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The power spectrum is calculated of the output of an optical amplifier with frequency-dependent gain for the case in which the 
input consists of one excited mode that is in an arbitrary quantum state and an infinite set of other modes that are in the vacuum 
state. The power spectrum is found to be independent of the particular quantum state of the excited input mode and to depend 
only on the shot-noise level of the amplified output and on the number of noise photons generated by the amplifier at the upper 
and lower frequency sidemodes of the excited input mode. For the case of a quantum-noise-limited amplifier and a coherent-state 
input, the results agree with the single-mode treatment of the amplifier only for the case in which the gain experienced by the 
sidemodes is equal to that experienced by the excited input mode. 

1. Introduction 

The quan tum-mechanica l  proper t ies  of  the elec- 
t romagnet ic  field set a fundamenta l  l imi ta t ion  to the 
noise level o f  optical  beams [ 1 ]. Theoret ical  treat-  
ments  o f  the f luctuat ion proper t ies  o f  the electro- 
magnet ic  field often assume that  only the mode at 
the carr ier  frequency o f  the field is excited and focus 
the a t tent ion to the quantum-mechanica l  ensemble 
f luctuations o f  the photon  number  of  this excited 
mode.  On the other  hand,  f luctuat ion proper t ies  of  
optical  beams are usually s tudied exper imenta l ly  by 
the technique o f  spectral  analysis where the beam is 
detected and the tempora l  var ia t ions  of  the resulting 
photocur ren t  are resolved in frequency space by a 
spect rum analyzer.  The noise power  of  the photo-  
current  measured  in some frequency band  is often 
compared  to the var iance o f  the quan tum-mechan-  
ical ensemble f luctuat ions of  the photon  number  of  
the excited mode  by normal iz ing  both quanti t ies  to 
the respective shot-noise levels. However ,  the results 
of  a spectral analysis exper iment  actually depend  on 
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the propert ies  o f  the field at upper  and lower fre- 
quency s idebands that  are displaced by the spec- 
t rum-analyzer  frequency from the carrier  frequency 
of  the field. For  example,  the s tandard  shot o f  the 
noise of  a coherent  laser beam arises from the beat-  
ing between the excited mode  of  the field and the 
vacuum fluctuations at its frequency s idebands [ 1 ]. 
Hence, s ingle-mode theories are not  necessarily ad- 
equate for the descr ipt ion of  measurements  based on 
spectral analysis, and in general one should include 
all the modes  of  the field in the theoretical  analysis 
[ 2 -4  ]. This is par t icular ly  impor tan t  in cases where 
the proper t ies  of  the field are modi f ied  by some fre- 
quency-dependent  interact ion such as a resonant  in- 
teract ion in an a tomic  vapor.  

In this paper,  we emphasize  by explicit  calculation 
the impor tance  o f  mul t i -mode  t rea tment  o f  the field 
for the case of  an optical  ampl i f ier  with frequency- 
dependent  gain. A par t icular  example of  such an am- 
plif ier  is p rov ided  by a two-beam-coupl ing ampl i f ier  
uti l izing an atomic vapor  [5 ], where the gain ex- 
per ienced by a weak probe beam in the presence of  
a strong pump beam can vary considerably as a func- 
t ion of  the frequency of  the probe beam. In part ic-  
ular, we calculate the power  spectrum corresponding 
to the intensi ty f luctuations of  the ampl i f ied  field. A 
similar  t rea tment  could easily be extended to noise 
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reduction (squeezing [6] experiments utilizing pa- 
rametric interactions. Several general theoretical 
treatments of nonlinear interactions which give rise 
to squeezing use a multi-mode treatment of the field 
to calculate the fluctuation properties of  the field 
quadratures [3]. However, more detailed theoreti- 
cal treatments of these interactions such as four-wave 
mixing [7] in an atomic vapor [8] typically use a 
few-mode description of the field. Hence, such treat- 
ments are unable to account for any effects due to 
the frequency-dependence of the interaction. The 
quantum-mechanical limits on the performance of 
optical amplifiers have been investigated by several 
authors beginning with the treatment by Shimoda, 
Takahasi and Townes [9]. More recent treatments 
of  quantum amplifiers determine the minimum 
amount of noise added by the process of amplifi- 
cation to the input field by simply requiring that the 
output field operators satisfy the appropriate com- 
mutation relations [ 2,10,11 ]. With the exception of 
the paper by Caves [2], which introduces several 
important general concepts for the case of multi- 
mode fields, theoretical treatments of quantum am- 
plifiers consider the quantum-mechanical ensemble 
fluctuations of single-mode input and output fields. 

2. Theoretical formulation 
We consider a schematic setup shown in fig. 1 

{ak} 
l {Lk}  

g (m) 
{/]k} ~~t°r  

spectrum 
analyzer S (f~) 

Fig. 1. A quantum amplifier with frequency-dependent gain g(¢o). 
The amplified field is detected and the resulting photocurrent is 
fed into a spectrum analyzer to determine the power spectrum 
S(~2) of  the fluctuations of  the photocurrent. 

where a multi-mode input field interacts with an am- 
plifier with frequency-dependent gain g(o~). The 
amplified beam is detected and the resulting pho- 
tocurrent is spectrally analyzed. For simplicity, we 
assume that the photodetector is ideal, i.e., that it 
has unit quantum efficiency. More realistic cases of 
detectors with sub-unity quantum efficiency can be 
easily treated by coupling the amplified modes to 
vacuum modes by an appropriate beam splitter [ 12 ]. 
We also assume that all the modes are polarized in 
the same direction. The annihilation operators for 
the input and output modes are denoted by fik and 
dk, respectively. The input modes satisfy the com- 
mutation relations [ 13 ] 

[&,,~bl =ak~,, [G, &,]= [aL aT~,]=o. (1) 

In order to preserve analogous commutation rela- 
tions for the output modes, the annihilation opera- 
tors for the output modes are expressed in terms of 
the annihilation operators for the input modes and 
Langevin operators £k, which represent the reservoir 
degrees of  freedom of he amplifier, as [ 2,10 ] 

dk =g(~ok)dk +£k  • (2) 

The Langevin operators are assumed to be uncor- 
related from the input operators. Note that the de- 
tailed form of the Langevin operator depends on the 
internal properties of the amplifier. Its form is known, 
for example, for parametric amplifiers [ 14 ], Raman 
amplifiers [ 15 ], and two-beam-coupling amplifiers 
[ 16 ]. We consider the special case, which closely ap- 
proximates several practical situations, where the in- 
put to the amplifier is in an arbitrary quantum state 
for the mode at the carrier frequency of the field, 
which we denote by k=0 ,  and is in the vacuum state 
for all other input modes. The input state is thus given 
by [ Tk=O, 0k~0)" To keep the following treatment as 
general as possible, we do not specify the internal 
state of the amplifier, i.e., the state onto which the 
Langevin operators operate is assumed to be arbi- 
trary. However, we assume that the Langevin oper- 
ators are governed by gaussian processes and hence 
the moments of the Langevin operator with unequal 
powers of £~ and £~ vanish. 

To calculate the power spectrum of the detected 
photocurrent, we first calculate the photocurrent 
correlation function given by [ 17 ] 
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C( z)=e( [) 5(z) + ( D Eg(2)( z) , (3) 

where ( [ )  is the average photocurrent, 5(z) is a delta 
function, and g(2) (z) is a second-order intensity cor- 
relation function in normal order given by [ 18 ] 

g ( 2 ) ( Z )  

( / ~ ( - ) ( t ) / : 2 ( - ) ( t + z )  F.(*)(t+z)/~(+)(t) ) 
= ( / ~ ( - ) ( t ) / ~ ( + ) ( t ) )  z 

(4) 

In the case of a polarized field, the photocurrent is 
represented by the operator 

[(t) = (ec/L)~(-)(t) E~+)(t) , (5) 

where L is the length of the quantization volume, and 
the "detection operator" is given by [ 19 ] 

/ ~+ ) ( t )  = ~ Ak exp(--io~kt) . (6) 
k 

We emphasize that the photocurrent operator is ac- 
tually a field operator that has been normalized in 
such a way that its expectation value represents the 
photocurrent of an ideal photodetector. 

The average photocurrent is calculated from eqs. 
(5 )  and (6 )  to be 

(i)=(ec/L)('g(e)o)12(d~)dto)+ ~ (£~£k)).  

(7) 

In eq. (7), the first term represents the amplification 
of the input signal at the carrier frequency, and the 
second term represents noise photons that are spon- 
taneously generated by the amplifier. Note that the 
average output photon number of the vacuum input 
modes is given by 

( ~ k )  = ( , /~ .Sk)= ( £ ~ £ k ) ,  k~O. (8) 

In any physical situation, these spontaneously gen- 
erated photons can occur only over a finite band- 
width. Therefore, for the case in which the number 
of photons in the excited input mode is sufficiently 
large [ (d~do)  >> 1 ], the average photocurrent re- 
duces to good approximation to 

([) = (ec/L)Ig(¢Oo) 12 (a~ao)  , (9) 

as expected of a linear amplifier. 
The calculation of the fourth-order correlation 

function of the detection operator 
( / ~ ( - ) ( t ) / ~ ( - ) ( t + z )  fS(+)( t+z) /~(+)( t )  ) re- 
duces to the calculation of the expectation value 

×[g(O)m)am+tm][g (O)n ) ( ln+f - ,n ]  ) . (10) 

To calculate the power spectrum of the fluctuations 
in the photocurrent, we are only interested in the 
portion of the correlation function that depends on 
z. After the expectation value of eq. (10) is evalu- 
ated for the case of large number of input photons, 
the z-dependent part of the fourth-order correlation 
function is given by 

( /~( - ) ( t )  J~(-)(t+z) /~(+)(t+z) E(+)(t) )v 

= rg(~oo)12 (a~ao)  Y ( £ ~ £ k )  
k 

X {exp[i(o)k- ~Oo)Z] + exp[ --i(O)k--O)O)Z] }, 

(11) 

where the subscript F denotes the fluctuating part. 
By going to the continuous limit of mode frequencies 
using the convention 

~k --' do92n----c' (12) 
0 

the correlation function of the photocurrent fluctua- 
tions becomes 

e i CF(z)=e(I) ~ ( r ) +  ~ ( I )  do) ( £ L £ ~ )  
0 

× {exp [i (o9- OJo) z+ exp [ - i (oa-  Oao) z] }. (13) 

The power spectrum of the fluctuations is then given 
by [20] 

SF(~) = ~ G ( r )  exp( i~r)  dt 

= (2n)  -1 e ( [ )  [1 + (~r, oo_a ) + (R~,o+a)  ] . 
(14) 

This result is seen to depend on the properties of the 
amplifier at two frequency sidebands that are dis- 
placed by _+ £2 from the carrier frequency COo of the 
input field. The first term on the right-hand side in 
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eq. (14) represents the shot noise of the amplified 
output signal, and the second and third terms rep- 
resent the number of photons added spontaneously 
to the lower and upper frequency sidebands as a con- 
sequence of the noise inherent to the amplification 
process. In addition, the result is independent of the 
particular quantum state of the excited input mode. 

3. Comparison to the results of single-mode theory 

It is instructive to compare the result given by eq. 
(14) to the corresponding result obtained for the 
quantum-mechanical ensemble fluctuations of  the 
photon number of the mode k = 0  for the case of a 
quantum-noise-limited amplifier and a coherent-state 
input. For this case, the Langevin noise operators can 
be expressed in terms of creation operators as 

& =h(o)O/~, (15) 

where the operator/~k operates on the respective vac- 
uum state, and where 

[h(a~k) [2= [g(Ogk)[2_ 1 . (16) 

The variance of the photon-number fluctuations of 
the excited input mode after amplification is given 
by 

((&~ro)2>= Ig(o)o)l z [2lg(oJo)l 2 - 1 ]  rio) , 

(17) 

where ( h o ) =  (a~Cio). This result implies that the 
amplified beam is noisier than a shot-noise limited 
beam with equal average photon number by a factor 

X = 2  Ig(O)o)12- 1 . (18) 

On the other hand, the power spectrum of the pho- 
tocurrent for this quantum-noise-limited case be- 
comes 

SF(-f2) = (2n ' ) - i  e ( [ )  [1 + [h(oJo-£2) [2 

+ [ h(o)o +g2)12 ] , (19) 

which implies that the spectrum appears noisier than 
a shot-noise-limited beam with equal intensity by a 
factor 

Sv(I2)=l+lh(o)o-12)12+[h(o)o+S'2)[ 2 (20) 

The results given by eqs. (18) and (20) are found 
to agree only for the case where the gains at the two 
frequency sidebands are equal to that at the carrier 
frequency, ie., Ih(wo+g2)[2~ [h(~oo)12= Ig(Coo)12 
- 1. In the case in which at least one of the frequency 
sidebands experiences larger gain than that experi- 
enced by the mode at the carrier frequency, the am- 
plifier will appear much noisier than the single-mode 
quantum-mechanical limit given by eq. (18). This 
situation corresponds to amplifying the vacuum 
fluctuations of the input field at the sideband fre- 
quency rather than the input signal itself. On the 
other hand, if there is no gain at the two frequency 
sidebands, i.e., I h(~oo-~2)12= I h(o~o+g2)12~0, the 
fluctuations of the amplified output beam corre- 
spond to those of a shot-noise-limited beam. 

4. Conclusions 

We have derived a general expression for the power 
spectrum of the output from a quantum amplifier 
with frequency-dependent gain for the case in which 
the input mode at the carrier frequency of the field 
is in an arbitrary quantum state and the other input 
modes are in the vacuum state. The results depend 
on the shot-noise level associated with the amplified 
input mode and on the number of noise photons 
added to the field by the amplifier at the upper and 
lower frequency sidebands that are displaced by the 
spectrum-analyzer frequency from the carrier fre- 
quency of the field. For the special case of a quan- 
tum-noise-limited amplifier and a coherent-state in- 
put field, the results agree with the single-mode results 
only for the case where the gain of the amplifier at 
the frequency sidebands is equal to the gain at the 
carrier frequency of the field. 
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