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Abstract

In the past decade, researchers have found that the optical properties of a medium can be dra-
matically altered by optically driving the medium into a coherent superposition of its quantum
states. Optical transitions from these states can interfere, leading to optically induced absorption or
transparency. Such “coherently prepared media’ (CPM) typically have large wave-mixing suscep-
tibilities without the resonant absorption that usually accompanies large nonlinear susceptibilities.
In certain schemes, alarge material coherence can act as an oscillator which scatters optical waves
into modes of different frequency with high efficiency. Technologies based on this process could
find uses ranging from telecommunications to X-ray pulse characterization. The present work in-
vestigates the ability to coherently prepare an atomic vapor and to use that coherence to shift optical
signals from one frequency to another with high efficiency, bandwidth, and fidelity.

My theoretical studies of coherent preparation include both simple and many-state systems.
While two-state systems can display some coherent effects, coherent effects are much more clearly
displayed in three- and four-state systems. A Bloch-sphere representation of Raman systems is
developed, which yields simple, easy-to-interpret graphical solutions and illustrates basic phys-
ical principles of coherent preparation through simple formulas. The complications of coher-
ently preparing a real vapor are also considered and discussed in detail. Experimentally, a pair
of laser fields were used to create coherence between the 35, hyperfine levels of sodium vapor.
Coherence-based optical effects including transparency, four-wave mixing, and Raman scattering
were observed. Finally, coherence-induced Raman scattering was used to perform fast (> 20 MHz),
high-fidelity (> 99%) conversion of AM and FM optical signals from one carrier frequency to an-
other. In spite of these successes, the degree of coherence produced and the conversion efficiency
were not as large as one would hope. My work concludes with a discussion of the obstacles encoun-

tered in achieving large coherent effects in vapors and how they might be overcome.
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Chapter 1

| ntroduction

It haslong been known that light can alter the optical properties of amedium. That is, the coefficient
which relates the electromagnetic field to the material response can depend on the electromagnetic
field itself. In this sense the material is optically nonlinear. Generally, intense optical fields are
needed to see nonlinear effects. Since the invention of the laser in the late 1950's, the subject of
nonlinear optics has grown tremendously. There is an incredible variety of nonlinear phenomena
ranging from self-action effectsto light-by-light interactions. Many mechanisms of nonlinearity fall
into one of two broad categories. There are processes in which light incoherently redistributes the
material’s el ectron population. These processes can be relatively strong. They lead to effects which
include absorption saturation and the intensity-dependent refractive index. On the other hand, there
are processes which induce virtual transitionsin the material. These processes create small coherent
oscillations in the material and are responsible for many wave mixing phenomena, including har-
monic generation and sum/difference frequency mixing. These processes can be extremely fast (fs
response times).

Over the past 10-15 years, however, it has been found that the multiple laser fields can interact
in ways which put a medium into a strong superposition of quantum states. That is, the electrons
are distributed coherently over two or more quantum states. In these coherently prepared medial

(CPM), different optical transitions involving the mutually coherent states can interfere quantum

IM. O. Scully and co-workers refer to such media as “ phaseonium.” While this term has some technical merit, and
the advantage of conciseness, it sounds to me like something from a bad episode of Star Trek.
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mechanically, resulting in dramatic changes to the optical response. Such changes are said to be
“electromagnetically induced.” Since they often occur even with weak optical fields, very large
nonlinear susceptibilities can be ascribed to CPM. Indeed, many nonlinear phenomena of interest
(such as wave mixing) are greatly enhanced by guantum coherence. Electromagnetically induced
nonlinearities can be either fast or slow; when they involve metastable states, the resulting spectral
features can be extremely narrow (as small as 10's of Hz or 10! nm). CPM have also been used
to demonstrate novel phenomena such as propagation of light at a velocity of a few meters per
second. A full overview of the applications of CPM will be given later in this chapter. But first it
will be helpful to look more closely at the concept of coherent preparation and the context in which

it developed.

1.1 Background

The first reported observation of coherent preparation of a medium was by Alzettaet al. [1]. They
observed that the resonant fluorescence of a sodium vapor in the presence of two laser fields van-
ished when the frequency difference of the two lasers was exactly equal to the frequency difference
of the ground hyperfine levels. The mechanism responsible for this effect was termed coherent pop-
ulation trapping (CPT) by Gray, Whitley, and Stroud [2]. They considered an excited state coupled
by two fields to two ground states (a“ A” system, Fig. 1.1a). Apart from relaxation processes, the
probability amplitude of the excited state obeys the equation

3 = %(Qlcl + Qgei&CQ)eiAt (11)

where ¢y, co are the probability amplitudes of the ground states, €2, > are proportional to the am-
plitudes of the optical fields, A is the detuning of the first field from its transition, and ¢ is the
difference between the ground state frequency separation and the beat frequency of the two lasers.
When § = 0, thereis a particular superposition of the ground states, namely the one with ¢ /c; =

—Ql/QQ, such that ¢z = 0. This“dark state”

d), so named because it produces no fluorescence, is

completely decoupled from the excited state and is transparent to the applied fields. The orthogonal
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3) ——— 3) —————

1) —e— |d) —e&— — [

(@ (b)

Figure 1.1: Coherent population trapping (CPT). (8) A A system. (b) The population is pumped into
a superposition of the ground states, denoted |d) for “dark state”, that is uncoupled to the excited
state. The atom becomes completely transparent to both fields.

superposition is coupled to the excited state and is called the “ bright state” |b), Fig. (1.1b). The sys-
tem always evolves into the dark state within afew radiative lifetimes, since any population which
decaysfrom the excited state into the dark state is not removed by optical excitation. The population
istrapped in a coherent superposition of the ground states. The coherence between states|1) and |2)
iscics. Thecoherenceis maximal inthe sensethat it isaslarge as possible for the given distribution
of population (mathematically, its magnitude cannot exceed +/|c1[?|ca[?). In the case of balanced
fields (|21 | = |Q22]) the magnitude of the coherence reaches the ultimate maximum of 1/2.

It is important to note that the vanishing absorption is not simply a result of saturation or op-
tical Stark shifts of the transitions; it results from quantum interference between the two pathways
for absorption. Quantum interference between multiple transitions is a very general phenomenon
and has been studied for many years. Fano [3] found that the rate of ionization of an atom by an
ultraviolet field exhibits interference effects when the ionization can occur both by direct excitation
and by non-radiative transfer from an auto-ionizing state. Conversely, when two coherently excited
states decay to a common lower state, the fluorescence exhibits a beat note at the frequency differ-
ence of the excited states, a phenomenon known as “quantum beats’ [4,5]. Cardimona, Raymer
and Stroud [6] showed that if two transitions have the same dipole matrix element, they interact via

spontaneous emission in such a way as to end up making equal but opposite contributions to the
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atom’s total dipole moment. This may be understood as coherent population trapping in the excited
states: Although the field initially excites the symmetric superposition state, spontaneous emission
moves the system to the antisymmetric superposition state which is decoupled from the total field
consisting of the driving field and the radiation reaction field. Aswith coherent trapping in ground
states, thisdark state is stable and transparent to the field. Malcuit, Gauthier, and Boyd [ 7] observed
suppression of amplified spontaneous emission due to four-wave mixing in sodium. In this case, the
fields evolved upon propagation to the point where the probability amplitude of excitation by the
pump field was exactly cancelled by the probability amplitude of excitation by the parametrically
amplified fields.

The field of quantum coherent optics truly gained its identity and began to develop following a
publication of Harrisin 1990 [8]. Harris proposed ascheme? in which astrong “control” field drives
apair of unpopulated states (Fig. 1.2a), one of which (|2)) is metastable. The surprising result is
that if a probe field couples a populated state |0) to state |1), then no population appears in state
|1); rather it appearsin |2), where the probability amplitude of state |2) is directly proportional to
the probe field. That is, the linear (1-photon) susceptibility of the probe vanishes, but the nonlinear
(2-photon) susceptibility does not®. In fact, the probe absorption profile shows a narrow dip in the
middle of the resonant absorption feature, while the coherence p- shows a corresponding peak. The
vanishing of the probe susceptibility prompted Harris to call this phenomenon electromagnetically
induced transparency (EIT).

This transparency can be explained in much the same way as the transparency which occurs
in the coherent population trapping scheme: the coherence between states |0) and |2) results in
destructive interference between the probability amplitudes of transitions to the intermediate state
|1). However, it is also possible to explain EIT using arather different picture involving “ dressed”
states. One may say that the control field combines with the bare states |1) and |2) to form a pair of
dressed states |+),

—) (Fig. 1.2b). The probe field then excites both of these states simultaneously.

2The scheme originally proposed by Harris was actually slightly more complicated; in Harris's scheme, state |1) is
excited by two-photon absorption through a virtual intermediate state. | have chosen the simpler scheme shown in Fig.
1.2ain order to draw out the essence of the phenomenon.

3Note that in areal atom, the parity of states |0) and |2) would be such that a superposition of these states would have
no dipole moment; but here it does no harm to pretend otherwise.
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Figure 1.2: Electromagnetically induced transparency (EIT). (a) A strong field couples two unpop-
ulated states, one of which is driven by aweak field. Remarkably, the system is coherently excited
to state |2) rather than state |1), so that the medium becomes transparent to the probe beam while
generating a new frequency component. (b) The transparency of the probe can be understood as a
consequence of interference between dressed states created by the strong field.

Asit happens, the dressed states coupleto |0) with identical dipole matrix elements. Hence coherent
population trapping in the dressed states occurs via the Cardimona-Raymer-Stroud mechanism, and
the response at the probe frequency vanishes.

Electromagnetically induced transparency has now been studied both theoretically [8-13] and
experimentally [11,14-17] in systemswith various numbers of levels and various coupling schemes.
One should not get the impression that all quantum interference is destructive, however. Electro-
magnetically induced absorption (EIA) can occur in two-level systemswhen both levelsare Zeeman
multiplets and the upper level has alarger degeneracy than the lower level [18-21]. Thisoccursasa
result of spontaneous transfer of coherence from the excited states to the ground states [22]. Coher-
ent wave mixing can aso produce akind of EIA as photons are removed from one field and emitted
into another (cf. §7.3). Electromagnetically induced features can also occur in two-state systems
driven by strong polychromatic fields [23-27].

So far, the discussion has considered steady-state coherence in systems driven by continuous-

wave (“CW") fields. The dynamics of coherently prepared atomic systems (and associated optical
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Figure 1.3: Other simple systems which exhibit quantum coherent effects. (a) The AA system. (b)
The “bow-tie” system. The applied control fields and spontaneously emitted signal and idler fields
undergo strong four-wave mixing enhanced by EIT.

effects) have been studied aswell. A, AA (Fig. 1.3a) and “bow tie” systems (Fig. 1.3b) in particular
have received much attention. Sudden turn-off or turn-on of the fields produces absorption transients
which decay on a timescale of the spontaneous emission lifetime as the system fluoresces or is
optically pumped into a new dark state [28-31]. The dark state can be prepared more quickly [on
the time of theinverse Rabi frequency* of the control field(s)], however, by adiabatically varying the
fields[32,33]. In A media, absorption of the bright state component of initially unmatched pul ses
leads, upon propagation, to matched pulses [34] whose fluctuations are correlated [35]. When one of
the fields is much stronger than the other, phase squeezing [36] and extremely large dispersion [37]
of theweak field results. CW beams propagating in bow-ti e systems undergo four-wave mixing [38]
and in counter-propagating geometries can experience mirrorless parametric oscillation [39,40]. In
phase conjugation geometries, the signal and conjugate fields are predicted to be strongly squeezed
[41].

This brief review presents only a fraction the work which has been done in coherent atomic
systems. The interested reader may consult [42—44] for a more extensive review of CPT, EIT, and

related effects.
4See egn. 2.7 for the definition of the Rabi frequency.
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1.2 Applications

From the start, coherent preparation was seen as away to greatly enhance the strength of nonlinear
processes [8]. In the context of wave mixing it has led to efficient infrared upconversion [45, 46],
efficient phase conjugation [47], coherent Raman scattering (CRS) [48-52], and control of phase-
matching [53]. In certain schemes the dispersive and absorptive nonlinearities are greatly en-
hanced [54, 55] to the extent that measurable nonlinear effects occur with optical energies at the
level of only afew photons per atomic cross section [56]. Such schemes are at the heart of recent
proposals for photon-number-resolving detectors with extremely high quantum efficiency [57, 58].
Another application which spurred the development of coherent preparation was amplification (or
lasing) without inversion [59-62]: by using quantum interference to eliminate absorption without
disabling stimulated emission, EIT makes possible | asersthat have extremely low thresholds. Asco-
herent preparation and associated phenomena have become more widely recognized and understood
over the past decade, many new applications have been proposed and/or developed. For example,
coherent Raman features tend to be extremely narrowband, and some researchers are exploring the
uses of such featuresin atomic clocks [63, 64] and for highly sensitive magnetometry [65-68]. Be-
cause these features are very narrow, they exhibit very steep dispersion; thus coherent preparation
is seen by some as a mechanism for achieving and controlling extremely large changes in group
velocity. Ultra-slow light [37, 69] is a promising technology for devices such as optical buffers
and adjustable optical delays [70]. From a dlightly different perspective, atomic coherence may be
viewed as a degree of freedom capable of storing information, resulting in a number of schemes
for “atomic memories’ [71-75]. Still others see the ability to induce transparency or absorption as
amechanism for all-optical switching [76-80], which is of interest in optical communications and
computing.

Although many workers have studied the use of coherent preparation in sum/difference fre-
guency generation, the main concern in these studies has been efficiency—the total amount of power
converted from one frequency to another. To my knowledge, the use of material coherence generated
in thisway to transfer information from one frequency band to another remains virtually unexplored

(although similar ideas have recently been explored using traditional Raman scattering, e.g. [81]).
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Recently, coherent Raman scattering was used to shift the center frequency of an incoherent light
field, preserving the spectral power distribution in the process [82]. However, the light which is
scattered by a material coherence can be expected to preserve both the amplitude and phase of each
frequency component of theinput field. If the scattering process has aflat, dispersionless frequency
response, then asignal contained in the input field will appear in the scattered field. This technique
has obvious application to telecommunications. Data expressed as phase or amplitude modulation
at one wavelength could be transferred to a different wavelength.

Efficient, phase- and amplitude-preserving scattering could also be applied toward the charac-
terization of supershort (sub-fs) X-ray pulses. While methods for characterizing ultrashort radiation
in the visible regime are well-established, methods for characterizing ultrashort radiation in the
ultraviolet or X-ray regime are still being developed. One visible-regime technique which could
potentially be applied to X-raysis called SPIDER [83]. In this technique the complex amplitude of
the pulse is extracted from a spectral shear interferogram, which is formed by interfering the pulse
with afrequency-shifted copy of itself. Since nonlinear interactions involving X-rays are extremely
weak, traditional wave-mixing schemes (such as sum frequency generation) are not capable of cre-
ating the needed frequency-shifted copy. But an X-ray could scatter off the coherence in a prepared
medium with relatively high efficiency®, producing a copy of the pulse shifted by a visible or RF
frequency and enabling the SPIDER technique (Fig. 1.4). Asl will show in §3.3.2, the bandwidth of
coherent scattering is aslarge as the bandwidth of the excited state or band. Thus coherent scattering

into the continuum has the extremely large bandwidth needed for supershort pul se characterization.

1.3 Outline

The aim of my research over the past severa years has been to understand coherent preparation of
atomic vapors and to demonstrate the usefulness of coherent preparation for frequency shifting. In
particular, a major goal was to demonstrate the transfer of phase and amplitude information from

one frequency band to another with high efficiency, fidelity, and bandwidth. In the chapters which

SSince the material coherence can be as large as the population of electrons available for excitation, the scattering of
the X-ray to adifferent frequency can occur with the efficiency of alinear process.
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Figure 1.4: A proposal for ultrashort X-ray pulse characterization using coherent preparation, based
on the SPIDER technique. An X-ray scatters off the coherence of a prepared medium, generating a
frequency-shifted copy of itself. The two pulses interfere in the spectral domain, and the interfero-
gram isreproduced in the kinetic energies of ionized helium. The complex amplitude of the origina
pulse may then be reconstructed from the interferogram.

follow, | report on my theoretical and experimental studies of coherent preparation.

In this work, the ideal coherent medium is modelled as a collection of A systems. Chapter 2
begins the discussion with a theoretical analysis of the A system. Solutions are obtained using a
novel geometrical approach involving Bloch's vector and a Stokes-like vector. In Chapter 3, the
model is used to understand optical phenomena that result from ground state coherence. Before
turning to more complicated and realistic models, Chapter 4 briefly addresses the question of why
a simple 2-state system does not make for a satisfactory coherent medium. The lessons learned
in these chapters lay the foundation for Chapters 5 and 6, in which the phenomena of real atomic
vapors are considered. Chapter 7 describes my experimental studies of hyperfine (spin) coherence
in sodium vapor, including characterization of coherence, observation of quantum coherent optical
effects, and a demonstration of frequency conversion of both phase and amplitude signals. The
main text concludes in Chapter 8 with a summary and commentary on the findings of my research.
There are aso severa appendices containing additional material which may be of interest to some
readers. Appendices A, B, and C present formulas and results which are “known” but not frequently

explained. Asthey were crucial to the development of my understanding of atom-light interactions,
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I have included them here. Finally, Appendix D detailsthe physical and mathematical theory behind

the computer software | wrote to solve for the behavior of illuminated atomic systems.
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Chapter 2

A Bloch-Vector Model of Raman
Systems

Large coherences can be produced in systems with two or more ground states via the process of
coherent population trapping. The simplest system of this type is the A system (see Fig. 1.14a).
As we will see, maximal coherence builds up between the ground states when the beat note of the
fields matches the frequency difference of the ground states. This phenomenon is often explained by
viewing the system in a specia basis: the population is optically pumped out of one superposition
of the ground states (the “bright” state) into the orthogonal superposition (the“ dark state”), whichis
uncoupled from thefields. However, thisbasis provideslittle conceptual or computational advantage
if the fields are not exactly tuned to the ground state difference frequency or if the ground states are
connected by more than one absorption-emission transition (for example, if there are multiple pairs
of fields coupling to multiple excited states). It would be useful, then, to find another representation
which facilitates analysis of such systems by transcending the issue of which basisto use.

In this chapter, | develop avector model of Raman systems and use it to obtain general solutions
for the 3-state (A) system. This model uses a Bloch vector to describe the ground states and a
Stokes-like vector to describe each pair of fields. Because this model is geometrical, it allows one
to visualize Raman systems and their solutions more readily. Algebraically, it leads to concise

equations of motion and solutions. It is especially useful when a system cannot be simplified by
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expressing it in terms of a dark/bright basis.
I note that other authors have described 3-state systems using 2-state Bloch equations [84-87].
However, to my knowledge the solutions given here and in Chapter 3 are novel in their form and/or

the method by which they are obtained.

2.1 The Vector Representation of Raman Systems

Raman scattering refers to scattering of a field by a low-frequency mode of a medium, typically
arotational or vibrational mode of a molecule. In the quantum view of scattering, the molecule
makes atransition from one rovibrational state to another by absorbing an incident photon and then
emitting a photon whose frequency is shifted from that of the incident photon by the frequency
difference of the initial and final states. This frequency is the Raman frequency. A similar process
can occur in atoms. For example, a two-photon process may take an atom from one hyperfine level
to another within a given electronic orbital, resulting in oscillations of the nuclear and electronic
spins. These ground hyperfine states are typically very long-lived, with the consequence that very
large spin oscillations (i.e. very large hyperfine coherences) can build up if the atom is driven by
two fields separated by the Raman frequency.

For what follows, a Raman system may be generaly defined as a system consisting of two
low-energy states coupled to a pair (or pairs) of fields, where the beat frequency of each field pair
is close to the Raman frequency (Fig. 2.1). The difference § between the beat frequency and the
Raman frequency will be called the Raman detuning. The simplest Raman systemisa A system, in
which two ground states are coupled by two optical transitions to acommon excited state. The next
simplest Raman system is the double-lambda (AA) system, which has two excited states and four
optical transitions. One could also imagine Raman systems in which the ground states are excited
by pairs of ultraviolet (UV) fields or X-rays to a continuum of excited states.

The optical properties of a Raman system are determined primarily by the distribution of popu-
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Figure 2.1: Example Raman systems. (@) The A system. (b) The AA system. (¢) Joint excitation to
the continuum.

lation in the two ground states, which may be characterized by the 2 x 2 density matrix

P11 P12
p= . (2.1

P21 P22

Alternatively, the ground states may be characterized by the vector

U 2Re p21
ﬁ = v - 2Im P21 (22)
w P22 — P11

and an additional quantity n = 1— p33 which givesthetotal population of the ground states. The unit
vectors associated with the coordinates u, v, w will be denoted 4, o, w. The vector p, originally
devel oped to describe spi n—% systems, iswidely known as Bloch’s vector. Under conditions of weak
optical excitation, n ~ 1 and p alone is sufficient to characterize the ground states.

Severd facts concerning the Bloch vector are noteworthy:
e All possible states are contained within a sphere of unit radius.

e Points directly opposite one another on the surface of the sphere correspond to orthogonal

states. That is, each diameter defines abasis.
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Figure 2.2: The Bloch sphere. Each point in the sphere represents a possible density matrix for
the two ground states. Points on the surface of the sphere describe pure states, a few of which are
labelled. The ground state inversion is given by the projection of 5 onto the north-south axis. The
ground state coherence is given by the projection of o onto the equatoria plane.

e Points along a diameter correspond to incoherent mixtures of the two states connected by the
diameter. The“inversion” (population difference of the two states) is given by the projection

of p'on the diameter.

e Theorigin correspondsto an equal (half and half) incoherent mixture of any pair of orthogonal

states.

Fig. 2.2 shows the Bloch sphere and its relation to various combinations of the ground states.
The points (u, v, w) = (0,0, 1) and (0,0, —1) correspond to the bare states |1) and |2) respectively.
Hence the w (north-south) axis defines the bare state basis. Two other notable bases are defined by
the v and v axes. The u axis intersects the unit sphere at (£1, 0, 0) which correspond to the states
(|1) £2))/+/2. Similarly, the v axis intersects the unit sphere at (0, +1, 0) which correspond to the
states (|1) £ i|2))/+v/2. Therefore the physical meaning of /'is asfollows:

e Theinversion pao — p11 isgiven by the projection of 5 onto the north-south axis.

e The coherence po1 isgiven by (half) the projection of g onto the equatorial plane.
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Figure 2.3: The optical pumping vector &, which represents the pair of fields. Different directions
describe different relative intensities or phases of thefields. Thelength of the vector isthe maximum
rate at which the fields can pump population to the excited state.

Just as a 3-vector and a scalar characterize the ground states, a 3-vector and scalar can charac-
terize each pair of optical fields® (Fig. 2.3). Suppose that a pair of fields couples states |1) and |2)
respectively to an excited state e. Let €21, 2o be the coupling amplitude of each field. | define the

optical pumping vector as

R, 2 Re (251)
=~ o 1 ’)/E N
Ry Qo — [

where (- - - ) denotes an ensemble average (allowing for mutually incoherent fields), A isthe detun-
ing of the fields from the excited state, and ~g is the decoherence rate of the excited state. (More

generaly g isthe decoherence rate of the atomic dipole moment, or the half-width of the spectral

Alternatively we could combine the 3-vector components and the scalar into a 4-vector. This 4-vector would essen-
tially be the Stokes vector, except that in this case the field components refer to two different frequency modes rather than
two different polarizations of the same spatial mode. However, in using 4-vectors we would lose the ability to visualize
the problem easily, which is a primary motivation of this approach. Furthermore, we will find that the problem can be
expressed very naturally in terms of 3 vectors.
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Figure 2.4: Schematic of the 3-state Raman system analyzed in this chapter. Notation: 1, 9, the
Rabi frequencies of thefields; A, the optical (single-field) detuning; §, the Raman detuning; I'g, v,
the excited state population and coherence decay rates; I, ¢ the population and coherence decay
rates for the ground states. The relaxation rates are phenomenological parameters representing a
variety of contributions, including interaction or exchange with a thermalized reservoir (ensemble
relaxation).

line.) Thisvector has units of arate, and is closely related to the optical pumping rate

R

1 e 2 2
1T (1] + 192) (2.4)
If the two fields are mutually coherent, then the length of R is R; otherwise, |R| < R. Physically,

2R isthe rate at which the atom would be excited in the absence of coherence and saturation.

2.2 The Vector Equation of M otion

Theimportant physics of coherent (and incoherent) population trapping is demonstrated in asimple
3-state A system (Fig. 2.4). In the absence of relaxation mechanisms, the equation of motion for the
density matrix of thissystemis

%p - —%[H, p) (2:5)
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where, in a suitably chosen rotating frame,

1 10
30 0 5

H=h] o _%5 %Q; . (2.6)
1o, 1o, -A

The coupling constants 21, Q25 are known as the Rabi frequencies of the fields. In general, the Rabi

frequency of afield E that couples a state |g) to ahigher state |e) is

Qeg = 2<€|(—€;L')|g> ) E (27)

The quantity p., = (e|(—er)|g) isthe electric dipole matrix element. For the A system we write
Qj = (2p3; - Ej)/hforj =1,2.

Relaxation processes contribute additional termsto egn. (2.5). Formal methods exist for obtain-
ing such terms (see Appendix C), but here they may be regarded as phenomenological terms. With

such terms included, the elements of p are governed by

p11 = %FEPSS —Ta(pu — A1) — Im (Qp31) (2.8)
pa2 = %FEP?B —Tq (p22 — p3) — Im (Q3p32) (29)
P21 = (i6 —va) p21 + %QSP?A - 391052 (2.10)
p33 = —I'gpss + Im (Q]p31) + Im (Q25p32) (2.11)
p31 = (((A+9/2) —vE) p31 + %91(/311 — p33) + %92021 (2.12)
2 = (A = 6/2) 1) ps2 + 2 0alom — pis) + 2% 213

The decay rates represent multiple contributions. For example, the excited state population decay
rate I'p includes spontaneous emission as well as exchange of the atom with an unexcited atom
from areservoir. v isas defined before. (For these quantities | denote the excited state with an “E”
instead of a“3”, so that the final results will appear in a more general and physically meaningful

form.) I'c and v are the population relaxation rate and mutual decoherence rate of the ground
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states.

Pty and p5Y arethe ground state occupancies of atomsin the reservoir. Assuming that the reser-
voir isin thermal equilibrium, the reservoir atoms are in an incoherent mixture of states, where the
occupancy p;; of state j isproportional to the Boltzmann factor exp(—hw;/kgT’). In ahot medium
(room temperature qualifies as “hot”), kpT'/h is much larger than a typical Raman frequency and
much smaller than atypical optical frequency; thusin athermalized atom, the population is equally
distributed among the ground states: pfy = phy = 1/2.

The strategy for realizing the vector model is to eliminate the matrix elements involving the
excited state |3) and express the remaining equationsinterms of 7and R. If |A| > Qy,Q, so that
p31 and p3o reach equilibrium rapidly, or if we restrict ourselves to steady state anaysis, we may

take p31 = p32 =~ 0 and obtain

£ (p11 — p33) + 5Qapa

P31~ o) (214
1Q9(paz — p33) + 204
P32 & 2 ( D/) 2 21 (215)

where D = g — i(A + §/2) and D' = v — i(A — §/2). At this point we assume that the
Raman detuning ¢ is small compared to the characteristic rate of the optical transitions, that is
|0] < |vg — iA|. Thisallows us to make the approximation D' ~ D ~ v — iA, which simplifies
the subsequent algebra considerably. This is not a restrictive assumption, since coherent effects
(which are the subject of interest) only occur when § is small; when § is large, the ground state
coherence will be small and the system can be analyzed with rate equations. |If we make the ad-
ditional assumptions v = I'¢ (i.e. the ground states decohere via depopulation alone) then egns.

(2.8)—«2.13) can be rewritten as

d. (. A\ ) B}
45— (6w - —R) % 5~ (R4 ) f— (1 - 3pas) (2.16)
VE
d L =
pas = —Tpas + (5 B+ (1= 3pa)R) (2.17)

Each term above describes a different physical process that influences the ground states:
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e —7¢p describesthe relaxation of the system to the thermal state.

19

e Jw x p accountsfor detuning from the Raman frequency. Its effect isto rotate 5 about the w

axis. It isthe only term which breaks the rotational symmetry of the model.

A S . . . "
e —— R x p accounts for detuning from the optical (single photon) transition frequency. Its

YE
effect isto rotate p about R.

e Theterms —Rj — (1 — 3ps3)R and 7+ R + (1 — 3ps3) R describe optical pumping. Since

these terms are largest when 7 ~ R/R and smallest when 5 ~ —R/R, these two states are

interpreted as the bright state and dark states, respectively.

e I'pps33 describes population transfer from the excited state to the ground states via sponta-

neous emission and by ensemble relaxation.

2.3 The Steady-State Equation and General Solution

The steady-state equation for g can be written in the extremely simple form

p—T x j=(1-3ps3)F

where
=t
R+ ~q
. _  _ R
=ow—A ,
YT Rie
and
o= 0 AEA.
R+ YE

(2.18)

(2.19)

(2.20)

(2.21)

F is a“force’ vector which determines the primary direction and magnitude of /. Fisan-

tialigned with R, and therefore its orientation is determined entirely by the amplitudes of the two

fields. It reaches unit length as R becomes much greater than . For vanishing § and A, p'is
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aligned with F'. T isa“torque” vector which rotates 5 away from F when § # 0. Itsfirst term, 51,
is the only term which breaks the rotational symmetry of the model. It expresses the fact that the
Raman detuning is defined in the bare basis.

Egn. (2.18) and the steady-state scalar equation for p33 can be solved independently. Thisis so
because p' scales directly with 1 — 3ps3; that is, 5= (1 — 3ps3) ,5|77:1. The steady-state solution of

egn. (2.17) may then be written as
0=Tgps3 — (1 — 3ps3) (R + R ﬁ|n:1) - (2.22)

Rearranging (2.22) gives
R+R- ﬁ|
=1

P33 = (2.23)

FE+3(R+J3L-5|”:1)'

The solution of (2.18) can be obtained readily by simple vector manipulations, yielding

(2.24)

) . FxFiTx(FxF
p=ﬂ—®m@<F+ ( )>.

1+ |7
The three vector contributions to 7 are shown in Figure 2.5. Thefirst contribution, F = —R/(R +
v¢), places 7 near the dark state — /R. The second contribution, 7' x F', is proportional to § and
shifts the phase of p2;. The third contribution, T' x (T x F'), shifts the inversion by an amount

proportional to A. Eqgn. (2.24) can be written more explicitly as

5<wxﬁ>+52(wx(wxﬁ))—i—SA(ﬁx(u?xﬁ))

p=(1—3p3) [F + (2.25)

1+52+A2F2+255(ﬁ)-ﬁ>

| note that dotting (2.18) with p/p yields p = (1 — 3p33) F cos ¢, where ¢ is the angle between
o and F. Thisisthe equation of a sphere whose surface touches the origin. That is, all solutions
for a given value of (1 — 3ps3)F lie on a sphere whose diameter is the vector (1 — 3ps3)E. By
dotting egn. (2.18) with @& — Aw x F, it can be shown that the solutions are constrained to a plane
which is independent of 4. Therefore, as § is varied, o’ must trace out the intersection of a plane

with a sphere: acircle. Some solution families are shown in Figs. 2.6, 2.7. At Raman resonance
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Figure 2.5: The contributions to the steady-state value of 7 (egn. 2.24).

(0 =0), 7= (1 —3ps3)F. For R > g, this state coincides with the dark state —R/R; |7] is
closeto 1, and the ground state coherence (the length of 5'in the equatoria plane) is maximal. For

symmetric excitation (|21 | = |2

, Fig. 2.6), the population is evenly split between the two ground
states and p'liesin the equatorial plane. For highly asymmetric excitation (|Q1] > |Qs|, Fig. 2.7), o
lies near the north or south pole. As § varies from 0, the magnitude of the coherence decreases and
the phase of the coherence (the angle of p'in the equatorial plane) deviates from the dark state phase,
i.e. the phase which leads to destructive interference of absorption. If A = 0, and the fields are not
too strong, then varying the Raman detuning does not ater the ground state inversion. However, if
A # 0, thecirclesaretilted from horizontal: as ¢ changes, onefield tunes closer to the excited state
than the other and the population shifts toward the ground state which is less resonantly coupled.
The solutions for strong fields are not circular, but elliptical. This can be understood as follows:
As é moves away from zero, the ground state coherence decreases and the two absorption pathways
interfere less destructively. Because the fields are strong, a significant amount of optical excitation
occurs. Depletion the ground state popul ation forces the state vector to shrink, effectively stretching

the circles toward the origin.

| now examine the solutions in some specific cases.
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(b)

Figure 2.6: Representative steady-state solutions of the Bloch vector equation as a function of
Raman detuning ¢, in the case of balanced fields (2; = —€s). The black arrow points to the
dark state. (a) Weak field solutions. (b) Strong field solutions.
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Figure 2.7: Representative steady-state solutions of the Bloch vector equation as a function of
Raman detuning 4, in the case of imbalanced fields (©2; = —5€s). (a) Weak field solutions. (b)
Strong field solutions.
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24 Steady-State Solutionsfor Special Cases

2.4.1 Raman resonance

With 6 = 0, egn. (2.18) reducesto 7 = (1 — 3ps3)F. Now, a desirable operating condition is that

va,'a < I'g. Under such conditions, it can be shown that

R
o~ — 2.26
p R+ g (2.26)
o R
~ = . 2.27
P33 Ty R+0 ( )

For R < ¢, p = 0; the system remains in its thermalized condition (incoherent mixture of ground
states). For R >> v¢, p approaches the dark state —E/R. The excited state population saturates
at the small value v /T'g. Thisisto be contrasted with the value of 1/3 that is obtained with two

mutually incoherent fields.

2.4.2 Incoherent fields

For mutually incoherent fields, R, = R, = 0. Then T, F, and /7 all lie along the w axis, and we
again have the simple solution p'= (1 — 3p33)13, regardless of § and A. The new algebraic feature
isthat R isnot equal to | B| (= |R.|). Wefind

ol =-— 0 2.28
Al =t i, (2.28)
. R2
R+R-p| =R-— L. 2.29
+Rpl Rto (2.29)
Againtaking vg,I'¢ <« I'g, the solutions are
I'g (Ry — Ry)

— 0 2.30
(v¢+ R1+ R)lT'p + 12R1R2w (2:30)

(R1 + R2)vg + 4R1 Ry
3 = 2.31
pss (va+ R1+ R2)T'g + 12R 1 Ry (231)

p=
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where R; is defined according to egn. (2.4) with ©; in place of |22 +]Q2|?. Atsmall Ry R,, eqns.
(2.30) and (2.31) reduce to egns. (2.26) and (2.27). AS Ry, Re — o0, p— 0 and p33 — % These
results are the same as what is obtained from arate treatment of a 3-level system.

2.4.3 Raman-Detuned Fields

Consider again coherent fields, but suppose now that § is very large?. Then

. = .= B Ry, .
p|n:1mF+w><(wXF):w(w‘F):—R_I_VGw, (2.32)
I R?
R+R-p|n:1:R— B (2.33)

These expressions are the same as those we just obtained for incoherent fields, eqns. (2.28) and
(2.29). It follows that solutions 5 and ps33 will also be the same. We conclude that at large Raman

detuning, mutually coherent fields produce the same effect as mutually incoherent fields.

2.5 TheEquation of Motion for p'in a General Raman System

We have derived the equations of motion for a three-level system with two fields. Provided that
the excitation remains small (n ~ 1), we can generalize (2.16) and (2.17) to describe a system
with multiple excited states and multiple pairs of fields. Let n index the Raman transitions, with
corresponding quantiti%ﬁn, R, and A,,. (The Raman detuning § must be the samefor all pairs of
fields.) Then egns. (2.16) and (2.17) generalize to

%ﬁz (M—Z%ﬁn> X p— (ZRﬁF) =S R, +T5.  (234)

n

%pee ~ I'gpee — (ﬁ Z Rn + Z R”) (2.35)

for each excited state e. Eqns. (2.24) and (2.23) remain valid if one replaces AR in eqn. (2.20)
with 3" A, R,, and then replaces all remaining occurrences of R and R with 3", R, and Y, R,

2With this supposition, we are in danger of violating the condition |§] < |ye + iA| that justifies the approximation
leading to (2.16). Nevertheless the model makes a useful prediction in this regime.
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respectively.

2.6 Summary

A novel geometric model was developed for simple Raman systems involving two ground states.
Under the conditions of adiabaticity and near-Raman-resonance, the dynamics of a 3-state Raman
system can be described by an ordinary vector differential equation involving Bloch's vector to
represent the ground states of the system and a Stokes-like vector that represents the fields. The
steady-state solutions form circles or ellipses as functions of the Raman detuning, showing how the
ground state population and coherence vary in the vicinity of the Raman resonance. It was aso

shown how the model may be extended to describe Raman systems with multiple excited states.
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Chapter 3

Coherent Nonlinear Opticsin A and AA
Systems

Raman systems, such asthe A and AA system, can develop a large ground state coherence when
the beat frequency of the driving fields matches the Raman frequency. This coherence produces a
guantum interference between the two absorption pathways which generally leads to cancellation
of the absorption. Electromagnetically induced transparency is just one example of how quantum
coherence can mediate strong interactions between optical fields. Other nonlinear optical processes,
such as four-wave mixing and Raman scattering, can occur with high efficiency (approaching that
of alinear process) as a result of large quantum coherence in a medium. Though simple, 3- and
4-state systems exhibit arich variety of coherent effects and can be used to explain a great deal of
the behavior of more complicated media such as akali vapors. Studying these simple systems will
reveal a number of basic physical phenomena and scaling laws that will serve as a foundation for

the analysis of coherence in sodium vapor, which istaken up in later chapters.

3.1 TheGround State Coherence

In a study of effects arising from quantum coherence, the first questions to ask are, How much

coherence can be achieved? What parameters determine its phase and magnitude? According to
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eqgn. (2.2), the coherence is determined by the u and v components of ;'

. . .
p21 = 5( + i) - p. (3.0

Without loss of generality we may take the relative phase the two fields to be such that 25€2; isredl.
Then the optical pumping vector £ liesin the plane v = 0 and we may write F = — F(disin 0y +
W cos O) Where F = ‘ﬁ’ and

‘2

114
22/

Or = 2tan~ (3.2)

is the polar angle of R. (r =0forQ; =0,0r = wforQy =0,and O = w/2 for || = [Qa].)

Using the result (2.25), we have

1+ A%F% — §AF cosfr
i-p=—Fsin6 2 L A 5A >
G- p sin R|:1+62+A2F2_25AFCOSQR:| (3.3)
)
o - B 3.4
O-p Sinbp |:1+52+A2F2_25AFCOSQR:| (34)
or

__F o [14 A%~ GAF cosOn +id (35)

P21 =75 R 1+ A2F2 — 26 AF cosOp + 2 |

[In these equations and all that follow, | suppress the factor (1 — 3p33) which accounts for popu-
lation depletion.] Fig. 3.1 shows the behavior of po; for various values of the parameters. When
Acosfr = 0, pa; behaves like an optical (single-field) coherence: itsreal and imaginary parts are
given by the standard absorptive and dispersive line shapes. When A cos §r # 0, the features are
asymmetric.

At the Raman resonance (§ = 0), po1 reachesits peak value of —%F sinfg, that is

) s
=— 3.6
p21peak ‘91’2—}— ‘92’284-1 (36)
where
s = £l (3.7)

G
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Figure 3.1: The real (solid) and imaginary (dashed) parts of the ground state coherence p»1, egn.
(3.5), for varying degrees of Raman saturation. In order of increasing size of the curves, the values
of R/~ arel, 3, and 20. Note that the scale of the horizontal axis also depends on R and ¢ [see

egn. (2.21)].
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Figure 3.2: Dependence of the ground state coherence on the saturation of the Raman transition.

is the Raman saturation parameter. We will see that this dimensionless parameter determines the
degree of al coherent effects. The ground state coherence is small when s < 1 and approaches
its maximal value for s > 1 (Fig. 3.2). (As might be expected, the ground state coherence is also

proportional to the relative coherence of the fields.) We thus arrive at the condition for coherence

YE

1
p—— o BT I ) 3.8
4A2+712~;(‘ 1?+1922°) > e (3.8)

In physical terms, the optical pumping rate must greatly exceed the ground state relaxation rate in
order to achieve large coherence. Thisisthefirst important lesson to learn from the A system.

From egn. (3.6) we see that the peak coherence is maximized by using balanced fields (|Q2;| =
|Q22]). In this situation one has

F

p21 = ——% [ (3.9)

14+ A2F2 4 §2

1+ A2F? —1—2'5]
5 )

The dispersive and absorptive components of po; each have a characteristic width of V1 + A2F2.

In terms of the dimensional experimental parameters, this yields the coherence half-width

A2 1
deoh = (R+ ) \/1 + = (3.10)

74 (1+7¢/R)?
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Theintrinsic linewidth of the resonance is (to within a small factor) the ground state relaxation rate
~v¢; however, it broadens with the optical pumping rate R as well as with the optical detuning A.
Note that R also dependson A.

The phase of p2; may generally be written as arg p21 = 7 + ¢ + ¢ where ¢ isthe azimuthal
angle of R and & is the difference between arg po; and the phase of the dark state. In the present

context, wefind

Im poy
€ p21

tan ® = (3.11)

5
14+ A2F2 — §AF cosfp

(3.12)

At § = 0, p21 has the opposite phase of 25¢2;. The destructive interference responsible for trans-
parency is directly attributable to this 180° phase shift. For thecase A = 0, tan ® = §/(R + vg)-
Again, we find that the characteristic width of the Raman coherence resonanceis R + . Thisis
the second significant insight to be gained from the A system.

Having attained a grasp of the coherent phenomenology of a A medium, we turn now to the

phenomenology of optical effects due to the quantum coherence of the medium.

3.2 Absorption and Electromagnetically Induced Transparency

One of the characteristic signatures of quantum coherenceis avery narrow feature in the absorption
spectrum of a medium. Typically, an absorption dip of sub-natural width?® is the experimentalist's
simplest indicator of coherent preparation. Henceit isimportant to understand how these absorption

features are related to the ground state coherence.

3.2.1 ThePhoton Absorption Rate

Therate at which an atom (such asa A system) removes photons from afield isthe net rate at which

the atom is excited. In the steady state, thisis equal to the rate at which the atom de-excites. Thus

1Sub-natural, meaning that the width of the feature as a function of the Raman detuning is less than the inverse of the
lifetime of the excited state(s).
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the total rate of absorption (in photons per unit time, including both fields) ina A systemisT' gpss.

From egn. (2.23) we have

T'uR (1 _ P ﬁ|n:1)

absorptionrate = 'pppr = -
FE+3R(1—F-5’ 1)
’r]:

(3.13)

where | have used the fact that /R = —F /F. Inthe case that the excitation rate s small compared

to the spontaneous emission rate?, the absorption rate isjust R (1 - F. ﬁ| 1). Now,
’]7:

1 —25AF cosf A2F? 4 §2 cos?
OAF cosfOgr + + 6% cos 03) (3.14)

1-F-5| =1-F — ~ =
Pl=1 ( 1 — 20AF cos O + A2F? + 52

At Raman resonance the absorption rate is R(1 — F'). Far from Raman resonance, the absorption
rate is R(1 — F cos?g). Since cos?fr < 1, the absorption is less at Raman resonance. The

reduction of absorption at resonance may be quantified as follows:

absorption at Raman resonance

resonant absorption factor = : 3.15
P absorption away from Raman resonance (319
1-F
S S 3.16
1 — Fcos?20p (3.16)
1

= 7'2 . (3.17)

1+ ssin“fp

We see that the amount of induced transparency at the Raman resonance is directly related to the
Raman saturation s (Fig. 3.3). If only onefield isapplied (2, = 0 or 25 = 0), thensinfz = 0 and
the absorption becomes independent of the Raman detuning (as one would expect). Conversely, the

maximum contrast in absorption occurs with balanced fields, in which case

(3.18)

A2 2
absorptionrate:R[l_F< 1+ A°F ﬂ

14+ A2F? 4 52

The degree of excitation will be small either if the fields are weak or if the system isin a dark state. Given that
va < T'g, asufficient condition for weak excitation is |6 sin 0r| < Ty (st/? + s~1/2).
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Figure 3.3: Induced transparency at the Raman resonance may be understood as a saturation of the
Raman transition. “1” denotes the value of the absorption coefficient in the absence of ground state
coherence.

In this case, the shape of the absorption dip is Lorentzian (Fig. 3.4) with depth ' = s/(s + 1) and
half-width

Sabs = (R +¢) \/Hﬁ_,%ji(Hle/R)?' (3.19)
Note that thisis the same as the coherence width o,

The analysis of the absorption in the most general caseis less simple. However, afew genera
comments can be made. Firstly, as R becomes larger, the absorption becomes less sensitiveto § [cf.
egn. (3.13)]. Thisis because saturation of the optical transitions will reduce the absorption even
when quantum interference does not. Secondly, the absorption dip becomes asymmetric when both
A#0and |0 # | # 0.

Finaly, it should be remembered that the Bloch vector model (on which the results of this
section depend) is valid only for |§| < |A +iyg|. If R > g, then the width of the Raman
resonance is larger than the range of validity of § and the widths given by egns. (3.10) and (3.19)

should not be taken too seriously.
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Figure 3.4: The electromagnetically induced transparency feature which occurs at Raman reso-
nance.

3.2.2 Absorption Constants of Propagation

So far, we have considered only the total absorption. In many cases one would like to know the
absorption coefficientsfor the fields separately. Under the slowly-varying amplitude approximation,

the evolution of the electric field E' is described by the differential equation

d ik
ZE=_"vE 3.20
P 5 X (3.20)

where k = 27/ is the free space wavenumber of the field and y is the optical susceptibility. In

dilute media, or whenever local field effects may be ignored,
X = v (3.21)

where \ is the number density of atoms and p isthe local dipole moment per atom. In general, the

dipole moment is a vector given by

p(t) = > mipoji(t). (322)
a,b
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The evolution of the jth control field (j = 1, 2) obeys

d ik;
Lhi= ﬁ/\/ 14303 (3.23)
In terms of the Rabi frequency,
L d ik .
4 = N%—%Qﬂmﬂ?ﬂm (3.24)
giving
d o 2Nkj|us]? .
- Q7 = —7;07_1 T Im (] ps;) (3.25)
= —aj|Q)* (3.26)
Now, it can be shown that
N 1
Im (Q7ps1) = 2 [T Ep3s + yew] (3.27)
i 1
Im (Q3p32) = 5 [UEp3s — vow] - (3.28)

(Note that the sum is proportional to pss, confirming the argument made at the beginning of section

§3.2.1.) A very simpleresult isaobtained inthecased = 0 :

| 2
which, by use of (3.25) and (2.27), leads to the absorption coefficients

J th A2+’y%1+8'

This expression isidentical to that of atwo-state atom whose saturation parameter is R/~ instead
of R/vg. In other words, the transparency of the dark state can be attributed to saturation of the

Raman transition, which isyz /¢ times easier to saturate than an optical transition.
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Figure 3.5: Stimulated Raman scattering viacoherent population trapping. The control fields €2, Q25
create quantum coherence between the ground states. A weak probe field €2, scatters off this coher-
ence, generating asignal field 2.

3.3 Coherent Raman Scattering

Besides inducing transparency, ground state coherence in a Raman system can also induce Raman
scattering. This process may be more generally viewed as four-wave mixing enhanced by coherent
population trapping. In this section we consider the evolution of two weak fields (a “probe” and
a “signa”, denoted p and s respectively) in a medium coherently prepared by a pair of strong
fields (Fig. 3.5). For smplicity, | will suppose that both pairs of fields are exactly resonant with
the Raman transition (6 = 0) and that the probe and signal fields do not disturb the ground state

coherence created by the strong fields. (See [38] for amore general treatment.)

3.3.1 Spatial Evolution of the Input and Scattered Fields

In the slowly-varying amplitude approximation, the probe and signal fields evolve according to

d i .
EEP = §]€p./\[ﬂ41p41 (331)
d i

—FE, = =k N i .32
dz 2k N piiopaz (332
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where“4” refersto area or effective excited state. To first order in the weak fields we have

7
2("}/E/ — ZA/)
/)

P2 = e — i)

pa1 = (P11 + p2192s) , (3.33)

(1282 + p22€2s) (3.34)

where vz and A’ are the detuning from and decay rate of state |4). The values of p;1, pa2, and pa;
can be obtained from (2.26). It will be sufficient for the present derivation to take A = 0, § = 0,

and R/(R + 7v¢) ~ 1. One obtains

x 2 2
p21 = —%7 p11 =~ %, p22 = —|Q1||29+1|92|2' (3.35)
The resulting propagation equations may be written as
d [ ~hp f % Qp
dz s ) 58& —F: Qs o
0
where
kpN [ |” |2/ kN |l 2 (3.37)

T Sheg(yp — i) [P T [ T 2hea(yp — iA) [uf? + [

The eigenvalues of thissystem are 0 and —(k,, + k). Supposing that thereisno signal field incident

on the medium, the fields are given by

Ks + er—(np-l-ns)z

0y(2) = "0, 0), (3.39)
ok (1- e~ (rptrs)2)
%) = g ), (3.39)

For A’ = 0 (Fig. 3.6a), x;, and x5 arereal and energy istransferred from the probe to the signal in a
distance on the order of (r,, + ) !, which isroughly equal to the absorption length for either field
((2kp) "t and (2r5) ! respectively). For |A’| > v (Fig. 3.6b), , and ks are mostly imaginary;

energy oscillates between the probe and the signal with a spatial period of 27/ Im(k,, + k), which
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Figure 3.6: Spatial evolution of the fields in coherent Raman scattering. (a) Resonant scattering.
(b) Non-resonant scattering. (¢) Resonant scattering with 50% of maximal coherence. Note, the
absorption length is larger in (b) than in (a) and (c).
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will be much shorter than either of the absorption lengths (2 Re x,) ~1 or (2 Re k) 1. In both cases,
the fields eventually reach a configuration which is transparent to the medium, 2,,(c0)/Q(c0) =
1 /Qs. Intheinitial stages of conversion, (x, + k)2 < 1 and

BN |piaz]” 2 LYo 0. (3.40)

Qs(2) ~
(Z) 2550(’YE’ — Z'A’) |Q1|2 + |92|2 P

In both of these cases, for which maximal coherence was assumed, half the power islost before
the fields reach a steady state in which the pump and probe each have 25% of the input power.
When the coherence is less than maximal, a steady state does not exist; the Raman scattering is
eventually dominated by linear absorption. In the case of resonant scattering with 50% of the
maximal coherence (in which case the scattering susceptibility is half the linear susceptibility), the
signal power peaks after about 2 absorption lengths at about 4% of the input probe power (Fig.
3.6¢). In order to get higher efficiencies, one must detune the probe and propagate further (or use a
denser medium).

Compared to most nonlinear processes, coherent Raman scattering is highly efficient: a signif-
icant fraction of the probe power is transferred to the signal in a distance characteristic of alinear
process. But more than just power is transferred. Since the complex amplitude of the output signal
isdirectly proportional to the complex amplitude of the input probe, the complete phase and ampli-
tude information of the probe is preserved in the output. Thus, coherent Raman scattering may be
used to shift the spatio-temporal content of afield at one frequency to another frequency. In case of
non-dissipative scattering (A" > ~};), even the quantum state of the input field is transferred. The
quantum operators a, and a, for the probe and signal fields obey a propagation equation which is

identical to egn. (3.36), apart from afew constants of scale. The solution is

Ks + /{pe_(ﬁp-i-ns)z \/m (1 _ 6—(5,,-1—55),2)

ap(2) _ Kp + K Kp + K ap(0) (3.41)
R - (1 — 6—(Hp+lis)2 —(Kp+Ks)z . )
as(z) \/ vplvs Hp + KRg€ QS(O

Kp + Ks Kp + Ks

which describes a unitary transformation (x, and ~, are imaginary). In the special case k, = ks

and (kp + Kg)z = mi, one obtains a,(z) = a,(0) and a,(z) = as(0). That is, the quantum states of
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the signal and probe field modes are exchanged.

3.3.2 The Scattering Bandwidth

A noteworthy feature of the system discussed in this section is that the ground state coherence
is constant—it is prepared by CW pump fields. Thus the scattering bandwidth is not limited by
the time it takes to achieve coherent population trapping. As | show below, the bandwidth is not
limited to the spontaneous emission rate. Coherent Raman scattering can in fact have a very large
bandwidth, making it of interest for telecommunications as well as novel applications including
characterization of ultrashort X-ray pulses.

Suppose that instead of asingle excited state, the probe and signal fields interact with amanifold
of states. Or, suppose that the medium is inhomogeneously broadened. In either case the quantity
WigP4g iN €dns. (3.31) and (3.32) should be replaced by > p1% peq Where g = 1,2 and e denotes
either a particular excited state in amanifold or a particular atom within an inhomogeneous distri-
bution. Now, for the purposes of this argument it is sufficient to consider either field in isolation, in

which case, for example,

Pel = _(Zwe - 'Ye)pel + ﬁﬂelEp(t)pll- (342)
Assuming p.1 is zero before the prabe pulse arrives,
i

t ) ,
per(t) = 5 per / el 0B (¢ pry dt'. (3.43)

Then the polarization is
E5 [ i) P B ()
p(t) = 7 / evretle |te1|” Ep(t)p11 dt’. (3.44)

In the limit of a continuous (or at least dense) distribution of excited states, ), |pie1|* may be
replaced by [ dw | fio|? D(w), where ju,, isthe effective matrix element for the states with frequency

w, and D(w) isthe density of states. For simplicity | will also suppose that each excited state has
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the same decay rate . Then
p(t) _* M(t . t/)é‘/(t’,t)Ep(t/)pH dt’ (3.45)

where

M(7) = / e D(w) |pe|? dw (3.46)

is the temporal response or “memory” of the manifold. If the manifold is broad and smooth (i.e.

| 11| D(w) does not vary significantly over abandwidth ~), then M (7)e ™" ~ M(r) and

plt) ~ 7 / M(t — )E,(t')ou1 dt' (3.47)
or, in the spectral domain,
271
p(w) ® S=D(W) |nol* Byw)pn. (3.49)

This polarization and others of similar form enter directly into the equations governing coherent
Raman scattering, namely egn. (3.36). From egn. (3.48) it is apparent that the bandwidth of coherent
Raman scattering is the width of the band of states excited by the probe (the inhomogeneous line
width). The linewidth ~ of theindividual states playsno role. Inthe casethat D (w) | |* is broader
and more slowly varying than E,,(w), M (t—t") =~ 6(t—t") and the scattering polarization is directly

proportional to the probe.

3.4 Summary

In this chapter, the Bloch vector model was used to make several predictions concerning coherence
and coherent nonlinear opticsin Raman systems. We found that the three most important parameters
are the optical pumping rate R, the ground state relaxation rate ¢, and the Raman detuning §.
We found that near Raman resonance, a large coherence builds up in the ground states, resulting
in quantum interference which reduces the absorption. The magnitude of the coherence and the

reduction in absorption are both determined by the value of the Raman saturation parameter s =
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R/~q; thelarger s, thelarger the coherence and the greater the reduction in absorption. Thewidth of
this Raman resonance is R + -y for fields tuned near the excited state; however, the width increases
for |A| Z R. We learned that at Raman resonance, the absorption coefficients for the fields have
the same form as that of a saturable 2-state system, but with a saturation intensity that is vz /~va
times smaller. Finally, we saw that the ground state coherence can act as an oscillator which scatters
a probe field, effectively shifting its amplitude and phase content to a different frequency band.
Because the coherence is large, the scattering susceptibility is comparable in magnitude to a linear
susceptibility, allowing for very high conversion efficiencies. The bandwidth isequal to the width of
the inhomogeneously broadened line, or in the case of acontinuum of states, to the bandwidth of the
coupling to the continuum. In either case, large bandwidths are available for frequency conversion

of signals.



42

Chapter 4

What About Coherencein Two-State
Systems?

In the previous chapters we have considered coherent preparation of a 3-state system by the mecha
nism of coherent population trapping. Why bother with three states? Why not smply drive a 2-state
system with astrong laser to produce quantum coherence? “ Coherent preparation” would then seem
to be atrivial subject. In this chapter | indicate why such an approach is not really advantageous,

either conceptualy or practically.

4.1 Two StatesDriven by OneField

Let us review the behavior of the simplest possible system: two states driven by a monochromatic
optical field. If the system is closed, a steady state is reached which is characterized by the density

matrix e ements

1 s
e = — 4.1
Pee = 57 15 (4.1)
1 s
_ - 4.2
Pgg 21+s (4.2)
I, s
Peg Vs (43)
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where e and g denote excited and ground states, (2 is the Rabi frequency of thefields, and

Q 2

S (4.4)

S =

Ye
Le
isthe (optical) saturation parameter, not to be confused with the Raman saturation parameter s used
in other chapters. At low intensities nearly all the population is in the ground state and there is
little coherence. As the intensity increases, the excited state population grows to the asymptotic
limit of half the population in each state. Unlike in a 3-state system, the coherence does not grow
monotonically with intensity. Since the coherence goes as /s/(1 + s) instead of s/(1 + s), it
peaks (with avalue of /T, /v./4) a s = 1. But the most important difference is that in the 2-state
system, increasing coherence corresponds to increasing interaction with the field. This is because
the coherence is directly related to the dipole moment. Thus coherence is achieved at the cost of
strong absorption, thereby limiting the thickness of the medium that can be coherently prepared.
One possible work-around is to tune the laser away from resonance, so that the material response
is mostly dispersive. But in this case a much higher intensity is required to achieve the same level
of saturation. Note that the saturation intensity of a 2-state system is aready generally much higher
than that of awell-chosen 3-state systeml. In terms of the amount of coherence that can be achieved,
the amount of absorption, and the intensity required, the 2-state system with onefield isinferior to

the 3-state system with two fields.

4.2 Two StatesDriven by Morethan OneField

It would appear that a 2-state system with asingle field is too simple to possess the desirable char-
acterigtics (in regard to coherent preparation) of 3-state systems. Perhaps the problem is not the
number of states, but rather the number of fields? It is well-known that a strong field splits the
excited and ground states by putting significant amounts of population in energy levels defined by

thefields (Fig. 4.1). One may therefore expect that such a system could show many if not all of the

LIt atwo-state transition is optically allowed, the excited state must relax to the ground state, resulting in decoherence
and a larger saturation intensity. In a well-chosen 3-state system, the coherence is produced between two metastable
states.
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Figure 4.1: “Dressing” of states by a strong field. The field splits states |e) and |g), creating a
system with three resonance frequencies. When probed by weak fields, the driven system acts in
many ways like a system with more than two levels.

phenomena associated with quantum coherence: EIT, large wave-mixing susceptibilities (coherent
scattering), lasing without inversion, slow light, etc. Indeed, after the concept of EIT was intro-
duced, a number of workers re-examined the two-state system driven by multiple fields, looking for
effectssimilar to those attributed to EIT. Thereisnow avast literature on the subject [88]. At therisk
of oversimplification, this field may be summarized as follows:. The weak-field susceptibility of a
2-state system is drastically modified when the system is driven by one or more strong fields. Many
effects occur which are reminiscent of quantum coherent effects; but they are not always the result
of similar physics. For example, a vanishing weak-field absorption (Fig. 4.2) is sometimes dueto a
bal ance between absorption and emission (optical interference) rather than destructive interference
of two absorption processes (quantum interference). Analysis of these systems is actualy rather
complicated, and distinguishing quantum interference from “ordinary” optical interference is not
always easy. It appears that multiple driving fields at different frequencies are required to produce
situations which are truly analogous to coherent preparation in 3- or 4-state systems [27]. Such
systems are just as complicated, if not more so, than the A system.

Thus one need not look past the 3-state system for direct and effective demonstrations of quan-
tum coherence and its associated affects. There are other reasons one might choose to work with
systems involving more than two states. For instance, large coherences at frequencies ranging from
RF to the visible can be generated with all-optical technology (just two low-power lasers). Coher-

ence can be produced between states for which direct transitions are forbidden by selection rules.
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Figure 4.2: Transparency in a driven 2-state system. The absorption of a wesak field in the driven
system vanishes at the points indicated by arrows (left). However, the vanishing of absorption does
not correspond to a true dark state, since the dispersive component of the susceptibility does not
also vanish. Thiskind of transparency can be understood in the dressed-state basis as a balancing of
absorption and gain at either frequency (right). Parametersfor the control field: 2 = 2., A, = 0.

Furthermore, the superposition states can be chosen to be metastable, resulting in very narrow spec-
tral features and low saturation intensities.

Regardless of the relative merits of 2- and 3-state systems, all the experiments reported in this
work involve coherent preparation of the sodium D1 system, which most closely resembles a 3-state
A system. Hence, | will not discuss 2-state systems any further. The interested reader may consult

the references indicated above for more information.

4.3 Summary

| have argued that the 3-state, 2-field system is the simplest system that illustrates coherent prepa
ration and its benefits. While one can create quantum coherence by driving a 2-state system with
a single field, the coherence is accompanied by strong absorption and hindered by relaxation due
to spontaneous emission. These problems can be overcome by driving the system with a strong
polychromatic field; however, the resulting system is at |east as complicated, both conceptually and

experimentally, as a 3-state system.
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Chapter 5

Coherent Preparation of Many-State

Atoms

In the previous chapters, 3- and 4-state systems were studied as the simplest examples of coherent
Raman systems. But the materials provided by nature are far more complex. Even alkali vapors,
which consist of relatively isolated, single-valence-electron atoms, possess numerous states and
are graced® with many complicating effects. In this chapter, | explore some of the ways in which a
multiplicity of ground states affects coherent population trapping and complicates quantum coherent

optical processes.

5.1 Notation and Conventions

5.1.1 Nominal Rabi Frequencies

A spectroscopic line of an atom generally contains contributions from transitions involving many
different pairs of states. Each pair of states|e) and |g) (where e denotesastatein excited level E and
g denotes astate in ground level GG) couplesto the electric field with a strength that is characterized
by the electric dipole matrix element p.,. Whileit is generally necessary to know the values of the

matrix elements for all pairs of statesin order to accurately model coherent phenomena, it can till

LIt it weren’t for these complications, people like myself would be out of work.
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be useful to assign a nominal dipole matrix element to the spectral line as awhole. As explained
in Appendix A, there are two different effective matrix elements associated with spontaneous and
stimulated transitions.?2 Of the two, the effective matrix element which characterizes spontaneous
emission is more fundamental. It is also the quantity reported by experimentalists who measure
“the” matrix element associated with a given spectral line.® For these reasons, | define the nominal
electric dipole matrix element of a spectral line as

3mheocd

3
Wea

s (5.1)

=
11l

where wg isthe angular frequency of the transition and I' g is the spontaneous emission rate of the
statesin level E.# i isthe dipole matrix element that atwo-state atom would have if its spontaneous
emission rate were I' . For the sodium D lines, i = 2.51eaqg wWhere qq is the Rydberg constant.
More generaly, the nominal matrix element for a whole system (whether it encompasses one or

more spectroscopic lines) may be defined as

_ /1 2
n = N—E gg: |l’l’eg‘ (52)

where Ng isthe number of excited states.
Having chosen a characteristic dipole moment, it makes sense to define the nominal Rabi fre-

guency of afield component E in analogy with egn. (2.7):
Q=——. (5.3)

The nominal Rabi frequency is convenient in that it is unique (independent of atomic structure) for

2The quick explanation is that spontaneous processes involve all polarizations while stimulated processes involve a
particular polarization.
A common dternative to the effective matrix element 11z spont i the oscillator strength

_ 2mewpc NE -
fGE = g 27 N—G/JEG,spont

where Ng and N¢ are the number of statesin the excited and ground levels, respectively [89].
4In an atom, the spontaneous emission rateisthe samefor all excited statesin the same level. Thisfact can beinferred
from the principle of isotropy.
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each field component, yet is expressed in the same units as the rates and frequencies which appear in
the dynamical equations for the state of the atom. The actual Rabi frequency of E on each separate
transition is related to the nominal Rabi frequency by

Qeg =2 - g (5.9
where
- He
fiog = —2 (55)
n

is the relative matrix element associated with states |¢) and |g). The relative matrix elements have

the property >, };leg\Q =1

5.1.2 Theatomic response

The parameters that determine the behavior an atomic medium—the state energy levels, rates of
relaxation processes, and Rabi frequencies of the electric and magnetic fields—can all be measured
in units of frequency. The use of a common scale simplifies analytical results, makes it easier
to determine the dominant influences, and provides some degree of normalization. It is likewise
convenient to express the atomic response (i.e. the induced dipole moment) on this same scale. |

define the normalized dipole moment as

I'e
1

p=Ig Z (ﬁeg>* Peg- (56)
e’g

"o«

p has units of frequency and is on the scale of the nominal Rabi frequency of the applied field; in
fact p = i€ in the case of weak, resonant excitation of atwo-state atom. The atomic susceptibility

(ak.a. polarizability) tensor x can be defined by the relation

P = x0. (5.7)

As anotational shorthand, | will write x = p/Q and use the scalar x to denote a generic element

of x. x istypically on the order of unity. More accurately, it is roughly equal to the square of the
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effective relative matrix element for the states involved®.
The atomic susceptibility isaso very smply related to the optical susceptibility. Upon combin-
ing egns. (3.21), (5.1), (5.3), (5.6), and (5.7) one obtains®

X = AN

p .
N g = 0.0T6 X (5.9)

where N/ = N'A? is the number of atoms per cubic wavelength; a moderately dense vapor has
N ~ 1. Sometimesit is useful to think of the optical interaction as a collision between a photon
and an atom with an effective area or cross section o. The cross section may be written as

322 .

o= —x ~ 0.48)\2%y. (5.10)
2w

Finally, | note that the spatial evolution of the fields can be expressed in terms of these normalized
guantities as
a2

3 .
— =1k—=NDp. A1
dz Z1687r2/\/‘p (5.11)

Remarkably, these last three equations are valid regardless of the number of states or the values of
the matrix elements.

Thuswe find that a system consisting of a multistate medium and optical field(s) can be charac-
terized by four sets of quantities which are either dimensionless or have units of frequency: (1) the
relative dipole matrix elements; (2) the spontaneous emission rate; (3) the nomina Rabi frequency

of the applied field; and (4) the nominal Rabi frequency of the induced dipole moment.

5If j1 isthe effective relative matrix element for atransition, the weak-field susceptibility is

i
X=5

.2
5 Al P (5.8)

where p is the population of the initial state and I', v, A are the decay and detuning parameters of the transition. At
resonance, and in the absence of pressure broadening, this formula reducesto x = 1% p.

5This result ignores inhomogeneous broadening. As rule-of-thumb, inhomogeneous broadening reduces the resonant
susceptibility by the ratio of the inhomogeneous to homogeneous line widths.
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5.2 Generalization of the Dark/Bright Basis

Coherent population trapping in a A system is easy to understand in terms of the dark and bright
states. It takes little more than inspection of egn. (1.1) to determine that a particular combination of
the two ground statesis decoupled from the excited field. However, when there are multiple ground
states coupled to multiple excited states by multiple fields, it is harder to see whether or not a dark
state exists. A more formal procedure for identifying dark states is needed.

The interaction between the atom and the optical field is characterized by the following part of

the Hamiltonian’:

X h
Hpe = 3 Zg: Qegle)(gl. (5.12)

In a certain basis for the ground states, this operator will be “diagonal.” That is, it is possible to

write

X B
Hpe = 5 zn: Q| En) (G (5.13)

for some set of ground states |G, ), excited states | E,), and scalars €2,,. Thiskind of diagonalization
is analogous to eigenmode decomposition and is known variously as Schmidt decomposition or
singular value decomposition®. The scalars €2, are called the singular values. Each Schmidt state
|G,,) isadistinct superposition of bare ground states which is excited with effective Rabi frequency
Q,. A vanishing singular value indicates a state which is not excited by the fields at all, i.e. adark
state. Since there can only be as many (non-zero) singular values as there are excited states, we can
know that there is aways a dark state if the number of ground states N exceeds the number of
excited states Ng. In fact, the number of dark statesisalways at least N — Ng.

The Schmidt basis, then, is the generalization of the dark-bright basis which is so helpful in
A systems. In this basis the multiple excitation pathways are separate and do not interfere. The
distribution of population among these statesis therefore a study in optical pumping, for which (in-

coherent) rate equations are sufficient. In general, the atom will be optically pumped from the bright

"I will refer to the part of the Hamiltonian that describes photoexcitation as the interaction Hamiltonian, although this
term is usually applied to the Hermitian operator that describes both photoexcitation and photoemission.

8Any matrix M (whether square or not) can be diagonalized by adual unitary transformation: UTMV = D where D
isadiagonal matrix and U and V' are unitary matrices. Singular value decomposition of A/ amounts to a determination
of U, V, and the diagonal of D (the singular values).
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statesto the dark states; the larger €2,,, the smaller the steady probability of |G,,). It should be noted,
however, that states with intermediate coupling constants will act like dark states at low intensities
and like bright states at high intensities: At low intensities, such a state will be excited more slowly
and will end up with more population than the strongly coupled states; at high intensities, it will be
excited rapidly enough to overcome relaxation and will be depopulated in favor of true dark states.

The Schmidt-basis approach can be very helpful, but one must use it with care since it ignores
the frequency distribution of the states and the fields. First of al, it is blind to the fact that off-
resonant transitions are lessimportant than resonant transitions. Secondly, the frequency distribution
of states and fields may be such that it isimpossible to choose a set of energy originsfor the states (a
so-called “rotating frame”) which simultaneously eliminates the rotation of the coupling constants
2.y and of the ground states. In this case the Schmidt states will be time-dependent, and coherent
population trapping will be hindered because the trap state(s) will be continually changing. In such
situations the Schmidt basis is of little use. For example, it has aready been noted (Chapter 2) that
the dark-bright basis is not helpful for analyzing the 3-state A system if the fields are not Raman
resonant.

For smplicity, in the following section | will consider only those systems in which every near-
resonant coupling between field and atom has the same detuning. Then it is possible to choose a
rotating frame in which all resonantly coupled states have the same energy and all the coupling
constants are time-independent. Generally, this occurs when an atom has well-separated levels in
the absence of DC electric and magnetic fields and the frequency differences between the various
field components equal the intervals between ground levels. In such cases, the behavior may be
understood in terms of optical pumping between Schmidt states. The rate equations for the Schmidt

states are then

pe; = —(Cr +Ta)pe; + 2R;(pg; — pe;) (5.14)
. 1
Po; = Dbkl Bpe, —Tapy, + TG + 2Ri(pe; — py,) (5.15)

k

where I' is the spontaneous emission rate of the excited states, b., is the spontaneous emission
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branching ratio, I'i; is the population relaxation rate between the ground Schmidt states, /V is the

number of ground states, pc; (pg,) isthe population of the jth excited (ground) Schmidit state, and

1 e 2
1 02 516
B 403 +4% (516)

is (half) the optical pumping rate associated with the jth singular value.

5.3 Multi-state Effects

5.3.1 Redaxation Bias

InaA system, there are only two Schmidt states. the dark state and the bright state. An atom which
isin athermal mixture of bare states has an equal probability of being found in the bright state or
the dark state. Hence, whenever a coherently prepared atom relaxes to the thermal state, it has a
50% chance of remaining in the dark state. Consider now a multistate system in which there are N
Schmidt states, one of which is dark and the remainder of which are bright. Then every time the
atom relaxes, the probably of remaining in the dark stateisonly 1/N. That is, it has a much higher
chance of relaxing to a bright state than the dark state (Fig. 5.1). | call this effect relaxation bias.
For the same intrinsic relaxation rate, it is harder to maintain the dark state population when there
arefractionally few dark states than when there are many.

This principle can be seen in the steady-state solution of egns. (5.14) and (5.15) for the case
of Np dark states (R; = Ry = --- = Ry, = 0), N — Np equal bright states (Ry,+1 = -+ =
Ry = R), and uniform decay ratios (b;, = 1/N). For 2I'¢ /T < Np/N, onefinds that the total
population in the dark statesis

Np N -—-Np 2R

M
trapped population = ~ p,, ~ ~N TN R+ (N/Np)L'e’

(5.17)

j=1
The population in the dark state(s) goes from its equilibrium value of Np/N a R = 0 to its
saturating value of 1 as R — oo. The saturation parameter is2R/(NI'¢/Np) = (2Np/N)s where

s is the saturation parameter defined for the A system [egn. (3.7)]. Although the branching ratios
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reservoir of atoms in thermal equilibrium

Figure 5.1: Relaxation bias in many-state systems. The more bright states there are, the more likely
relaxation is to move the system from the desired dark state to a bright (undesired) state.

to different Schmidt states are generally not equal as supposed, and the bright states generally have
different coupling constants, we may take as a rule-of-thumb that the smaller the fraction of states

that act as traps, the higher the optical intensity needed to achieve trapping.

5.3.2 Extraneous Trap States

As suggested previously, a given system may have more than one dark state. (Recall that if there
are N ground states and N excited states, then there are at least N — Ny dark states.) Even if
a system has only one dark state, it may have yet have multiple “dim” states, states with relatively
small coupling constants. Dim states will trap population ailmost as effectively as dark states for
weak or modest intensities, and will contribute little to the total absorption (since they have small
coupling constants). If the point of population trapping issimply to reduce absorption, then the more
trap states, the better (for the reasons discussed in the previous section). However, if the point isto
create coherence in the medium, then a multiplicity of trap states may not be desirable. Suppose,
for example, that there are N trap states, only one of which involves the desired coherence. Then
even for large optical intensities the population will be roughly evenly distributed among the trap
states, and the coherence will be roughly N times smaller than if the remaining trap states did not

exist (Fig. 5.2). These extraneous trap states keep some population from being pumped into the
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Figure 5.2: Extraneous trap states in many-state systems. Not all uncoupled or weakly coupled
Schmidt states may possess a desired property (e.g. hyperfine coherence). Undesired trap states
compete for population with the desired dark state.

desired dark state. An even worse situation occurs when some of the trap states involve coherences
of opposite sign. Inthis case, little or no net coherence may be created even when all the population

is pumped into the dark states.

5.3.3 Zeeman Splitting and M agnetic Broadening

The eigenstates of afree atom are eigenstates of the total angular momentum (characterized by the
guantum number F') and its projection onto some quantization axis (characterized by the “magnetic”
guantum number m). In the absence of a magnetic field, states of the same F' (Zeeman states) have
the same energy. When a weak magnetic field is applied along the quantization axis, the energies
of the Zeeman states shift in proportion to their magnetic number m (Fig. 5.3). The Schmidt
decomposition is no longer helpful as the bare states attempt to rotate at different rates, thereby
mixing the Schmidt states. However, if the energy shifts are large enough, the off-resonant bare
states will have essentially no coherence with each other and may be treated using rate equations.
As | will show below, splitting the sodium Zeeman energies causes some of the dark states to shift

their Raman frequencies and causes others to become bright [90].
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Figure 5.3: Zeeman shifts of the sodium D1 statesin the presence of a DC magnetic field along the
guantization axis. (Not to scale.)

54 Dark Statesin the Sodium D1 Line

In the absence of amagnetic field, the sodium D1line (35, /, <> 3P, transitions, Fig. 5.4) contains
4 hyperfine levels: 2 ground levels (with F' = 1,2) and 2 excited levels (with angular momentum
F’ = 1,2). The ground levels are split by 1772 MHz; the excited levels are split by 189 MHz.
At low vapor densities® these splittings are much larger than the optical linewidth (10 MHz). A
field which resonantly couples one of the ground levels to one of the excited levels will be far from
resonance with any other pair of levels. Therefore, a pair of fields with a frequency difference of
1772 MHz can form aresonant A system involving either excited level. These two A systems may

be regarded separately since the fields can be resonant with only one excited level at atime.

54.1 Schmidt Statesfor the Sodium D1 Al

ly,2x

Subsystem

Consider two “control” fields, polarized in the = and y directions, with nominal Rabi frequencies
Q, and €, respectively. Suppose that the y-polarized field is resonant withthe FF = 1 < F' =1
transition and that the z-polarized field is resonant with the ' = 2 «~ F’ = 1 transition. Because
the ground levels are far apart, the coupling of the x field to the F' = 1 level and of the y field to the

I = 2 level can beignored. Asareminder of which field is meant to couple to which ground level,

®With excessive pressure broadening, the excited hyperfine levels might not be well-separated.
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Q,
3Sin F=» } 1772 MHz

Figure 5.4: The scheme for coherent preparation of sodium. The sodium D1 line contains four
hyperfine levels, each of which is a Zeeman multiplet. Through the process of coherent population
trapping, a pair of fields pumps the sodium into a superposition of the ground hyperfine levels.

I will sometimes use the subscripts 1, and o, for quantities associated with the z and y fields. In
this fashion the subsystem formed by the fields, the FF = 1, 2 ground states, and the F’ = 1 states
will be denoted A{, ,, .

The interaction between the atom and fields is characterized by matrix elements of the form
B(F" = 1,m'|a|F, m) - Qo y. These matrix elements can be evaluated using the first three rows

of Table B.1, yielding the interaction Hamiltonian

—iSdy Q. —Q.
A V24 V4 V24
1 = — ZQZI _iQy QJ, _Qz‘
Hiyoe =5 | % N = 5 : (5.18)
iQy Qs —Qx
V24 V24 V4

The arrangement of statesis the same as that of Table B.1. Vanishing elements are not shown. The
Schmidt states and singular values for this system are given in Table 5.1. With eight ground states
but only three (relevant) excited states, there are five dark states and three bright states. Out of the

five dark states, three do not involve any hyperfine coherence'®. These three states therefore qualify

19The dark states are degenerate, so of course they are somewhat arbitrary. The states given in Table 5.1 were chosen
for their symmetry. As| will discussin §5.4.3, adifferent set of dark statesis convenient when amagnetic field is applied.
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Figure 5.5: The scheme for coherent Raman scattering in sodium. A probe field €2, scatters off the
ground hyperfine coherence created by the control fields. Selection rules allow scattering via states
with F”/ = 1 or F” = 2 only.

as extraneous traps. They limit coherent preparation because they leave only 40% of the population
to be coherently trapped. Furthermore, these states will still act as traps when the fields are not
tuned to the Raman resonance, making the EIT effect less dramatic.

The Schmidt states which possess hyperfine coherence have coherences between severa differ-
ent pairs of states. While one could simply sum up these coherences to obtain a measure of the total
hyperfine coherence, amore rel evant quantity isthe effective hyperfine coherence which contributes
to a desired wave mixing process, such as Raman scattering. Table 5.1 gives the Raman scattering
susceptibility for each Schmidt state when the two pump fields are balanced (€2, = €2,). The sus-
ceptibilities are calculated in the following way: Suppose that a weak probe beam of hominal Rabi
frequency ©,, istuned to the I = 1 or F" = 2 hyperfine level inthe 3P;, level (Fig. 5.5). If the
atom isin the nth Schmidt ground state, then the first-order polarization induced by the probe beam
is

i (Gl Hprobe|Gn)

A (5.19)

where flpmbe is the interaction Hamiltonian involving the probe beam and Ag is the detuning
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from the nearest excited hyperfine level. Taking A = 0 and assuming that there is no pressure

broadening, we have

P=1Y > (Gulg)glitle)(e] (1t - ) 9)(g|Gn) (5.20)

e

which gives the (tensor) polarizability
- p , S
X = Qﬁ =1 Z<9|Gn><Gn’g/>u/g’e“eg' (521)

If one wanted to obtain the linear susceptibility x;; Or X9, g @d ¢’ would be restricted to just the
F =1or F = 2 dtates, respectively. The Raman susceptibility x, is obtained by summing g over
the ' = 1 states and ¢’ over the the F = 2 states'!. Noting that the polarization associated with
Raman scattering is always perpendicul ar to the probe whenever the pump fields are cross polarized,
the Raman susceptibility is reported as a scalar.

The Raman susceptibilities are smaller than those of a symmetric 3-state system (namely 1/4,
since |p12| = 1/2 and figefie1 = 1/2). However, they are on the same order as the linear sus-
ceptibilities for the D2 line (i.e., about as large as the matrix elements in Table B.2), a feature in
keeping with the properties of 3-state A systems. Note that dark and bright states have equal and
opposite Raman susceptibilities. Thistoo, islike the behavior of a 3-state A system. In the case of
complete trapping in the dark states, such that each dark state has population 1/5, the net Raman
susceptibility is0.026: for scattering viathe F” = 1 level and 0.0125: for scattering viathe F” = 2

level.

5.4.2 Schmidt Statesfor theD1 A2

ly,2x

Subsystem

Suppose now that the y-polarized field is resonant with the 1 < 2’ transition (w, = wy — wy) and

that the z-polarized field is resonant with the 2 < 2’ transition (w, = wy — ws). This system will

1The Raman scattering susceptibility is the same for Stokes and anti-Stokes scattering because the polarizability
is completely symmetric [cf. eqn. (5.21)]: the polarization in mode 2 due to a field £ in mode 1 is the same as the
polarization in mode 1 dueto thefield E in mode 2.
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Schmidt States of the A{, ,, System
Coupling constant ~ Schmidt state X12 Coupling
Q, |Gr) 2 Scheme
[1,—1)+]1,1)
0 Sl 0O O

0 \2,71\>/g|2,1> 0 0
0 \2,—2>+¢5|§2,0>+|2,2> 0 0

V3. (\1,—1>—|1,1>) —iQ, (\2,—1>—|2,1>)

0 A
0 V320, [1,0)+iQ, (v/3]2,—2)—v/2/2,0)+1/3(2,2))

V/32/Q0 48|22
10, or050 2-2)22) 0 0
2% . NG

ETSENENrE 25 (11— 110 +iv30; (|2 -1)-[2.1)) T
” ! V612212 1010

S22k 2=

or 0.58¢)
ENTNENRATNE V205 |1,0)—i€2% (V/3]2,—2) —v/2(2,0)+1/3]2,2)) i
12 Yy 3 x \/8|QT‘Q+2|Qy|2 15

or 0.64€)

Table 5.1: One possible Schmidt decomposition of the sodium D1 A%ym subsystem. Numerical
values of the coupling constants are given for the case 2, = Q,, = Q. x12 isthe atomic susceptibil-
ity for coherent Raman scattering. 1” and 2” refer to scattering viathe F” = 1 and F” = 2 levels,

respectively, of 3P .
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be denoted A%y,%' The interaction Hamiltonian that describes this subsystem is

iy Qy
Vi Viz
iQy Qs Qu
. Vs Viz V8
2 _ Q0 192 Qg Qu
Hiyoe =35 | T V24 v NG (5:22)
VB V8 Viz
2y Q
Vi Viz

which can be obtained using the last five rows of Table B.1. The Schmidt states and singular values
for this system are given in Table 5.2. With five excited states, there are five bright states and three
dark states. One of the dark states does not possess any hyperfine coherence. Again, the bright and
dark states have equal and opposite Raman susceptibilities. In the case of complete trapping in the
dark states, such that each dark state has population 1/3, the net Raman susceptibility is0.021: for

scattering viathe F” = 1 level and 0.069: for scattering viathe F”' = 2 level.

54.3 Magnetic Fieldsand “The” Sodium D1 Dark State

The Schmidt statesfor the A} , and A , subsystems appear to be very similar; indeed, many of them
have the same configuration. However, even those which have the same configuration have different
coefficients. Therefore, if frequent vel ocity-changing collisions cause the atom to be Doppler shifted
from one subsystem to the other on a time scale shorter than the optical pumping time, then little
coherent population trapping will occur. Furthermore, all the Schmidt states of Tables 5.1 and 5.2
are unstable in the presence of amagnetic field. However, the dark states of the Ab system may be
recombined to yield a different set of dark states which include the three states given in Table 5.3.
These three states remain dark when a z magnetic field is applied, although the Raman frequencies
of the latter two states shift with the Zeeman levels. Three similar states can be constructed for the
A%m subsystem, although the two which involvethem = 1 or m = —1 ground states are not very
dark; they are coupled to the |2, —2) and |2, 2) excited states. Nevertheless, for either subsystem,
three separate trap states can be observed as a function of Raman frequency: the one involving the

m = 0 states at 1772 MHz, the one involving the m = 1 states at the upshifted (or downshifted)
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Schmidt States of the A3, ,, System
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Table 5.2: The Schmidt decomposition of the sodium D1 A%y’% subsystem. Numerical values of
the coupling constants are given for the case 2, = Q, = Q. xi2 is the atomic susceptibility
for coherent Raman scattering 1”7 and 2" refer to scattering viathe F”/ = 1 and F” = 2 levels,

respectively, of 3P .
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Trap Statesin the Presence of Magnetic Field

Coupling constant  Schmidt state X12 Coupling
Q, |Ghn) 1”7 2" Scheme
0 iQ2]1,0)4+£24]2,0) - i
Qa2 S
0 V32 |11+ 2 -1) i 3i
0 iV3Q[1,1)+9Qy2,1) i 3
V3100 2 +10y 28

Table 5.3: Three adternative dark states in the sodium D1 A}

1y,2. SUbsystem, which remain stable in
the presence of a DC magnetic field.

frequency, and the oneinvolving the m = —1 states at the downshifted (upshifted) frequency.

The first state in Table 5.3 is specid: It is common to both systems, is essentially insensitive
to DC magnetic fields'?, and involves hyperfine coherence. Because of its robustness and desirable
properties, it isin principle the best dark state for coherent preparation. Hence | designate it “the”
dark state of the D1 A system:

iQ92]1,0) + 01,2, 0)
V1922”4 [0,

What is the physical nature of the state (5.23)? The m = 0 states are superpositions of nuclear

|do) =

(5.23)

2 though the m = 0 states are not shifted by a = magnetic field, the field induces a coupling between them (note the
off-diagonal elementsin Table B.3). However, astatic field is so far out of resonance with thistransition (1772 MHz) that
the characteristic transition rate, ~ L? /1772 MHz (where L is the magnetic Rabi frequency), is usually negligible.
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and electronic spin states:

D 1=

11,0) = 7 (5.24)
_ 2+ 1=

12,0) = 75 (5.25)

where, eg., \%Ml) denotes the state with nuclear spin projection 1/2 and electron spin projection
—1/2. For the sake of discussion let us take 2o, = €;,. In aphysical reference frame where the
energy difference between hyperfine levels has not been mathematically removed, the dark state

evolves as

_ 11,0) +e7=1[2,0)
- V2

R (Cosw_lt 1)1 - isin“%lt _%>m> (5.27)

|do (1)) (5.26)

2

Thus the hyperfine coherence between m = 0 states represents a simultaneous oscillation of the
electronic and nuclear spin projections. Similar interpretations can be given to other types of ground
state coherences. For this reason, ground state coherences in akali vapors are sometimes referred

to as spin coherences or spin oscillations.

5.4.4 Schmidt Stateswith Parallel Polarized Fields

For historical reasons, my work has always involved cross polarized control fields. One may ask
whether parallel polarized fields (say, both = polarized) could aso be used for coherent popula
tion trapping. | find that the Schmidt states for parallel polarized fields are superficially similar to
those for cross polarized fields, but at the level of detail there are important differences. Firstly,
the dark states of the A}, and the dark states of A%, span orthogonal spaces. That is, there
is no dark state common to both subsystems. Secondly, there is no linear combination of dark
states that is insensitive to magnetic fields. Finally, the signs of the hyperfine coherences are such
that the Doppler-averaged Raman susceptibility vanishes for every Schmidt state. Thus coherent

Raman scattering should not occur with parallel polarized fields. Experimentally, | have found elec-
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tromagnetically induced transparency to be extremely weak and coherent Raman scattering to be

nonexistent with parallel fields. Henceforth, | will consider only cross polarized control fields.

55 Numerical Studies

Having developed some physical intuition, we are now in a position to appreciate the results of
numerical studies of coherent population trapping in the D1 transitions of sodium. The results
which follow were obtained by numerically solving the steady-state equations for the density matrix
of a system comprised of the sixteen states in the sodium 35 ;, and 3P, /, levels and two linearly
polarized fields of equal intensity with a frequency difference close to the Raman frequency. (See
Appendix D for details of the master equation and method of solution.) The ground state relaxation

rate was taken to be 0.1 MHz for all calculations.

5.5.1 Without a Magnetic Field

The populations of the A%y,% and Afy% Schmidt states as a function of optical intensity are shown

in Fig. 5.6. For Ay, ,, the fields were tuned to the I’ = 1 level (A = 0 MHz), while for A}, ,,

the fields were tuned to the F/ = 2 level (A = 189 MHz). Consider first the A%ygm subsystem:
At very low intensities, the population is evenly distributed among all 8 Schmidt states. As the
intensity increases, the populations of the 5 dark states increase to approximately 1/5 each, while
the populations of the bright states decrease to approximately zero. The pumping from bright to dark
states saturates when the nominal Rabi frequencies are approximately 5 MHz. Similar behavior
occurs in the A3, ,, subsystem: starting from an even distribution, the populations of the 3 dark
states increase to approximately 1/3 each, while the populations of the bright states decrease to
approximately zero. Note that one of the states (the 7th Schmidt state, aweakly coupled state), acts
as atrap state at low intensities (population initialy increasing with intensity) and as a bright state
at high intensities (population decreasing with intensity). For the Afym subsystem, the trapping

threshold occurs at approximately 10 MHz. For both subsystems, trapping is essentially complete
when the fields have nominal Rabi frequencies of 25 MHz.
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Figure 5.6: Population trapping in the A}, ,, and A7, ,, subsystems. As the Rabi frequencies of

the control fields increase, more population is pumped into the dark states. Conditions: § = 0,
I'e = 0.1 MHz.

The pumping of population into dark states causes a reduction of the absorption. The amount of
reduction may be characterized by the saturation parameter s, defined hereby a@ = awesk fietd/ (1+5)-
In §3.2.2 we saw that the saturation parameter of a 3-state A system at Raman resonanceisthe same
for both fields and is proportional to the total intensity, in fact proportiona to Q2 /T'g. In asystem
with many ground states, the saturation also depends on this ratio. But as shown in Fig. 5.7, the
saturation parameter has a sub-linear dependence on this ratio. The reason is that as the intensity
increases, optical pumping moves population from Schmidt states with large coupling constants to
states with smaller coupling constants, and the fields become less effective at optical pumping. One
may say that the Rabi frequency of the interaction becomes much smaller than the nominal Rabi
frequencies of the fields, or that the saturation intensity increases as the optical intensity increases.
The net result is that the actual saturation is much less than the nominal saturation parameter (Q2 +
02)/(496E)-

According to Tables 5.1 and 5.2, there are two dark superpositions for each subsystem involving
coherences between F' = 1 and F' = 2 ground states. Several of these coherences are shown as a
function of the Raman detuning in Fig. 5.8. The nominal Rabi frequencies of the fields are 25 MHz

each so that trapping is essentially complete. For the A%y’% subsystem, the two dark states which
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Figure 5.7: Saturation of absorption. At the Raman resonance, saturation results from population
trapping. The saturation parameter increases sub-linearly with intensity (the horizontal scale is
linear in intensity) because optical pumping gets more difficult as more population becomes trapped
in dark states.

involve hyperfine coherence are approximately equally populated and contain approximately 40%
of the total population, resulting in coherences between the pairs of stateswith m = 0, m = 1, and
m = —1 of approximately 0.05. For the A%ym subsystem, the two hyperfine coherent dark states
account for over 70% of the population, resulting in somewhat larger coherences.

Associated with the trapping of population in dark states is a decrease in the susceptibility. A
pronounced dip in the susceptibilities'® occurs at the Raman resonance (Fig. 5.9, left) at both A = 0
(A1, 9, dominant) and A = 189 MHz (A7, ,, dominant). The reduction of absorption at Raman
resonance can aso be seen by comparing the left and right plots of Fig. 5.10 (note the different
vertical scales). In these two plots, the peaks correspond to the F/ = 1 and F = 2 hyperfine
levels. Together, Figs. 5.9 and 5.10 show that coherent population trapping reduces the absorption

1 (25 MHz)?2

only by a factor of 2-4, even though the nominal pumping rate (R = 1(0MIm 2 = 30 MHz at

optical resonance) is much larger than the relaxation rate, 0.1 MHz. This result supports the idea

that coherent effects are harder to achieve and less pronounced in many-state systems.

13Both imaginary (absorptive) and real (dispersive) parts of the susceptibility are reduced at the Raman resonance.
However, the absorptive component is more easily measured and reveals the effect more clearly (at resonance the disper-
sive part isaready at or near a zero crossing).
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Figure 5.8: Red (dashed) and imaginary (solid) parts of hyperfine coherences involving states of
particular magnetic number m. Large coherences (as a fraction of the population in each pair of
states) develop in the vicinity of Raman resonance. Conditions: €, = Qy, = 25MHz, I'q =
0.1 MHz.
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Figure 5.9: The susceptibilities for absorption of the control fields (imaginary parts of the sus-
ceptibility). Both fields show induced transparency in the vicinity of Raman resonance. In the
presence of a magnetic field (right), the Raman resonance splits into three features. Conditions:
Oy = Qo = 25 MHz, ' = 0.1 MHz.



CHAPTER 5 68

x 10°
8 T T
= 6 = 15F .
£ £
[ c
2 4 2 1 .
2 2
o (@]
(%] n
Qo Ko
© 2 ®© 05¢ .
0 L 0 1
-200 0 200 400 -200 0 200 400
optical detuning A [MHZz] optical detuning A [MHZz]

Figure 5.10: The absorption spectra for the control fields when resonant (right) or detuned (left)
from the Raman frequency. Absorption is reduced across the entire D1 line at Raman resonance
(note different vertical scales). Conditions: €21, = €2, = 25MHz, I'¢ = 0.1 MHz.

Also associated with coherent population trapping is a large Raman scattering susceptibility. If
the pump fields prepare the atom with density matrix p, then the susceptibility of the prepared atom
to aweak probefieldis

- I'p/2 o
X = ZZ Z _ ZA:E <g‘p’g/>p‘g’ey‘ega (528)

where A/ is the detuning of the probe field from excited state e. Fig. 5.11 shows the dependence
of the Raman susceptibility x12 on the detunings A and A’ of the pump and probe fields from the
3Py o and 3P3, levels, respectively. (Just as A = 0 means that the pump fields are tuned to the
lowest hyperfine level of 3P, 5, A’ = 0 means that the probe field is tuned to the lowest hyperfine
level of 3P;/5.) Inthis plot the pump and probe frequencies differ by afixed amount, asisthe case
when the frequency shifts are caused by the Doppler effect.'* The pump-probe frequency difference
was chosen so that A’ = 50 (F” = 2) when A = 189 (F’ = 2), which maximizes both the peak

and Doppler-averaged Raman susceptibility. The Raman susceptibility peaks at a value of about

14The Doppler effect is described in §6.1.3. If the pump and probe fields are copropagating, the ratio of their Doppler
shiftsisjust the ratio of their wavelengths. The wavelengths of the D1 and D2 lines differ by only 0.1%; thus the pump
and probe frequencies are shifted by essentially the same amount.
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Figure 5.11: The real (dashed) and imaginary (solid) parts of the Raman scattering susceptibility
for a probe which scatters off the hyperfine coherence created by the control fields. Although the
distribution of ground state population is different in the presence of a magnetic field, the Raman
scattering susceptibility is not significantly affected. Conditions: €21, = 2o, = 25MHz, I'¢ =
0.1 MHz.

0.077, in agreement with the prediction of §5.4.2.

5.5.2 With aMagnetic Field

The calculations of the previous section were repeated, this time assuming a magnetic field of 4
Gauss in the z direction. As discussed in §5.4.3 the Schmidt basis is no longer meaningful in this
case, but nevertheless there exist three trap states which possess hyperfine coherence between pairs
of stateswithm = 0, m = 1, and m = —1. Asshown in Fig. 5.12, these three coherences peak at
different Raman detunings. Asmentioned previoudly, them = 0 trapisatrue dark statein both A%,Q
and Aiz subsystems. In contrast, the m = 1, —1 states are weakly coupled (i.e., poor traps) in the
A%’Q subsystem; hence the rather weak coherence features when A = 189 MHz (Fig. 5.12, right).
In the presence of amagnetic field, amajority of the population can be trapped in one of these three
states, as opposed to being distributed over multiple trap states in the case of no magnetic field (see

Fig. 5.6). However, the total amount of trapped population is dlightly less with amagnetic field than
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Figure 5.12: Imaginary parts of hyperfine coherences involving states of particular same magnetic
number m. A magnetic field lifts the Zeeman degeneracy and leads to different Raman frequencies
for the hyperfine coherences. Conditions: €2, = Q9, = 25 MHz, I'¢ = 0.1 MHz.

without. Thisis probably duein part to relaxation bias and, depending on the size of the Zeeman
shift, in part due to the decrease in the optical pumping rates out of the bright states as the Zeeman
states are shifted out of resonance with the pump fields.

Associated with each trap state is a separate absorption dip (Fig. 5.9, right). Three dips are
clearly visible in the Raman spectrum when A = 0MHz. Note that the absorption outside the
Raman resonances is higher than the off-resonant absorption in the case of no magnetic field (Fig.
5.9, left). This occurs because, in the absence of a magnetic field, two out of five dark states do
not involve hyperfine coherence and can trap population regardless of the Raman detuning. When a
magnetic field is applied, these two trap states no longer exist; therefore the off-resonant absorption
ishigher. For A = 189 MHz, only one absorption dip isvisible; because the trappinginm = 1, —1
statesis very poor, the absorption dips are too small to be seen.

As suggested previously, the m = 0 superposition state is the most robust trap state in the
presence of amagnetic field. Nearly 80% of the population is pumped into this state when the pump
fields are tuned to F” = 2 (Fig. 5.13). Although thisis dightly less than the amount of coherently
trapped population when no magnetic field is present (90%), the Raman susceptibility in this case
isdlightly larger (Fig. 5.11, right).
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Figure 5.13: Population of “the” sodium D1 dark state [egn. (5.23)] in the presence of a magnetic
field. Conditions: 2, = 23, = 25 MHz, I'¢ = 0.1 MHz.

5.6 Summary

To understand coherent population trapping in systems with many states, the concept of dark states
and bright states (which hel ps explain the physics of coherent population trapping in 3-state systems)
was generalized to the concept of Schmidt states, which may be thought of as eigenstates of the
optical excitation. Schmidt states may be either dark (uncoupled), bright (strongly coupled), or
“dim” (weakly coupled). Under certain conditions, the action of multiple coherent fieldsin a many-
state system can be understood in terms of optical pumping among Schmidt states. When there
are relatively few trap states, relaxation tends to depopulate the trap states (relaxation bias). On
the other hand, if there are multiple trap states, some of them (extraneous trap states) may have
undesirable properties and compete with the desired states in trapping population. The behavior of
many-state systemsisfurther complicated by the fact that magnetic fieldslift the degeneracy of state
energies, causing different pairs of statesto have different resonant frequencies. Generally speaking,
the complications of many-state systems make coherent population trapping more difficult than in
few-state systems, and correspondingly make coherent optical effects less pronounced.

The problem of a sodium atom interacting with two cross-linearly polarized fields to form a

3-level A system was analyzed in detail. Two such A systems exist in the D1 line of sodium, and
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their Schmidt ground states were presented and discussed. It was found that both systems have
multiple dark states, although only one state (a superposition of the two m = 0 ground states) is
dark for both systemsin the presence or absence of amagnetic field, and that some of the dark states
do not involve any hyperfine coherence. Numerical studies showed that moderately large hyperfine
coherences, as well as coherent optical phenomena such as electromagnetically induced absorption
and coherent Raman scattering, can be induced via coherent population trapping; however, such
effects are less pronounced than what one would find for acomparable A system composed of only

three states.
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Chapter 6

Coherent Preparation of Atomic Vapors

So far | have pretended that the atoms being coherently prepared are stationary and isolated, the only
concession to the contrary being a phenomenological decay term which thermalizes the density ma-
trix. Of course, atoms exist within an environment, and they are usually not at rest on the optical
table just waiting to be experimented upon. In atypical atomic vapor experiment, the atoms are
moving at speeds of kilometers per second, colliding with each other and with their container. Fur-
thermore, the atoms act back on the electromagnetic field, producing an illumination different than
what was applied. Technical issues, which always come into play in an experiment, can complicate
or mask the desired phenomena. In this chapter | explore avariety of considerations which apply to
experiments in atomic vapors, with a particular view toward implications for coherent preparation.
Much of the relevant physics was developed in the 1950’s and 1960's in studies of optical alignment
of spin in atomic vapors. Many of the lessons learned from these studies apply to the present re-
search because hyperfine coherences in alkalis are in fact coherences between different spin states.
For a definitive guide to the foundational work in atomic vapors, the reader should consult Happer’'s

review on optical pumping [91].
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6.1 EffectsResulting from Atomic Motion

6.1.1 Exodusfrom theInteraction Region

Inatypical vapor cell experiment, the control fields used to coherently prepare the atomsilluminate
only aportion of the cross section of the vapor. Sincethe atomsin ahot vapor have athermal velocity
distribution, atoms which have been coherently prepared eventually leave the interaction region;
meanwhile, atoms outside the interaction region, which generally have little or no coherence?, enter
the interaction region. This process leads to decay of the average coherence of the vapor in the
interaction region. More generally, if we characterize the illuminated atoms by an average density
matrix p, atomic motion contributestheterm —I'y,ans(p — p™) to dp/dt, where p™' isthe density
matrix of an (unprepared) atom from the reservoir of unilluminated atoms and I';;a,s iSthe inverse
of the characteristic transit time ¢.,.s (the length of time an atom spends in the interaction region).

The interaction time depends on the size of the interaction region, the mean speed of the atoms,

and the type of movement (ballistic or diffusive). The average speed is

8kpT
™

Sy
I

: (6.1)

where T is the vapor temperature in Kelvin, m is the atomic mass, and kg = 1.38 x 10723 J/K
is Boltzmann's constant. For sodium vapor, a typical operating temperature is 150°C. At this

temperature v = 622 m/s. The mean free path is

= (6.2)

where o is the collisional cross section of atoms in avapor and ' is the number density of atoms.
Kinematic cross sections for gases are on the order of 5 x 10715 cm? [93]. For a sodium density

N = 1.4x 10" cm—3, the mean free pathis! ~ 1500 cm, which is much larger than the interaction

! Atoms outside theinteraction region are subject to processes which decrease coherence and thermalize the popul ation
distribution. In particular, collisions with the wall of the container cause spin flips which destroy hyperfine and Zeeman
coherences. However, it is experimental lore that decoherence due to wall collisions can be drastically reduced by coating
the container walls with paraffin wax [92]. (This technique would not seem to be applicable to sodium vapor, which
reguires a moderately high operating temperature.) In such cases coherence is built up nearly uniformly throughout the
cell volume.
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region. Hence, at typical operating temperatures, a pure sodium vapor operates in the ballistic
regime. This means that the interaction time between an atom and beam of radius r = 1mm is
tirans S 21 /0 = 3 ps.

Theinteraction time can be increased by adding a buffer gas. When the mean free path becomes
small compared to the interaction region, the movement of atomsis diffusive with a diffusion con-
stant [89]

D~ —. (6.3)

For helium, V' = 3.3 x 10'% cm ™3 x P where P isthe pressure in torr. The total cross section for
vel ocity-changing collisions between helium and sodium has been measured to be 0.16 x 10717 cm?
[94]. The mean free path isthen I = (20P)~! cm, which is0.5mm at P = 1torr. This gives an
estimated diffusion coefficient of 1040 cm? /s - torr, which agrees with the results of more direct
measurements [95] to within experimental error. The interaction time is on the order of the time
it takes an atom to diffuse a distance r. Since the average distance an atom travelsin atime t is
~ v/Dt, wefind tirans ~ r2/D = 10 ps.

The decay constant I'y4,s Can be related to the diffusion constant by a simple argument: If a
group of atomsintially coversand area Ay, then after atime t the atoms are distributed over an area

of approximately Ay + Dt. Then the fraction of atomsin the original aree? is Ay /(Ao + Dt) or

1

f B 1 + 1_‘transt

(6.4)

where I'yans = D/Ay. (Rigorous analysis of the diffusive spreading of an initial Gaussian distribu-
tion validates eqn. (6.4) and yieldS I'yans = D /12 = 1/tirans.)

Since the density of the vapor is uniform at all times, every atom which leaves the interaction
region isreplaced by an atom from outside the interaction region. The atoms outside the interaction
region will have varying amounts of coherence, since some have just come from the interaction

region while others been outside the interaction region long enough to completely lose their coher-

2In the early studies of vapor relaxation (in the 1950's and 60's), experimenters tended to illuminate the entire cell. In
such cases, the relaxation curves were close to exponential, corresponding to the decay of the lowest-order eigensolution
of the diffusion equation. In the present work only the central portion of the cell is illuminated, and the eigenmode
decomposition is less useful.



CHAPTER 6 76

ence. Thus the rate at which the total coherence in the interaction region decays is related to, but
somewhat less than, D /r2. However, the decay is still described reasonably well by a function of
the form (6.4), as shown in Fig. 6.1. In the mathematical model which serves as the basis for the
numerical studies in this work (see Appendix D), the effect of diffusion is approximated by expo-
nential decay of the density matrix along with a compensating infusion of population in a thermal

distribution.

6.1.2 Grating Washout

The coherence that exists throughout a coherently prepared vapor may be thought of as a type of
grating. Such gratings can be associated with most wave mixing phenomena. A phenomenon which
affects gratings in atomic vaporsis “ grating washout.” Since the grating is formed by atoms which
arefreeto move, travel of atoms causes the grating to dissipate. In the case of a hyperfine coherence
grating, the washout occurs as atoms with opposite phases migrate to the same region. How fast the
grating decays depends directly on the rate of travel and inversely on the period of the grating. For

the hyperfine coherence grating formed by two copropagating fields, the period is

2T

A= .
k1 — ko

(6.5)

For afirst analysis, we may take k1 and ks to be the free-space wavenumbers, in which case A =
¢/(v1 — v2), wherev = w/(2m) = ¢/ . At the Raman resonance of sodium, vy — vo = 1772 MHz
which gives A = 17cm. In atypical vapor cell of 8 cm or less, the grating goes through at most
half a period over the length of the cell. Thus the majority of atoms have similar phases, and
complete washout is not even possible. However, even if many periods are contained within the
length of the cell, the period of the grating will certainly be much larger than the transverse extent
of the beam. Most atoms will leave the beam region before travelling half a grating period in
the longitudinal direction. Thus, grating washout with copropagating beams should be negligible

compared to decoherence due to exodus.
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Figure 6.1: Diffusion in a cylindrical volume of unit radius. The diffusant density represents the
local degree of coherent preparation. The boundary condition is that coherence is destroyed at
the outer boundary (radius = 1). (a) The intensity profile of the control fields and the equilibrium
distribution of coherence as afunction of radius. (b) The decay of the coherence in the illumination
region (solid line), along with a function of the form (6.4). The decay constant iS I'iyans = 18,
whereas asimple argument gives I'yans = D /72 = 100.
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6.1.3 Doppler Shifts

An atom sees a dightly different laser frequency when it is moving than when it is at rest. The
shift in frequency (the Doppler shift) is A, = k - v where k is the wavevector of the laser and

v isthe velocity of the atom. The distribution of velocities in any Cartesian dimension is g(v) =

exp[— % (v/vrms)?]/+/ 27 (vrms)? Where

Vrms = kB;T. (6.6)
For sodium atoms at 150 °C, vrms = 390 m/s. This corresponds to a root-mean-square frequency
shift Aps = (270/A)vms = 27 x 662 MHz for 589 nm wavelength light. The full width at half
maximum of g(v) is 1600 MHz, which is much larger than the splitting of the excited hyperfine
levels (189 MHz for 3P ;) but comparable to the frequency difference of the ground hyperfine
levels (1772 MHz).

If the frequency difference of the ground states in a Raman system is small compared to the
frequencies of the two driving fields, then the Raman transition is“ Doppler free”: both fields expe-
rience nearly equal Doppler shifts, so that the Doppler shift of the Raman frequency is negligible.
(This point will be examined further at the end of this section.) To good approximation, then, the
Doppler shift simply changes the value of the excited state detuning A. Let us consider the effect

this has on the induced absorption. At Raman resonance, the weak-field absorption rate is

1 1

absorptionrate o« ——5 ——.
P (XAQ—i—%QEl—I—s

(6.7)

We may write s in terms of theline center saturation sg ass = so/(1+A?). The Doppler-broadened

absorption rate is then

o 1

absorption rate oc / (A,) dA, (6.8)

—o0o (AO - AU)Q + 1+ SOg

where A is the normalized detuning for a stationary atom. This expression, the convolution of

a Lorentzian with a Gaussian, is known as the Voigt profile. Unfortunately it does not have a
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simple representation. However, if the width of the Lorentzian is much less than the width of
g(A,), then g(A,) can be approximated by its value at the peak of the Lorentzian. That is, if
VI F 50 < Ams/vE (= 132 for sodium in the absence of collisional broadening), then g(A,) ~

exp[—— ANo/Arms)?]/v/27A2 and

mg9(Ao)
1+ sg ’

Doppl er-broadened absorption rate o (6.9

The factor mg(Ay), which is approximately equal to v /Ams When Ay = 0, is the usua factor
associated with the broadening of aline; if the fields were mutually incoherent or tuned outside
the Raman line, the right-hand side of this expression would be just mg(Ay). The factor /T + s
describes the effect of Raman saturation. We see that, in the limit of weak to moderate Raman
saturation, the factor which reduces the absorption at Raman resonance is only the square root of
what it would be in the absence of Doppler broadening. Thus Doppler broadening can significantly
reduce the size of the transparency feature associated with coherent population trapping. If coherent
population trapping would reduce the absorption by afactor of 100 without Doppler broadening, the
reduction factor will be close to 10 when Doppler broadening is included. If the Raman saturation
is very large, so ~ (Arms/7E)?, Doppler broadening does not reduce the transparency quite so
much. Others [28,96] have calculated the height and width of EIT featuresin a Doppler-broadened
medium under various approximations.

The average coherence f p219(Ay) dA, may be calculated in a similar manner. However,
thisis often not the relevant measure of coherence in an experiment. For example, coherent Raman
scattering may be used to measure the coherence. In such cases, the coherence is weighted by an
additional factor which accounts for the resonance of the probe. Based on the discussion in §3.3,

the amplitude of the scattered field is

P21 1 50

CRSefficien = = )
Y X At A, +iAZ+ 1+

(6.10)

Here we have taken v, = g and supposed that the probe field and control fields are nominally
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resonant with their respective transitions in order to maximize the scattered field. Then

v — 1 S0 X

g(A,) dA,. (6.12)

* A
CRS€ffici _ _
cency O(/_OOA%,+1A3+1+SO

Again, we consider the typical situation in which the Doppler distribution is much wider than the

other resonant responses, replacing g(A,) with g(0). The term antisymmetric in A, vanishes,

leaving
- & S0 <
CRSefficiency o< g(0 / — — dA, 6.12
Y o g(0) oo (A2 4+ 1) (A2 4+ 1+ 59) 642
YE ™ S0
~ — 6.13
Arms \/;1 + S0 ( )

where the approximation is accurate for /1 + so > 1. Inthis case the factor s /(1 + so) which ac-
counts for Raman coherence is the same aswhat it would be at line center in the absence of Doppler
broadening. Thus the Raman scattering susceptibility is not proportional to the Doppler-averaged
coherence; but in a Doppler-broadened medium, the Raman scattering susceptibility is proportional
to the peak coherence and is reduced by the same line-broadening factor as the linear absorption.
This can be understood by arguing that the dominant contribution to the Raman scattering comes
from those atoms that are resonant with the probe; with the laser frequencies tuned as described
above, those atoms are a so resonant with the control fields.

Above it was argued that the residual Doppler shift of the Raman detuning ¢ is negligible. This

point will now be considered more closely. The Raman Doppler shiftis

by = (k; — ko) -+ v (6.14)

2
~ Av\/<”1 V ”2> + 02, (6.15)

where 615 is the angle between k; and ks. In general we may write 6, = Ay (Orms/Arms) Where

Orms = Arms(v1 — 12) /v1 ~ Ams(11 — 12) /12 1sthe width of the Raman Doppler distribution.

Now, the coherence at Raman resonance is proportiona to s/(1 + s) [egn. (3.6)]. Using the
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relation s = so/[1 + (Ay/7.)?], onefindsthat the value of A, at which the coherence dropsto 1/2

of its peak value (simply due to the reduced pumping rate) is

Ay = 5V T s0. (6.16)

At this value of optical detuning, the Raman linewidth [egn. (3.10)] iS dcoh = Yav/1 + so. Mean-

while, the residual Doppler shift which accompanies the optical shift A, is

5, = ( Orms > G (6.17)

Provided (6;ms/Arms) (Ve/7a) < 1,2 6, is much smaller than deon. That is, the Raman coherence
disappears entirely dueto the reduction in the optical pumping rate before the residual Doppler shift
exceeds the Raman line width.

Residual Doppler shifts, then, do not significantly diminish the height of a Doppler-weighted
Raman feature. Yet one might expect them to contribute noticeably to widths of such features. The
“transverse” component of the residual Doppler width is A,s612, which works out to 662 kHz per
milliradian. This contribution can be eliminated by very careful alignment of the control fields or by
use of a gpatid filter to ensure that the control fields occupy the same spatial mode. But even if the
fields are planar* and copropagating, the broadening associated with the “longitudinal” component
IS Apms(v1 — o) /v = 2.3kHz. Thus Doppler broadening would seem to rule out sub-kHz line
widths. Yet the data | will report in §7.2 describes Raman line widths of only a few hundred Hz.
Features as narrow as 42 Hz have been observed by others [97].

This paradox can be resolved by arguing that the total coherence is dominated by atomsin a
narrow velocity subclass. As discussed above, the coherence beginsto fal off at A, = yg+v/1 + so.
If this A, is smaller than A,.s, then the bandwidth of the coherence (i.e. the bandwidth of the

material oscillation) will be narrower than the residual Doppler distribution (Fig. 6.2). Furthermore,

3For the sodium D1 A system A, s /6rms = 2.8 x 10°, while vz /¢ istypically between 10 and 10° depending on
the experimental conditions.

4A focused beam has an angular bandwidth & ~ )/d where d is the beam diameter. The present framework would
then suggest that the Doppl er-broadened width of the Raman lineis dyms ~ vrmsf/A = vems/d. INntheregime of balistic
atomic motion, thisisjust the linewidth associated with the transit time through the illumination region. But if the field
is planar, the angular bandwidth vanishes along with the associated contribution to the residual Doppler shift.
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Figure 6.2: The Doppler (Maxwell) distribution, the frequency dependence of the coherence, and
the resonant response to a probe field, shown as functions of the optical and Raman Doppler shifts.
The spectral distribution of an experimental coherence signal is typically the product of al three
functions. Hence the bandwidth of the coherence can be much less than the width of the Raman
Doppler distribution.

if the coherence is measured via an optically resonant interaction (e.g. coherent Raman scattering),
then the signal is dominated by those atoms which are resonant with the probe, i.e. by atoms whose
velocitiesyield Doppler shifts|A,| < vg. Therefore the effective width of the Doppler distribution
is vg, and the effective width of the Raman Doppler distribution is vz (0rms/Arms) = 17Hz. In
most experiments, this value is much smaller than the dominant contribution to the Raman line
width. Thus we again find that residual Doppler broadening of the Raman line can be ignored (if

the experiment is properly designed).

6.2 Interactions Between Atoms

The atoms in avapor are not isolated; they interact via collisions and longer-range forces (e.g. van
der Waals forces) to a degree that increases with number density. They also interact with the walls
of their container. These interactions are responsiblefor agreat variety of effects. Broadly speaking,

these effects can be categorized as either elastic (kinematic) or inelastic (producing a change in the
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internal state of an atom). The latter type generally result in relaxation of the atomic state. Processes
of thistype can be modelled by identifying an interaction Hamiltonian, determining the evolution of
the atomic state for a given set of collision parameters, then averaging the effects of many random
collisions (i.e. over the space of possible collision parameters) to obtain the average change to
the density matrix. Some of the more important effects resulting from atom-atom interactions are
summarized below.

Diffusion. Asdiscussed in §6.1.1, collisions limit the movement of atoms and thereby increase
the time atoms remain in the beam region.

Velocity Diffusion. Collisions cause atoms to change velocities, resulting in sudden changes
to the Doppler shift an atom experiences. Since only resonant atoms are effectively pumped and
probed by the fields, velocity-changing collisions limit the average time an atom interacts with the
fields. If the time between collisions is shorter than the response time of the atom, an atom will be
knocked off resonance before the atom has time to determine whether or not the field is resonant—
before the coherence hastime to build up. Velocity-changing collisions can measurably increase the
effective ground state relaxation rate [98]. Optical coherences are affected far less, since they have
much shorter lifetimes than Raman coherences.

Spin relaxation. In §5.4.3 we saw that ground state coherences in akalis involve nuclear and
electron spins. Any process that randomizes the orientation of spin will therefore cause relaxation
of hyperfine and Zeeman coherences. Such processes include spin-exchange (in which spins of like
atoms interact) and spin-orbit interactions (coupling between the spin of one atom and the field of
another atom’s orbiting electron). The cross section for spin exchange between sodium atoms is
10~ cm?. The cross section for spin-orbit relaxation of sodium ground states in helium is on the
order of 10726 cm? [95]. Theselead to relaxationrates ~ 6x 10~ Hz cm?® A and ~ 1075 Hz/torr,
respectively. For realistic experimental conditions, say ' = 2 x 10 cm=2 and 1 torr of helium,
these rates are negligible. Collisions with the walls of the container strongly disturb the electronic
spin, and in fact it is often the case that the spin is completely randomized by a single collision.
However, it is known among vapor physicists that coating the walls with paraffin wax can almost

completely eliminate spin relaxation in wall collisions. This approach does not appear to be viable
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for sodium since moderately high temperatures (150 °C) are required to produce a sufficient number
density for most experiments.

Pressure broadening. The excited states of akali atoms are less tightly bound than the ground
states and are much more strongly affected by the forces which act during a collision. Effects such
as disorientation of the electronic and nuclear spins, transitions between states of different .J or F,
and dephasing of excited states become relevant at pressures on the order of 1 torr. The net result
is that the lifetime of optical coherences (coherences between excited states and ground states) is
decreased; correspondingly, the spectral line is broadened. A vapor may be self-broadened, but
pressure broadening can also occur as aresult of interaction with aforeign gas. Whatever the cause,
the (half) width of the spectra line typicaly goes as vg = %FE + 6P where P is the pressure
of the broadening gas and ( is the broadening coefficient. In most of my experiments, a helium
buffer gas was the dominant perturber. At atypical vapor temperature of 150°C, the broadening
coefficient for the FWHM of the sodium 3P, /, level is 3.9 x 1072 cm® rad /s [99], which translates
to 5 = 10 MHz/torr.

As pressure broadening is an excited state phenomenon, it does not directly affect ground state
coherences. However, an increase in the optical linewidth results in a decrease in the optical pump-
ing rate [cf. egn. (2.4)], which reduces the steady dark state population. Therefore pressure broad-
ening is a hindrance to coherent population trapping.

Quenching. In a collision between an atom and a molecule of a foreign gas, the atom may
transfer energy to the molecule and de-excite without emitting a photon; fluorescence of the atomis
quenched. Quenching could conceivably help (or hinder) coherent population trapping by causing
the atom to de-excite to a superposition of ground states with the right (or wrong) sign; but coherent
de-excitation with preferential sign seems unlikely. It is more likely that quenching hinders coher-
ent preparation by decreasing the excited state lifetime, which increases the optical linewidth and
reduces the optical pumping rate.

Quenching is common with molecular perturbers; nitrogen (N-), for example, is known to be
very effective in quenching alkali vapors. Inert atoms, on the other hand, have fewer channels for

energy transfer and generally have extremely low quenching cross sections. Most of my experiments
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were performed with a helium buffer gas, so in principle quenching should not occur. But even in
those experiments in which nitrogen buffer gas was used, the effect on coherent preparation was
dight. Thus| conclude that quenching was not an important processin any of my experiments.
Radiation Trapping. If the absorption length is smaller than the extent of the vapor, then the
resonant fluorescence is likely to be absorbed and re-emitted many times before it |eaves the vapor.
The fluorescence builds up to form a background of incoherent® radiation which can be seen as
a diffuse glow surrounding the illuminated part of the vapor. If the vapor is dense enough, this
background can become intense enough that the rate at which it optically pumps population out of
adark state is non-negligible. Thus radiation trapping is capable of hindering coherent population
trapping. A recent experiment [100] in rubidium vapor, involving a geometry similar to that of my
experiments, indicates that radiation trapping can make a significant contribution to the ground state
relaxation rate at number densities ~ 10'2 cm 3. Although the number density in my experiments
iscloser to 10! cm ™3, the critical number density depends on enough experimental parameters that
radiation trapping cannot be summarily dismissed. An experimental investigation of the effect of

radiation trapping in our setup would be a prime candidate for future work.

6.3 Consderations Associated with Propagation

In anonlinear medium, both the fields and the optical properties of the medium can vary in compli-
cated ways throughout the course of propagation. One could imagine that the fields which prepare
the medium in the desired way at the input evolve in such away that after some distance they no
longer produce the desired material state. | now consider some potentially relevant aspects of spatial
evolution.

Attenuation of the control fields. In an ideal situation, absorption would be very large in the
absence of coherent preparation and negligibly small when the vapor is coherently prepared. In
many experiments, including my own, coherent preparation does not lead to compl ete transparency.

Often the control fields are significantly weaker at the exit of the vapor than the input; therefore the

SSpontaneously emitted light is often called incoherent, which is true in the sense that the light has no definite phase.
However, it should not be forgotten that spontaneous emission is the result of coherent evolution of the state of joint
system consisting of the atom(s) and electromagnetic continuum.
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degree of coherent population trapping varies along the length of the vapor, being largest at the input
and smallest at the exit. According to the 3-state model, a coherently prepared medium acts like a
simple saturable absorber with a low saturation intensity, allowing one to qualitatively understand
the evolution of the fields. The ground state coherence and Raman scattering susceptibility will
decrease with distance, to the point that absorption of the probe and signal may dominate over
Raman scattering.

Intensity Divergence. Propagation may aso cause the control fields to become highly imbal-
anced. An asymmetry in the input intensities or line strengths will cause one field to be absorbed
more than the other. Propagation only exaggerates this difference since the weaker afield becomes,
the less it saturates its corresponding transition and the larger its absorption coefficient becomes.
Thus the tendency isto end up with one strong field and one weak field. If this occurs under coher-
ent trapping conditions, then the hyperfine coherence will decrease with propagation distance asthe
hyperfine popul ations become more and more imbal anced.

The Kerr Effect. The refractive index experienced by either control field will depend on the
intensity of both fields. A Gaussian beam can undergo self-focusing or self-defocusing because
the intensity-dependent refractive index varies from the center to the edge of the beam. In my
experiments, the vapor density and beam power are too low and the beam diameter is too large
for self-focusing to be significant. Even so, one might imagine that the different phase shifts ex-
perienced by different parts of the beam could lead to problems associated with transverse phase
dependence (see the discussion “transverse uniformity” in the next section). However, the Kerr ef-
fect should be unimportant for a couple of reasons. Firstly, most of the experiments are performed
at line center, where the susceptibility is ailmost completely imaginary (absorptive rather than dis-
persive). Secondly, both fields will acquire similar if not the same phase shifts in the case that they
have the same intensities. Thus the relative phase variation (which is what determines the phase of
the dark state) should be quite small.

Wave mixing. A pair of intense fields can undergo wave mixing in many types of nonlinear
media. When population trapping enhances the quantum coherence, wave mixing can occur with

even greater efficiency. For example, in §7.3 | show data in which four-wave mixing induced by
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coherent population trapping causes power transfer from one control field to the other. The larger
the ground hyperfine splitting, the further this processis from resonance and the smaller the suscep-
tibility. Hence four-wave mixing of the control fieldsis amost certainly negligible in atoms such as
Rubidium, for which the ground hyperfine splitting is much larger than the Doppler width. But even
in sodium, the mixing process is found to be conservative and sufficiently weak that it has little to
no impact on coherent population trapping (see §7.3).

Coherent Raman scattering is, of course, aso a wave mixing process. The analysis of §3.3
ignores the fact that the probe and signal fields affect the dark state. This interaction does not
necessarily prevent coherent population trapping [38]; nevertheless, in my experiments, the probe
was kept much weaker than the control fields to the extent that it had little to no observable effect
on the degree of electromagnetically induced transparency.

Phase-matching. Wave mixing processes are subject to phase matching criteria: if momentum
is not conserved in a multiphoton transition, i.e. if the wavevectors of the fields do not sum to zero,
then the sign of the nonlinear process will oscillate with distance, resulting in little net change in
the fields. Some processes are automatically phasematched. EIT is one such process. since the
phase of the dark state is determined at each point by the fields themselves, the wavevector of the
dark state exactly makes up for the difference in the wavevectors of the fields. (However, the dark
state grating is subject to washout, §6.1.2.) Coherent Raman scattering will be phase-matched if the
difference in probe and signal wavevectors matches that of the control fields. In my experiments,
the control fields are so similar in frequency (as are the probe and signal fields) that the reciprocal
of the wavevector mismatch is larger than the length of the cell. Thus for both fundamental and
technical reasons, phasematching is not a concern.

Nonlinear absorption. In a saturable absorber, the light intensity decreases linearly for inten-
sities far above the saturation intensity, and only decays exponentially well below the saturation
intensity. This does not present a physical problem, but it does make analysis more difficult. Even
for straightforward saturation of the form (1 + I/Is,) ", the evolution of the intensity is mathe-
matically nontrivial (the solution is a transcendental equation). In a medium such as sodium vapor,

in which the saturation does not follow a simple form (cf. Fig. 5.7), it is very difficult to solve
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the “inverse problem”—i.e., to use the transmittance to obtain an accurate determination of the in-
tensity (or intensity-dependent absorption coefficient) at an arbitrary point within the vapor. One
must numerically propagate the beam, adjusting the (possibly many) parameters of the medium in
order to obtain afit to the measured transmittance. A calculation of the transmission spectrum may
take from hours to days depending on the sophistication of the physical model. In lieu of lengthy
calculations, one must rely on intuition built upon idealized mediato close the gap between theory

and experiment.

6.4 Technical Considerations

Besides complications arising from fundamental physics, there are complications associated with
the practical realities of implementing an experiment.

Polarization control. In my experiments, the control fields are intended to be cross polarized.
There are several placesin the optical train where the polarization may be corrupted. First, the two
control fields are combined at a polarizing beamsplitter and coupled into a polarization-maintaining
fiber. The beam splitter ensures that the two components entering the fiber are perpendicular to a
very high degree (extinction ratio of several thousand to 1). If the axis of the fiber is not aligned to
the fields, the polarizations of the fields will be scrambled. Some residual polarization mixing also
occurs in propagation through the fiber. The measured polarization purity of the light exiting the
fiber (defined as power in the desired polarization divided by the power in the undesired polariza-
tion) was on the order of 2000 and was subject to both thermal drift and mechanical stress (i.e. it
depended on the exact way in which the fiber was coiled).

The second potential cause of polarization mixing is the birefringence of the windows on the
cell containing the sodium vapor. If the crystal axes of the windows are not aligned to the field
polarizations, then polarization mixing will result. When the cell was built, the entrance and exit
windows were aligned with a laser to minimize polarization mixing. In the end, the polarization
purity of the entire optical train varied in the range 300-1500.

The effect of polarization rotation or scrambling on coherent population trapping may be esti-

mated as follows. In the worst case, the unwanted polarization components act as incoherent pump
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fields. Thus they increase the effective relaxation rate by R/ P, where P is the polarization purity.
This means the Raman saturation parameter is limited to R/(y¢ + R/P) < P. A saturation pa
rameter of P ~ 500 is large enough to achieve strong coherent trapping. This analysis is overly
conservative, however. Asdiscussed in §5.4.4, even the “wrong” kind of input polarization (parallel
polarized fields) produces some degree of coherent preparation. Thus| do not expect small amounts
of polarization mixing to have any significant effect on coherent population trapping in a sodium
vapor, although thisis apoint which could be explored further.

Transver se uniformity. If the control fields do not have the same transverse dependence, the
phase of the dark state (i.e. the phase of the hyperfine coherences) may vary across the diameter of
the beams. Movement of an atom across the beam diameter will cause adecay of the net coherence
of the vapor, much like grating washout. By having both fields pass through a spatial filter (such
as a single mode fiber), their transverse modes are guaranteed to be identical as they enter the
cell. But since one field sees the ordinary refractive index of the window while the other sees the
extraordinary index, the relative phase of the two fields depends on the thickness of the window. A
wedged or otherwise non-uniform window will result in a variation in relative phase of the fields
and of the dark state across the diameter of the beam. By examining interference fringes formed
by the Fresnel reflections at each surface, | observed that both input and output windows had slight
wedges. The input window was measured to have a wedge of 7 waves per transverse centimeter.
Since the ordinary and extraordinary refractive indices of the sapphire differ by only 0.5%, acrossa
0.4 cm diameter beam the relative phase of the control fields varies by only 0.005 x 7 x 0.4 = 0.01
waves. Thusfor all purposes the phase of the dark state is the same across the beam diameter.

Transverse spatial dependence should not be ignored, though, even when it is the same for both
fields. Consider the typical situation that the fields have a Gaussian profile. Atoms near the center
of the beam see the most intense fields and are most strongly coherently prepared; atoms in the
periphery experience weaker fields and are less completely pumped into trap states. Diffusion is
expected to smooth out spatial variations in the average atomic state to some extent; nevertheless,
both the degree of electromagnetically induced transparency and Raman susceptibility are likely to

vary over the beam area. Any measurement that collects the entirety of a beam exiting the vapor
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must be regarded as a weighted average of beamlets that experienced different optical properties.

Phase and Frequency Stability of the Control Fields. The relative phase of the control fields
iISpr = ¢2 — ¢1 + 27 (12 — 11)t, Where ¢y 5 isthe phase of control field 1,2. If ¢ isnot constant in
time, the phase of the dark state will be continually changing and the coherent population trapping
will be less complete than it would otherwise. The impact of tempora phase fluctuation can be
estimated using the Bloch vector model. In this model, fluctuation in the relative phase of the
control fields appears as fluctuation in the polar angle of the pumping vector R. To lowest order in
the dark state phase slip ® = arg(p21) — ¢r + 7, the time-averaged coherence and absorption are,
foré =0,

R s —
D07 = — = — 6] 6.18
P21 <R+’7G) 1 +Scos ( )

ﬁ'ﬁ _1+s(1—cos<1>)
R+v¢ 1+s '

absorption oc 1 — (6.19)

where~~~ denotes an average over time. For afield phasefluctuation of theform ¢r = ¢rax sin wyt,

it can be shown that cos @ ~ Jo(Ppax) Where @y = (w(ﬁ/\/w?b + (R + yg)2) Gmax. FOr
cos ® = 0.9, the coherence cannot exceed 90% of the maximal value, and the absorption can never
be reduced more than 90%. Clearly, phase fluctuations have an adverse effect.

Control fields with a stable relative phase can be formed using two frequency- and phase-locked
lasers, or by deriving both control fieldsfrom asinglelaser and amodulator. Of course, in either case
the driving electronics must be stable. In our experimental setup the Raman beat note is obtained
by the use of several frequency-shifting modulators. Unfortunately, we discovered that the drivers
for some of the modulators possess a 300 kHz phase modulation, causing the phase of one control
field to vary sinusoidally with an amplitude of 1.2rad. This modulation visibly broadened the
Raman spectra. The simulation results shown in Fig. 6.3 indicate that the modulation was severe
enough to hinder EIT in some experiments. However, | did perform one experiment using adifferent
configuration which was free of the phase modulation, and found in that particular casethat EIT was
not noticeably improved.

Stray magnetic fields. Asdiscussed in sections 5.3.3, 5.4.3, and 5.5.2, magnetic fields cause
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Figure 6.3: The adverse effect of fluctuation (or in this case, modulation) of the relative phase of
the control fields on EIT and CRS. (a) In this simulation the average absorption is nearly twice
as large with phase modulation than without it. (b) Although the magnitude (dashed line) of the
hyperfine coherenceishardly affected, the phase (solid line) varieswith that of the control field. This
phase variation will be imparted to any field generated by coherent Raman scattering. Parameters:
iy = Q9 = 25 MHz, A = 189 MHz, 6 = 0, B, = 4G, helium pressure 3 torr (I'y = 0.5 kHz,
ve = 3kHz, v = 35 kHz), and phase modulation ¢z = 0.64 sin[27(300 kHz)¢].
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level shifts and transitions between ground states. While a strong, spatially uniform, longitudinal
field can be useful for isolating the m = 0 dark state, weak and/or non-uniform fields broaden the
dark state resonance (via dark state decay or inhomogeneous level shifts). There is also atype of
relaxation associated with maotion through a spatially varying field, whose rate is proportiona to
the gradient of the field and the atom velocity [91]. In any case, spurious magnetic fields hinder
coherent population trapping. According to Table B.3, the magnetic field interaction energies for
the sodium 35, , states are on the order of 1 MHz/G. Thus, avapor with aground state relaxation
rate v¢ = 10kHz will be affected by fields as weak as 10 mG. Our magnetometers were not
sensitive enough to measure such fields. However, it was found that wrapping a sheet of high
permeability metal around the vapor cell noticeably narrowed the dark state resonances. Due to the
awkward geometry of the vapor cell apparatus and the lack of sufficiently sensitive magnetometers,
the strength of stray magnetic fields in the interior of the vapor cell islargely unknown. However,
the effects of stray fields are manifest in the net relaxation rate of the vapor. In §7.2 | will present
datawhich shows that we were able achieve ground state rel axation rates as small as several hundred
Hz, which indicates that stray magnetic fields were not alimiting factor.

Fresnel reflections. Reflections at the back window surface produce counterpropagating fields
that interfere with the control fields. At low to modest vapor densities, the refractive index of the
vapor is close to unity, meaning that the field reflection coefficient isjust r = (n—1)/(n+1) where
n isthe index of the window. For sapphire windows (n = 1.75), » = 0.27, which is not negligibly
small. Since both control fields experience the same reflection coefficient, and both fields have
approximately the same wavevector, the relative phase of the reflected fields is the same as that of
the incident control fields. Thus although a longitudinal grating is formed, both fields experience
the same interference pattern in both phase and amplitude, Hence the optical grating does not lead
to a dark state spatial grating. Wave mixing processes are also unlikely to develop because any
atomic grating which does form has a very high spatial frequency and is subject to severe grating
washout. If there remains any doubt about the influence of reflections, the overlap between incident
and reflected fields can be greatly reduced by tilting the beam axis relative to the window normals.

Vapor Impurities. It has been noted that unless great care is taken, a vapor cell typicaly
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contains enough impurities to dramatically alter the vapor’s optical and spin relaxation rates [101].
The vacuum system | used is functional, but not ideal or well characterized. The vacuum station
itself could reach pressures between 10~ and 10~ torr, but the station was removed from the cell
by two meters of tubing. Owing to the restriction of flow this creates, the background pressure in
the cell was likely higher. Additionally, the system contained aline to backfill the cell with an inert
buffer gas, such ashelium. Thisline was made of copper tubing, whose joints are known not to hold
high vacuum. | was also unable to obtain impurity data for the buffer gases | used. In al, vapor

purity isthe least well characterized aspect of my experiments.

6.5 Simulation of Coherent Preparation of Sodium Vapor

A model which takes into account al the physics just discussed would be intractable as well as
unnecessarily complicated, sincel have argued that many of the complications can safely beignored.
Complications which certainly need to be included are atom transit, Doppler shifts, and collisional

broadening of the excited states. A very complete model would yield the set of equations

d ] / /

Ep(rﬂ)) = —%[H(I‘), P] - F(p)+DV2p — Tvee |:P - / W v’—wp(rv v )dv (620)
d N
L Er2) = 1%%(/@/}) (6.21)

together with appropriate boundary conditions. Here p isthe density matrix, E istheeectricfield, r
is position, v islongitudinal velocity, H is the Hamiltonian describing interaction between an atom
and electric and magnetic fields, I is term which accounts for spontaneous emission and other state-
randomizing forms of relaxation (see egn. (C.33) and §D.2), DV? accounts for diffusion, vy is
the rate of velocity-changing collisions, and W .., describes the nature of velocity redistribution
in a collision. Analytically solving egn. (6.20) alone, much less together with egn. (6.21), is all
but impossible; even numerical solution is rather imposing. One is therefore motivated to seek
reasonable simplifications. The transverse spatia dependence may be eliminated mathematically,
as it is experimentally, by performing an intensity-weighted spatial average. In the case that wall

collisions and other influences outside the illumination region completely thermalize the atomic
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state, one may approximately account for diffusion by causing the spatially averaged density matrix
p to decay and be replaced by the thermal equilibrium state 5°@" at some rate ' which is on the
order of the transit rate I'y;ans. Similarly, one can account for velocity changes by integrating over
the velocity probability distribution and adding ++.. to the appropriate decoherence rate parameters.
For greater accuracy, the total effective relaxation rates may be obtained from experiment. By
aternately solving egns. (6.20) and (6.21), one may determine the longitudinal evolution of the
fields and the ensemble density matrix. | have developed a set of computer routines to perform this
task. Additional details of the model and its numerical implementation are given in Appendix D.
Figs. 6.4 and 6.5 show the results of simulation of coherent population trapping in sodium
vapor with 3 torr of helium and alongitudinal magnetic field of 4 G. The control fields were taken
to be 10 mW Gaussian beams of radius r = 1 mm. The average nominal Rabi frequencies are
then 1, = 9, = 25MHz and the relaxation coefficients are I'¢ = 0.5kHz, 7¢ = 3kHz,
and v = 35 MHz (see Fig. 7.6). These are the conditions of some of the experiments discussed
in chapter 7. This calculation ignores four-wave mixing of the control fields, laser instabilities,
inhomogeneous stray magnetic fields, vapor impurities, and the influence of extraneous optical
fields (“wrong” polarization components and resonance fluorescence). Fig. 6.4 shows the two-
field absorption spectrum of the D1 line when tuned to the Raman resonance and when tuned away
from the Raman resonance. Both fields experience a significant reduction of absorption due to
coherent population trapping. At the center of the Doppler-broadened D1 line (A = 95 MHz), three
absorption dips are visible corresponding to the m = —1,0, 1 dark states discussed in Chapter 5
(Fig. 6.5). The absorption of both fields is reduced by a factor of 7 at the m = 0 Raman resonance
(6 = 0). The full-width-half-max of this absorption dip is 1 MHz, which can be attributed almost
wholly to power broadening®. The average coherences between pairs of ground states with m =
—1,0,1 are shown in Fig. 6.5b. The Doppler-averaged m = 0 coherence islargest at 0.2i. Since
it is found that the atoms resonant with the fields have maximal coherence (0.57), we may say that

about 40% of the atoms are coherently prepared.

®Based on the analysis in §3.1, the half-linewidth may be interpreted as effective pumping rate R. Then egn. (6.9)
predicts the resonant absorption reduction to be (1 + s0)'/? = (1 + R/y¢)/? ~ 11, avaue which is not in bad
agreement with the result of the full calculation.
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Figure 6.4: Simulation of EIT in a sodium vapor with helium buffer gas. The Doppler-broadened
absorption spectraof both fields are significantly reduced at the Raman resonance (6 = 0) asaresult
of coherent population trapping. Parameters: €2, = o, = 25MHz, beam radius » = 1 mm,
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Figure 6.6: Spatial evolution of the control fields (a) and coherent Raman scattering signal (b). The
number density isA = 2 x 10 cm~3; the other calculation parameters are the same as those in
the previous figures. (@) The attenuation of the control fields is significantly reduced at the Raman
resonance (6 = 0). Inthe off-resonant case, theinequality of line strengthsforthe F = 1 and F' = 2
hyperfine transitions causes intensity divergence. (b) Generation of a coherent Raman signal viaD2
transitions. When all four fields are tuned to the centers of their respective lines, Raman generation
is overcome by absorption (dashed line). When the fields are tuned to the red side of the D1 and D2
lines, the Raman signal emerges with a maximum of 4% of the input probe power.

The model predictsthat the attenuation of the fieldsis significantly reduced at the central Raman
resonance (Fig. 6.6a). For this calculation the number density was takento be V' = 2 x 10! cm 3.
The calculation also shows intensity divergence in the Raman-detuned case; the fact that F7 = 2
states are more strongly coupled than F' = 1 states causes (25, to be attenuated much faster than
Q.

At § = 0, the (non-normalized) Raman scattering susceptibility is y1o = (0.4 + 4i) x 1076,
while the self- (single-field) susceptibilitiesare x1; = (—0.3 4 9i) x 1076 and y22 = (0.1 + 10i) x
1075, These numbers are obtained when, for zero-velocity atoms, the control fields are resonant
with the 3P, 5, ' = 2 level and the probe field is resonant with the 3P; 5, F" = 2 level. The
Raman susceptibility isless than half the self susceptibilities, but not because the coherence is not
maximal; rather, it is because there are more and/or larger non-vanishing matrix elements for the

single-field processes than the Raman process. An 8-cm long vapor is about 8 times the absorption
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length for the probe and signal fields. Over this many absorption lengths, the Raman scattering
becomes overwhelmed by resonant absorption so that almost no signal field emerges from the vapor.
However, by tuning both the control fields and the probe fields about 1 GHz to the red side of the
D1 and D2 lines, respectively, the signal power peaks at the end of the vapor’, reaching about 4%
of the input probe power (Fig. 6.6b). This conversion efficiency is reasonably large compared to
many other wave mixing processes, but is much smaller than one might have expected given that

the participating atoms have maximal coherence.

6.6 Summary

In this chapter | considered a great variety of physical phenomena which have the potentia to
affect coherent preparation of a vapor such as sodium. Doppler shifts and transit of atoms through
the illumination region are perhaps the two most significant of these phenomena. Doppler shifts
broaden the optical resonances, but are found to have a minimal effect on the width of Raman
resonances provided that the fields are copropagating and not tightly focused. Raman line widths
of 10’s of Hz are possible in principle. Nevertheless, the broadening of the optical line reduces the
effective rate of optical pumping into the dark state, such that the amount of electromagnetically
induced transparency is only the square root of what it would be without Doppler broadening. The
effective coherence of the vapor for resonant Raman scattering is not reduced, although the Raman
susceptibility is reduced by the same line-broadening factor as the linear susceptibility.

Atom transit may be balistic or diffusive. In either case, the average atomic density matrix
of the illuminated part of the vapor contains contributions from atoms with different histories. The
interplay between transport, velocity randomization, and the quantum state evol ution makesrealistic
simulation numerically challenging. Transit effects may be accounted for in an approximate way by
adding relaxation terms with appropriate coefficients to the equation of motion of the atomic density

matrix.

"In calculating the spatial evolution of the probe and signal fields, the influence of the probe and signal fields on the
coherent population trapping was neglected. Also, the spatial evolution of the dark state was ignored as it was found to
change little over the course of propagation.
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Collisions also play amajor rolein vapor physics, producing velocity changes, level shifts, and
relaxation of both optical and Raman (spin) coherences. While collisiona relaxation of the ground
statesisnegligiblefor thealkali and inert gas densitiestypical of my experiments, collisionsstrongly
affect excited states. The collisional effect most relevant to coherent population trapping is pressure
broadening of the optical line, which results in areduced trapping rate.

The experimentalist must also take care to control the stability and uniformity of the optical
and magnetic fields. Fluctuations in the relative phase or frequency of the control fields effec-
tively broaden the Raman line, reducing the maximum coherence that can be produced. Fluctuating
or spatially varying magnetic fields can have a similar effect, although a strong longitudinal field
can help isolate Raman resonances with different magnetic numbers. It is very important that the
control fields have the same spatial profiles, particularly that they have the same transverse phase
dependence; otherwise, Raman coherences will rapidly decay in the manner of grating washout.

Wave mixing and saturation complicate attempts at coherent preparation in that the control fields
may attenuate at different rates and new frequency components may be generated which directly
interact with the dark states and remove or transfer power between the control fields. If the vapor is
optically thick, the state in which the vapor is prepared may vary with propagation distance.

Coherent preparation of avapor under realistic conditions was studied with several calculations.
The calculations predict that nearly half the atoms in the illumination region can be prepared with
maximum hyperfine coherence using 10-milliwatt, collimated control fields and afew torr of buffer
gas. This produces asignificant but not overwhelming degree of electromagnetically induced trans-
parency (reduction of the absorption by a factor of 7). While the coherence for Raman scattering
through the D2 states is maximal, more states effectively participate in absorption than in Raman
scattering, causing Raman scattering to be dominated by absorption when al fields are tuned to line
center. In a vapor which is on the order of eight (resonant) absorption lengths, a maximum con-
version efficiency of 4% is predicted. Ultimately, the feasibility of coherently preparing a sodium
vapor in a useful way seemsto be limited more by the structure of sodium itself than complications

arising from vapor physics.
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Chapter 7

Experimental Studies of Coherencein

Sodium Vapor

This chapter details my experimental studies of ground state coherence in sodium vapor. The first
section describes the equipment and optical layout used to perform all the experimental studies.
Section 7.2 investigates relaxation, which competes with optical pumping and limits the degree of
coherence that can be obtained. In §7.3, the effect of coherence on the optical properties of the vapor
isexamined. Finally, the use of coherenceto perform signal frequency conversionisdemonstratedin
§7.4. Broadly speaking, the experimental studies show that coherent population trapping in sodium
vapor results in distinctive and potentially useful coherent optical effects. In particular, hyperfine
coherence was used to transfer amplitude and phase signals from one wavelength to another with
excellent fidelity. Nevertheless, the signatures of coherence were smaller than expected, indicating

that attempts at coherent preparation were only partially successful.

7.1 The Experimental Setup

Fig. 7.1 shows the setup used to create and characterize ground state coherence in sodium vapor.
The primary equipment consisted of : two Coherent 699 ring dye lasers, each able to produce several

hundred mW of narrow band (~ 10 MHz) radiation; a Burleigh 4500 wavemeter having a precision
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of 10~*nm (100 MHz) and an accuracy of 10~2 nm (1 GHz); a Brimrose acousto-optic modul ator
with a computer-tunable frequency between 1.5 and 2.0 GHz; severa 1somet acousto-optic mod-
ulators with center frequencies of 80 MHz and bandwidths of 15 MHz; a few silicon detectors; a
balanced detector with saturation intensity of 2mW and bandwidth of 600 MHz; a photomulti-
plier tube (PMT); a300 MHz digital oscilloscope; a 1.8 GHz spectrum analyzer; and an 8 cm long,
stainless-stedl sodium cell built by myself (Fig. 7.2). The sodium vapor was produced by heating
approximately 1 g of bulk sodium to a temperature between 150 °C and 200 °C depending on the
desired number density. The heating was accomplished using several loops of fiberglass heating
tape. The temperature was monitored by several type-E thermocouple wires placed in direct contact
with the cell at variouslocations. The entire cell was surrounded with fiberglassinsulation. A metal
valve connected the cell to a vacuum system which allowed the cell to be evacuated as needed but
also to be filled with various buffer gases. The vacuum system regularly reached pressures of 10~°
torr. The ends of the cell were fitted with sapphire windows, chosen because of their resistance to
corrosiont. The c-axis of the sapphire was in the plane of the window. The windows were carefully
oriented such that the crystal axes were aligned with the polarizations of the fields, thereby mini-
mizing birefringent effects. The cell itself was surrounded by a cylinder of high permeability metal
to minimize stray magnetic fields and to align any residual fields along the axis of the cell (the z
axis). A pair of Helmholtz coils placed near the ends of the mu-metal casing were sometimes used
to produce alongitudinal magnetic field within the cell.

Dye laser #1 was used to create quantum coherence between the £/ = 1 and F' = 2 hyperfine
levels of the 35, /, level. It supplied two control fields, linearly and orthogonally polarized, nomi-
nally tuned to the D1 line (35; 2 — 3Py /2, 589.8 nm), but differing in frequency by the hyperfine
splitting of the 35, , level (1772 MHZ). The light first passed through one of the acousto-optic
modulators (MOD1) which allowed the control fieldsto be intensity modulated. Approximately 1/3

of the light was double-passed? through a second Isomet module (MOD?2) whose frequency could

!Due to the highly reactive nature of sodium, ordinary glass will darken after a few days of exposure to a sodium
vapor.

2The reflective double pass geometry allowed the frequency of the beam to be shifted without changing its direction.
In the single pass geometry, the dependance of spatial mode on RF frequency resulted in unacceptably large variation in
the amount of power coupled into the fiber.
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Figure 7.1. A schematic of the experimental setup. For the frequency conversion experiments, the
probe and signal field amplitudes were measured using bal anced heterodyne detection. For the other
experiments, the probe and signal were detected directly. Notation: PBS = polarizing beamsplitter;
A/2 (\/4) = hdf-wave (quarter-wave) plate; S = silicon detector; PMT = photomultiplier tube;
MOD = acoustooptic modulator; AM = amplitude modulation; FM = frequency modulation; LO =
local oscillator.
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Figure 7.2: The experimental apparatus. (a) Lasers and modulators. (b) The vacuum system. (c)
Detection. (d) The sodium cell. (Yes, those are soda cans. Cut in half, they make good non-
magnetic, non-flammable end casings.)
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be controlled by avoltage from a function generator. MOD2 provided atotal shift of 160 + 6 MHz,
where |§| < 4 MHz. Theremaining 2/3 of thelight passed through the Brimrose modul ator (MOD?3)
which provided afixed frequency shift of —1612 MHz. These two fields were combined at a polar-
izing beamsplitter and coupled (with atypical efficiency of 45%) into a single-mode, polarization-
maintaining optical fiber. Thelight exiting the fiber was collimated (at adiameter of 2 mm) by a5x
objective and directed into the sodium cell. The fiber functioned as a spatia filter which not only
produced a smooth Gaussian input to the cell, but (more importantly) ensured that the control fields
had identical spatial modes.

Dye laser #2 provided both a probe beam to scatter off the hyperfine coherence and areference
for heterodyne detection of the scattered field. The probe component was passed through a fourth
modulator (MOD4) which provided either amplitude or frequency modulation of the probe, depend-
ing on the experiment. This laser was tuned to the D2 line (35, /, — 3P3/2, 589.2nm) so that the
probe interacted with the 3.5, /, coherence but was spectrally distinguishable from the control fields.

The light exiting the cell was passed through another polarizing beamsplitter, which separated
the probe and one control field from the signal and other control field. A \/2 plate prior to the
beamsplitter allowed one to choose which pair of fields was sent to which detector. The fields
transmitted by the beamsplitter were separated by a reflective diffraction grating with a ruling of
2400mm™'. In the hyperfine relaxation experiments, the D2 light was detected directly with the
PMT; in the absorption/transparency experiments, the D1 light was detected directly by silicon
detectors; in the signal conversion experiments, the D2 light was heterodyne detected with the
balanced mixer.

The output of each dye laser was usually between 200 and 300 mW. The power (measured
just prior to the cell input window) of each control field was typically 10 mW, corresponding to an
average intensity of 80 mW/cm2. Accounting for the 7% reflection loss of the cell window, this
intensity corresponds to anomina Rabi frequency of 24 MHz in the vapor. The power of the probe

field was typically 1 mW.
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7.2 Coherence Relaxation Studies

As discussed in previous chapters, the rate of decay of the ground state coherence is a critical ex-
perimental parameter. The more rapid the decoherence, the less coherence can be generated and
the weaker the associated optical effects. To first approximation, the effective decoherence rate
for the vapor is just the linewidth of the Raman resonance. However, the relationship between
linewidth (a frequency) and decoherence (arate) is complicated by power broadening, inhomoge-
neous broadening, and the intrinsic nonlinearity of the system [cf. egn. (3.19)]. A direct measure of
the decoherence rate can be obtained by using a weak probe to monitor, as a function of time, the
decay of the coherence after the driving fields are turned off. This free decay signal has very little
background, is independent of the control field power, and includes the effects of inhomogeneous
broadening (due to Doppler shifts or stray magnetic fields) in the manner relevant to intended uses
of the coherence.

Relaxation of both the hyperfine population and hyperfine coherence in sodium vapor was stud-
ied as afunction of the partial pressure of helium in the cell. To measure the population relaxation,
the probe field was tuned to the 35, 5, F' = 2 < 3Py, transition, the = polarized control field
was tuned to the 35 j», F' = 2 <> 3P, transition, and the y polarized control field was blocked
(Fig. 7.38). The control field was chopped on and off using MOD1 with a period ~ 40 ms. When
the control field was on, the population would be rapidly optically pumped out of the F' = 2 level
into the F' = 1 level, causing the probe absorption to decrease. When the control field was off, the
population would slowly relax back to the F = 2 level, causing the absorption to “charge up” to
its thermal equilibrium value (Fig. 7.3b). To measure the coherence relaxation, the y polarized field
was unblocked. When the control fields were on, the hyperfine coherence would develop and lead
to coherent Raman scattering of the probe field (Fig. 7.4a). When the control fields were off, the
coherence would decay, leading to a similar decay of the signal (scattered) power (Fig. 7.4b).

In principle, only one trace would be needed per rate constant to be determined. In practice,
three traces were taken for most data points. Because of imperfect separation of the probe and
control fields at the output, and because the control fields were generally much stronger than the

transmitted probe or signal fields, each trace would contain a non-negligible contribution from the
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Figure 7.3: The scheme for measuring the ground hyperfine population relaxation rate I';. The
transmittance of the probe is monitored after the control field isturned off and the population relaxes
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Figure 7.4. The scheme for measuring the ground hyperfine decoherence rate v. The strength
of the CRS signal is monitored when the control fields are turned off and the ground hyperfine

coherence they created decays away.
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chopped control field(s). To determine this contribution, afirst trace (a background) was taken with
the probe field absent. A second trace was then taken with the probe beam. At helium pressures
above about 1 torr, the optical pumping produced by the probe itself made a noticeable contribution
to the measured decay constant. In these cases, athird trace was taken with half the probe power so
that the zero-power rate could be extrapol ated.

It should also be noted that a DC magnetic field in the z direction was applied to the cell for
these measurements. As discussed in §5.4, the D1 A system possesses a number of dim states
which involve coherences between different combinations of ground states. Residual magnetic
fields which perturb the Zeeman degeneracy can cause these coherences to have dlightly different
Raman transition frequencies. In such cases the coherences will dephase asthey decay, resultingina
morerapid decay of the net hyperfine coherence and a broadening of the Raman feature. However, if
a“strong” magnetic field is applied, the Zeeman degeneracy islifted, and only the m = 0 dark state
[egn. 5.23] hasits Raman resonance at § = 0. The contributionsto the net hyperfine coherence from
the other dim states become smaller (because they are off-resonant) and spectrally distinguishable
from that of the desired dark state. Experimentally, it was found that the Raman featureat 6 = 0
narrowed sightly and that the hyperfine coherence decayed a little less quickly when the magnetic
field was applied.

The population in the F = 2 hyperfine level can be written as poy = pS3° + Apas fpop(t),
where fi,op (1) (0 < frop(t) < 1) describes the relaxation after the control field is turned off. Asthe

absorption seen by the probe is proportional to ps5, the transmittance of the probe has the form
Throbe = exp[— AP — AA foop(t)]. (7.1)

The primary mechanism for population relaxation is believed to be exodus of atoms from the beam
region; spin-changing cross sectionsfor the 3.5, , statesaretoo small to have anoticeable effect (see
§6.2). Asdiscussed in §6.1.1, diffusion leads to relaxation with a characteristic curve (1 + I't) ™!,

Fig. 7.5a shows a typical population relaxation curve —In7},,.1. together with the best fit to a
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function of the form A°®® + AAf,,,(t), where

1 t <t
Jpop(t) = 1 . (7.2

— ¢
1+T(t — to) =

The quantities A°9°, A A, ¢, and T are the free parameters of the fit. The fact that the dataisfit well
with afunction of this form confirms that the population relaxation is indeed due to diffusion. As
expected, the relaxation rate I decreases with increasing density of buffer gas.

The average hyperfine coherence of the vapor p,; can be written as pa1 = p57™ feon(t), where
feon(t) describesthe decay of coherence after the control fields are turned off. Intheweak scattering
regime, the signal field is proportional to fOL p21 Eprobedz. Hencethe power Fi;gqna Of the generated
signal field is proportional to | feon(¢)|%. Fig. 7.5b shows a typical experimental trace of /Prignal

together with the best fitting function of the form p57* f.on (t) where

1 t <t

feo (t) = exp|— - . )
' p1[ ﬁ(pthf to)tO)] (1= X) + X cos2mu(t—to)]  t2to

The motivation for (7.3) isasfollows: Firstly, the diffusion of coherently prepared atoms out of the
beam causes the average coherence to fall off as the fraction of remaining atoms, i.e. as[1 + I'(¢t —
tp)]~!. Secondly, unspecified mechanisms (e.g. collisions) can cause the coherence of any single
atom to decay as exp|—y4epn(t — t0)]. Finaly, afraction X of the total coherence is due to the
m = 1 and m = —1 dark states, whose Raman frequencies differ from that of the m = 0 dark state
by the Larmor frequency vy,. Thevalue of v;, can be obtained by measuring the frequency separation
of the Zeeman-split Raman features in the spectral domain. The value of I" can be obtained from
analysis of the population relaxation. Thisleaves p5}™*, to, and v4cpn asthe free parameters of the
fit.

By differentiating (7.2) and (7.3) we find that fpop(to) = —T fpop(to) and feon(to) = —(T' +
Ydeph) feoh (o). That is, the effective decay constants for the hyperfine popul ation and coherence are

I'c =T'andyg = I'+74epn- Thedependence of I'; and ¢ on helium pressureisshowninFig. 7.6.
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Figure 7.5: Typical data and fits for relaxation of hyperfine population (a) and hyperfine coherence
(b).

With no buffer gas (not shown), I'; and ¢ are both about 0.1 MHz, corresponding to the ballistic
transit time of about 1.6 us. As expected, both of the decay rates decrease as the amount of buffer
gas increases. At high pressures, decoherence rates as small as several hundred Hz are obtained.
Surprisingly, the decoherence rate is consistently 5-10 times larger than the population relaxation
rate. Both datasets show a linear trend with a slope of approximately —1, which is the expected
pressure dependence of a process governed by diffusion. At high pressures the slope appears to
become dlightly smaller. Thisis most likely a manifestation of pressure broadening of the ground
states. But whatever the mechanisms of relaxation are, it is clear that the addition of buffer gas
can dramatically reduce the hyperfine decoherence rate and lead to millisecond lifetimes for dark
states. Of itself, this should greatly improve the ability to coherently trap population. However,
as discussed in §6.2, the decrease in the ground state decoherence rate with pressure is somewhat
compensated by an increase in the optical decoherencerate, so that the ability to saturate the Raman
transition does not increase as much as one would like. With a collisional broadening coefficient of
10 MHz/torr, the Raman saturation parameter peaks at a few torr (Fig. 7.7). This result suggests

that adding buffer gas to increase the amount of hyperfine coherence is of limited usefulness.
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Figure 7.6: A buffer gas can greatly increase the time an atom spends interacting with the control
fields, thereby decreasing the ground state relaxation rates.
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Figure 7.7: A plot showing how the nominal Raman saturation parameter (22 + Q2)/(4vavE),
which indicates the ability to trap ground state population, is affected by the simultaneous narrow-
ing of the Raman line and broadening of the optical line in the presence of buffer gas. For our
experimental geometry, a pressure of about 3 torr is optimal. Note, the actual degree of saturation
in sodium is much less than the nominal saturation parameter (see Fig. 5.7 and the discussion on
page 65). The values indicated by dots were computed using the measured values of v and taking
Q, = Qy = 25MHz, vg = 5 MHz +10Pg.. The curveis an interpolation to guide the eye.
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7.3 Coherence-Induced Transparency, Absorption, and Raman Scat-
tering

A number of effects resulting from coherent preparation were observed. To provide some context
for these results, the single field absorption spectrum of “pure” sodium vapor at different intensity
regimes is shown in Fig. 7.8. At very wesk intensities, two broad transmission dips (absorption
peaks) are discernable, corresponding to the excitation of the /' = 1 and F' = 2 hyperfine levelsto

the 3P, ;, manifold. The weak field transmittance is accurately given by

2
T = exp <—77TLIH1 X) (7.9)
where

Im y =0.076 - N3

1 5 5 5
—g(A)+ —g(A -1 —g(A+1772) + —g(A + 1772 — 1 7.
X [489( )+48g( 89)—1—489( + 177 )+489( + 177 89)|, (7.5

e |7 1 A?
A)=x g —5x 7.

and the parameters are: cell length . = 8 cm, wavelength A = 590 nm, atom density N = 1.4 x
10M cm ™3, excited state decoherence rate v = 5 MHz, and Doppler width Aypns = 662 MHz.
(The number density is in good agreement with the value 1.7 x 10! cm =3 which is based on a
measurement of the cell temperature.) The factors ﬁ and 4—58 are the effective strengths of the
transitions between the various D1 hyperfine levels (see Table A.1). At higher intensities, the two
transmission dips merge into a single dip approximately halfway betweenthe FF = 1 and F' = 2
resonances. This effect is a manifestation of (incoherent) optical pumping between the ground
hyperfine levels. at either resonance the resonant ground state is strongly depopulated, so that the
absorption is not very strong; but between the two resonances, there is no net optical pumping and
the absorption is maximum, in spite of the fact that the field is significantly detuned from both
resonances.

With two fields, | observed signatures of hyperfine coherence (Fig. 7.9). Each trace is the
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Figure 7.8: The transmittance of a single field of various intensities through an 8 cm-long sodium
vapor. In unitsof mW /cm?, theintensitiesare 0.5, 1.5, 4, 6, 11, 17, and 33. The dashed line shows
the theoretical transmittance assuming a number density of 1.4 x 10! cm 3.

transmittance of one of the control fields. To obtain this data, the frequency of dye laser #1 (which
supplied both control fields) was scanned slowly (=~ 3 Hz) across the Doppler-broadened D1 line
(arange of 10 GHz). Simultaneously, the frequency of MOD2 was rapidly® (~ 60 Hz) dithered
over a range of about 10 MHz. Hence the beat note of the fields was swept across the Raman
resonance many times at different places within the Doppler profile. Each narrow featurein Fig. 7.9
is associated with the creation of coherence between of the F' = 1 and £’ = 2 hyperfine levels.
Near the center of the D1 line, both fields show increased transmittance (reduction of absorp-
tion) at the Raman resonance, which isthe signature of coherent population trapping. Inthewings, a
surprisingly different behavior occurs: one field apparently experiences coherently induced absorp-
tion while the other experiences coherently induced transparency and/or gain. (This behavior will
be explained at the end of this section.). The data of Fig. 7.9 were taken with a small background
pressure (~ 0.5 torr) of helium gas. Similar experiments were performed with varying pressures
of helium, nitrogen, or argon. It was found that the coherently induced transparency features were

not increased significantly by adding any amount of any kind of buffer gas, and that in fact too

3Care must be taken not to scan too rapidly, |est the Raman feature be broadened. As a rule-of-thumb, to measure a
spectral feature of bandwidth Av Hz, the sweep rate (in Hz /s) should be well below Av? /2.
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Figure 7.9: The two-field spectrum of the sodium D1 line, separated by polarization component.
While the optical detuning A is swept slowly, the Raman detuning ¢ is rapidly dithered. Sweeping
A revealsthe Doppl er-broadened structure of the D1 line. Scanning ¢ reveal s the effect of hyperfine
coherence each time the beat note of the fields equal's the Raman frequency.

much buffer gas diminished coherent effects (Fig. 7.10; similar behavior was observed with Ar and
Ny). It is my belief that the increase in the transit time was counteracted by the decrease in the
optical pumping rates of the fields due to pressure broadening, so that addition of buffer gas did not
significantly increase the ratio of pumping rate to relaxation rate.

The transparency feature and Raman scattering peak shown in Fig. 7.11a,b are typical. In these
plots, the control fields were tuned to the center of the D1 line and the probe field was tuned to max-
imize the scattered signal. No magnetic field was applied. Both features have triangular lineshapes
and are of sub-natural linewidth. When alongitudinal magnetic field was applied, the transparency
feature was observed to split into three features (Fig. 7.11c; compare to Fig. 6.5). The Raman
scattering spectrum also contained three features, appearing very similar to the three transparency
features.

In the end, the signatures of coherent preparation (and by inference the amount of hyperfine

coherence) were never dramatically large. In light of chapters 5 and 6 this is perhaps not too sur-
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Figure 7.10: Two-field spectra of sodium in the presence of helium at various partial pressures.
Although adding buffer gas increases the lifetime of the ground state coherence, the size of the
Raman features (and thereby the degree of hyperfine coherence) is evidently not increased.

prising; complications from the multiplicity of states and vapor physics hinder coherent population
trapping. Even so, the simulationsin Chapter 6 predicted signatures of coherent preparation roughly
3-5timeslarger. Radiation trapping isagood candidate for the discrepancy between simulation and
experiment, since it would contribute to the ground state relaxation rate during coherent prepara-
tion but would not contribute to the measured relaxation rate used for the simulations, which was
obtained with the control fields turned off. It is also possible that unidentified factors, for example
vapor impurities, were in some part responsible.

Apart from mode matching (which was ensured by the use of the optical fiber), the intensity of
the control fields was the controllable parameter which had the most impact on the strength of the
coherent effects. Sometimes it was observed that applying a longitudinal magnetic field of several
Gauss would dlightly heighten and narrow the central (6 = 0) transparency and Raman scattering
features, suggesting the slightly deleterious presence of stray magnetic fields. The strongest coher-
ent effects were observed with optical intensities > 80 mW / cm? (Q, 2, = 25MHz) and with

buffer gas pressures < 5 torr. Under such conditions, the absorption coefficient of the vapor would
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Figure 7.11: Typica data showing optical features which result from ground state coherence. (@)
Electromagnetically induced transparency at the Raman resonance. (b) Coherently induced Raman
scattering. (c) EIT in the presence of a DC longitudinal magnetic field. The data were taken on
different days, under different conditions, but in all three cases the control fields were tuned to the
center of the D1 line.
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Figure 7.12: Coherently induced wave mixing between the control fields. On the red or blue side
of the D1 line (a,c) wave mixing transfers power from one polarization to the other. At the center
of the line (b), both processes occur. However, the evolution is conservative, and there is no change
in the total power in either polarization component. In al three regions, new frequency components
are produced.

be reduced at Raman resonance by an estimated 30-35% (based on a typical change in transmit-
tance from 12% to 27% and the assumption of exponential attenuation), while the Raman scattering
efficiency would be roughly 0.5% (resulting in afew W of scattered signal).

I now return to the subject of the unexpected absorption and gain features in the wings of the
D1 line. Upon freguency resolving the transmitted fields, it was found that in each wing, one of
the polarization components contained not only the transmitted control field, but a new frequency
component 2 x 1772 MHz away from the control field. This frequency component was present
only when the control fields were tuned to the Raman resonance. This observation indicates the
presence of four-wave mixing with the control fields. Indeed, the features in the wings of Fig. 7.9
can be understood by the two FWM processesillustrated in Fig. 7.12a,c. On the red side of the D1
line, the higher frequency control field (€2,,) becomes resonant with the lower frequency transition
(F = 2t03P ), Fig. 7.12a At the Raman resonance, coherent population trapping creates asmall
amount of hyperfine coherence (small because the control fields are far detuned). This coherence
induces Stokes scattering of the 2, field into the x polarization. Hence, power is transferred from
the y polarization to the x polarization. On the blue side of the line, the situation is reversed (Fig.
7.12c): the (2, field becomes resonant with the F' = 1 to 3P /, transition, and coherently induced

anti-Stokes scattering transfers power from the x polarization to the y polarization.
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One might expect that similar FWM processes also occur near the center of the D1 line (Fig.
7.12b), and that these processes might interfere with EIT. Indeed, frequency-resolved detection
revealed that new frequency components are also generated in this region of the D1 line. However,
the generated fields are significantly weaker than the control fields. Analysis of this processin a
3-state system indicates that the characteristic length for generation of the new field componentsis
larger than the length for residual absorption of the control fields by thefactor (vo —v1)/[ve(1+5)].
Numerical studies confirm that under realistic conditions, the generated field components remain
very small. Furthermore, it can be shown that the mixing process is conservative; generation of the
new fields does not diminish the total power in either polarization. Thus FWM does not affect EIT

features such as those found in the spectra of Fig. 7.9.

7.4 Frequency Conversion of an Optical Signal Using Hyperfine Co-

herence

Although the generation of hyperfine coherence and the optical effects it produces are interesting
topics for academic study, the scientist is often asked by friends, relatives, and funding agencies,
What isit good for? As mentioned previously, a material coherence can act as an oscillator which
mixes with an optical signal, shifting it up or down in frequency. The usefulness of this approach
depends on the fidelity, bandwidth, efficiency of the conversion. In principle thefidelity isexcellent,
since the scattered field is directly proportional to the input field; the efficiency is high, since the
typical conversion length can be as short as an absorption length (see §3.3.1); and the bandwidth is
large, being (in the case of resonant scattering) the width of the inhomogeneously-broadened line,
which is ~ 1 GHz in sodium. Although the frequency shift obtained with sodium is not large, the
principle applies just as well to systems with ground (or metastable) states that have much larger
frequency separations which cannot be obtained using RF technologies.

To study frequency conversion of asignal in sodium, an amplitude modul ated probe beam was
scattered off the coherence created by two CW control fields (Fig. 7.1). MOD1 was set to provide

constant output (no intensity modulation), and the frequency of MOD2 was adjusted to bring the
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control fields into resonance with the Raman transition. The light from dye laser #2 was down-
shifted by 80 MHz and amplitude modulated with a 4 MHz square wave by MOD4, forming a
probe field with a time-varying envelope E,(t). The probe field passed through MOD3, where it
was downshifted by 1612 MHz together with the horizontally polarized control field. Just before
the cell, the probe power was 1.3 mW. Inside the cell, the probe field scattered off the hyperfine co-
herence created by the control fields, generating a vertically polarized “signa” field with envelope
E(t) at acarrier frequency 1772 MHz above that of the probe. Thus the frequency of the signal
field was —80 — 1612 4 1772 = 80 MHz higher than dye laser #2. | found that the power of the
signal reached a maximum of about 8 W when dye laser #1 and dye laser #2 were tuned to the
centers of their Doppler-broadened lines (D1 and D2 respectively). The signal field was angularly
separated from the remnant of the vertically polarized control field by reflecting the beam off the
grating. Immediately following the grating was a lens of focal length 1000 mm. At the back focal
plane of the lens, the control and signal fields were a few hundred microns wide and separated by
about 3mm. A 750 um pinhole passed only the signal field. The signal field was combined with
a local oscillator field Er,o from dye laser #2; the power of the local oscillator was 1 mm. The

intensity of the combined fields,

2
I =|Eo+iE,s (t)efQﬂ*i(SO MHz)¢ (77)

— ‘ELO|2 + |E5(t)|2 + iEEOES(t)efQWZ'(SO MHz)¢ +c.c. (78)

was measured with the balanced detectors and the beat note was monitored on adigital oscilloscope.
Since E1,o was constant (to the extent that dye laser #2 was stable), the beat note was proportional
to F(t). By numerically isolating the positive-frequency portion of the beat note and downshifting
it by 80 MHz, the complex amplitude E(t) of the scattered field was obtained.

To compare E(t) to the input probe field E,(t), a second measurement was made. For this
measurement, the control fields were blocked and the unshifted component of the probe field from
MOD3 was coupled into the fiber. Dye laser #2 was tuned well outside the D2 line to ensure that

the probe field did not interact with the vapor. The half-wave plate after the vapor cell was rotated
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so that the horizontally polarized probe and control fields were passed to the grating. The intensity

at the balanced detector was then
I = |ELo + i E,(t)e?m(80MH2) ’ (7.9)
= |ELol® + |E,(t)* + i Bf o E, ()2 i (B0MHt ¢ ¢ (7.10)

To obtain E,(t), the negative-frequency portion of the beat note was numerically isolated and up-
shifted by 80 MHz.

Fig. 7.13ashowsaportion of thetraces Re E,(t) and Re E(t). Thetraces have been normalized
and time-shifted to coincide. Clearly, the signal field envelope E,(t) isidentical to the input field

envelope E,(t). Thefidelity of the conversionis |F| = 0.99 where

EX(t)Eq(t) dt
F = J B (OE () . (7.12)
VIE 0 /[ B dt
The normalized spectral densities |E,(v)| and | Es(v)| are shown in Fig. 7.13b, where
Esp(v) = \/% /Es,p(t) exp(2mivt) dt. (7.12)

Again, the faithfulness of the conversion process is evident as the two spectra are nearly identical.
A dlightly more informative measure of the faithfulness of the scattering process is the complex

transfer function

2
) = Esw)/\/ [ 1Es@)] dt (713

E,)/\/f |0 dt

Perfect reproduction of the signal occursif T'(v) = 1. Fig. 7.13c shows the magnitude and phase of

T'(v). Within experimental error, the transfer function describes a flat, uniform response up to the
highest measurable frequency componentsin the signal. Aswas predicted in §3.3.2, the bandwidth
of the scattering process is not limited to the homogeneous line width (10 MHz).

To demonstrate that a phase-encoded signal can aso be converted using coherent scattering,

MOD4 was changed from an amplitude modulator to a frequency (or phase) modulator with a
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Figure 7.13: Frequency conversion of an amplitude-modulated optical signal using coherent Raman
scattering. () Thetemporal amplitudes of theinput and output fields. (b) The spectral amplitudes of
the input and output fields. (¢) The magnitude and phase of the normalized transfer function (eval-
uated at locations of spectral peaks); avalue of unity at al frequencies means perfect reproduction
of the input field. For this particular signa, the conversion fidelity was 99%.
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Figure 7.14: Freguency conversion of a phase (frequency) modulated optical signal using coher-
ent Raman scattering. (@) The temporal phases of the input and output fields. (b) The spectral
amplitudes of the input and output fields. The conversion fidelity for this signal was 99.9%.

period of about 0.5 us. Again, two measurements were performed, one to obtain E(¢) and one to
obtain E,(t). The temporal phases and spectral densities of the probe and signal field envelopes are
shown in Fig. 7.14. Once again, the scattered field is essentially identical to the input field. In this
experiment, the fidelity was 0.999.
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7.5 Summary

The generation of quantum coherence in a sodium vapor was demonstrated in a variety of experi-
ments. Coherence between the 3.5, /, hyperfine levels was generated when two cross-linearly polar-
ized control fields tuned to the D1 line were applied to the vapor and the beat note of the fields was
within a few hundred kHz of the hyperfine level separation (1772 MHz). As aresult of coherent
population trapping, the absorption of the control fields was reduced by 30-35% and a probe field
tuned to the D1 line was Raman scattered with 0.5% efficiency. It was also found that coherent
preparation induces four-wave mixing processes involving the control fields, resulting in electro-
magnetically induced gain and absorption features in the wings of the D1 line. Arguments suggest
that similar FWM processes do not significantly influence the coherent preparation of the vapor at
line center.

The effects of introducing an inert buffer gas into the vapor were also investigated. It was found
that tens of torr of He, Ar, or N, can significantly increase the hyperfine popul ation and coherence
lifetimes (milliseconds or more), but nevertheless the degree of coherence does not increase. The
decrease in relaxation is compensated by a decrease in the efficacy of the control fields due to
pressure broadening of the excited states. Although both ground state relaxation rates show the
expected trend for a diffusive process, a satisfactory explanation is lacking as to why the ground
state coherence lifetime is consistently 5-10 times smaller than the population lifetime.

Finally, coherent preparation was used to demonstrate wavel ength conversion of amplitude and
phase information imprinted on aweak probefield. Both AM and FM signals with multi-MHz band-
widths were Raman scattered into new frequency bands with extremely high fidelity (> 99%). The
measured transfer function for the conversion was very broad and uniform, indicating a conversion

bandwidth of at |east tens of MHz.
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Chapter 8

Summary and Per spective

8.1 Summary

Coherent preparation is an approach to nonlinear optics in which multiple optical fields put a
medium into a superposition of quantum states with large coherence. The quantum coherence
leads to interference between optically induced transitions, and thereby mediates strong interac-
tions between light fields. I1n the process called coherent popul ation trapping, a medium settlesinto
a superposition state that is completely uncoupled from the exciting fields. In thiswork | have ex-
plored coherent population trapping with aview toward its utility in converting optical signalsfrom
one frequency band to another. In particular, | have performed a detailed analysis of the physics
of coherent population trapping in alkali vapors and have performed numerical and experimental
studies of optical processes which result from creating ground state hyperfine coherence in sodium.

Although atwo-state system can be made to exhibit phemonena similar to those associated with
coherent population trapping, the clearest examples of coherent preparation involve at least three
states and two fields. | found that such a system can be modelled rather nicely using a geometri-
cal formalism based upon Bloch's vector. This model brings out the major principles of coherent
population trapping, namely: (1) ground state coherence builds up to a large value at the Raman
resonance; (2) dramatic reduction of the absorption occurs in conjunction with the build-up of co-

herence; and (3) the peak coherence and transparency increase with the ratio of the optical excitation
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rate to the ground state relaxation rate. One also finds that a weak field can Raman scatter off the
ground state coherence, producing afield that carries the amplitude and phase content of the input
field, but shifted in frequency by the Raman frequency. This coherent Raman scattering can be as
efficient as linear scattering, allowing 100% of the power to be converted to the new frequency in a
few resonant absorption lengths. The scattering can aso have avery large bandwidth, being equal to
the total spectral width of the excited band or inhomogeneously broadened level. Coherent Raman
scattering is also predicted to transfer (under ideal conditions) the quantum state of the probe field
to the Raman scattered field.

Analysis of coherent population trapping in many-state, few-level systems can sometimes be
aided by diagonalizing the photoexcitation operator. The ground states of the diagonalization gen-
eralize the bright and dark states which are commonly employed in discussions of 3-state systems.
In this basis, coherent population trapping can be understood as a competition between optical
pumping—out of strongly coupled (bright) states into weakly coupled (dark) states—and ground-
state relaxation. The difficulty of coherent population trapping generally increases with the number
of ground states, for several reasons which ultimately reduce to the fact that, the more states there
are, the more possibilities nature hasto put the system in a state other than the one you want. Analy-
sisof the sodium D1 states reveal sthat two essentially independent systems exist, onefor each of the
excited hyperfine levels, and that each of these systems possesses multiple dark states, only some of
which possess Raman (hyperfine) coherence. However, application of alongitudinal magnetic field
lifts the degeneracy and isolates asingle dark state that is a superposition of the |F' = 1, m = 0) and
|F =2, m = 0) states. This dark state has maximal coherence and is capable of inducing coherent
Raman scattering via the D2 line with relatively high efficiency.

A wide variety of factors which can affect experimental implementations of coherent population
trapping in vapors were considered. The most important factors are Doppler shifts, transit of atoms
from the illumination region, spin relaxation due to wall collisions, and pressure broadening of the
excited states. Some influences, such as ground state relaxation due to collisions between vapor
atoms, velocity diffusion, and wave mixing, are also typically present; however, they are too weak

to have asignificant effect in experimentsinvolving only modest vapor densities. Radiation trapping
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may or may not be important, depending on the details of the experiment. In addition, successful
coherent preparation requires certain technical criteria to be met, most notably good spatial mode
overlap of the control fields, phase and frequency stability of the control fields, and elimination of
stray fields. These requirements are not overly stringent, however, and can be satisfied with reason-
able experimental effort. Simulations predict that relatively large amounts of hyperfine coherence
(involving ~ 50% of all illuminated atoms, or ~ 100% of resonant illuminated atoms, in a max-
imally coherent state) should be achievable under realistic experimental conditions. Nevertheless,
electromagnetically induced transparency and especially coherent Raman scattering are predicted to
be surprisingly less pronounced in sodium than in idealized 3-state systems. Under the conditions
believed to exist in my experiments, resonant absorption should be reduced by a factor of about 7,
while the maximum efficiency of Raman scattering with a several-cm thick vapor is limited to a
few percent. The reason for this latter situation is that more D2 hyperfine states can participate in
absorption of the probe and scattered fields than in Raman scattering.

Besides analytical studies, a number of experiments were conducted. The critical ground state
relaxation rate was measured directly as a function of the density of an inert buffer gas (helium).
Reduction of the population and coherence relaxation rates to < 1 kHz was possible with several
tens of torr of buffer gas. However, the accompanying pressure broadening of the excited state
was found to compensate for the advantage gained by increasing the ground state lifetime, such
that a density of about 3 torr was optimal for our experimental geometry. Both electromagnetically
induced transparency and coherent Raman scattering were clearly demonstrated, although to alesser
degree than simulations predicted. The reduction in absorption at Raman resonance was inferred
to be 35% (transparency factor of 1.5) on atypical day, while the Raman scattering efficiency was
typically 0.5to 1%. Argon and nitrogen were also tried as bufferswith little difference in the results.

Finally, and most significantly, frequency conversion of optical signals using coherent Raman
scattering was demonstrated. Both amplitude- and frequency-(phase-) modulated signal s with band-
widths well in excess of 10 MHz were transferred from an input probe beam to a Raman scattered
beam with excellent (> 99%) fidelity, demonstrating the potential of this technique.

Several issues remain unresolved. The first is the fact that the ground state decoherence rate is
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5-10 times larger than the population relaxation rate over several orders of magnitude of buffer gas
pressure. No mechanism which can explain this feature has come to mind. The second unresolved
issueis the discrepancy between the relatively pronounced coherent effects predicted by simulation
and the underwhelming effects seen in the laboratory. Roughly speaking, simulations predicted
coherent effects 4-5 times stronger than what was observed. The most obvious explanation for this
discrepancy isaground state relaxation mechanism not included in the model. While this argument
might seem to be irrelevant in light of the fact that experimentally measured relaxation rates were
used for the ssimulations, one could argue that the measured rates are not entirely appropriate for
the simulations. For example, the ground state relaxation rates were measured “in the dark” and
would not include relaxation caused by radiation trapping, which would only occur during actual
coherent prepration. Excited state relaxation was modelled using rates reported in the literature,
which were assumed (but not verified) to be appropriate for our own vapor. It is possible that
impurities significantly altered the (single-field) optical properties of the vapor when buffer gas was
added to the system, as the vacuum system | used is now understood to be not of high quality.
One could also argue that relaxation was modelled in too simple a manner—that a few exponential
decay parameters do not suffice to characterize the complex spatio-temporal aspects of diffusion
and collisional relaxation. Although this is a fair point, |1 doubt it could explain a factor of 4-5
discrepency. | would be more inclined to believe that the relative phase modulation of the control
fields (which was inadvertantly imposed by the frequency shifting modulators) was afactor limiting
EIT and CRSin my experiments; although it could not have been the only factor, since the EIT and
CRS signals did not improve significantly on the one day in which the modulation was eliminated
by a reconfiguration of the apparatus. While none of these unresolved issues is critical, they are

worthy topics of future efforts in both exprimental and theoretical domains.

8.2 Perspective

The goal of thisresearch was to study and demonstrate the feasibility of using coherent preparation
to perform frequency conversion of light while preserving the spectral and temporal structure of the

field. By this criteriathe research was a clear success: a deep understanding of coherent population
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trapping was gained and high-quality frequency conversion of optical signals was demonstrated.
But it isfair to say that sodium, and perhaps even alkali vaporsin general, arelessthan ideal for im-
plementing coherently-induced nonlinear optical processes. Certainly they are capable of providing
clear demonstrations of the desired physics. But at least sodium seems to have limited usefulness
as a functional coherent medium. While the bandwidth and fidelity of frequency conversion were
very satisfactory, the efficiency was less than one would hope, especially since el ectromagnetically
induced processes are supposed to have an advantage of efficiency compared to traditional nonlinear
processes.

Much of the prablem lies in the structure of sodium itself. The ground hyperfine splitting is
barely larger than the Doppler width, meaning that a non-negligible fraction of atoms are nearer
to the “wrong” transition. The multiplicity of ground states makes trapping harder than in simpler
systems (such as atoms with smaller nuclear spin). The fact that sodium has a higher vapor tem-
perature than other alkalis means that ground state relaxation must be controlled by the use of a
buffer gas, which limits diffusion but also broadens the optical transitions. The critical hindrance to
efficient coherent Raman scattering through the D2 levels arises from the similarity of their energies
combined with the differences in their selection rules. If the excited levels were separated by more
than a Doppler width, it would be possible to perform coherent Raman scattering through one level
without the resonant absorption associated with the adjacent levels.

In retrospect | would choose a medium other than sodium and use different experimental tech-
nologies. 8"Rb, for example, has the same D1 structure as sodium (and therefore has the same dark
state(s)), but the hyperfine levels are better separated. The transitions can be excited using diode
lasers, which are more reliable and easier to work with than ring dye lasers. Because sufficient
vapor densities can be achieved without requiring high temperatures, wall coatings may be used
to increase ground state lifetimes without producing the detrimental excited state broadening that
occurs with the use of buffer gases. In this case a professionally-made closed glass cell could be
used instead of an assembled steel cell, eliminating the need to build a high-quality vacuum system.
| would better shield the cell from stray magnetic fields and use a solenoid rather than Helmholtz

coils to produce a more uniform longitudina magnetic field. Together, these changes should result
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in improved experimental results. And as | indicate below, there may be vapors even better than
rubidium.

Given the time, | would also like to refine the model which was the basis for all my smula-
tions. A more accurate model of collisional relaxation, which alows for different relaxation modes,
would not increase the computational costs of ssmulation. Furthermore, | would like to incorporate
diffusion and velocity changing collisions explicitly (i.e. to solve egn. (6.20)) without increasing the
computational cost by two orders of magnitude. It may be possible to do this by treating velocity
diffusion perturbatively and utilizing the symmetry of the cell to isolate asmall number of dominant
diffusion modes.

With more coherence, stronger transparency, and more efficient Raman scattering, one could
imagine a number of interesting experiments. To start, there are the many proposed uses of EIT
and ground state coherence mentioned in chapter 1. In §3.3 it was predicted that CRS preserves the
quantum properties of the converted light. It would be interesting to prepare a pair of polarization-
entangled beams, shift one to a different frequency using CRS, and then verify that Bell’s in-
equalities can be violated using the shifted beam. Far from being an acacemic issue, the ability
to preserve quantum entanglement in shifting from one wavelength to another could be a significant
enabling technology for distributed quantum cryptographic systems [102-105] and the “quantum
internet” [106]. A more ambitious experiment, which would require extremely large transparency,
would be to frequency convert a squeezed state [107] and show that the squeezing is preserved.

Of course, frequency conversion of even classical state information has scientific and telecom-
munication applications. While my studies in sodium clearly show the potential for coherent
population trapping to perform this task, it will not be considered seriously as a practica tech-
nique until more convenient media with much better performance are found. Lead vapor has
been used to demonstrate EIT with much greater succes than sodium [14]. | would consider us-
ing vapors for further fundamental studies of coherent prepartion; but they are still too inconve-
nient for widespread use. A number of groups have begun studying coherent population trap-
ping and EIT in solids [72, 108-110], including both doped crystals [111-113] and semiconduc-

tors[70,79,114-119]. The challenge of using solids is that strong interactions betweens electrons
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and neighboring atoms usually leads to rapid relaxation of quantum coherences. Clearly, thereis
much opportunity for progress.

In conclusion, there are some technical chalenges which remain before coherent preparation
leaves the laboratory. But it isareal phenomenon based on readily accessible physics. It is reason-
able to hope that continuing developments in material science and/or nanofabrication technologies
in the next few years will lead to media that can be easily and conveniently prepared in maximally
coherent states. And in turn, these media will form the heart of devices that perform a variety of

useful tasks, including frequency conversion of optical signals.
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Appendix A

Effective Matrix Elementsfor Multiplets

In the absence of strong electric or magnetic fields, the states of an atom fall into groups of states
having the same (or approximately the same) energy but different values of angular momentum. The
multiplicity of states at the same level of energy is called Zeeman structure. In many experiments
the Zeeman structure is neither evident nor of interest. In modelling such experiments one would
like to be able to ignore the Zeeman structure and talk about optical fields coupling pairs of levels
rather than pairs of states. In this chapter | show how the matrix elements of the Zeeman states
may be used to derive effective matrix elements for spontaneous and stimulated transitions between
levels. Aswe will see, the effective matrix elements for these two processes are not necessarily the

same.

e The effective matrix element for spontaneous emission. Consider a pair of levels E and
G. From a study of the interaction of a two-state system with the electromagnetic continuum
(§C.2.3), one finds that the rate of spontaneous emission from a state e to alower-energy state
gis

C | preg|” pec: (A1)

where C' isaconstant of proportionality. Therate of decay out of einto Gis) | secC ’“eg | 2 Pee-
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Hence the total rate at which population moves from level E tolevel G is

pEE:Zﬁee:_ZC|Neg‘2Pee:_ZC“%Q‘QPEE (anye) (A2)
eclE ;gg geG

Inthe last step | have used the well-known fact that -, \ueg\z is the same for all Zeeman
states e within an atomic level. (Thisfact can be derived from the principle of isotropy.) From

this equation, we see that the effective matrix element for spontaneous emission from level £

tolevel Gis
2
NQEG,spont = Z ‘/’l’eg‘ (any 6). (A3)
geG
The quantity
2
ZG ‘“eg‘ 12
bEG _ ge - = EG’,stont (A4)
> | By p
dlg

is caled the branching ratio.
e The effective matrix element for absorption. According to Fermi’s Golden Rule, the rate

of population transfer from a state g to an unpopulated state e is

- 2
Cl €- ueg| Pgg (A5)

where € is the direction of the field and C” is another constant of proportionality. The total
rate of population lossout of g into Eis Y- . C” |€ - “69‘2 Pgg- NOW, |€t us suppose that all
the states in GG are equally and incoherently populated. This is not unreasonable, as excited
state decay and interaction with a thermal reservoir will both tend to distribute population
more or less evenly and incoherently among the ground states. In particular, this condition

holds under conditions of weak illumination such that excitation rate is much smaller than the
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rate of thermalization. The total rate at which population is removed from G isthen

pac =Y pgg=_C' é'ueg|2pgg:’}$—GZC’\é-ueg\2 (A.6)
geqG ecl 9 ecE
geG geq

where N isthe number of statesinlevel G. Hence, the effective matrix element for excitation

fromG to E is

1
Hen = 5 0 |6 ey (A7)
G eck
geG

e The effective matrix element for stimulated emission. The analysis above did not make
any assumptions about whether level E' or G was higher. Hence, one might expect that the
matrix element for stimulated emission could be obtained simply by changing e for g and
E for G. However, the result would only be relevant if the excited states were equally and
incoherently populated, which isgenerally not the case. Rather, excitation from aground state
produces a superposition of excited states which is coupled back to the ground state by the
same coefficient. (We know the coefficient is the same because the interaction Hamiltonian
must be Hermitian). Hence the effective coefficient for stimulated emission is the same as

that for absorption:

Tables A.1 and A.2 show the effective matrix elements for the sodium D1 and D2 hyperfine
levels, which may be calculated from the matrix elements given in Tables B.1 and B.1. The sum of
the transition strengths is 16/48 for D1 and 32/48 for D2, which iswhy it is sometimes said that the
strengths of the D1 and D2 lines (relative to a two-state transition) are 1/3 and 2/3, respectively.

Before concluding this appendix, a disclaimer isin order. While the effective matrix elements
derived here are useful in some situations, one should keep in mind that it is generally impossible
to summarize the interactions between all the states in a many-state, few-level system with just
a few parameters. Apart from a few specialized situations, there are no shortcuts to obtaining

quantitatively accurate results.
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branching ratio  coupling strength  population line strength
F'.F bp i3 PFF (1% o PFF
11 6 18 5 T
21 2 s 5 s
12 6 G 2 s
22 2 6 2 s

Table A.1: The effective parameters for sodium D1 hyperfine transitions. (£’ denotes the ground
level, F’ denotes the excited level.)

branching ratio  coupling strength  population  line strength
F'" F bprp [ o PFF [i%0 pPFF
o1 | 1 ; : &
11 ; 5 : s
21 2 5 : i
12 ; ey ; I
22 2 G ; s
32 1 = 2 B

Table A.2: The effective parameters for sodium D2 hyperfine transitions. (F denotes the ground
level, F” denotes the excited level.)
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Appendix B

Matrix Elements of the Electric and

Magnetic Dipole Operators

In this appendix | evaluate the matrix elements of the electric dipole operator (i and the magnetic
dipole operator fi5. | choose as a basis the eigenstates of the total angular momentum, which in
this context includes orbital angular momentum, electronic spin, and nuclear spin. Formulas for
the matrix elements are derived in the orbital state basis, followed by a discussion of how they
are combined to yield the matrix elements for hyperfine states (eigenstates of the total angular
momentum). Finally, the matrix elements are evaluated for states of the sodium D1 and D2 lines

and listed in several tables.

B.1 Derivation of the Matrix Elements

B.1.1 TheEigenstates of Angular Momentum

If the Hamiltonian for a spinless particle is rotationally symmetric, the eigenstates of the Hamilto-

nian are also eigenstates of orbital angular momentum L. These eigenstates may be written

|n7l7ml> = Rnl(r)|l7ml>7 (Bl)

1) = F™(6) € (B.2)
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where n is the principle quantum number, [ is the quantum number for L? and my; is the quantum
number for L,. R,,(r) isaradia function that depends on the form of the potential. F;"(0) =
N, P™(cos#) where P (1) is the (I,m) associated Legendre polynomia and N/™ = [(2 +
1)(1 — m)!/4x (1 + m)!]"/? isanormalization constant. The F' functions have the property

/ FP(0)F™(0) sin0d0 = —dy (B23)

0 2T

such that <l/, mﬂl, ml> = 5lll5mlmf'
For a particle with spin, one may form a set of basis states from outer products of the orbital

angular momentum states |n, [, m;) and spin states |s, m.). For an atomic electron, the nuclear spin

state |, m;) isaso relevant in which case the basis states have the form |n, I, m;)|s, ms)|i, m;).

B.1.2 Evaluation of fi for Orbital Angular Momentum States

The electric dipole operator is fi; = —er where r is the position. Since r does not act on spin
states, we need only to calculate the dipole matrix elements (n', I, m;|r|n, I, m;). For readability, |

will abbreviate m; as m. In spherical coordinates,

x = rsinf cos ¢ (B.4)
y = rsinfsin ¢ (B.5)
z = rcosé. (B.6)

Then
(n,U';m'|z|n, 1, m) :/ R;‘L,l,(T)Rnl(T)r?’dr
0
I 2 ,
X / EJV (0)EF™(0) cos fsin 6 df / e m=m9 q¢ (B.7)
0 0

nl

= 27 R / EM(0)F™(6) cosfsin 0 db (B.8)
0
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where Rg;l’ denotes the radial component of the matrix element. The integral can be evaluated by
making use of the orthogonality and recursion relations of the L egendre polynomials. After several

lines of algebra, one obtains

/ o _
(n’,l’,m’]z\n,l,m> — Z;l’émm, <5l’,l_1\/§l +m)(l' —m) +5l’,l—1\/((l +m)(l —m) ) '

20+ 1)(20 + 1) 20+ 1)(21 + 1)
(B.9)

For the transverse componentsit is convenient towritex = (o4 +0_)/v2andy = (0. —0o_)/\/2i

where
1
oL = Er sinfe (B.10)
1 ,
o_ = %r sin@ e, (B.11)
We have
(n, 1, o |n, 1, m) = 20 R St / EH(0)F™(0) sin 0sin 6 df. (B.12)
0

A little algebrayields

/U, m|oy|n,l,m) = R x

l—m)(l' —m) A"+ m"( +m')
O m+1 (55”1‘1\/2(% NS 5”“\/2(2[ T 1)+ 1)) - (B13)

Now,

(WU'm’|o_|nlm) = (nlm|o’ ['U'm!V* = (nlm|oy |n'I'm’)*. (B.14)

Thus, we can obtain the matrix elements for o from those of o_ simply by making the switches
[ « I’ and m < m/ and conjugating the result. To express the final answer, | note that the position

vector can bewrittenasr = 0,6 +o0_64 + 22 where 6+ = (X £ iy) /+/2 are the circular unit
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vectors. Thefinal result is therefore

(' 1| fugln, 1,m) = —e Ry x
!‘Smm’ (5““\/ Egﬂ?)) g}_ffi + 5”—1\/ (gzinf)) ((éz/_+m 1))> 2
s (o[ S [T Y 5,
s (10 sy oo s ) | 039

This expression is physicaly valid for |m| < [ and |m/| < I’. Asacomputational expression, it

should be taken to vanish when these inequalities are not satisfied.

B.1.3 Evaluation of fi; for Orbital States and Spin States

The magnetic dipole operator has both orbital and spin contributions:

fp=— L+ geS+ gnl (B.16)

where m., m,, are the electron and nucleon masses and g., g,, are the electron and nucleon Lande
factors (approximately —2 and 2, respectively). If the spin and orbital components do not vanish,

the contribution from the nuclear spin is negligible since m,, > m.. Thus

(&

g =— L + 25). B.17
Up 5 me( +28) (B.17)
The expressions for the matrix elements have the same form for both L and S operators, so it is
convenient to perform the derivation using the generic angular momentum operator J. In terms of

the circular unit vectors, J = (L/ﬁ) 6+ (j_/\/i) &4 + J.z where J. = J, +iJ, isthe



APPENDIX B 149

raising (lowering) operator. Using the fundamental properties of these operators, we have

/

) A JjG+1)—mm R
(3", m/|JNg, m) = hoj ; [\/ ( ) Om! m+10 —

2

T
+\/](J +)2 mm 5m/,m_16'++m5m/7m2] (B.18)

and thus

<l/7m2) S,7m/s‘ﬁ‘B‘l7ml) S,m3> —

(&

011 0s,s" |Om ms (l’,mf|f;|l,ml) + 25m2’ml(s’,mg|§]3,ms)] . (B.19)

Me

B.1.4 Obtaining 1 and fi for Hyperfine States

When the particle of interest is an electron bound to anucleus, the Hamiltonian includesthe el ectron
spin (S) and nuclear spin (I). The uncoupled basis for the angular momentum consists of states of
theform |1, m;)|s, ms)|i, m;). (I'll ignore the quantum number » in this section.) In many cases the
physically relevant basis is the coupled basis whose states are of the form | f, my, 1, s, 4, j). These
states may be called “hyperfing” states since they are relevant when one resolves the hyperfine
structure of an atom. Here j is the quantum number for J2 = (L + S)?2, £ is the quantum number
for the total angular momentum F (F?= (L 4+ S + I)2), and my is the quantum number for the =
projection of F. The matrix elements between these states can be determined by expanding themin
terms of the orbital angular momentum eigenstates and summing up the relevant matrix elements.
To relate the hyperfine states to the orbital angular momentum states, | first write states of

“good” J intermsof the L and S states:

Gomgalos) = D> Cln )]s ms). (B.20)
my,Ms
Here C\* is the Clebsch-Gordon coefficient!. Then, these J states may be combined with

J,mg,my,Ms

1| implement the Clebsch-Gordon coefficients as six-index tensor which vanishesfor m; # m; + ms.
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the T statesto yield the F' states:
[fomplysing) = D Cn s mildi il s) (B.21)
™4,
! ,
= Y Gy oy s, ma)ims) (822
m’L7mel7mS
L,s,i,j ,
= Z szi’rzl;iml’m&mi]l,ml)\s,ms>]z,mi) (B.23)

mp,Mms, M,

l,S,i,j — .]71 l,S 1 I
where Q7 e = Fom pam;m; Cimy amym,- 1HE Matrix element between different F
mj
statesis then

/ 's' 15! * lisiig
(f mf7l S Z 7.] ‘l“l'|f mf7ly 8727J Z Z < mf”’nl’m\lS’m'lL') Qfmethms’mi

ml,m m mp,ms,m;q

x (I';my, ', ml, i, mi' ||l my, s, ms,i,m;).  (B.24)

For the electric dipole operator one has

<f/7 m/fa l,a S,a il:j/‘lj’ELf: myg, la 87i7j> =

D [Z (@ mimem.) @fmmmm] 0l m) - (825

my,my Lmims
and for the magnetic dipole operator one has

<f/,m/f,l/,S/,i/,j/|ﬂB‘f,mf,l,S,i,j>:(511/655/6%/ Z Z

’ ’
my,my Mg, Ms

l ) * l7 7‘»' Iy
[Z CrEm— @ffni;,ml,ms,mi] (o gl . m). (8.29)

m;
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B.2 Computed Matrix Elements

B.2.1 Matrix Elementsof the Electric Dipole Operator

The tables in this section list the relative values of the electric dipole operator up, that is, the
elements of the normalized operator fi ;= p /. TablesB.1and B.2 include electronic and nuclear
spin-orbit coupling and are relevant to the 35 — 3P transitions of sodium (aswell asto the 55 —
5P transitions of 87Rb). Due to space limitations, the vector nature of the matrix elements has
been suppressed. However, thisis no rea loss as the vector component follows a simple pattern:
Within each quadrant, elements along the diagonal (im = m') have z polarization, elements above
the diagonal (m = m’ + 1) have 64 polarization, and elements below the diagonal (m = m’ — 1)
have & _ polarization.

The elements listed in Table B.1 satisfy
S w155 4| Fom, 0,5, 3, 1) =1 (B.27)
F'm!

STFE w153 Fym,0,%,8 1) = 1. (B.28)
Fm

The branching ratios b i for spontaneous emission and the effective matrix elements /i for are

given by the partial sums

brr =Y [(F' | g F,m)|? (B.29)
=Y [(F o |fug - €| Fym) (B.30)

where € is any unit vector. The values of bpr and iz for the D1 hyperfine levels are given in

Appendix A.
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Electric Dipole Matrix Elementsfor the Sodium D1 Line

|1,-1) [1,0) 11,1) | |2,-2) [2,—-1) [2,0) |2,1) [2,2)
L Ve SRVEREA
Sl il -
(L1 ERTh TRt
e VEOVE VB R
20 | —J& ViV Jiooo
(2,1 -JE NERN RN
(2,2 -4 /3

152

Table B.1: The matrix elements of the normalized electric dipole operator fi;, evaluated for states
in the sodium 35/, and 3P/, levels. In this table, |F,m) is shorthand for \F, m,l,s,i,j> =
) and (F',m/|isshort for (F/,m/, U, s, ¢, j'| = (F',m/,1,3,3,%|.

1 31

|F7m707§)§7§
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Electric Dipole Matrix Elementsfor the Sodium D2 Line

1L,-1)  1L,0) L) | [2,-2) 2,-1) (2,00  [2,1) [2,2)
00 | i ovi WA
e e VB VE VE
ol ko —Vh Vh E
(1, 1] -/ > & -/ L
(2,-2| 3 T
el Vi Vi VR -
eol | —vVE F VR oo
o1 REERE i
(2,2| /1 T
(3, -3 1
@2 R
@1 5BV
o L
(3,2] SN
(3,3 B

Table B.2: The matrix elements of the normalized electric dipole operator fi 5, evaluated for states
in the sodium 35/, and 3P/, levels. In this table, [F,m) is shorthand for

|F,m,0 1 31

F,m,l,s,i,j> =
.5, 5,5 and (F',m/|isshort for (F',m/, U, ', ¢, j'| = (F/,m/,1,3,3,3|.

153
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The elements listed in Table B.2 satisfy

STF 1,58 L | Fom, 0,53, 3)7 =2 (B.31)
F'om/
SO WEL w155 e Fm, 0,35, ) = 1. (B.32)
Fm

The values of b and i g for the D2 hyperfine levels are given in Appendix A.

B.2.2 Matrix Elementsof the Magnetic Dipole Oper ator

Tables B.3 and B.4 list some of the matrix elements for the magnetic dipole operator ;. More
specifically, they give the matrix elements of (2m./eh)uy = — (ﬂ + 2S) /h for the Zeeman
states of the sodium S, , and P, /, levels. Note that the diagonal elements in these tables go as

—grm, Where g isthe Lande factor.
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Magnetic Dipole Matrix Elementsfor the Sodium 35, , States

155

‘L_l)

1,0)

1,1)

|27 _2>

|27_1> |270>

12,1)

12,2)

<17_1‘
(1,0]

(1,1

1
2

0

1
2

N

N[

see adjoints

<27 _2‘
<2a _1‘
(2,0

(2,1

(2,2|

D=
'y

3

4

1

2
L
2

Table B.3: The matrix elements of the operator (2m. /eh) 5, evaluated for the states in the sodium

3512 levels. Inthistable, | F',m) is shorthand for

Fam7l73aiaj> - ‘Fam70

131
120202

)and (F,m|is

shorthand for the adjoint state. Interaction energies can be obtained by multiplying these elements

by —e/2m. = —1.4 MHz / Gauss.
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Magnetic Dipole Matrix Elementsfor the Sodium P, /, States

[1,-1) [1,0) 1,1) | [2,—-2) [2,—-1) [2,0) 12,1) 12,2)
IR T
(1,0] : 0 3 see adjoints
0.1 b
R R
e Vi Vb
200 i s Ve B0
@1 VE E b
(2,2] : _\/% 1

Table B.4: The matrix elements of the operator (2m. /eh) 5, evaluated for the states in the sodium
2Py /2 levels. Inthistable, |, m) isshorthand for |F,m, [, 5,4, j) = |F,m,1,3,3,3) and (F,m|is
shorthand for the adjoint state. Interaction energies can be obtained by multiplying these elements
by —e/2m, = —1.4 MHz/Gauss.
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Appendix C

Relaxation in Quantum Systems

A quantum system which interacts with its environment typically evolves irreversibly and experi-
ences a dissipation of energy. This phenomenon is known variously as relaxation, decay, or damp-
ing. A familiar example of relaxation is the spontaneous decay of an atom from an excited state
to a lower state by emission of a photon. For many calculations it is sufficient to treat relaxation
phenomenologicaly, i.e. to “fix up” the density matrix equations by adding relaxation terms with
coefficients chosen to match observed relaxation rates. However, interaction with the environment
can also produce effects other than relaxation. Such effects include frequency shifts of transitions,
spontaneous transfer of coherence from excited states to ground states [22] and the coupling of
dipole oscillations assaciated with different transitions [6]. In order to make sure that all the rele-
vant phenomena are represented, and to predict the values of the relaxation coefficients, one must
explicitly treat the environment and its interaction with the system of interest. In this appendix |
give my own abbreviated derivation of the Bloch-Redfield theory of relaxation, which considers a
generic system coupled to a generic environment. By formally solving the dynamical equations
and eliminating the environment variables, an equation motion for the reduced density matrix of the
system is obtained. To illustrate the use of the theory, | conclude with a few examples involving

atoms and the el ectromagnetic continuum.
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C.1 Derivation of the Relaxation Terms

Suppose we have a system S coupled to areservoir R. If the reservoir's modes of excitation span
a wide range of frequencies, then energy will flow essentially one-way, from the system to the
reservoir. The reason for this is that once energy from the system is distributed across the many
modes of the reservoir, the modes never come back into phase with the system al at the same time
to return the energy. Thisis the mechanism responsible for decay of a quantum system.

Let us write the total Hamiltonian as
ﬁ:ﬁ5+ﬁR+ﬁ] (C.y

where H s isthe Hamiltonian for our system alone, H r isthe Hamiltonian for the reservoir alone,
and H istheinteraction energy which accounts for the coupling between S and R. To describe the

state of S at a given time we will use the transition/population operators Sjk(t), where
Sii(0) = | 4) (k| (C.2)

and |j) isthe jth eigenstate of S. [Recall that these Heisenberg operators are simply related to the
density matrix elementsin the Schrodinger picture: <5’jk(t)> = pi; (t)]. Wewill model the reservoir
as a collection of independent harmonic oscillators®. The coordinate of the pith harmonic oscillator

or “mode” i, + aj, where [y, a,] = 6,,s. Then

Hg = Zhwjﬁjj] I (C3)
L J

Is (C.4)

Hp = | hyala,
L p

where w; is the natural frequency of system eigenstate j, 2, is the natural frequency of mode .,

and ] stands for the identity operator. L owest-order coupling between S and R yields an interaction

1This model is more applicable than it would first seem. The fact is, any system will act like a harmonic oscillator (or
set of harmonic oscillators) near its equilibrium point.
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Hamiltonian of the form

Hy = ﬁz Z <gjk,p§jk + g;k,ygkj> (du + &L) : (C5)

J>k u

Here g, ,, is the coupling coefficient between the k& — j transition and mode .. The normally

ordered form? of this Hamiltonian is

Hr =1 gikuSiktn + g 0, Skj- (C.6)
Bk

The sum above includes energy-conserving terms as well as non-conserving terms. The non-
conserving terms lead to counter-rotating components in the dynamical equations which contribute
little over timescales comparable to the evolution time of the system. Such terms can be effectively
removed by setting g, ,, to zero for w; < wy. (If they are to be retained, then one should set
Gkjp = g;f,w.). The aim now isto eliminate the reservoir variables and obtain dynamical equations
for the S;;,’s alone. We will find that the presence of the interaction Hamiltonian leads to additional
termsin these equations which describe decay and frequency shiftsin the states of .S.

The Heisenberg equations of motion for the system operators are

35 ﬁ (1.8, | | (C7)
= % [ﬁg,gjk} + % [IA{R,Sjk} + % [ﬁ],gjk} . (C8)
Now
[ﬂs, sjk = h(w; — wi) Sk = hw;uSin, (C.9)
[ﬁR,Sjk: —0, (C.10)
{ﬁb 5}'1@: =h) > <9lj,w§lk: - gkl,ugjl) Gy +al, (g;’fmguc - gzkk,ugjl) : (C1y)
I w

2As the system and reservoir variables are independent, they will always commute. We are therefore free to impose
whichever ordering suits us at the start of the problem.
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Therefore

d 4 g , A &\ At (x & x4
a0k = —iwyj Sk + 1 Z Z [(gz]',usm — gkl,usjl> a, + CLL <gjl,u5lk — glk”usjl)] . (C12
L

Similarly, we have for the reservoir operators

[ﬁs,au' —0, (C.13)
(i, 3| = =1, (C.14)
[En, au: = 1> G S (C.15)
K
which gives
%&u = —iQuby — 1> G Swir- (C.16)
ik

This differential equation islinear in the unknowns and may be integrated formally:

. t . N\ A
a(t) = ap(to) e w0 — iy g, / e W= G () dt! (C.17)
j’,k’ t()

Theterma,,(to) exp [—i€2,(t — to)] = Gunom (t) describesthe describes free evolution of the reser-
voir from its “initial state” which may be taken to be in the infinite past. Substituting egn. (C.17)

into egn. (C.12) with tg — —oo gives

d g . R . O R ~ ~ * R * &
%Sjk = —iwy; Sk + 1 Z Z { (91j,u51k - gkl,usjl> Gy hom (1) + GL,hom(t) (gjl,uslk - glk,,usﬂ):|
[
¢
+ Z Z [(glj,#Slk — gkl,qul> g;-‘,k,’#/ e—ZQu(t—t )Sk’j/ (t/) dt/
KoLyl K B

t
_ / ezQu(t—t )Sj’k" (t/) dt/ gj/k/7ﬂ <g;l,uSlk — g?k7MS]l):|

—00

(C.18)

The homogeneous terms are not of interest here; in the common situation that the reservoir is ini-

tialy initsground state, the normally ordered expectation values vanish and do not affect the density
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matrix. We are |eft to evaluate terms of the form
. ~ t iQ) AWA
damping term = S (t) > gab i / T8 (') dt'. (C.19)
u —00

To accomplish this task we invoke the premise that the reservoir is “large”. Specifically, areservoir
is expected to be spectrally dense, broad, and smooth. “Dense” means that the mode frequency
spacing is much smaller than the reciprocal of the longest timescale of interest. “Broad” means
that the bandwidth of the modal distribution is much larger than the bandwidth of any dynamical
variable of interest. Finally, “smooth” means that the coupling coefficients are essentially constant
over the bandwidth of any Sjy.

Under the assumption of denseness, the discrete sum over modes may be replaced by an integral.
From here on, instead of using the index ;. to number the reservoir modes, let usidentify each mode
according to its frequency 2 and a parameter y which includes al remaining degrees of freedom.
Then ga,, is rewritten as g,;(£2, x) and the sum over p isreplaced by [ [ D(€2, x) dQ dx where

D(, x) isthe density of modes. With these replacements, egn. (C.19) becomes

[e's) t
t)/ / / 9ab (2 X)92a( X)D(2, X) Sy (¢)eF N1 at'dQ . (C.20)
0 —00
Now,

t t 00
/ S’y (t )e:FZQ(t ) dt/ eiFth/ / S )6 Zwt/dw:| e:I:ZQt/ dt/

Syz [/ e i(w:FQ)t/dt/:| dw.

_ e:Fth
Making use of the Fourier identity

0 .
/ e“tdt = mo(w) + — (C.21)
w

we have

t .
[ et [wm Q) - | T (€22
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Putting these results into egn. (C.20) gives

damping term = S, (t) // S'yz(w)Gbed(w, x) e “tdw dy (C.23)

where

i

a0 (C.24)

Gaibcd(w, X) = /0 9ab (2, X)954(2, x) D(€2, x) [ms(w TQ) - RET) _

Now, under the assumptions of broadness and smoothness of the reservoir, G, (w, x) isaslowly
varying function of frequency compared to Syz (w). Thus it is a good approximation to simply

evaluate G5, (w, X) @ wy., the natural frequency of S,.(w). Thus

damping term ~ S, (1) S, (t) / G i(wyz, X)dx (C.25)

Since operators such as S’M(t)S'yz(t) reduce to S'M(t), the equation of motion for the system

operatorsisfinally reduced to an ordinary differential equation:

d ; A
—8,i = —iwy;S;,+homogeneous terms

dt
+ Z/ [G;;mk(wmk, X)Sim — Gy (Wimts X) Sjim
Im

_Gr_nljl(wlm’ X)Smk + G'r_njlk (wjma X)Sml dX (026)

Eqgn. (C.26) is the general solution for the situation of “weak” coupling to a broad, smooth,
dense reservoir. It can be cast in a simpler form if we make one additional assumption. Let us

suppose that each term such as [ G, (w, x) d is factorable such that it can be written in the form

/ Gorpea (@, X)X = gapgign(£w). (c.27)

This occurs, for example, if we can factor gqp: gap (€2, X) = 1apC(£2, ). Now, | note that any given

term in egn. (C.26) will not have a significant long-term effect unless its frequency is close to that
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of S*jk. For example, the term (?;;mk (Wimnks X)Slm isimportant only for w,,,; ~ wy;, or equivalently
Wk ~ wij. Thusthereis no harmin replacing n(wmi) With \/n(wmi)n(wi;). This factorization
alows usto write

> / G e @k X) Sim dx ~ [g*ég + z‘dTSd]

ki
lym J

where S is the matrix whose j, k element is the operator S’kj and g and d are matrices whose

elements are
[g]ab = Mab\/ﬂ—/ca(wab? X)D(wab X)dX (C28)
C%(Q
[d],, = uab\/// o _X D(Q, x) dQdx. (C.29)

Upon performing a similar decomposition of the remaining terms, we find that egn. (C.26) can be

expressed more concisely as the matrix equation

das 1[a 4
$S = [HS, S} -+ homogeneous terms (C.30)
+ (Zngg — ggtS — gggT) —1 (ddTS — deT> . (C.31)

To obtain the equation of motion for p, the (reduced) density matrix of the system, | note that
p = <S> As indicated previoudly, the expectation value of the homogeneous terms vanishes for

the case that the reservoir isinitially in its ground state. At last we arrive at the main result of this

appendix:
d i
—p=——[H,, T —iA C.32
P =7 Hs,pl +T i (C32)
where
I =2g'pg — gglp — peg', (C33)
A =ddfp — pdd. (C.34)

The first term in egn. (C.32) describes the evolution of the system in the absence of coupling to the
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reservoir. I' describes population relaxation and decoherence while A describes frequency shifts. |
notethat if thereis morethan onereservoir, each addsaseparate matrix. Thatis,I' — I'1+T'2+- - -

and A — A+ Ay +---.

C.2 Examples

C.2.1 Decay and Frequency shift in a two-level system

With two levels (w2 > w1), and under the rotating wave approximation, the only non-zero elements

of g and d are the (2,1) elements. We may write these matrices as

0 0

g = (C.35)
V7 0
0 0

d= . (C.36)
Vi 0

where the values of v and ¢ are determined by the intrinsic coupling constant g»;and the integrals
over the mode parameters w, x. Then

2 - 0 -0
I — Y P22 P12 A P12 (C.37)

—yp21  —29p22 dpa1 0

and we obtain the density matrix equation

d [ P pr2 _ 27922 [—i(wi2 — 0) —v]p12 . (C.38)

dt P21 P22 [—i(w21 4+ 0) — ¥]p21 —2vp22
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C.2.2 Decoherencein atwo-level system

Consider coupling of the upper state in a two-level system to itself via a reservoir mode of zero

frequency. In this case the interaction can be expressed in terms of matrices:

0 0 0 0
g = , d= . (C.39)

0 V7 0 V6

for appropriate values of ~ and 4. Then

0 - 0 -4
I — P12  A- P12 ' (C.40)

—p21 0 dp21 0
This kind of coupling leads to decoherence and frequency shifts without changing the population

relaxation rate. Pressure broadening is an example of this effect.

C.2.3 The Spontaneous Emission Rate and Lamb Shift

Suppose that the reservair is the electromagnetic field. The quantized electromagnetic field is de-

scribed by the operator

. e hw . .
E(r,t) = Z/o \ 167320 [ek,pak,p(r7t> + €k,paLp(rat) &’k
P

where k is the wavevector, w = |k| ¢ is the mode frequency, p = 1,2 indexes the polarization,
and ¢, is a unit vector definition the direction of polarization. Instead of the wavevector it will be
convenient to use the frequency and spherical angles of k to label each mode. Now, consider that
the system is located at the origin and is small compared to the wavelength of any field it might
emit. In this case the interaction Hamiltonian may be approximated as H; = —p - £(0,0), which

yields the coupling constants

w
9ab(W, X) = gab(w,0,0,p) = 4 | T6m332gh (€p * Kgp)- (C41)
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The number of modes of a given polarization in a differential volume element is w? sin 6. Thus

s 2m
x w . 2.
/Qab(% X)9ea(w, x)D(w, x) dx = 16m332gh ;/0 /0 (€p * Hap)(€p * Beq) w?sin 6 df dop.

(C.42)

Without loss of generality, let usfirst assume that u,,;, and p.; are parallel. If we call thisdirection

the “north pole” of aspherical coordinate system, then it is convenient to choose 6 and ¢ as the two

polarization unit vectors perpendicular to the wavevector. Then

D (e a)(€p - Bea)” = Havhipg |0+ 2)° + (¢ - 2)°
p

2
= labflag SIn~ 6.

Then

T 2w 27 pm
Z/ / (€p* Lyp)(€p * eg)  sinbdOdop = uabuid/ / sin® 6 df d¢
> Jo Jo o Jo

8

= ?Mubﬂzd'

On the other hand, if i1, and 1., are perpendicular, say in the z and x directions, then

D>

> (ep tar)(€p 1tea)” = Havtiia [0+ 2)(0 - %) + (& - 2)( - %)

p

= lablag Sin 0 cos 6 cos ¢

which leadsto
T 27
S [ [ madle o) smdsas =0
> Jo Jo
Thus, for arbitrary g, and f.4,

3
* w *
/ 9ab(W, X) Geg(w, X) D(w, x) dx = Grcegnlab * Hed:

(C.43)

(C.44)

(C.45)

(C.46)

(C.47)

(C.48)

(C.49)

(C.50)
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According to egns. (C.28) and (C.29), the elements of the g and d matrices are then

gy = | (C51)
8lab = 67rh5063uab '

= bl (C52)
1 03
d] , = Qe p. .
[ ]ab \/67T2h€0C3 /(; w— Q3 d Hap (C 53)
= /vy (C59)

where fi,, = s/ |1ras|- Unfortunately, the integral determining ., diverges. However, the upper
frequency limit of oo is unreasonable, since the electric dipole approximation becomes invalid at
short wavelengths (high frequencies). Hence it is customary to cut off the frequency integration at
some maximum frequency wmax. FOr atwo-level system, we obtain the spontaneous emission rate

2+ and an estimate® of the Lamb shift:

wi) |2
oy = 21211 C.55
7 3mheoc3 ( )
hult
= —— d). C.56
6m2heoc? J, w—Q (C-56)

3Some derivations of the Lamb shift lead to an integral over w?Q/(w — Q) instead of Q% /(w — Q). The origin of this
discrepancy can betraced to the use of p - A for the interaction Hamiltonian instead of —p - E. Asthe two Hamiltonians
are related by a gauge transformation, they must lead to the same result in an exact calculation. Which is better to use
in the case of approximations has been the subject of many complicated discussions; unfortunately, there is no general
answer. The present approach indicates the source of the Lamb shift but istoo simpleto really predict its value. (I thank
Prof. Eberly for abrief but helpful discussion on this point.)
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Appendix D

Theory for Numerical Solution of a

Two-Manifold System

My research has been greatly assisted by the ability to model the spectral and temporal response of
both physical and idealized atomic systems. This modelling was performed with a set of computer
routines and user interface (Fig. D.1) that | wrotein MATLAB. The set of routinesis extremely flex-
ible asthe density matrix equations are constructed at run-time in accordance with user input, rather
than being hard-coded. In this appendix | present the mathematical theory behind the computer
routines. §D.1 presents aphysical model for the class of systems under study. §D.2 derivesthe mas-
ter equation, and §D.3 discusses the numerical methods used to obtain its solutions. Finally, §D.4

explains how polarizations and susceptibilities are obtained from a solution to the master equation.

D.1 ThePhysical Model

The purpose of this model is to allow one to determine the optical response of an alkali vapor
illuminated by a several classical fields. To this end, | consider a system whose states can be
grouped into two sets or manifolds: a set of “ground” states, and a set of “excited” states. The
ground manifold and excited manifold are assumed to be separated by an optical frequency, while

within each manifold there may be hyperfine levels separated by radio frequencies. Each hyperfine
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4 Two-Manifold Atom Modeller Ryan Bennink. 2004 M= E3
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Figure D.1: The user interface for the computer routines used to model “two-manifold” atomic
systems.
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Figure D.2: Thetype of system under study, consisting of a set of ground states |¢) coupled to a set
of excited states |e) by optical fields E(™) with frequency spacing 5. The influences of ensemble
relaxation and a DC magnetic field are aso included in the model.

level may further consist of multiple Zeeman states. This system interacts with a polychromatic
field which consists of severa frequency components spaced at regular intervals. | also alow for
the presence of a DC magnetic field which causes level shiftsand transitions between Zeeman states.

The system is specified by

the energy or frequency of each hyperfine level

the degeneracy of each hyperfine level

the vector matrix elements of the electric and magnetic dipole operators

the frequencies and complex amplitudes of all the fields, and

the value of the DC magnetic field.

The state energies are relative to an arbitrary origin. When providing the input parameters for a
calculation it isconvenient to specify the energiesrel ative to the lowest-1ying states of each manifold

and to specify the center field frequency relative to these states. The density matrix equations are
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easiest to solve, though, when as much time dependence as possible has been eliminated. This
is done by moving to a frame which rotates with the central field component. In this frame, the
frequency of the mth spectral component is mJ.

Regarding the matrix elements, values for real atoms can be obtained as described in Appendix
B; however arbitrary values may also be used to define idealized systems. Whether the system
isreal or fictitious, only the relative values of the electric dipole matrix elements are needed. As
discussed in §5.1, the relevant atomic quantities can be expressed conveniently in terms of the
relative values, with the spontaneous emission rate providing the absolute scale where needed. The
spontaneous emission rate also determines the nominal matrix element, which allows the electric

field amplitudes to be specified in terms of nominal Rabi frequencies instead of in laboratory units.

D.2 Derivation of the Master Equation

D.2.1 Equation of Motion for a Single Atom

Ignoring damping processes for the moment, the equation describing the evolution of the density
matrix for asingle atomis
d i

Zh=—7[H, ] (D.1)

where, in the electric and magnetic dipole approximations,
o= (Zma|a><a|> —pp-E—-f(p-B (D.2)

for the electric field E(t) = E(t) + E (¢), the magnetic field B, the bare-atom eigenstate energies

fuwv,, and the electric and magnetic dipole operators fi;, ji1z. Evaluating [f] ,p] yields

Pab = —i(wa = o) pab + 3 > (s 5Prb — Paakian ) - B (©3)
X

*

i . i . 8
+ ﬁ Z(/"’ax,prb - pal’u‘azb,E) : E<t) + E Z(/"xa,Ep:Jcb - paxuzx,E) -E (t) (D-4)
x x



APPENDIX D 172

All terms involving g,  Or ik g with w; < wy, correspond to off-resonant or counter-rotating
terms, which | drop in accordance with the rotating-wave approximation. The strength of the cou-
pling between a pair of states (e for excited, ¢g for ground) and the mth sideband of the optical field

may be expressed as the Rabi frequency

qm) _ 2Hegr - BT

¥ - ©5)

where E(t) = 3, E(Me~mdte—iwct |n similar fashion the strength of interaction with the mag-

netic field is conveniently expressed in terms of the magnetic Rabi frequency
Lyy = ——— (D.6)

for each pair of ground states g, ¢’ (or excited states e, ¢’). Let the states be organized so that all
the ground states are indexed first, followed by all the excited states. Then it is convenient to define
Rabi frequency matrices

0 o0 Lyl O

, L= (D.7)
%77 o 0 |Leo]

Rm™ —

where | Z,; | denotes the matrix whose elements are Z,,;,.
I now move into the frame that rotates with the central field component. In this frame the

dowly-varying density matrix p obeys
Pab = Z(Ab - Aa)pab + 5 ; Laxpacb - 5 ; PayLyb
1 s 1 s
_|_§ Z Z Rgg)e zmétpxb _ 5 Z Z payR?(ng)e imét
r m y m

+% zx: Em: Rimyx+imot,, % Zy: Zmz pale(,;”)*eHm‘”. (D.8)
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This may be written in tensor notation as

d
~“p=M D.
7P p (D.9)
whereM = 5" M (™ e=imdt gngd
(0) — (A
Mabxy ho damplng - Z(Ab Aa)(saﬂf(sby
5 | (Law + B + RE")00, = ban(Lyp + R + R())| (010
m)  _ P [(pm) oy plemy) s (pm) | p(-m)
Mabxy -9 |:<Rax + Rza >5by (Ryb + Rby )5%4 . (Dll)

Asdiscussed in Appendix C, coupling to the electromagnetic continuum adds the terms
2GTpG — GGTp — pGG' (D.12)
to the expression for p, where

\/’Yabﬂab ac {6}7 be {g}

G = (D.13)
0 else
_ o lnanl” (D.14)
Yab 6mheged '
We have
|:2GTpG — GGTP — pGGT:| b =2 Z(GT)ax : Gybp:py - Z Gan - (GT)n:pp:cb
Ty n,x
- Z payGyn * (GT)nb- (D-15)
n,y
This gives
Mgbxy = Mgbzy + Q(GT)(H : Gyb - ZGan : (GT)nz(Sby - ZéaxGyn ' (GT)nb- (DlG)

no damping
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A similar set of terms may be added to incorporate dephasing. For simplicity, | assume that

each state dephases via a separate interaction channel. The additional terms then have the form

5a15by[(7deph,ac + ’Ydeph,y)(sct:y — Ydeph,x — ’Vdeph,y] where “Ydeph,x isthe dephas ng rate of state z.

D.2.2 Equation of Motion for the Atomic Ensemble

Egn. (D.9) isthe equation of motion for asingle atom. In the case of an atomic vapor, atomic motion
produces a continuous turnover of the atoms in the illumination region, with optically prepared
atoms being replaced by atoms from a reservoir in some state p'™'. The ensemble density matrix

may be written as
1 N
P= > b (D.17)
j=1

where N is the number of atoms in the illumination region and p; is the density matrix of the jth
atom. Let p(7)dr be probability that an atom remains in the illumination region between = and
7 + dr seconds. Then (dp(7)/dr) p~tdr is probability that an atom which has remained for atime

7 will leave in the interval dr. The equation of motion for p isthen

Q.|g‘

1SN 1 dpt—t)) o
ng(t—tj) i PP (19

SR

Now, thefirst termisgiven by egn. (D.9). Assuming that all atoms experience the sameillumination,

Q.|g‘

N 1 N
Z =5 > Mp; = Mp. (D.19)
: j:l

2 |

To evaluate the second term, | pick a particular form for p:

p(r) =Te "7 (D.20)

which implies that al atoms inside the illumination region have an equal chance of leaving it in a
given (short) timeinterval. Thisis not the most realistic model (for instance, in §6.1.1 we found that

fo 1+ I'r)~! for diffusive motion), but it makes the resulting equations much



APPENDIX D 175

simpler. With p~tdp(t — t;)/dt = I we obtain

d

2 P(1) =Mp—T(p— p'). (B-21)

The density matrix will contain frequency components at all multiples of 4:

p= > pmerimit (D.22)

Here 5™ denotesthe component of the ensemble density matrix at frequency md, which isaccurate

to all ordersin the field strengths®. Then (D.21) becomes

00 00
i Z ’—)(m)efimét _ Z M(m”)efim”ét Z ﬁ(m’)efim’ét T Z ﬁ(m)efimﬁt + prrsv.
dt

m// m/

e (D.23)

m=—0oQ

Thisyields the Floquet relation
d —(m n) =(m—n . =(m
= 5 — En:M( )™ 4 (imé —T) p™ + 6, 0T p™ (D.24)

This eguation may either be solved directly in the steady-state case or numerically integrated to

obtain temporal behavior of the system.

D.3 Solving the Master Equation in the Steady-State

The steady-state solution of (D.24) is appropriate for modelling the interaction between time-

independent field components and an atom of constant velocity. In this case we have

> M 4 (img —T) ™) = =6, 0Tp'™. (D.25)

For small or vanishing values of § the various orders of the Floquet series should probably be summed to get a
physically meaningful result, as there is little distinction between them.
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This equation describes a linear system of equations which may expressed symbolically in matrix

form as
Bs = —z, (D.26)
where
pb 0
s = p , z=I]| p~ |, (D.27)
p 0
and
M’ + (=i —D)I ™MD M(—2)
B=| ... MHD MY - T1T M1 U I (D.28)
M(+2) MED MO+ (i6 — DI

Inimplementing (D.26) on acomputer, the matrices 5™ and p are reshaped into column vectors
and the rank-4 tensors M) are reshaped into matrices. If the number of statesis N and the Floquet
seriesis truncated at F terms, then s is of length FN? and B isof size FN? x FN?2. Clearly, the
computational demands grow rapidly with the number of states. On a personal computer with an
850 MHz Intel processor and 256 MB RAM, a 3-order solution of the sodium D1 system (F' = 3,
N = 16) requires approximately 1/3 second.

Now aconfession must be made: M(?) issingular, which meansthat B as given above cannot be
inverted. Thissingularity is artificial, however; it occurs because conservation of population makes
one of the equations redundant. To eliminate this artificial singularity and normalize the solution, |
replace one of the population rate equations in (D.26) with an equation expressing conservation of
population:

> A5 = b (D.29)
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D.4 Calculating Optical Properties

D.4.1 Calculating Dipole Momentsand Susceptibilities

Once the ensemble density matrix components ("™ have been obtained, the induced atomic dipole
moment can be calculated. The complex amplitude of the atomic dipole moment at frequency

we +mois

p(we +md) Z uegp . (D.30)

The polarization and susceptibility are related to atomic dipole moment by P =Np and x =
P/(¢oE) where N is the atomic number density and E is the appropriate input field. Terms with
m = 0 correspond to pump susceptibilities, terms with m = 1 correspond to probe susceptibili-
ties, and terms with m = —1 correspond to idler susceptibilities. Terms with || > 1 correspond
to higher-order processes. The polarization is not broken down into contributions from particular
nonlinear orders, but if desired they can be obtained by a polynomial fit to solutions calculated over
some range of Rabi frequencies.

To determine, for example, the dressed linear susceptibility of aright-hand circularly polarized
probe beam, the relevant quantity is p(w. + §) - (X+i¥)*/+/2 as caculated with asmall value for

the probe Rabi frequency.

D.4.2 Spatial Propagation

Under steady-state conditions, the mth order of the electric field obeys

0? k2,
(82 k2> B = ~fnper (D.31)

where k,, = wn/c = (wo + md)/c is the free-space wavevector. (I assume al fields are co-
propagating.) The solution for each field will consist of a rapidly oscillating factor exp(ik,z),
which is of little interest, and a slowly varying amplitude A (™) whose evolution is affected by

P (™). The common dependence exp(ikoz) may be factored out. Then, under the typical condition
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Here P(™) is obtained by solving the master equation (D.9) with the field components E(™) =
A exp(—imdz/c).



