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A novel class of nonlinear optical processes is described in which radiation at the nth harmonic is
generated through the use of a �2n 1 1�-order nonlinearity. Utilizing an odd-order nonlinearity, this
process allows for the generation and amplification of both odd- and even-order harmonics in isotropic
materials. Additionally, this process can always be phase matched in normal-dispersion materials without
the use of birefringence. Experimental results are presented in which conical third-harmonic emission is
generated from a sapphire sample.
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Since the birth of nonlinear optics [1], researchers have
been exploring novel techniques for generating the har-
monics of a laser field. For example, recent work using
hollow waveguides has successfully produced the �31st
harmonic [2] of a Ti:sapphire laser beam, and soft x rays
have been created by focusing into a gas jet [3]. There are
several issues that must be taken into account in the genera-
tion of harmonic radiation. For example, it is commonly
accepted knowledge in nonlinear optics that it is not pos-
sible to generate or amplify a second-harmonic (SH) signal
(or other even-order harmonics) in a bulk isotropic material
because symmetry conditions require the even-order non-
linear susceptibilities to vanish identically [4]. Second-
harmonic generation (SHG) in fibers has been observed,
but this noninstantaneous process relies on a permanent
static field developing in the fiber which couples through
x �3� to generate the SH signal [5]. Even harmonics may
also be generated at the surface of an isotropic material;
however, only the atomic layer at the interface contributes,
which results in extremely weak signals [6]. Recent experi-
ments [7] have demonstrated SHG in a centrosymmetric
material if the material is antiferromagnetic.

Another important requirement for the efficient genera-
tion of harmonics is that the process be phase matched over
an appreciable interaction length. Since most materials
are normally dispersive in the visible and infrared, phase
matching can be achieved only through the use of birefrin-
gence [4] or by the use of periodically poled materials [8].
More recent experiments have demonstrated phase match-
ing by adjusting the coupled mode of the input beam and
the gas pressure inside a hollow waveguide [9]. Even in
the limit of perfect phase matching, tightly focused beams
in bulk materials are problematic since the light generated
prior to the focus destructively interferes with that gen-
erated beyond the focus [10–12]. This symmetry can be
broken by nonlinear refractive index changes, by plasma
generation [13], or by focusing the beam near the surface
of the sample [14]. In the latter case, the generated third
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harmonic (TH) light can be monitored to detect interfaces
[15], to produce third-order intensity autocorrelations [16],
or to perform optical microscopy [17].

In this Letter, we present a class of nonlinear optical pro-
cesses that allows for any order harmonic to be generated
or amplified in an isotropic material by utilizing higher-
order nonlinearities. Phase matching is achieved automati-
cally by emitting the generated light in the form of a cone.
If the process is externally seeded, the angle between the
pump and signal can be adjusted to achieve phase match-
ing. This process could play an important role, particularly
in the case where the perturbative limit of the nonlinear
susceptibility becomes invalid, and higher-order processes
are as probable as the lower-order process.

For illustration, we analyze the specific example of SH
amplification in an isotropic medium. We initially assume
that two monochromatic beams are present and decom-
pose the electric field E into the fundamental and SH
components

E�t� � E�v�e2ivt 1 E�2v�e22ivt 1 c.c., (1)

where E�v� is the electric field of the fundamental and
E�2v� is the electric field of the SH. We have neglected
the vector nature of the fields by assuming that the inci-
dent fields are all polarized along the same direction. The
nonlinear polarization PNL produced by these fields in the
perturbative limit can be expressed as

PNL�t� � x �3�E3�t� 1 x�5�E5�t� 1 . . . , (2)

where x�n� is the nth order nonlinear susceptibility, and all
even-order susceptibilities have been omitted because the
nonlinear material is assumed to be isotropic.

Substituting the form of the electric field given by
Eq. (1) into Eq. (2), we separate the resulting nonlinear po-
larization into terms that oscillate at frequencies v and 2v,
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PNL�v� � 3x �3�
spmjE�v�j2E�v� 1 10x�5�

spmjE�v�j4E�v� , (3a)

PNL�2v� � 6x�3�
xpmjE�v�j2E�2v� 1 30x�5�

xpmjE�v�j4E�2v� 1 5x
�5�
shgE4�v�E��2v� , (3b)
where we have expanded up to fifth order and made the
undepleted-pump/weak-probe approximation [i.e., neglect-
ing terms of order E2�2v�], and x�n�

spm, x�n�
xpm, and x�n�

shg
represent the nth order nonlinear susceptibilities respon-
sible for self-phase modulation, cross-phase modulation,
and second-harmonic generation, respectively. Of particu-
lar interest is the term

PNL
shg � x

�5�
shgE4�v�E��2v�e22ivt (4)

that potentially leads to the transfer of energy between
the fundamental and the SH. This lowest order process
was first investigated by Andrews [18], and a variation
of this six-wave mixing process was used to explain the
time-dependent growth of a second-harmonic signal in
an organic dye [19]. The remaining terms in Eq. (3)
represent self- and cross-phase modulation contributions.
Figure 1(a) depicts the Manley-Rowe photon diagram for
PNL

shg . It is apparent that such a wave-mixing interaction
can be phase matched via the wave vector diagram as
shown in Fig. 1(b). Neglecting the effects of self- and
cross-phase modulation, the phase-matching diagram sug-
gests that the process will be phase matched if the funda-
mental wave and SH seed propagate at an angle u such
that cosu � n�v��n�2v� where n�v� is the linear index
of refraction of the material at the frequency v.

To determine the propagation characteristics of this pro-
cess, we perform a plane-wave analysis with light fields
corresponding to the geometry suggested by Fig. 1(b) such
that

E�v� � Ap�z�eik1z , (5a)

E�2v� � As�z�ei�k2zz1k2xx� 1 Ai�z�ei�k2zz2k2xx�, (5b)

where k2
2z 1 k2

2x � k2
2 , km � mvn�mv��c is the wave

vector, m � 1, 2, and Ap�z�, As�z�, and Ai�z� are the am-
plitudes of the pump, signal, and idler waves, respectively.
By substituting these fields into the wave equation and
making the slowly varying envelope approximation, we
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FIG. 1. (a) Manley-Rowe photon picture and (b) phase-
matching diagram of the x �5� process responsible for second-
harmonic amplification. km � n�mv�mv�c is the wave vector
of a beam propagating through the material with frequency mv.
derive three coupled-amplitude equations that govern the
propagation of the fields:

2ik1
dAp

dz
�

24pv2

c2 �3x�3�
spmjApj

2Ap 1 10x�5�
spmjApj

4Ap � ,

(6a)

2ik2z
dAs

dz
�

216pv2

c2 �6x�3�
xpmjAp j

2As 1 30x�5�
xpmjAp j

4As

1 5x
�5�
shgA4

pA�
i e

2iz�2k12k2z�� , (6b)

2ik2z
dAi

dz
�

216pv2

c2 �6x�3�
xpmjAp j

2Ai 1 30x�5�
xpmjAp j

4Ai

1 5x
�5�
shgA4

pA�
se

2iz�2k12k2z�� . (6c)

In separating these three equations, we neglect wave com-
ponents that propagate in directions other than those of the
three waves we are considering since these fields are not
phase matched.

The pump-field amplitude Ap is decoupled from the
other fields, and its solution is given in terms of its ini-
tial amplitude, Ap�0�, by

Ap�z� � Ap�0�ei�DkNL
p �z, (7)

where DkNL
p �

2pv2

k1c2 �3x�3�
spmjAp�0�j2 1 10x�5�

spmjAp�0�j4�
represents the nonlinear wave vector contribution experi-
enced by the pump beam.

Substituting Ap�z� into the differential equations for
As�z� and Ai�z� yields two linear, coupled differential
equations,

dAs

dz
� i�DkNL

s �As 1 ibe2i�Dkeff1DkNL
s �zA�

i , (8a)

dAi

dz
� i�DkNL

s �Ai 1 ibe2i�Dkeff1DkNL
s �zA�

s , (8b)

where DkNL
s �

8pv2

k2zc2 �6x�3�
xpmjAp�0�j2 1 30x�5�

xpmjAp�0�j4�
is the nonlinear wave vector contribution to the amplitude
experienced by the second-harmonic beams, Dkeff �
2�DkNL

p 1 k1� 2 �DkNL
s 1 k2,z� is the effective wave

vector mismatch between the fundamental and second-
harmonic waves, and b �

8pv2

k2zc2 �5x�5�
shgAp�0�4� is the gain

parameter that leads to growth of the second-harmonic
signal.

Under the assumption that the idler beam is initially
absent, the intensities of the signal and idler as a function
of propagation distance are given by

Is�z�
Is�0�

� cosh2�gz� 1
�Dkeff�2

g2
sinh2�gz� , (9a)

Ii�z�
Is�0�

�
jbj2

g2 sinh2�gz� , (9b)

where g �
p
jbj2 2 �Dkeff�2. The maximum exponential

gain is achieved when Dkeff � 0, and when jDkeffj . jbj
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oscillatory, rather than exponential, behavior is observed.
A similar calculation was performed for the nondegenerate
case in which four photons at the fundamental wavelength
produce photons at frequencies 2v 1 D and 2v 2 D in-
stead of two photons at frequency 2v. Exponential growth
also occurs for the nondegenerate case, but the gain coef-
ficient b is maximum when D � 0 (the degenerate case).

This type of interaction is not limited solely to SH gen-
eration. Detailed calculations similar to those above were
performed for third-harmonic generation (THG) through a
x �7� process in which case six pump photons are annihi-
lated to create two TH photons. Even though the calcula-
tions have been done under the assumption that the process
is seeded by an external beam, these processes may grow
from quantum fluctuations. In addition, in the case of odd-
harmonic generation, radiation from the mismatched x�n�

process is able to seed the x�2n11� process. For example,
a small signal generated through phase-mismatched x�3�

THG or surface THG would greatly increase the output
signal resulting from the x�7� phase-matched TH process.

In addition to the plane-wave analysis, we show re-
sults of numerical simulations of focused monochromatic
Gaussian beams for THG under the assumption of radial
symmetry. All terms up to seventh order are included in
addition to the terms that generate the harmonic. We ob-
serve exponential growth of the TH wave as a function of
the input power of the fundamental beam and conical emis-
sion at the harmonic. Figure 2 shows results for a simula-
tion of THG. The parameters (with the exception of x�7�)
are chosen to simulate a laser at 1500 nm being focused
into sapphire such that the diffraction angle is 2±. The TH
seed is generated by the phase-mismatched x�3� process.
The incident power of the pump is kept less than the criti-
cal power for self-focusing (Pcr � 1.9l2��4pn0n2� where
n2 � 12p2x�3�

spm��n�v�2c� is the nonlinear index of refrac-
tion [4,20]); otherwise, the radial profile would collapse to
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FIG. 2. The energy in the third harmonic (TH) wave (solid
line) and the intensity of the fundamental (dotted line) as the two
beams focus. Phase mismatched x �3� TH generation is observed
at weak intensities of the fundamental beam, and exponential
growth occurs at the focus where the x �7� process becomes im-
portant.
153901-3
a singularity. For the results in Fig. 2, we assume the pump
power was 0.6Pcr and that x�7� is larger than might be as-
sumed from an estimation [4] of a purely nonresonant elec-
tronic nonlinearity since in the experiment the pump power
can be much larger than Pcr. The far-field diffraction pat-
tern is shown in Fig. 3. As can be seen, two components
propagating off axis are generated with a cone angle of
u � 10± in agreement with the predictions based on the
linear indices of refraction and a plane-wave geometry. If
the diffraction angle of the input beam is increased so that
it is comparable to the expected cone angle of the TH, a
significant on-axis component of the TH is also observed.
This results from the component of the fundamental beam
that is traveling in the direction of the expected cone angle
pumping the on-axis components of the TH beam.

We have observed this process experimentally using the
same values for wavelength and indices of refraction as in
the above theoretical calculation. Pulses at 1500 nm with
energies of 10 mJ and 50 fs duration are generated by an
optical parametric amplifier operating at a 1-kHz repeti-
tion rate and are focused into a sapphire sample by a 103

microscope objective with a numerical aperture (NA) of
0.16. A picture of the TH output ring and a plot of the cor-
responding spectrum are shown in Fig. 4. We believe the
SH is not observed since phase-mismatched x�2� harmonic
generation is not possible in isotropic materials, and the
growth from quantum fluctuations requires substantially
larger gain for the observation of the SH signal. Strong
continuum generation is sometimes seen to accompany the
conical THG depending on the input power and focusing
conditions. The output angle �u � 12±� is nearly equal to
the value expected from the above analysis, with the inclu-
sion of refraction at the output surface of the sample. The
output angle is experimentally observed to change with the
NA of the lens, in qualitative agreement with the numeri-
cal simulations. There are two reasons that higher-NA
objectives result in larger cone angles. First, the tighter fo-
cusing conditions result in a larger distribution of propaga-
tion directions. Second, the higher-NA objectives result in
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FIG. 3. The far-field diffraction pattern of the third-harmonic
wave generated through a x �7� process. The cone angle is �10±

as predicted by the plane-wave analysis.
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FIG. 4. Experimental spectrum of conical third-harmonic
emission from sapphire and the corresponding photograph of
the output ring (inset) for the case in which the wavelength
of the input pulse is centered at 1500 nm. The spectral width
results from the bandwidth of the fundamental pulse. The cone
angle is �12± and the conversion efficiency is �1026.

higher intensities and thus larger DkNL
s and DkNL

p . In or-
der to satisfy the phase-matching condition Dkeff � 0, the
angle must be larger. This process is observed in a single
shot and thus is not a result of damage induced in the mate-
rial, which supports the instantaneous nonlinear interaction
proposed here. We have also observed conical emission in
fused-silica glass. However, the spectrum in this case is
considerably more complicated which we believe is partly
a result of higher-order hyper-Raman scattering; the Ra-
man scattering cross section for sapphire is over an order
of magnitude smaller than that of fused silica [21].

For purely nonresonant electronic nonlinearities the
magnitude of these higher-order processes is expected to
be small relative to the lower-order counterparts. However,
there are several situations where we expect these pro-
cesses to play an important role. The first is in the case of
a resonant interaction. For example, if the material chosen
for SHG is such that the band gap is smaller than the
energy of four photons at the fundamental wavelength,
the x�5� process depicted in Fig. 1(a) will be resonantly
enhanced. In addition, since the band gap will be larger
than the energy of a single SH photon, the material will
be transparent at the pump and signal wavelengths. This
process may be inhibited by nonlinear absorption, but
explicit knowledge of the x�5�’s is necessary to make a
determination. These processes will also be relevant to ex-
perimental conditions experienced during high-harmonic
generation. In these situations, the perturbative limit of
expanding the nonlinear polarization is violated, and these
higher-order processes may be as probable as the direct
process. However, since the index of refraction at the
harmonic frequency is less than the index at the funda-
mental, the conventional noncollinear phase-matching
geometry must be used. Although this process offers no
advantage over the lower-order process for odd-harmonic
generation, the higher-order process presented here would
allow even harmonics to be generated. In addition, since
153901-4
the dispersion of gases is small, the output generated from
these higher-order processes will be nearly on axis.

In conclusion, we describe a class of higher-order non-
linear processes that allow for the production of harmonics
of any order in normal-dispersion materials regardless of
the symmetry. Phase matching is automatically satisfied
at a suitable angle between the pump and signal waves
which results in the harmonics to be emitted in the form
of a cone. We believe that these higher-order terms could
play an important role in very intense interactions when
the perturbative expansion of the polarizability is no longer
valid or when these higher-order processes are resonantly
enhanced. We have observed experimental evidence of a
x�7� process generating third-harmonic radiation in agree-
ment with our theory.
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