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Phase distortions, or aberrations, can negatively influence the performance of an optical imaging system.
Through the use of position-momentum entangled photons, we nonlocally correct for aberrations in one
photon’s optical path by intentionally introducing the complementary aberrations in the optical path of the
other photon. In particular, we demonstrate the simultaneous nonlocal cancellation of aberrations that are of
both even and odd order in the photons’ transverse degrees of freedom. We also demonstrate a potential
application of this technique by nonlocally canceling the effect of defocus in a quantum imaging
experiment and thereby recover the original spatial resolution.
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Entangled photons display strong correlations in conjugate
continuous variables and are therefore of interest not only
for the foundations of quantum physics [1–9], but are also
routinely used for quantum information processing [10–12]
and quantum imaging [13–16]. Group velocity dispersion
(GVD) [17] and wave front aberrations [18] can negatively
influence the correlations and entanglement of continuous
variables. In this Letter, we show that through the use of
position-momentumentangledphotonpairs aberrations expe-
rienced by one photon can in a sense be undone by tailoring
the wave front structure of the other photon without ever
bringing the two photons back together. In this sense, we
demonstrate nonlocal aberration cancellation.
The mitigation of GVD has been proposed and demon-

strated both in a local scheme based on indistinguishability
[19,20] and in a nonlocal manner that relied on frequency
correlations of the light [9,21,22]. The simultaneous
[23,24] and nonsimultaneous [25] cancellation of even-
and odd-order terms in the dispersion relation have also
been demonstrated in a local manner. Because frequency
correlations do not necessarily have to be of quantum
origin, even classical dispersion cancellation techniques
have been realized [26–29]. As the spatial analog to
dispersion [30], aberrations caused by transverse momen-
tum-dependent phase shifts can be canceled in a concep-
tually similar manner. Only local aberration cancellation
has been performed experimentally [31,32], except for the
nonlocal compensation of pure phase objects revealed
through polarization correlations [33].
We complement these studies by demonstrating both

even- and odd-order nonlocal aberration cancellation
simultaneously with entangled photon pairs. Because
the observation of position-momentum entanglement is
strongly influenced by the propagation of the photons

[34,35], aberrations in the path of one photon affect the
observed entanglement significantly. In particular, quad-
ratic aberrations that act as defocus lead to a form of
entanglement migration [35]. These deleterious effects can
be canceled by acting on the state of the second photon with
an appropriately chosen aberration. In contrast to Ref. [35],
we perform higher-order as well as quadratic aberration
cancellation and enhance the quality of quantum imaging
in the presence of aberrations [36]. Our scheme can be
extended to the case when the two photons are different
frequencies or to implement the spatial analog of the
encoding scheme in Ref. [23].
Figure 1 shows the experimental setup (explained later in

more detail) whereby aberrations can be introduced con-
trollably to a photon pair created in nearly collinear type-II
spontaneous parametric down-conversion (SPDC). The two
photons, called signal and idler, are entangled in their
transverse degrees of freedom and can be described by the
joint wave function in the momentum representation after
passing through the optical system in Fig. 1,

ψðκs;κiÞ ¼ CEðκs þ κiÞχ̃ð2ÞðΔkzÞHsðκsÞHiðκiÞ; ð1Þ

where κs and κi denote the transverse components of
the wave vectors of the signal and idler, respectively. The
constant C includes terms resulting from the quantization
of the electric field and the nonlinear interaction [37].
The angular profile of the pump beam E controls the
anticorrelation of the signal and idler momenta [38,39].
For degenerate SPDC in the paraxial approximation and

neglecting walk-off, the longitudinal wave vector mismatch
Δkz of pump, signal, and idler fields reduces to Δkz ≅
ðκs − κiÞ2=ð2kpÞ, where kp is the wave vector of the pump.
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The wave vector mismatch is engaged through the
phase-matching function χ̃ð2ÞðΔkzÞ, which is the Fourier
transformation of the longitudinal profile of the nonlinear-
ity. In the case of a uniform crystal of length l, it takes the
form

χ̃ð2ÞðΔkzÞ ∝ e−iðlΔkz=2Þsinc
lΔkz
2

≅ e−½lðκs−κiÞ2=4kp�ðαþiÞ:

In the last step the sinc was approximated by a Gaussian
with α ¼ 0.455 [34].
The imaging system amplitude transfer functions,

HjðκjÞ with j ¼ s, i, in Eq. (1) describe the propagation
along the signal and idler path, respectively, and can also be
used to describe quantum ghost imaging [18]. For the
aberrations considered here, they reduce to a momentum-
dependent phase factor HjðκjÞ ¼ exp½iϕjðκjÞ�.
In the experiment, aberrations are introduced in only one

transverse dimension. For this reason, a one-dimensional
version of Eq. (1) will be considered and the momentum
will be defined through the de Broglie relation pj ¼ ℏκj in
this particular direction. The value of κj can be inferred in
the Fourier plane of the crystal from the measured position

ϱj ¼ fκj=kj, where f is the focal length of the lens used to
access the Fourier plane.
The joint momentum distribution is given by the modu-

lus squared of Eq. (1),

Pðps; piÞ ¼ jCj2jEðκs þ κiÞj2jχ̃ð2ÞðΔκÞj2: ð2Þ

Equation (2) can be written approximately as a two-
dimensional Gaussian whose variance Δp2þ, in direction
pþ ¼ ðps þ piÞ=

ffiffiffi
2

p
is determined by the angular profile

of the pump. In direction p− ¼ ðps − piÞ=
ffiffiffi
2

p
the variance

is determined by crystal properties Δp2
− ¼ ℏ2kp=ðαlÞ.

Because the transfer functions for aberrations, Hj, are a
multiplicative phase in the momentum basis, they do not
appear in Eq. (2).
In contrast, phases caused by aberrations have significant

impact on the joint position distribution, which can be
obtained from the Fourier transformation of ψðκs; κiÞ.
Expanding the phase of HsðκsÞHiðκiÞ in a Taylor series
and assuming a plane-wave pump such that κs ¼ −κi ¼ κ,
one finds

ϕsðκÞ þ ϕið−κÞ ¼ ϕsð0Þ þ ϕið0Þ þ κ½ϕ0
sð0Þ − ϕ0

ið0Þ�
þ κ2½ϕ00

s ð0Þ þ ϕ00
i ð0Þ�=2!

þ κ3½ϕ000
s ð0Þ − ϕ000

i ð0Þ�=3!þ � � � ð3Þ

By the Fourier shift theorem, the first-order term in the
transfer functions’ phases shifts the center of the joint
position distribution. The second-order term in Eq. (3)
changes the variance of the joint position distribution since
the Fourier transform of a Gaussian is also Gaussian.
Analogously, the third-order term introduces skew to the
joint position distribution. From Eq. (3) it is clear that when
the even-order derivatives of the individual phase functions
are equal in magnitude but opposite in sign, and the odd-
order derivatives are equal, the effects of aberrations can be
canceled nonlocally. This leads to the condition for all-
order aberration cancellation under the plane-wave-pump
approximation, ϕsðκÞ ¼ −ϕið−κÞ.
Position- and momentum-correlation measurements

were carried out to study the effects of introducing
aberrations to the signal and idler beams separately.
Figure 1 shows the experimental setup where a β-barium
borate (BBO) crystal was pumped under nearly collinear
type-II phase matching by an ∼19 mW collimated
Gaussian beam with a diameter of ∼1 mm centered at
405 nm to create transversely entangled photons. The
output signal and idler photons were spectrally filtered
with a narrow band (10 nm) filter centered at 810 nm
followed by a long-pass filter with the cutoff wavelength at
594 nm. Spatial light modulators (SLM) placed in the
Fourier plane of the crystal along the signal and idler paths
implemented the transverse momentum-dependent phase
shifts leading to aberration. Because of alignment-related

FIG. 1. Experimental setup for performing aberration cancel-
lation using position-momentum entangled photon pairs. The
signal and idler photons created in nearly collinear degenerate
type-II spontaneous parametric down-conversion are split by a
polarizing beam splitter (PBS) and pass through 4f imaging
systems for the position-basis coincidence measurement. Spa-
tially resolved detection is achieved using 100 μm wide trans-
latable slits. Spatial light modulators (SLM) located in the Fourier
plane of the crystal introduce aberrations, HjðκjÞ; j ¼ s, i, to
each path. For the momentum-basis coincidence measurement,
the SLMs are imaged onto the plane of the slits. The lenses L1
and L2 have focal lengths f ¼ 40 cm and f=2, respectively.
[band-pass filter (BPF); coincidence counting unit (CCU); half-
wave plate (HWP); low-pass filter (LPF); multimode fiber
(MMF); nonlinear crystal (NLC); single-photon counting module
(SPCM)].
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quadratic aberrations (defocus) in the experimental setup,
an additional defocus with ϕs

00ð0Þ ¼ −0.0052 mm2 was
introduced to the signal path for all measurements. Slits of
width 100 μm were used to select a small portion of the
beam for detection and were translated with servo-
controlled micrometer stages in steps of 100 μm. For each
setting of the two slits, the coincidence detection rate was
recorded using single photon detectors and a coincidence-
counting unit [40] with a coincidence window of ∼13 ns.
The SLMs were imaged onto the slit plane to detect the
momentum distribution (Fig. 2, second row) and brought to
the far field to detect the position distribution (Fig. 2,
first row).
The results of introducing quadratic aberrations are

shown in Fig. 2, which displays the coincidence counts
in both the position and momentum representations for the
case of no aberrations (a), for aberrations on idler only (b)
and on signal only (c), and for the cancellation scheme (d).
The widths of the position distributions (top) broaden as
soon as aberrations are introduced. The broadening is a

direct consequence of the defocus in one arm, which causes
a broadening of the respective marginal probability distri-
bution. Notably, broadening along the antidiagonal direction
x− ¼ ðxs − xiÞ=

ffiffiffi
2

p
of ðxs; xiÞ space is almost completely

canceled by introducing opposite aberrations to both
branches, as seen in Fig. 2(d).
Figure 2 shows that the correlation between the positions

of the photons depends on aberrations, which in turn also
affect the Heisenberg-type inequality,

Δx2−Δp2þ ≥ ℏ2=4; ð4Þ

whose violation is commonly used to verify position-
momentum entanglement [5,39,41,42]. Violating the in-
equality from Eq. (4) is a signature for entanglement. To
determine the widths Δx− and Δpþ from the experimental
coincidence distribution in Fig. 2, we perform maximum
likelihood fitting using the model of a bivariate Gaussian
distribution and obtain their errors through a Monte Carlo
simulation.

FIG. 2. Coincidence distributions in the positions (top) and momenta (bottom) of signal and idler photons with (a) no aberrations,
(b),(c) quadratic aberrations introduced solely on the idler or signal, respectively, and (d) aberration cancellation. The coefficients of the
quadratic aberrations are listed below the figure. The momentum distributions remain nearly unaffected by aberrations, whereas the
position distributions change significantly. This broadening can be compensated by introducing quadratic aberration to the signal path
that is equal in magnitude but opposite in sign from quadratic aberration in the idler path. The white (a),(b),(c) and black (d) ellipses
mark the 1σ levels of Gaussian fits and are used to obtain Δx− and Δpþ, necessary for the evaluation of the entanglement criterion
(bottom row).
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The table below Fig. 2(a) shows that the generated
photon pair is position-momentum entangled without
aberrations present since the data violate the inequality
from Eq. (4). However, introducing second-order aberra-
tions on either the idler or the signal increases the variance
Δx2−. Therefore, Eq. (4) is fulfilled, meaning that entangle-
ment cannot be verified with aberrations present. It must be
emphasized that measurements satisfying Eq. (4) do not
imply a lack of entanglement since correlations can also
exist in the phase of the wave function. In fact, we observe a
version of entanglement migration [34].
After nonlocal aberration cancellation is performed by

choosing ϕ00
s ð0Þ ¼ −ϕ00

i ð0Þ, the variance Δx2− decreases
significantly and entanglement is verified. In this sense,
the effect of entanglement migration can be undone.
However, the values displayed in Fig. 2(d) show that the
product Δx2−Δp2þ is still larger than for the case without
aberrations.
The cancellation is not perfect because the pump beam is

not a plane wave, resulting in imperfect anticorrelation of
the signal and idler momenta. In this case, the exact Fourier
transformation of ψðκs; κiÞ with a Gaussian beam profile
Eðκs þ κiÞ of width Δκp and within the Gaussian approxi-
mation of the phase-matching function gives the probability
distribution Pðxs; xiÞ ∝ exp½−x2−=ð2Δx2−Þ� with xs ¼ −xi,
which is of Gaussian form along the antidiagonal x−. Even
under the condition for aberration cancellation ϕ00

s ð0Þ ¼
−ϕ00

i ð0Þ ¼ β, the variance

Δx2− ¼ ½lαþ kpβ2Δκ2p�2 þ l2

2kplαþ 2k2pβ2Δκ2p
ð5Þ

still depends on β due to the finite size of the pump
profile Δκp. Thus, perfect aberration cancellation cannot be
achieved for any finite Δκp. Noncanceled aberrations also
lead to a rotation of the joint position distribution, as seen in
Figs. 2(b) and 2(c), due to the appearance of a correlation
term in Pðxþ; x−Þ.
The impact of the pump profile is even more significant

when canceling higher-order aberrations. Figure 3(a) shows
the coincidence distribution in the position representation
when both quadratic and cubic aberrations are introduced
into the idler path only. Compared with Fig. 2(b), the
broadened joint distribution is clearly skewed by the
introduction of cubic aberration. According to the cancel-
lation scheme discussed previously, the coefficients of the
cubic phase terms in each path are chosen to be the same,
Fig. 3(b). The forked structure in Fig. 3(b) is a result of the
fact that the marginal probability distributions of the signal
and idler must be skewed, but only the idler’s marginal
distribution can be broadened. When both quadratic and
cubic aberration cancellation is performed, Fig. 3(c), the
distribution approaches the nonaberrated distribution,
Fig. 2(a), but displays an asymmetry along the xþ direction.
Higher-order aberration cancellation appears to be more

sensitive to the finite width of the pump profile because the
total amount of aberrations introduced is larger than for
the quadratic scheme.
To demonstrate the utility of nonlocal aberration cancel-

lation, quantum ghost imaging [14] in the presence of
focusing error and its nonlocal cancellation was performed
in one dimension. Three parallel gold bars placed in front of
a bucket detector in the signal path constituted the image.
Unlike the experiments shown in Fig. 1, aberrations were
introduced in the image plane of the crystal and coincidence
measurements (imaging) took place in the Fourier plane.

FIG. 3. Higher-order aberration cancellation. (a) Second- and
third-order aberrations are introduced on the idler (coefficients on
the bottom) leading to the displayed coincidence distribution
in the position basis. (b) When third-order aberrations are
canceled, the distribution broadens due to the noncanceled
quadratic aberration. The forked structure is due to the asym-
metry of the signal and idler marginal distributions. (c) Cancella-
tion of all orders. Inset are the signal and idler marginal
distributions (blue and orange lines, respectively).

FIG. 4. (left) The top panel shows the horizontal width of the
bars and the bottom panel shows psuedo-2D images of the gold
bars with saturation for each scenario on the right. (right) The
solid red line (a) is the coincidence image of three Au bars placed
in the signal path momentum plane without any aberrations
present. The dotted blue line (b) is the coincidence image with
phase aberrations in the idler path only, according to θiðxiÞ ¼
θ00i ð0Þx2i =2, where θ00i ð0Þ ¼ 73.7 mm−2. When the defocus is
canceled nonlocally, θ00s ð0Þ ¼ −θ00i ð0Þ, the coincidence image of
the slits is almost completely recovered [dashed green line, (c)].
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This configuration was chosen to take advantage of the
larger beam cross section in the Fourier plane of the crystal.
From the results shown in Fig. 4 (right), the image of the

slits (solid red line) is clearly lost after the introduction of
quadratic aberrations (dotted blue line) and then partially
recovered with aberration cancellation (dashed green line).
The decrease in contrast and the increased period of the
dashed green line compared to the solid red line is due to
the finite width of phase-matching function. In this case, the
effect of the phase-matching function is analogous to that of
using a Gaussian pump beam when aberrations are intro-
duced in the momentum representation.
In conclusion, we have demonstrated the first nonlocal

cancellation of even- and odd-order aberrations simulta-
neously. Furthermore, we have shown how aberrations and
their subsequent nonlocal cancellation influence the results
of transverse entanglement measurements using the cri-
terion from Eq. (4). We also applied this technique to
nonlocally correct for focusing error in a quantum imaging
setup. Prior theoretical and experimental work has shown
that both dispersion cancellation [26–29] and ghost imag-
ing [43] are possible using classically correlated light
beams. Such demonstrations suggest that it may also be
possible to observe nonlocal aberration cancellation using a
light source with classical, rather than quantummechanical,
correlations.
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