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Nonlinear optical properties of a gold-silica
composite with high gold fill fraction and the sign
change of its nonlinear absorption coefficient
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We study the intensity-dependent absorption coefficient of gold-silica composites as a function of fill fraction at
frequencies near the plasmon resonance. The samples we have studied act as saturable absorbers at all wave-
lengths and all fill fractions, whereas pure gold is an optical limiter. We provide an explanation based on the
intensity-dependent damping of the surface plasmon for this reversal of the sign of the nonlinear absorption.
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1. INTRODUCTION

The optical properties of metal-dielectric composite mate-
rials are dominated by the presence of the plasmon reso-
nance. At the plasmon resonance frequency the electric
field inside the metal becomes large in comparison to the
applied field; this increased field strength leads to an in-
creased absorption of light and to the enhancement of the
nonlinear optical properties of the composite.

The theoretical description of the plasmon resonance is
well established for composite materials in which the
metal is present in very low volume concentrations. The
Maxwell Garnett effective-medium theory [1] satisfacto-
rily predicts the linear optical properties. In the Maxwell
Garnett theory each metal particle is modeled as a dipole
that does not interact with the other particles. Experi-
mental studies of the application of Maxwell Garnett and
other formulas for the effective index of composite mate-
rials are given in [2,3], and this theory has been extended
to the nonlinear case [4,5].

At a higher fill fraction the Maxwell Garnett theory is
inadequate. The metal particles become close to each
other and begin to interact. Moreover, the nanoparticles
can aggregate, and in order to model the response of the
structures that they form it is necessary to take into ac-
count electric multipole orders higher than dipole. There
is not yet an accurate and experimentally confirmed
theory for high-fill-fraction composites. Many of the pro-
posed theories that treat composites in which the fill frac-
tion of each component may be large are effective-medium
calculations [6-8]. A theory by Sheng [9,10] takes into ac-
count some features of the microstructure, and numerical
methods permit one to go beyond the effective-medium
approximation [11-13]. Experimental studies of the non-
linear optical properties of metal-rich composite materials
are few. The optical nonlinearities of gold-silica samples
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at high fill fractions have been studied by Liao and co-
workers using degenerate four-wave mixing [14,15]; simi-
lar studies have been performed on other composite ma-
terials [16,17]. These studies have found that the
magnitude of the nonlinear susceptibility of metal-
dielectric composites grows with the metal fill fraction up
to a fill fraction of approximately 0.40 and then decreases.

In this paper we examine a range of fill fractions be-
tween 0.05 and 0.55 at frequencies around the plasmon
resonance. We find that the composite material acts as a
saturable absorber at all fill fractions and at all frequen-
cies for which we have collected data. The negative sign of
the nonlinear absorption coefficient for gold nanoparticle
systems (that indicates saturable absorption) is a fact
that is well established for dilute composites. It is a con-
sequence of the phase relation between the field inside
the nanoparticles and the incident field. This argument
[18] is reviewed in detail herein in the discussion of our
data. The fact that the sign of the nonlinear absorption
coefficient remains negative even at high fill fractions in-
dicates that at high fill fractions the local field maintains
characteristics similar to those that it has at low fill frac-
tions. We propose as well a complementary view, based on
the damping of the surface plasmon resonance, of the
origin of the negative sign of the nonlinear absorption
coefficient.

2. EXPERIMENT

The samples are approximately 200 nm thick films pre-
pared by cosputtering gold and SiOy onto a quartz sub-
strate using a multitarget magnetron sputtering system.
The targets and substrate were inclined with respect to
each other, and as a result the concentration of gold
varies on the samples from 0.05 to 0.55.

© 2008 Optical Society of America
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The deposition rates of gold and silica were calibrated
by separately depositing each of them onto a grating and
measuring the thickness with a profilometer. The sample
was placed in the same position as the calibration grat-
ings for cosputtering, and the fill fraction was calculated
at each point from the known deposition rates. The thick-
ness of the resulting film was determined by profilometry.
We studied the structure of the sample using electron mi-
croscopy. Two of the micrographs, obtained using a Zeiss
SUPRA 40 VP scanning electron microscope (SEM), are
shown in Fig. 1; the clear features in these images repre-
sent gold. Figure 1(a) is the sample at fill fraction
/=0.05; at this low fill fraction the diameter of most nano-
particles can be estimated as <10 nm. Figure 1(b) is the
sample at f=0.55; even at this high fill fraction the
sample consists of isolated gold nanoparticles. Three rep-
resentative linear attenuation spectra of the sample at
three different fill fractions are shown in Fig. 2. The plas-
mon resonance at f=0.05 is barely recognizable; it is quite
prominent at f=0.23, centered at 520 nm, and slightly
shifted to the red at f=0.41.

We performed wavelength-resolved measurements of
the nonlinear absorption coefficient 8 at five different fill
fractions (f=0.05, 0.23, 0.31, 0.41, and 0.55) and per-
formed measurements at the fixed wavelength of 532 nm
over all the range of fill fraction using the open-aperture
z-scan technique [19]. The nonlinear absorption coeffi-
cient g3 is defined by the formula a(I)=«(0)+ BI and deter-
mines the lowest order of the dependence of the absorp-
tion coefficient @ on the intensity.

In the open-aperture z-scan technique the transmit-
tance through the sample is measured as a function of po-
sition as the sample is translated through the focus of a
Gaussian beam. The transmission profile shows an in-
crease or decrease in the proximity of the focus according
to the sign of the nonlinear absorption coefficient 8. For
pulses with a Gaussian temporal profile, a material with
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Fig. 2. Linear attenuation spectra of the gold-silica composite
samples for various fill fractions.

an instantaneous nonlinearity, small changes in trans-
mission, and using integrating detectors to measure the
transmitted energy for each pulse, the transmission
normalized to its linear value can be fitted by the approxi-
mate expression

q0(2,0)
T(Z) =1- W, (1)
where z is the sample position and qy(z,0)=8I,(0)Lqg
with I(0) the on-axis intensity at the peak of the pulse
and L. an effective thickness of the sample that depends
on the linear absorption coefficient.

For our measurements we used 25 ps pulses at a 10 Hz
repetition rate produced by an optical parametric ampli-
fier (OPA) (EKSPLA PG401 VIR); the low repetition rate
renders any thermal contribution to the nonlinearity
negligible. The waist diameter of the Gaussian beam is
approximately 100 um.

We display our results for fill fractions of 0.05, 0.23,
and 0.41 in Fig. 3. The frequency-resolved data at other

(@) —— 200 nm

(b) —— 2 um

Fig. 1. SEM micrographs of the gold-silica composite. The clear areas of the micrograph represent gold. (a) Sample at f=0.05; the
diameter of most nanoparticles can be estimated as <10 nm. (b) Sample at /=0.55; even at this high fill fraction the sample consists of

isolated gold nanoparticles.



Piredda et al.

x10_S

B(cm/W)
o
o
o

B(cm/W)
[u}

o ¢ °

B(cm/W)
<>

480 500 520 540 560 580 600
wavelength (nm)
Fig. 3. (Color online) Nonlinear absorption coefficient of the
gold-silica composite film at fill fraction (a) f=0.05, (b) f=0.23,
and (c) f=0.41, respectively. A fit to the Maxwell Garnett theory
with D=2.40 is shown for the data for f=0.05. The Maxwell
Garnett theory is not valid at the higher fill fractions.

fill fractions do not add any significantly different infor-
mation. We have plotted a fit to the Maxwell Garnett
theory for the data at f=0.05; we discuss the fit in
Section 3.

The composite material is found to act as a saturable
absorber (that corresponds to having a negative value of
pB) for all fill fractions and at all wavelengths for which a
measurement was performed. The nonlinearity first
grows and then decreases as a function of fill fraction; this
behavior can clearly be seen in Fig. 4, where we plot the
nonlinear absorption coefficient against the fill fraction at
a fixed wavelength. Similar results have been reported in
other papers [14,16,17]. We also observe from Fig. 3 that
the peak of the nonlinear response as a function of wave-
length does not shift much as the fill fraction is varied.

We obtain a useful insight into the nature of the optical
response by noting that the nonlinear response (Fig. 3)
peaks at approximately the same wavelength as the
linear response (Fig. 2). The link between the linear and
nonlinear properties is of course the plasmon resonance;
we shall examine this link in more detail in Section 3
and show how it determines the sign of the nonlinear
absorption coefficient.
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Fig. 4. (Color online) Nonlinear absorption coefficient of a gold-
silica composite film plotted as a function of fill fraction at a
wavelength of 532 nm. An error bar is shown for one data point;
the estimated error is 35% for all data points.
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3. DISCUSSION

It is possible to understand the experimental results at
low fill fractions through the use of a modified version of
the Maxwell Garnett theory, which retains its spirit and
all of its fundamental approximations.

The need for modifications of the Maxwell Garnett
theory comes from the fact that we want a formula that
we can apply to very thin samples. The standard Maxwell
Garnett theory calculates the local field in a composite
sample at the location of a specified nanoparticle assum-
ing that the nanoparticle is surrounded by an isotropic
distribution of dipole density; this condition is not com-
pletely fulfilled for a sample that is only 200 nm thick.

We proceed in two steps. First we develop a theory
valid for a planar (two-dimensional) sample. We then note
that the formulas for the two-dimensional and the usual
three-dimensional cases can be written in the same form
using a parameter D (for dimension) that takes the values
of 2 and 3, respectively. We then let the parameter D vary
freely between 2 and 3 to represent the case of a sample
that is neither truly two- nor three-dimensional. Details
of the derivation of the two-dimensional Maxwell Garnett
theory are given in Appendix A. The effective dielectric
constant € of a D-dimensional Maxwell Garnett composite
medium is thereby found to be given by the relation

€E— € € — €,

e+(D-1)g, - &+(D-1¢,’

2

where ¢, is the dielectric constant of the host and can be
considered purely real while ¢=¢€ +i€; is the dielectric
constant of the metallic inclusions. For small fill fractions
when the dielectric constant of the composite material is
very close to the dielectric constant of the host, the dielec-

tric constant of the composite material can be approxi-

mated by
€~ €
=~ 1+Df——|. 3
N f6i+6h(D— 1) @)

In these small-fill-fraction conditions the approximate
expression for the linear absorption coefficient,

€~ €

w Y R
a=—Im\e~2—Df\e Im{ —
€ + Eh(D - ].)

c c

N C)

greatly simplifies for a host with no loss to the following
expression:

14
€

[€/ +(D-1)g 2+ €?

w

a=~ ZD%?F (5)

Equation (5), which is only valid in the limit of very
small fill fractions, leads to the reversal of the sign of the
induced absorption with respect to that of pure gold for
the following reason. Near resonance, that is, for [e]
+(D-1)€,]2~0, a is inversely proportional to €. Thus, as
€/ increases the overall absorption « decreases. The bulk
properties of gold are such that Im y®), the imaginary
part of the third-order nonlinear susceptibility, is positive,
meaning that gold itself acts as a reverse saturable ab-
sorber, that is, as an optical limiter. As the optical field
strength E increases, the effective value of € thus in-
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creases by an amount equal to 3 Im x® |E|?, and the over-
all absorption decreases. Thus the composite material
acts as a saturable absorber. We observe that this is simi-
lar to what happens in the case of a forced harmonic os-
cillator: at resonance it is the most damped oscillator that
dissipates the least power because an oscillator at reso-
nance oscillates with an amplitude inversely proportional
to the damping constant.

The simple explanation just presented for the sign re-
versal, or that presented in [18], cannot be applied to a
situation in which the fill fraction of the metallic compo-
nent becomes large. In this case we can suggest the fol-
lowing more heuristic explanation. It has previously been
established [20] that the surface plasmon resonance be-
comes broadened in the presence of intense optical radia-
tion. The broadening of the resonance implies an in-
creased damping for the surface plasmon. Thus the field
enhancement within each nanoparticle is decreased and
consequently the overall absorption is decreased. Thus,
by this mechanism the composite material is once again
expected to act as a saturable absorber.

The explanation that we just presented complements,
for the case of the imaginary part of the nonlinearity, the
reasoning based on the local-field effects that was pre-
sented in [18]. We briefly review that reasoning here. An
expression for the nonlinear susceptibility of a Maxwell
Garnett composite has been derived in [5] for the case of
spherical inclusions. In Appendix A we give a brief deri-
vation of the nonlinear susceptibility for the case of cylin-
drical inclusions that is valid when the inclusions only are
nonlinear. The result for D dimensions is

x® =flail(q)*x?, (6)

where ¢; is the local-field factor in the metal inclusions.
The local-field factor for D dimensions is

e+ (D -1)g,

T D-1e, v

qi

Equation (6) displays the sign-reversal effect that we
have discussed starting from Eq. (5). At the plasmon reso-
nance the condition € +2¢,=0 is approximately satisfied
(exactly satisfied in the limit of a very small fill fraction);
the local-field factor therefore becomes g;~3¢,/i€;, which
is imaginary. Thus qi2 is mainly real negative and the non-
linear susceptibility of the composite material is opposite
in sign to that of the metal inclusions.

A comparison of the predictions of Eq. (6) and the ex-
perimental data is given in Fig. 3(a). To obtain good
agreement with the data we took the parameter D to have
a value of 2.38. Moreover we took into account that colli-
sions of the free electrons with the boundaries of the
nanoparticles modify the dielectric function of gold. We
assume that this process only influences the imaginary
part of the dielectric function. The relaxation time 7 of the
conduction electrons in the nanoparticles is taken to be
described by the relation 1/7=1/7,,+vr/l, where vy is
the Fermi velocity and [ is the average mean path be-
tween two points on the surface of the nanoparticle,
which for a sphere of radius R is 4R/3 [21]. The imagi-
nary part of the dielectric function of gold is therefore
given by
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2
€=¢€ + —3wpUF (8)
1 i(bulk) 4w§R .

We use the value 1.36 x 106 Hz for the plasma frequency
w, and 1.40X 108 cm/s for the Fermi velocity vy [22] of
bulk gold.

The fit of Fig. 3 is realized using a radius of 3 nm for
the nanoparticles, which is supported by the (SEM) mi-
crograph in Fig. 1(a); it is reached assuming a third-order
susceptibility for gold y'®=(-2+10:) X 1078 esu, which is
compatible with the value found in [23].

The Maxwell Garnett theory, and therefore Eq. (6), can-
not quantitatively describe the sets of our data that have
fill fractions f equal or larger than 0.23, but the concept
described using Eq. (5) is still valid: the nonlinearity of
the composite results from an intensity-dependent damp-
ing of the resonance and it makes sense from a physical
point of view that the nonlinear behavior of the composite
material at high fill fractions is similar to the behavior at
lower fill fractions if the character of the resonance is not
drastically modified.

In other words, the fact that the nonlinear behavior of
our sample is rather uniform at all fill fractions is an in-
dication that the local fields are similar to the low fill frac-
tions’ local fields in all conditions; they are concentrated
inside the nanoparticles or their aggregates and there are
no complicated field distributions with hot spots. As a con-
firmation, all of the SEM micrographs that we collected
show that the sample consists of isolated gold nanopar-
ticles; Fig. 1(b) shows the structure of the sample at the
highest fill fraction at which we took measurements. The
heuristic considerations that we present should not be
valid for composite materials with a more complicated
morphology as for example the films investigated by Seal
et al. [24].

4. CONCLUSIONS

We have performed frequency-resolved measurements of
the nonlinear absorption coefficient of gold-silica compos-
ite materials for a large range of fill fractions. The films
are found to act as saturable absorbers at all fill fractions
and all wavelengths, although gold itself is an optical lim-
iter. We have presented a simple model for the change of
sign of the nonlinear absorption that we have observed,
which can be interpreted in terms of the intensity-
dependent damping of the surface plasmon resonance.

APPENDIX A

The Maxwell Garnett theory for the effective dielectric
constant of a medium consisting of a collection of nano-
particles of dielectric constant ¢; immersed in a host of di-
electric constant ¢;, is developed in the same way as the
Clausius—Mossotti theory for the dielectric constant of a
rarefied gas. To obtain the polarization density of the com-
posite medium one has to add the polarization of the host
material and the polarization of the nanoparticles; the
polarization of the nanoparticles is calculated from their
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polarizability taking into account that each of them is
subject to the Lorentz local field rather than the macro-
scopic field.

We model the two-dimensional composite as a collec-
tion of infinitely long cylinders whose axis is perpendicu-
lar to the applied field immersed in a host medium
(Fig. 5). In other words, we approximate the two-
dimensional medium as a three-dimensional medium
with translational symmetry along one axis; this approxi-
mation allows us to easily obtain the expression for the
third-order susceptibility.

If a cylinder of radius R and dielectric constant &; im-
mersed in a medium of dielectric constant ¢ is subject to
an electric field E perpendicular to its axis, it acquires a
polarization per unit length

R2 E—&p
11 1=&p—
i 2 g +ey

E=ayE. (A1)

The polarization density of the medium, when the macro-
scopic electric field is E, is

P= Ph + NHcyl = XhE + NacylEloca (A2)

where N is the number of cylindrical inclusions per unit
area and E, is the Lorentz local field.

The Lorentz local field is the field to which each inclu-
sion is subject, that is, the macroscopic field minus the
field generated by the inclusion itself. It can be calculated
by eliminating the inclusions from a cylindrical region,
creating in this way a cylindrical cavity, and leaving all
the rest (in particular the polarization of the other
inclusions) unchanged; in this cavity the Lorentz field is
uniform and given by

2711
Eloc =E+ s (A3)
€

where II=NIl is the polarization density per unit vol-
ume due to the inclusions.

Inserting Eq. (A3) into Eq. (A2) we obtain the following
expression for the susceptibility y of the composite
medium:

Fig. 5. Section of the model for a Maxwell Garnett two-
dimensional composite, a host with infinitely long cylindrical
inclusions.
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X=Xn+ (A4)

€n

Rewriting Eq. (A4) in terms of the dielectric constants we
obtain for the two-dimensional Maxwell Garnett compos-
ite the following relation:

€E— € € — €,

(A5)

€+ €, 6i+€h.

The local field E; inside the cylindrical inclusions is given
by

E;=qE, (A6)
where
€+ €,
q;= (A7)
€ + €,

is the local-field factor.

Comparing Eq. (A5) to the Maxwell Garnett result for
spherical inclusions we see that both the two- and three-
dimensional relations have the form

€E— € € — €

e+(D-1)g, - +(D-1)¢,’

(A8)

where D is the dimensionality of the system. In an analo-
gous way we have for the local-field factor

e+(D-1)g,

TarD-De o

qi

In Egs. (A8) and (A9) the dimensionality D can be
treated as a free parameter ranging between 2 and 3 to
represent composite media whose characteristics are in-
termediate between the two- and three-dimensional
cases.

An expression for the effective third-order nonlinearity
for the Maxwell Garnett composite in the case in which
only the inclusions are nonlinear can be obtained consid-
ering that the Maxwell Garnett expression must remain
valid as the electric field increases and the dielectric con-
stant of the inclusions change. We can then equate the
variation in both sides of Eq. (A8) obtaining

J €E— ¢, J € — €,
—| ——=——— |Ae=f—| ——— |Ae,
de\ e+ (D-1)g, deg\ €+ (D —-1)e,

(A10)

and after a few simplifications we obtain a concise expres-
sion for the change of the effective dielectric constant € as
a function of the change of the dielectric constant of the
inclusions ¢;:

Ae=fq?Ae;. (Al11)

If the inclusions have a Kerr nonlinearity then A¢; can
be written as a function of the local field in the inclusions
as Ae=4mx\> |E;[2=4my¥|q;|?| E|>. Inserting this last ex-
pression into Eq. (A11) we obtain the effective nonlinear-
ity of the composite as
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