. Fabrication tech-
nology has advanced such that high-bandwidth mi-
croresonators are readily constructed from either high di-
electric contrast ‘‘photonic wires’’69 or photonic crystals70

for the enhancement of nonlinearities.71,72 Both guiding
structures have the ability to confine light to small dimen-
sions and rely on large dielectric contrasts. The use of
artificial media composed of sequences of microresonators
is a promising approach to the construction of photonic
waveguides with engineerable optical properties. Their
exotic linear properties result from structural resonances
that increase effective path lengths in a detuning-
dependent manner. These linear properties can and
have been exploited to build tunable optical delay lines,
filters, and dispersion compensators. Their exotic non-
linear properties result from a combination of increased
effective path lengths and coherent intensity buildup.
These nonlinear properties can be exploited to construct
optical switches, optical limiters, pulse compressors,
pulse imagers,73 and other nonlinear photonic devices re-
lying on interplay with group-velocity dispersion. We ex-
pect microresonator-based structures to become essential
components for integrated linear and nonlinear photonic
applications.
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