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Entangled-photon compressive ghost imaging
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We have experimentally demonstrated high-resolution compressive ghost imaging at the single-photon level
using entangled photons produced by a spontaneous parametric down-conversion source and using single-pixel
detectors. For a given mean-squared error, the number of photons needed to reconstruct a two-dimensional image

is found to be much smaller than that in quantum ghost imaging experiments employing a raster scan. This
procedure not only shortens the data acquisition time, but also suggests a more economical use of photons for

low-light-level and quantum image formation.
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Introduction. A key goal of many imaging protocols is
to form an image using as small a number of photons as
possible. Such strategies are especially useful for applications
in quantum information, where the quantum nature of the
light field is a key aspect of the problem at hand, or in
other applications where photons are “expensive,” such as
in image formation at unusual wavelengths. In this Rapid
Communication, we show that compressive sensing, which
is also known as compressive sampling (CS), can be usefully
implemented at the level of few-photon imaging.

CS is a novel sampling and signal reconstruction method
that requires far less data than would be deemed necessary by
the Nyquist-Shannon criterion [1-3]. As a resource-efficient
sensing paradigm, CS has proven to be extremely useful in the
context of classical image formation. The method has also been
applied to quantum state tomography [4] and quantum process
tomography [5], but has not to our knowledge previously been
implemented in the context of quantum imaging. One can
anticipate its importance in such a context, where a primary
goal is to transfer an image using the absolute minimum
number of transmitted photons.

Quantum imaging with entangled photons suffers from
low photon flux and resource-inefficient transverse detection.
These problems are strongly coupled. Owing to the need for
gating to achieve high temporal resolution, transverse arrays
are expensive and require intensive electronics even for low-
to moderate-resolution images. A cheaper and simpler method
is to raster scan a single-element detector to acquire the image.
However, to obtain images with high resolution and high
signal-to-noise ratio, long integration times are required.

In the present paper, we demonstrate the utility of CS in the
context of a specific quantum imaging protocol, that of single-
photon ghost imaging. The success of this demonstration
suggests that CS methods are likely to prove useful much
more generally in applications involving quantum light fields.

The configuration of the classical single-pixel camera [6] is
conceptually equivalent to that of computational ghost imaging
[7,8]. Conventionally, a ghost imaging (quantum or thermal)
setup involves two beams of light, which are termed object
and reference beams [9—-14]. The object beam illuminates the
object and the transmitted or reflected light is monitored by
a spatially nonresolving (bucket) detector. The light in the
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reference arm is monitored by a spatially resolving detector.
The image of the object (the so-called ghost image) is then
formed by a coincidence measurement (in the quantum case) or
intensity correlation (for the thermal case) between the object
and reference signals. In computational ghost imaging [7,8]
and in compressive thermal ghost imaging [15], a single-beam
and a single spatially nonresolving detector are used. In
both cases, the intensity distribution of the reference beam
is determined computationally.

Here we demonstrate experimentally the operation of
quantum compressive ghost imaging at the single-photon
level using biphotons generated by spontaneous parametric
down-conversion (SPDC). We find in our experiment that
for a given mean-squared error of the reconstructed quantum
ghost image, the number of measurements (and the number
of photons) needed by the CS algorithm is much smaller
than that using a raster scan. This finding not only implies
an improvement in acquisition time, but also suggests a more
economical use of photons for low-light-level imaging.

Theory. Our theoretical analysis and experiments focus on
quantum compressive ghost imaging using photons generated
by SPDC. Nevertheless, it is instructive to compare our
configuration with the single-photon compressive imaging
setup depicted in Fig. 1(a). The figure shows a single-pixel
camera with the object being illuminated by heralded single
photons produced by SPDC. Because of the use of entangled
photons as the light source, the setup can be recast into a ghost
imaging configuration as shown in Fig. 1(b). One can see the
similarity of the two setups through use of Klyshko picture [9]
diagrams (see the insets). Note that in either case the object is
imaged onto the spatial light modulator (SLM).

The coincidence count signal for the detectors at x; and
X, is proportional to the normally ordered correlation function
[16,17]

C(x1,%2) = (Y| EDxDED ) EP (x0) P (x) 1)
= OIEPxDED o)), )
where E(x) and E)(x) are the positive- and negative-
frequency part of the electric-field operator at position

x and [y) is the biphoton state. Unlike previous ghost
imaging configurations [9-13,18] in which a spatially
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FIG. 1. (Color online) Schematics for (a) compressive single-
photon imaging and (b) compressive quantum ghost imaging. Insets:
the corresponding Klyshko pictures.

resolving detector is used in the reference arm, bucket
detectors are used in both arms in our case. All the object
information is thus contained in the integrated coincidence
signal C,, = fdx1 dx, C(x1,X;), where m denotes the mth
measurement, as we describe in detail below. For the setup of
Fig. 1(b), the two-photon amplitude is given by

(O ED (x) EP(x))|vr)
- / dx; dE dn dg dx; h(xa,8) An(©) h(E.m) L(n)
X h(”vxi)w(xsvxi)h(gvxs) T(E)h(xlvg)? (2)

where h(x,x’) o exp[ik/(2d)(x—x')?] is the paraxial Fresnel
free-space propagation kernel and L(x) = exp[—ik/(2f) x°]
is the transfer function of the lens. Here f is the focal length
of the lens, d is the longitudinal separation between the x
and X’ planes, and k = 27 /A is the wave number. 7' (x) is the
transmission function of the object and is the quantity we
wish to determine, and A,,(X) is the two-dimensional random
pattern imprinted onto the SLM with m = 1,...,M, where
M is the total number of realizations. The random patterns
A, (x) used in conjunction with the bucket detector map the
spatial information contained in the object function 7'(x) into
a sequence of coincidence signals encoded by the different
realizations of A,,.

The biphoton state in the SPDC process can be approxi-
mated by ¥ (X;,X;) &« §(X; — X;) for a thin nonlinear crystal and
narrow bandpass filters before the detectors [19]. Under such
conditions (which are good approximations in our experiment
and many experiments on ghost imaging) and when the
thin lens equation 1/(d, + d») + 1/d; = 1/f is satisfied, the
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integrated coincidence signal becomes
G = [ dxidsal OV x) E V)

o Y An(=EDPITEDI, 3)

in which unit magnification of the imaging lens and the finite
size of the SLM pixel are used, withn = 1, ...,N, where N is
the number of pixels in the SLM. Note that the object and SLM
planes are conjugate to each other and that bucket detectors
are used in both arms.

Equation (3) can be rewritten in matrix form as C = AT,
with A, = |An(—x,)|? and T, = |T(x,)|?>. Most natural
images are sparse when expressed in the proper basis such as
that of the discrete cosine transform or the wavelet transform
used in JPEG compression. Suppose the object intensity
transmission function T is K -sparse in the basis @, i.e., only K
of its coefficients are nonzero. When the measurement matrix
A is taken to be a random matrix (such as a matrix whose
entries are independent and identically Gaussian or Bernoulli
distributed), it has been shown that the restricted isometry
property (RIP) is satisfied [3,20,21]. Then according to the
theory, the vector T gives the desired result by minimizing
|®7T||; subject to the condition C = AT, in which ||v|; =
> lvi| is the £; norm of v. The error in determining T is
bounded from above if M 2 O[KIn(N/K)] measurements
are used. This number can be much smaller than that of the
Nyquist-Shannon criterion, a number of order N.

Experiment. Our experimental setup is shown in Fig. 2.
A continuous-wave Ar-ion laser (operating at a wavelength
of 363.8 nm) was used to pump a BBO crystal cut for
type-1I collinear SPDC. The pump was spatially separated
from the generated degenerate entangled photons using a
prism. A polarizing beam splitter was used to send the
orthogonally polarized photons into the object and reference
arms. A phase-only reflective SLM (from Boulder Nonlinear:
512 x 512 pixels, pixel pitch 15 um), sandwiched between
orthogonal polarizers, was used to mimic an amplitude-only
SLM. A half-wave plate was used to rotate the polarization
of the photons before impinging on the SLM. The face of the
nonlinear crystal is imaged using a lens (L in Fig. 2) of focal
length f = 25 cm onto the object and the amplitude-only SLM
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FIG. 2. (Color online) Setup for compressive quantum ghost
imaging. PBS, polarizing beam splitter; SLM, spatial light modulator;
L, imaging lens; HWP, half-wave plate; BBO, B-barium borate
crystal. A and B represent bucket detectors used for coincidence
measurement. Inset: example of a two-dimensional random binary
pattern impressed onto the SLM.
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with a magnification of 3. We group the native pixels of the
SLM into cells with a size of 4 x 4 pixels, so that we effectively
have an array with N = 128 x 128 pixels. We then impress
known but random binary patterns onto the SLM. We use
identically distributed Bernoulli random variables (with values
of 0 or 1) with equal probability. The photons transmitted
through the optical system are coupled into a multimode fiber
and registered by single-photon counting module (SPCM-
AQR-14, from Perkin-Elmer) detectors in both arms. A 10-nm
FWHM bandwidth spectral filter (centered at 727.6 nm) is
placed in front of each detector. Coincidence circuitry (with a
time window of 12 ns) was used to measure coincidence events
between the avalanche photodiodes (APDs) in the reference
and object arms.

We use two objects [the logo of the University of Rochester
(UR), and the Greek letter W] in the test arm of the ghost
imaging setup, as shown in the insets of Figs. 3(a) and 3(b). A
two-dimensional random binary amplitude mask (A,,) was
sent to the SLM via a computer, and measurements were
performed in coincidence (C,,) for m = 1,...,M where M
is the total number of measurements. For each random pattern
impressed onto the SLM, coincidence events were integrated
for 9 s. On average, the singles counts in the object (reference)
arms are 19.5 x 103 (25.6 x 10%) counts/s for the logo and
28.3 x 10° (25.7 x 10%) counts/s for V. The coincidence rate
is about ~1% of the singles rate.

To show the sparsity of the objects used in the experiment,
we have used the two-dimensional discrete cosine transform
(2D-DCT) as a representational basis. As can be seen in
Figs. 3(c) and 3(d), the objects are sparse in the chosen
basis (®).

The reconstruction of the object intensity transmission
function (T), was accomplished by minimizing |®T|,,
subject to C = AT using the gradient projection algorithm
[22]. The results of the reconstruction, for the maximum

FIG. 3. (Color online) Reconstructed ghost image of (a) the Greek
letter W and (b) the UR logo. The insets show the masks used in the
test arm of the ghost imaging setup. (c) and (d) The absolute value
of the calculated two-dimensional discrete cosine transforms of the
insets in (a) and (b), respectively.
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FIG. 4. (Color online) Calculated mean-squared error of the
reconstructed ghost images of the UR logo (e) and W (4) as functions
of the number of measurements M.

number of measurements (M = 6300), are shown in Figs. 3(a)
and 3(b). Comparisons with the original masks of the objects
(insets in the same figure) show that we have a good
reconstruction.

To quantitatively characterize the fidelity of the CS image
reconstruction, we use the mean-squared error (MSE) as
our metric, where MSE = (1/N)||X — x||%. Here X is the
reconstructed image, x represents the original mask, and N
is the number of resolution cells, in our case N = 128 x 128.
Figure 4 shows the calculated MSE as a function of the
number of measurements. As can be seen from the figure,
the MSE flattens out for M > 4500 (27% of the Nyquist limit
of 128 x 128), with values of 0.06 for the UR logo and 0.03
for the Greek letter W.

We also characterize our CS results in terms of the signal-
to-noise ratio (SNR). The signal and noise are calculated as the
mean intensity of the bright pixels and the standard deviation of
the dark background pixels, respectively [15]. The maximum
SNR we obtained, for the maximum number of measurements
M = 6300, is SNR = 8 (SNR = 10) for the object mask UR
(W) as shown in Fig. 5.

Next, we compare the performance of our CS proce-
dure with other approaches to image formation. For our
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FIG. 5. (Color online) Calculated signal-to-noise ratio of the
reconstructed ghost images of the UR logo (e) and W () as functions
of the number of measurements M.
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demonstrations, there are 128 x 128 = 1.6 x 10* pixels in the
object. We obtain a very good image using 6300 measurements
(see Fig. 3) and a highly acceptable image using only 2000
measurements (see Fig. 5). Thus, we are able to obtain good
images while performing far fewer measurements than there
are pixels in the field to be imaged. We did not make any
systematic attempt to minimize the total number of photons
used to form the image. It is nonetheless interesting to examine
the photon efficiency of our CS process. Using the numbers
reported above, we estimate that approximately 1.4 x 107
detected biphotons were used to obtain either of the images of
Fig. 3. This number is considerably smaller than the number
required by conventional quantum ghost imaging, in which a
point detector is raster scanned in the reference arm. In this
case, we would need to collect approximately 100 photons per
pixel to achieve a SNR of 10. There are 128 x 128 pixels in
the image, but for raster scanning we utilize only 1 part in
128 x 128 of the emitted photons. Thus, the required number
of photons is 100 x 128* = 2.6 x 10'°,
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In conclusion, we have experimentally demonstrated image
reconstruction at low light levels using entangled photons from
a SPDC source and using CS algorithms. We have shown that
CS can lead to high-resolution images with a dramatically
improved SNR. For the objects used in the experiment, high-
fidelity ghost image reconstruction was achieved using only
27% of the number of measurements corresponding to the
Nyquist limit. In addition, unlike most ghost imaging (quantum
or thermal) experiments where spatially resolving detectors are
a requirement, we used only single-pixel (bucket) detectors in
both the reference and test arms. We believe this work will
have an important impact in quantum imaging where photon
counting arrays are an expensive and cumbersome resource
and may have applications in secure image transmission [23]
and optical encryption [24].
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