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We propose and demonstrate a simple and easy-to-
implement projective-measurement protocol to determine
the radial index p of a Laguerre–Gaussian (LGl

p) mode. Our
method entails converting any specified high-order LG0

p
mode into a near-Gaussian distribution that matches the
fundamental mode of a single-mode fiber (SMF) through
the use of two phase screens (unitary transforms) obtained
by applying a phase-retrieval algorithm. The unitary trans-
forms preserve the orthogonality of modes before the SMF
and guarantee that our protocol can, in principle, be free
of crosstalk. We measure the coupling efficiency of the
transformed radial modes to the SMF for different pairs
of phase screens. Because of the universality of phase-
retrieval methods, we believe that our protocol provides
an efficient way of fully characterizing the radial spatial pro-
file of an optical field. © 2018 Optical Society of America

https://doi.org/10.1364/OL.43.006101

Laguerre–Gaussian (LG) modes, LGl
p, characterized by the azi-

muthal index l (an integer that quantifies the amount of orbital
angular momentum (OAM) carried by a single photon [1]) and
by the radial index p (a non-negative integer that quantifies the
hyperbolic momentum charge of a single photon [2]), are sol-
utions of the paraxial wave equation in cylindrical coordinates
[3]. The LG modes are orthonormal and form a complete basis
set. Both the azimuthal and radial degrees of freedom are
theoretically unbounded (unlike polarization, which is two di-
mensional). This unbounded nature is potentially useful for
applications such as classical and quantum communication
[4–8], including quantum key distribution (QKD) [9,10], by
allowing for high-dimensional encoding, which leads to in-
creased information capacity [11,12]. To date, most of these
applications have employed the LGl

0, i.e., the OAM modes
of lowest radial order, for which efficient means of detection

and characterization are available [13–18]. The radial modes,
LGl

p, have been under-utilized for such applications because of
the absence of efficient methods for detecting and measuring
the radial index.

Several interferometric techniques for the sorting of LGl
p

modes based on the principle of a universal quantum sorter
[19] have recently been demonstrated [20–22]. However, with
a larger number of input modes, these techniques become more
complicated to implement, as several such interferometers
would need to be cascaded. Projective measurements can also
be used to measure mode indices, and hence are also useful for
performing quantum state tomography [12,23]. Projection en-
tails mapping a specified input mode to a particular output
mode (typically a Gaussian), which can then by coupled to
a single-mode fiber (SMF) that selects only the fundamental
Gaussian component. Previous projective measurements of ra-
dial modes have employed flattening the phase front of the in-
coming field [7,24], and in [25], flattening both the phase and
the intensity. While the former scenario results in crosstalk due
to incomplete projection of the input modes onto the SMF
mode, the latter has reduced crosstalk but with a very low de-
tection efficiency.

LG modes retain their transverse structure as they propagate
through free space, through lenses and as they reflect off of
mirrors. As a consequence, one cannot use these elements to
losslessly project high-order radial modes onto a Gaussian.
Multi-plane light conversion (MPLC), which employs a series
of phase planes and propagation, has been shown to, in prin-
ciple, be able to perform any arbitrary spatial transformation
[26]. The MPLC concept has been used in [27] to map several
LG modes to Gaussian spots at mode-index-dependent posi-
tions at the output. In [28], a similar mapping as in [27]
was performed for a few LG modes by utilizing multiple scat-
tering. However, while the former case requires several phase
planes to achieve low crosstalk, the latter configuration suffers
from high scattering losses (around 99%).
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Here, we present a simple and easy-to-implement protocol
for measuring the radial mode spectrum of an optical field by
transforming high-order radial modes to the fundamental mode
of a SMF. We use two phase screens (to introduce a spatially
varying transverse phase structure), placed at the object plane
and at the Fourier plane of a lens, respectively, to transform a
particular radial mode (LG0

p) to the fundamental mode of a SMF,
assumed here to be a Gaussian (LG0

0). The required pair of phase
screens for each input mode is calculated through the use of
a phase-retrieval algorithm. The transformations performed by
phase screens are in principle lossless and, hence, unitary. Since
all the other elements before coupling to the SMF are also unitary,
the orthogonality of modes is maintained before coupling to the
SMF, which guarantees that modes with radial indices other than
those for which the phase screens were designed will not couple to
the SMF. Thus, through our protocol, one can measure the radial
index of a mode (and thereby determine the radial mode spectrum
of an optical field) with negligible crosstalk.

Figure 1(a) shows a schematic representation of our projec-
tion protocol. The transformation of a LG0

p mode (where
p > 0) to a Gaussian mode is an example of a “synthesis prob-
lem,” as we have a priori knowledge of the intensity distribu-
tions in the object plane as well as the Fourier plane [29]. We
use the Gerchberg–Saxton (GS) phase-retrieval algorithm, an
iterative error-reduction algorithm, [30,31] to calculate the re-
quired phase screens Φ1�x, y� and Φ2�x, y�. The SLM1, placed
at the object plane of a lens, introduces a phase Φ1�x, y� on the
input field LG0

p [or f �x, y�]. At the Fourier plane of the lens,
the intensity distribution becomes similar to the intensity dis-
tribution of the LG0

0 mode [or g�x, y�], but with an incorrect
phase profile. The SLM2, placed at the Fourier plane, sub-
sequently introduces another phase, Φ2�x, y�, which corrects
these residual phase errors and flattens the phase. As phase
transformations in the absence of losses are unitary, the orthog-
onality of these projected modes remains preserved before the
SMF. Due to restrictions on the aperture size of our SLM,
we choose the first three high-order radial modes LG0

p with
p � f1, 2, 3g to test our protocol.

For our two-dimensional problem, the uniqueness of a
phase-retrieval solution is ensured due to the non-factorability
of polynomials of two-or-more complex variables [32]. We
define an error metric ϵ in the Fourier domain to study the
convergence of the GS algorithm to this solution with the num-
ber of iterations N iter. In many cases, if a solution exists, the
algorithm converges within a few iterations. However, the
algorithm can also stagnate close to the local minimum of ϵ
without converging any further [29]. To study the efficiency
of the algorithm at calculating the required pair of phase screens
for each input mode, we define ϵ in terms of C , the coherent
mode-overlap efficiency between the projected LG0

p mode and
the mode of the SMF, as follows:

ϵ � 1 − C � 1 −

����2π
X

ρ

ρF�
n�ρ�gn�ρ�

����
2

: (1)

Here, ρ is the Fourier domain radial coordinate, Fn�ρ� is the
normalized radial mode at the Fourier plane after the applica-
tion of the relevant pair of phase screens Φ1 and Φ2, and gn�ρ�
is the desired mode at the Fourier plane (normalized Gaussian).
The modes are normalized such that 2π

P
ρ�ρjFn�ρ�j2� �

2π
P

ρ�ρjgn�ρ�j2� � 1. C also represents the fraction of input
power that couples into the SMF after the phase corrections.
Figure 1(b) shows the variation of ϵ with N iter, where N iter is
the number of iterations, for the different input radial modes
(LG0

1 to LG0
3). Without the phase corrections, or when

N iter � 0, ϵ is unity. as the unconverted high-order radial
modes are orthogonal to the SMF mode. As N iter increases,
ϵ (C) decreases (increases) for all modes until it stagnates close
to 0.18 after approximately 35 iterations. This non-negligible
error represents an overall loss of power coupled into the SMF.
However, as we show later in the Letter, this loss of power is not
as consequential, as there is negligible crosstalk due to the pre-
served orthogonality of modes in our protocol [see Fig. 5(a)].

Figure 2 shows a schematic of the experimental setup used
to test the protocol. Two Hamamatsu liquid-crystal-on-silicon
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Fig. 1. (a) Schematic representation of the protocol with insets
showing the phase screens, Φ1�x, y� and Φ2�x, y�, which convert an
LG0

p mode into a Gaussian output mode. (b) Variation of Fourier-
domain error ϵ for input modes LG0

1, LG
0
2, and LG

0
3, with the number

of iterations N iter of the algorithm.
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Fig. 2. Schematic of the experimental setup. The labeled components
are: collimating lens (L2, f � 1 m), microscope objectives (L1 and L8,
N:A: � 0.25, 10×) to couple laser light out of and into a SMF, respec-
tively, waveplates (QWP + HWP) to transform the polarization from
the output of the fiber to the correct polarization for SLM1, pupil P
[at the Fourier plane of lens L3 (f � 1 m)] to isolate the first order
of diffraction from SLM1, and imaging systems to create a magnified
image of the Fourier plane of L3 onto SLM2 [lenses L4 (f � 125 mm)
and L5 (f � 1 m)] and to image the transformed field onto the exit
pupil of L8 [lenses L6 (f � 750 mm) and L7 (f � 1 m)].
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(LCOS) SLMs (model X10468-02), with a pixel size of 20 μm
and an active area of 600 × 800 pixels, are used as the phase
screens. The source is a He-Ne laser spatially filtered through
the use of a SM600 fiber (single mode for 633 nm wavelength),
and collimated while ensuring uniform illumination of all pixels
on SLM1. The LG0

p modes (p � f0, 1, 2, 3g) are generated by
phase-only modulation of SLM1. The amplitude and phase of
the LG mode are imposed on the first order of diffraction of the
grating function impressed on SLM1, in accordance with the
approach given in [33]. For convenience, the first phase screen
[see Figs. 3(a)–3(d)] is implemented along with the mode gen-
eration on SLM1 itself. The azimuthally averaged intensity dis-
tributions for each input radial mode at the image plane and the
Fourier plane, recorded using a CCD camera, were found to
differ from the theoretical intensities by a root-mean-square (rms)
error of less than 10% (see Data File 1 for the actual values),
thereby confirming that the generated radial modes are of good
fidelity. After the second phase correction impressed by SLM2
[see Figs. 3(e)–3(h)], the transformed modes are coupled via an
imaging system and a microscope objective to a SMF-coupled
photodetector. Figures 3(i)–3(l) show the recorded intensities
at the Fourier plane (or SLM2) of the various input modes after
the application of the corresponding pair of phase screens.

The coupling efficiency of a given mode to the SMF is taken
to be the ratio of the power coupled into the fiber to the total
power incident on the microscope objective L8. We achieved
an approximate coupling efficiency of 70% for an input
Gaussian mode to the SMF through proper alignment and ad-
dition of compensating aberrations on both SLMs. The cou-
pling efficiencies of different input radial modes (from LG0

0
to LG0

3) for various pairs of phase screens formed the “crosstalk
matrix.” It should be noted that we include the LG0

0 mode in
our basis set for completeness and for examining the crosstalk.

Figure 4 shows the calculated intensities and phase fronts
of different input modes (LG0

0, LG
0
1, LG

0
2, and LG0

3) at the
Fourier plane after the application of phase screens calculated
for the LG0

2 mode. Essentially, one obtains nearly Gaussian
amplitude and a flat phase at the Fourier plane only when the
applied phase screens correspond to the particular input mode.

Since the coupling efficiency of the transformed modes to the
SMF depends on both intensity and phase distributions, the
improperly transformed modes have negligible coupling effi-
ciency to the SMF (or equivalently, negligible crosstalk). Hence,
the coherent mode-overlap efficiency, or C in Eq. (1), between
the transformed modes and the SMF mode is the pertinent mea-
sure for the efficacy of these phase screens.

Figure 5(a) shows the predicted crosstalk matrix, which is
obtained by calculating the overlap integral of each transformed
radial mode with the SMF mode for different pairs of phase
screens. The diagonal elements of the matrix have high values
(larger than 0.8), implying high conversion efficiency for the
radial modes with the correct pair of phase screens. The off-
diagonal elements, on the other hand, have low values (less than
0.02), implying negligible crosstalk. Further, in agreement with
Fig. 1(b), the conversion efficiency of radial modes [diagonal
elements of Fig. 5(a)] decreases monotonically with increasing
radial index, from 99% for LG0

0 to approximately 81% for LG0
3.

We also obtain theoretical mutual information (I pin, pscreen ) of
1.6812 bits per transmitted photon, which is close to 2, the
maximum for a four-dimensional space. In contrast, for the
phase-and-intensity flattening method of [25], Ipin, pscreen was sig-
nificantly lower at 0.134194. Comparing the diagonal terms of
the measured crosstalk matrix [shown in Fig. 5(b)] with 5(a),
we see that the coupling efficiencies for all the modes, with the
correct pair of phase screens is lower than the calculated result.
Also, except for LG0

3 (or pin � 3), the measured crosstalk values

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

LG
0

0 LG
1
0 LG

2
0 LG

3
0

Fig. 3. (a)–(d) Phase screens on SLM1 and (e)–(h) on SLM2 for
input radial modes LG0

0 to LG
0
3 (from left to right). In calculating these

phase screens, the GS algorithm was applied for 200 iterations (well
beyond the stagnation point). (j)–(l) Captured intensities at SLM2
after applying the corresponding phase screens to the various input
modes LG0

0 to LG0
3 (from left to right). In all cases, the transformed

intensity closely resembles the near-Gaussian mode of a SMF, although
some distortion is evident in panel (j).

Fig. 4. Calculated (a)–(d) intensities and (e)–(h) phases of input
modes LG0

0 to LG0
3 (from left to right) at the Fourier plane after the

application of phase corrections corresponding to LG0
2 mode. The inten-

sities are normalized to the maximum intensity, and the phases are given
in units of π radians. Note that only when the input mode corresponds to
the phase screens on the two SLMs does the transformed mode have the
correct amplitude (c) and (flat) phase (g) distributions to couple to the
Gaussian mode profile of a single-mode fiber.

Fig. 5. Crosstalk matrices (a) from calculations and (b) obtained
experimentally. Here, pin is the radial index of the input mode, whereas
pscreen is the radial index corresponding to the pair of phase screens.
See Data File 2 for the actual values.
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(or the off-diagonal terms) are less than 15%. In addition,
although not shown here, the crosstalk degrades substantially
(greater than 60%) for mode LG0

4 onwards.
The lower coupling efficiency measured overall, and the ob-

served crosstalk for radial indices larger than 1 could be due to a
combined effect of the following factors: (1) calibration errors
at each pixel on the SLMs (correct calibration of each pixel is a
stringent requirement for SLM2; SLM1 has a grating for mode
generation, and, therefore, any calibration errors therein would
manifest in diffraction efficiency, and not as significantly in the
profile of the generated mode); (2) imperfect optics, and the
presence of residual aberrations such as astigmatism and spherical
aberration in the imaging systems before and after SLM2; and
(3) crosstalk between the pixels on the SLMs (called the fringing
effect in [34]), which becomes significant whenever the phase
wraps from 2π to 0 gradually over a few pixels instead of sharply.
A possible solution for improving the coupling efficiency and
lowering the crosstalk could be to use a genetic algorithm similar
to the one used in [28] to calibrate and correct for the phase
errors due to the SLMs as well as the imaging systems accurately.
Also, a hologram with high spatial resolution should reduce the
crosstalk between adjacent pixels during phase wrapping.

To summarize, we have proposed and provided a proof-of-
principle demonstration of a new protocol for determining the
radial mode decomposition of an optical field. The protocol
utilizes two phase transformations, one at the object and the
other in the Fourier plane of a lens, to convert high-order radial
modes to the fundamental mode of a SMF. The required phase
transformations were calculated through the use of the GS al-
gorithm. The implementation is straightforward and does not
require complicated setups or optimization. Also, as it utilizes
only phase corrections, our procedure for maximizing the co-
herent mode overlap between the high-order LG modes and the
Gaussian mode is intrinsically non-lossy. We believe that by
improving on the implementation, as suggested in the preced-
ing paragraph, the performance can be improved further.

The universal nature of the phase-retrieval algorithm sug-
gests the future use of this protocol for measurements of the
azimuthal mode structure in addition to the radial modes,
or for measurements in other bases, including the Hermite–
Gaussian basis. One can essentially increase the dimensionality
of space-division multiplexing in communication [7] through
the use of this protocol, or integrate it with other available
mode-sorting techniques to perform high-dimensional QKD,
as very recently done in [35]. In addition, this protocol may
be useful for applications such as super-resolution [36] and
quantum state tomography [12,23].
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