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Abstract

In the past decade, researchers have found that the optical properties of a medium can be dra-

matically altered by optically driving the medium into a coherent superposition of its quantum

states. Optical transitions from these states can interfere, leading to optically induced absorption or

transparency. Such “coherently prepared media” (CPM) typically have large wave-mixing suscep-

tibilities without the resonant absorption that usually accompanies large nonlinear susceptibilities.

In certain schemes, a large material coherence can act as an oscillator which scatters optical waves

into modes of different frequency with high efficiency. Technologies based on this process could

find uses ranging from telecommunications to X-ray pulse characterization. The present work in-

vestigates the ability to coherently prepare an atomic vapor and to use that coherence to shift optical

signals from one frequency to another with high efficiency, bandwidth, and fidelity.

My theoretical studies of coherent preparation include both simple and many-state systems.

While two-state systems can display some coherent effects, coherent effects are much more clearly

displayed in three- and four-state systems. A Bloch-sphere representation of Raman systems is

developed, which yields simple, easy-to-interpret graphical solutions and illustrates basic phys-

ical principles of coherent preparation through simple formulas. The complications of coher-

ently preparing a real vapor are also considered and discussed in detail. Experimentally, a pair

of laser fields were used to create coherence between the 3S1/2 hyperfine levels of sodium vapor.

Coherence-based optical effects including transparency, four-wave mixing, and Raman scattering

were observed. Finally, coherence-induced Raman scattering was used to perform fast (> 20 MHz),

high-fidelity (> 99%) conversion of AM and FM optical signals from one carrier frequency to an-

other. In spite of these successes, the degree of coherence produced and the conversion efficiency

were not as large as one would hope. My work concludes with a discussion of the obstacles encoun-

tered in achieving large coherent effects in vapors and how they might be overcome.
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Chapter 1

Introduction

It has long been known that light can alter the optical properties of a medium. That is, the coefficient

which relates the electromagnetic field to the material response can depend on the electromagnetic

field itself. In this sense the material is optically nonlinear. Generally, intense optical fields are

needed to see nonlinear effects. Since the invention of the laser in the late 1950’s, the subject of

nonlinear optics has grown tremendously. There is an incredible variety of nonlinear phenomena

ranging from self-action effects to light-by-light interactions. Many mechanisms of nonlinearity fall

into one of two broad categories. There are processes in which light incoherently redistributes the

material’s electron population. These processes can be relatively strong. They lead to effects which

include absorption saturation and the intensity-dependent refractive index. On the other hand, there

are processes which induce virtual transitions in the material. These processes create small coherent

oscillations in the material and are responsible for many wave mixing phenomena, including har-

monic generation and sum/difference frequency mixing. These processes can be extremely fast (fs

response times).

Over the past 10-15 years, however, it has been found that the multiple laser fields can interact

in ways which put a medium into a strong superposition of quantum states. That is, the electrons

are distributed coherently over two or more quantum states. In these coherently prepared media1

(CPM), different optical transitions involving the mutually coherent states can interfere quantum

1M. O. Scully and co-workers refer to such media as “phaseonium.” While this term has some technical merit, and
the advantage of conciseness, it sounds to me like something from a bad episode of Star Trek.
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mechanically, resulting in dramatic changes to the optical response. Such changes are said to be

“electromagnetically induced.” Since they often occur even with weak optical fields, very large

nonlinear susceptibilities can be ascribed to CPM. Indeed, many nonlinear phenomena of interest

(such as wave mixing) are greatly enhanced by quantum coherence. Electromagnetically induced

nonlinearities can be either fast or slow; when they involve metastable states, the resulting spectral

features can be extremely narrow (as small as 10’s of Hz or 10−11 nm). CPM have also been used

to demonstrate novel phenomena such as propagation of light at a velocity of a few meters per

second. A full overview of the applications of CPM will be given later in this chapter. But first it

will be helpful to look more closely at the concept of coherent preparation and the context in which

it developed.

1.1 Background

The first reported observation of coherent preparation of a medium was by Alzetta et al. [1]. They

observed that the resonant fluorescence of a sodium vapor in the presence of two laser fields van-

ished when the frequency difference of the two lasers was exactly equal to the frequency difference

of the ground hyperfine levels. The mechanism responsible for this effect was termed coherent pop-

ulation trapping (CPT) by Gray, Whitley, and Stroud [2]. They considered an excited state coupled

by two fields to two ground states (a “Λ” system, Fig. 1.1a). Apart from relaxation processes, the

probability amplitude of the excited state obeys the equation

ċ3 =
i

2
(Ω1c1 + Ω2e

iδtc2)ei∆t (1.1)

where c1, c2 are the probability amplitudes of the ground states, Ω1,2 are proportional to the am-

plitudes of the optical fields, ∆ is the detuning of the first field from its transition, and δ is the

difference between the ground state frequency separation and the beat frequency of the two lasers.

When δ = 0, there is a particular superposition of the ground states, namely the one with c2/c1 =

−Ω1/Ω2, such that ċ3 = 0. This “dark state” |d〉, so named because it produces no fluorescence, is

completely decoupled from the excited state and is transparent to the applied fields. The orthogonal
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Figure 1.1: Coherent population trapping (CPT). (a) A Λ system. (b) The population is pumped into
a superposition of the ground states, denoted |d〉 for “dark state”, that is uncoupled to the excited
state. The atom becomes completely transparent to both fields.

superposition is coupled to the excited state and is called the “bright state” |b〉, Fig. (1.1b). The sys-

tem always evolves into the dark state within a few radiative lifetimes, since any population which

decays from the excited state into the dark state is not removed by optical excitation. The population

is trapped in a coherent superposition of the ground states. The coherence between states |1〉 and |2〉
is c1c

∗
2. The coherence is maximal in the sense that it is as large as possible for the given distribution

of population (mathematically, its magnitude cannot exceed
√|c1|2|c2|2). In the case of balanced

fields (|Ω1| = |Ω2|) the magnitude of the coherence reaches the ultimate maximum of 1/2.

It is important to note that the vanishing absorption is not simply a result of saturation or op-

tical Stark shifts of the transitions; it results from quantum interference between the two pathways

for absorption. Quantum interference between multiple transitions is a very general phenomenon

and has been studied for many years. Fano [3] found that the rate of ionization of an atom by an

ultraviolet field exhibits interference effects when the ionization can occur both by direct excitation

and by non-radiative transfer from an auto-ionizing state. Conversely, when two coherently excited

states decay to a common lower state, the fluorescence exhibits a beat note at the frequency differ-

ence of the excited states, a phenomenon known as “quantum beats” [4, 5]. Cardimona, Raymer

and Stroud [6] showed that if two transitions have the same dipole matrix element, they interact via

spontaneous emission in such a way as to end up making equal but opposite contributions to the
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atom’s total dipole moment. This may be understood as coherent population trapping in the excited

states: Although the field initially excites the symmetric superposition state, spontaneous emission

moves the system to the antisymmetric superposition state which is decoupled from the total field

consisting of the driving field and the radiation reaction field. As with coherent trapping in ground

states, this dark state is stable and transparent to the field. Malcuit, Gauthier, and Boyd [7] observed

suppression of amplified spontaneous emission due to four-wave mixing in sodium. In this case, the

fields evolved upon propagation to the point where the probability amplitude of excitation by the

pump field was exactly cancelled by the probability amplitude of excitation by the parametrically

amplified fields.

The field of quantum coherent optics truly gained its identity and began to develop following a

publication of Harris in 1990 [8]. Harris proposed a scheme2 in which a strong “control” field drives

a pair of unpopulated states (Fig. 1.2a), one of which (|2〉) is metastable. The surprising result is

that if a probe field couples a populated state |0〉 to state |1〉, then no population appears in state

|1〉; rather it appears in |2〉, where the probability amplitude of state |2〉 is directly proportional to

the probe field. That is, the linear (1-photon) susceptibility of the probe vanishes, but the nonlinear

(2-photon) susceptibility does not3. In fact, the probe absorption profile shows a narrow dip in the

middle of the resonant absorption feature, while the coherence ρ20 shows a corresponding peak. The

vanishing of the probe susceptibility prompted Harris to call this phenomenon electromagnetically

induced transparency (EIT).

This transparency can be explained in much the same way as the transparency which occurs

in the coherent population trapping scheme: the coherence between states |0〉 and |2〉 results in

destructive interference between the probability amplitudes of transitions to the intermediate state

|1〉. However, it is also possible to explain EIT using a rather different picture involving “dressed”

states. One may say that the control field combines with the bare states |1〉 and |2〉 to form a pair of

dressed states |+〉, |−〉 (Fig. 1.2b). The probe field then excites both of these states simultaneously.

2The scheme originally proposed by Harris was actually slightly more complicated; in Harris’s scheme, state |1〉 is
excited by two-photon absorption through a virtual intermediate state. I have chosen the simpler scheme shown in Fig.
1.2a in order to draw out the essence of the phenomenon.

3Note that in a real atom, the parity of states |0〉 and |2〉 would be such that a superposition of these states would have
no dipole moment; but here it does no harm to pretend otherwise.
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Figure 1.2: Electromagnetically induced transparency (EIT). (a) A strong field couples two unpop-
ulated states, one of which is driven by a weak field. Remarkably, the system is coherently excited
to state |2〉 rather than state |1〉, so that the medium becomes transparent to the probe beam while
generating a new frequency component. (b) The transparency of the probe can be understood as a
consequence of interference between dressed states created by the strong field.

As it happens, the dressed states couple to |0〉 with identical dipole matrix elements. Hence coherent

population trapping in the dressed states occurs via the Cardimona-Raymer-Stroud mechanism, and

the response at the probe frequency vanishes.

Electromagnetically induced transparency has now been studied both theoretically [8–13] and

experimentally [11,14–17] in systems with various numbers of levels and various coupling schemes.

One should not get the impression that all quantum interference is destructive, however. Electro-

magnetically induced absorption (EIA) can occur in two-level systems when both levels are Zeeman

multiplets and the upper level has a larger degeneracy than the lower level [18–21]. This occurs as a

result of spontaneous transfer of coherence from the excited states to the ground states [22]. Coher-

ent wave mixing can also produce a kind of EIA as photons are removed from one field and emitted

into another (cf. §7.3). Electromagnetically induced features can also occur in two-state systems

driven by strong polychromatic fields [23–27].

So far, the discussion has considered steady-state coherence in systems driven by continuous-

wave (“CW”) fields. The dynamics of coherently prepared atomic systems (and associated optical
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Figure 1.3: Other simple systems which exhibit quantum coherent effects. (a) The ΛΛ system. (b)
The “bow-tie” system. The applied control fields and spontaneously emitted signal and idler fields
undergo strong four-wave mixing enhanced by EIT.

effects) have been studied as well. Λ, ΛΛ (Fig. 1.3a) and “bow tie” systems (Fig. 1.3b) in particular

have received much attention. Sudden turn-off or turn-on of the fields produces absorption transients

which decay on a timescale of the spontaneous emission lifetime as the system fluoresces or is

optically pumped into a new dark state [28–31]. The dark state can be prepared more quickly [on

the time of the inverse Rabi frequency4 of the control field(s)], however, by adiabatically varying the

fields [32, 33]. In Λ media, absorption of the bright state component of initially unmatched pulses

leads, upon propagation, to matched pulses [34] whose fluctuations are correlated [35]. When one of

the fields is much stronger than the other, phase squeezing [36] and extremely large dispersion [37]

of the weak field results. CW beams propagating in bow-tie systems undergo four-wave mixing [38]

and in counter-propagating geometries can experience mirrorless parametric oscillation [39, 40]. In

phase conjugation geometries, the signal and conjugate fields are predicted to be strongly squeezed

[41].

This brief review presents only a fraction the work which has been done in coherent atomic

systems. The interested reader may consult [42–44] for a more extensive review of CPT, EIT, and

related effects.
4See eqn. 2.7 for the definition of the Rabi frequency.
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1.2 Applications

From the start, coherent preparation was seen as a way to greatly enhance the strength of nonlinear

processes [8]. In the context of wave mixing it has led to efficient infrared upconversion [45, 46],

efficient phase conjugation [47], coherent Raman scattering (CRS) [48–52], and control of phase-

matching [53]. In certain schemes the dispersive and absorptive nonlinearities are greatly en-

hanced [54, 55] to the extent that measurable nonlinear effects occur with optical energies at the

level of only a few photons per atomic cross section [56]. Such schemes are at the heart of recent

proposals for photon-number-resolving detectors with extremely high quantum efficiency [57, 58].

Another application which spurred the development of coherent preparation was amplification (or

lasing) without inversion [59–62]: by using quantum interference to eliminate absorption without

disabling stimulated emission, EIT makes possible lasers that have extremely low thresholds. As co-

herent preparation and associated phenomena have become more widely recognized and understood

over the past decade, many new applications have been proposed and/or developed. For example,

coherent Raman features tend to be extremely narrowband, and some researchers are exploring the

uses of such features in atomic clocks [63, 64] and for highly sensitive magnetometry [65–68]. Be-

cause these features are very narrow, they exhibit very steep dispersion; thus coherent preparation

is seen by some as a mechanism for achieving and controlling extremely large changes in group

velocity. Ultra-slow light [37, 69] is a promising technology for devices such as optical buffers

and adjustable optical delays [70]. From a slightly different perspective, atomic coherence may be

viewed as a degree of freedom capable of storing information, resulting in a number of schemes

for “atomic memories” [71–75]. Still others see the ability to induce transparency or absorption as

a mechanism for all-optical switching [76–80], which is of interest in optical communications and

computing.

Although many workers have studied the use of coherent preparation in sum/difference fre-

quency generation, the main concern in these studies has been efficiency—the total amount of power

converted from one frequency to another. To my knowledge, the use of material coherence generated

in this way to transfer information from one frequency band to another remains virtually unexplored

(although similar ideas have recently been explored using traditional Raman scattering, e.g. [81]).



CHAPTER 1 8

Recently, coherent Raman scattering was used to shift the center frequency of an incoherent light

field, preserving the spectral power distribution in the process [82]. However, the light which is

scattered by a material coherence can be expected to preserve both the amplitude and phase of each

frequency component of the input field. If the scattering process has a flat, dispersionless frequency

response, then a signal contained in the input field will appear in the scattered field. This technique

has obvious application to telecommunications. Data expressed as phase or amplitude modulation

at one wavelength could be transferred to a different wavelength.

Efficient, phase- and amplitude-preserving scattering could also be applied toward the charac-

terization of supershort (sub-fs) X-ray pulses. While methods for characterizing ultrashort radiation

in the visible regime are well-established, methods for characterizing ultrashort radiation in the

ultraviolet or X-ray regime are still being developed. One visible-regime technique which could

potentially be applied to X-rays is called SPIDER [83]. In this technique the complex amplitude of

the pulse is extracted from a spectral shear interferogram, which is formed by interfering the pulse

with a frequency-shifted copy of itself. Since nonlinear interactions involving X-rays are extremely

weak, traditional wave-mixing schemes (such as sum frequency generation) are not capable of cre-

ating the needed frequency-shifted copy. But an X-ray could scatter off the coherence in a prepared

medium with relatively high efficiency5, producing a copy of the pulse shifted by a visible or RF

frequency and enabling the SPIDER technique (Fig. 1.4). As I will show in §3.3.2, the bandwidth of

coherent scattering is as large as the bandwidth of the excited state or band. Thus coherent scattering

into the continuum has the extremely large bandwidth needed for supershort pulse characterization.

1.3 Outline

The aim of my research over the past several years has been to understand coherent preparation of

atomic vapors and to demonstrate the usefulness of coherent preparation for frequency shifting. In

particular, a major goal was to demonstrate the transfer of phase and amplitude information from

one frequency band to another with high efficiency, fidelity, and bandwidth. In the chapters which

5Since the material coherence can be as large as the population of electrons available for excitation, the scattering of
the X-ray to a different frequency can occur with the efficiency of a linear process.
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Figure 1.4: A proposal for ultrashort X-ray pulse characterization using coherent preparation, based
on the SPIDER technique. An X-ray scatters off the coherence of a prepared medium, generating a
frequency-shifted copy of itself. The two pulses interfere in the spectral domain, and the interfero-
gram is reproduced in the kinetic energies of ionized helium. The complex amplitude of the original
pulse may then be reconstructed from the interferogram.

follow, I report on my theoretical and experimental studies of coherent preparation.

In this work, the ideal coherent medium is modelled as a collection of Λ systems. Chapter 2

begins the discussion with a theoretical analysis of the Λ system. Solutions are obtained using a

novel geometrical approach involving Bloch’s vector and a Stokes-like vector. In Chapter 3, the

model is used to understand optical phenomena that result from ground state coherence. Before

turning to more complicated and realistic models, Chapter 4 briefly addresses the question of why

a simple 2-state system does not make for a satisfactory coherent medium. The lessons learned

in these chapters lay the foundation for Chapters 5 and 6, in which the phenomena of real atomic

vapors are considered. Chapter 7 describes my experimental studies of hyperfine (spin) coherence

in sodium vapor, including characterization of coherence, observation of quantum coherent optical

effects, and a demonstration of frequency conversion of both phase and amplitude signals. The

main text concludes in Chapter 8 with a summary and commentary on the findings of my research.

There are also several appendices containing additional material which may be of interest to some

readers. Appendices A, B, and C present formulas and results which are “known” but not frequently

explained. As they were crucial to the development of my understanding of atom-light interactions,
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I have included them here. Finally, Appendix D details the physical and mathematical theory behind

the computer software I wrote to solve for the behavior of illuminated atomic systems.
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Chapter 2

A Bloch-Vector Model of Raman

Systems

Large coherences can be produced in systems with two or more ground states via the process of

coherent population trapping. The simplest system of this type is the Λ system (see Fig. 1.1a).

As we will see, maximal coherence builds up between the ground states when the beat note of the

fields matches the frequency difference of the ground states. This phenomenon is often explained by

viewing the system in a special basis: the population is optically pumped out of one superposition

of the ground states (the “bright” state) into the orthogonal superposition (the “dark state”), which is

uncoupled from the fields. However, this basis provides little conceptual or computational advantage

if the fields are not exactly tuned to the ground state difference frequency or if the ground states are

connected by more than one absorption-emission transition (for example, if there are multiple pairs

of fields coupling to multiple excited states). It would be useful, then, to find another representation

which facilitates analysis of such systems by transcending the issue of which basis to use.

In this chapter, I develop a vector model of Raman systems and use it to obtain general solutions

for the 3-state (Λ) system. This model uses a Bloch vector to describe the ground states and a

Stokes-like vector to describe each pair of fields. Because this model is geometrical, it allows one

to visualize Raman systems and their solutions more readily. Algebraically, it leads to concise

equations of motion and solutions. It is especially useful when a system cannot be simplified by
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expressing it in terms of a dark/bright basis.

I note that other authors have described 3-state systems using 2-state Bloch equations [84–87].

However, to my knowledge the solutions given here and in Chapter 3 are novel in their form and/or

the method by which they are obtained.

2.1 The Vector Representation of Raman Systems

Raman scattering refers to scattering of a field by a low-frequency mode of a medium, typically

a rotational or vibrational mode of a molecule. In the quantum view of scattering, the molecule

makes a transition from one rovibrational state to another by absorbing an incident photon and then

emitting a photon whose frequency is shifted from that of the incident photon by the frequency

difference of the initial and final states. This frequency is the Raman frequency. A similar process

can occur in atoms. For example, a two-photon process may take an atom from one hyperfine level

to another within a given electronic orbital, resulting in oscillations of the nuclear and electronic

spins. These ground hyperfine states are typically very long-lived, with the consequence that very

large spin oscillations (i.e. very large hyperfine coherences) can build up if the atom is driven by

two fields separated by the Raman frequency.

For what follows, a Raman system may be generally defined as a system consisting of two

low-energy states coupled to a pair (or pairs) of fields, where the beat frequency of each field pair

is close to the Raman frequency (Fig. 2.1). The difference δ between the beat frequency and the

Raman frequency will be called the Raman detuning. The simplest Raman system is a Λ system, in

which two ground states are coupled by two optical transitions to a common excited state. The next

simplest Raman system is the double-lambda (ΛΛ) system, which has two excited states and four

optical transitions. One could also imagine Raman systems in which the ground states are excited

by pairs of ultraviolet (UV) fields or X-rays to a continuum of excited states.

The optical properties of a Raman system are determined primarily by the distribution of popu-
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(a) (b) (c)

Figure 2.1: Example Raman systems. (a) The Λ system. (b) The ΛΛ system. (c) Joint excitation to
the continuum.

lation in the two ground states, which may be characterized by the 2 × 2 density matrix

ρ =


 ρ11 ρ12

ρ21 ρ22


 . (2.1)

Alternatively, the ground states may be characterized by the vector

�ρ ≡




u

v

w


 =




2 Re ρ21

2 Im ρ21

ρ22 − ρ11


 (2.2)

and an additional quantity η ≡ 1−ρ33 which gives the total population of the ground states. The unit

vectors associated with the coordinates u, v, w will be denoted û, v̂, ŵ. The vector �ρ, originally

developed to describe spin-1
2 systems, is widely known as Bloch’s vector. Under conditions of weak

optical excitation, η ≈ 1 and �ρ alone is sufficient to characterize the ground states.

Several facts concerning the Bloch vector are noteworthy:

• All possible states are contained within a sphere of unit radius.

• Points directly opposite one another on the surface of the sphere correspond to orthogonal

states. That is, each diameter defines a basis.
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Figure 2.2: The Bloch sphere. Each point in the sphere represents a possible density matrix for
the two ground states. Points on the surface of the sphere describe pure states, a few of which are
labelled. The ground state inversion is given by the projection of �ρ onto the north-south axis. The
ground state coherence is given by the projection of �ρ onto the equatorial plane.

• Points along a diameter correspond to incoherent mixtures of the two states connected by the

diameter. The “inversion” (population difference of the two states) is given by the projection

of �ρ on the diameter.

• The origin corresponds to an equal (half and half) incoherent mixture of any pair of orthogonal

states.

Fig. 2.2 shows the Bloch sphere and its relation to various combinations of the ground states.

The points 〈u, v, w〉 = 〈0, 0, 1〉 and 〈0, 0,−1〉 correspond to the bare states |1〉 and |2〉 respectively.

Hence the w (north-south) axis defines the bare state basis. Two other notable bases are defined by

the u and v axes. The u axis intersects the unit sphere at 〈±1, 0, 0〉 which correspond to the states

(|1〉± |2〉)/√2. Similarly, the v axis intersects the unit sphere at 〈0,±1, 0〉 which correspond to the

states (|1〉 ± i|2〉)/√2. Therefore the physical meaning of �ρ is as follows:

• The inversion ρ22 − ρ11 is given by the projection of �ρ onto the north-south axis.

• The coherence ρ21 is given by (half) the projection of �ρ onto the equatorial plane.
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Figure 2.3: The optical pumping vector �R, which represents the pair of fields. Different directions
describe different relative intensities or phases of the fields. The length of the vector is the maximum
rate at which the fields can pump population to the excited state.

Just as a 3-vector and a scalar characterize the ground states, a 3-vector and scalar can charac-

terize each pair of optical fields1 (Fig. 2.3). Suppose that a pair of fields couples states |1〉 and |2〉
respectively to an excited state e. Let Ω1, Ω2 be the coupling amplitude of each field. I define the

optical pumping vector as

�R ≡




Ru

Rv

Rw


 ≡ 1

4
γE

∆2 + γ2
E




2 Re 〈Ω∗
2Ω1〉

2 Im 〈Ω∗
2Ω1〉

|Ω2|2 − |Ω1|2


 (2.3)

where 〈· · · 〉 denotes an ensemble average (allowing for mutually incoherent fields), ∆ is the detun-

ing of the fields from the excited state, and γE is the decoherence rate of the excited state. (More

generally γE is the decoherence rate of the atomic dipole moment, or the half-width of the spectral

1Alternatively we could combine the 3-vector components and the scalar into a 4-vector. This 4-vector would essen-
tially be the Stokes vector, except that in this case the field components refer to two different frequency modes rather than
two different polarizations of the same spatial mode. However, in using 4-vectors we would lose the ability to visualize
the problem easily, which is a primary motivation of this approach. Furthermore, we will find that the problem can be
expressed very naturally in terms of 3 vectors.
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Figure 2.4: Schematic of the 3-state Raman system analyzed in this chapter. Notation: Ω1, Ω2, the
Rabi frequencies of the fields; ∆, the optical (single-field) detuning; δ, the Raman detuning; ΓE , γE ,
the excited state population and coherence decay rates; ΓG, γG the population and coherence decay
rates for the ground states. The relaxation rates are phenomenological parameters representing a
variety of contributions, including interaction or exchange with a thermalized reservoir (ensemble
relaxation).

line.) This vector has units of a rate, and is closely related to the optical pumping rate

R ≡ 1
4

γE

∆2 + γ2
E

(
|Ω1|2 + |Ω2|2

)
. (2.4)

If the two fields are mutually coherent, then the length of �R is R; otherwise, |�R| < R. Physically,

2R is the rate at which the atom would be excited in the absence of coherence and saturation.

2.2 The Vector Equation of Motion

The important physics of coherent (and incoherent) population trapping is demonstrated in a simple

3-state Λ system (Fig. 2.4). In the absence of relaxation mechanisms, the equation of motion for the

density matrix of this system is
d

dt
ρ = − i

�
[H, ρ] (2.5)
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where, in a suitably chosen rotating frame,

H = �




1
2δ 0 1

2Ω∗
1

0 −1
2δ 1

2Ω∗
2

1
2Ω1

1
2Ω2 −∆


 . (2.6)

The coupling constants Ω1, Ω2 are known as the Rabi frequencies of the fields. In general, the Rabi

frequency of a field E that couples a state |g〉 to a higher state |e〉 is

Ωeg ≡ 2〈e|(−er)|g〉 · E
�

. (2.7)

The quantity µeg ≡ 〈e|(−er)|g〉 is the electric dipole matrix element. For the Λ system we write

Ωj = (2µ3j · Ej)/� for j = 1, 2.

Relaxation processes contribute additional terms to eqn. (2.5). Formal methods exist for obtain-

ing such terms (see Appendix C), but here they may be regarded as phenomenological terms. With

such terms included, the elements of ρ are governed by

ρ̇11 =
1
2
ΓEρ33 − ΓG (ρ11 − ρrsv

11 ) − Im (Ω∗
1ρ31) (2.8)

ρ̇22 =
1
2
ΓEρ33 − ΓG (ρ22 − ρrsv

22 ) − Im (Ω∗
2ρ32) (2.9)

ρ̇21 = (iδ − γG) ρ21 +
i

2
Ω∗

2ρ31 − i

2
Ω1ρ

∗
32 (2.10)

ρ̇33 = −ΓEρ33 + Im (Ω∗
1ρ31) + Im (Ω∗

2ρ32) (2.11)

ρ̇31 = (i(∆ + δ/2) − γE) ρ31 +
i

2
Ω1(ρ11 − ρ33) +

i

2
Ω2ρ21 (2.12)

ρ̇32 = (i(∆ − δ/2) − γE) ρ32 +
i

2
Ω2(ρ22 − ρ33) +

i

2
Ω1ρ

∗
21. (2.13)

The decay rates represent multiple contributions. For example, the excited state population decay

rate ΓE includes spontaneous emission as well as exchange of the atom with an unexcited atom

from a reservoir. γE is as defined before. (For these quantities I denote the excited state with an “E”

instead of a “3”, so that the final results will appear in a more general and physically meaningful

form.) ΓG and γG are the population relaxation rate and mutual decoherence rate of the ground
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states.

ρrsv
11 and ρrsv

22 are the ground state occupancies of atoms in the reservoir. Assuming that the reser-

voir is in thermal equilibrium, the reservoir atoms are in an incoherent mixture of states, where the

occupancy ρjj of state j is proportional to the Boltzmann factor exp(−�ωj/kBT ). In a hot medium

(room temperature qualifies as “hot”), kBT/� is much larger than a typical Raman frequency and

much smaller than a typical optical frequency; thus in a thermalized atom, the population is equally

distributed among the ground states: ρrsv
11 = ρrsv

22 = 1/2.

The strategy for realizing the vector model is to eliminate the matrix elements involving the

excited state |3〉 and express the remaining equations in terms of �ρ and �R. If |∆| � Ω1, Ω2 so that

ρ31 and ρ32 reach equilibrium rapidly, or if we restrict ourselves to steady state analysis, we may

take ρ̇31 = ρ̇32 ≈ 0 and obtain

ρ31 ≈
i
2Ω1(ρ11 − ρ33) + i

2Ω2ρ21

D
(2.14)

ρ32 ≈
i
2Ω2(ρ22 − ρ33) + i

2Ω1ρ
∗
21

D′ (2.15)

where D ≡ γE − i(∆ + δ/2) and D′ ≡ γE − i(∆ − δ/2). At this point we assume that the

Raman detuning δ is small compared to the characteristic rate of the optical transitions, that is

|δ| � |γE − i∆|. This allows us to make the approximation D′ ≈ D ≈ γE − i∆, which simplifies

the subsequent algebra considerably. This is not a restrictive assumption, since coherent effects

(which are the subject of interest) only occur when δ is small; when δ is large, the ground state

coherence will be small and the system can be analyzed with rate equations. If we make the ad-

ditional assumptions γG = ΓG (i.e. the ground states decohere via depopulation alone) then eqns.

(2.8)–(2.13) can be rewritten as

d

dt
�ρ =

(
δŵ − ∆

γE

�R

)
× �ρ − (R + γG) �ρ − (1 − 3ρ33)�R (2.16)

d

dt
ρ33 = −ΓEρ33 +

(
�ρ · �R + (1 − 3ρ33)R

)
. (2.17)

Each term above describes a different physical process that influences the ground states:
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• −γG�ρ describes the relaxation of the system to the thermal state.

• δŵ × �ρ accounts for detuning from the Raman frequency. Its effect is to rotate �ρ about the w

axis. It is the only term which breaks the rotational symmetry of the model.

• − ∆
γE

�R × �ρ accounts for detuning from the optical (single photon) transition frequency. Its

effect is to rotate �ρ about �R.

• The terms −R�ρ − (1 − 3ρ33)�R and �ρ · �R + (1 − 3ρ33)R describe optical pumping. Since

these terms are largest when �ρ ≈ �R/R and smallest when �ρ ≈ −�R/R, these two states are

interpreted as the bright state and dark states, respectively.

• ΓEρ33 describes population transfer from the excited state to the ground states via sponta-

neous emission and by ensemble relaxation.

2.3 The Steady-State Equation and General Solution

The steady-state equation for �ρ can be written in the extremely simple form

�ρ − �T × �ρ = (1 − 3ρ33)�F (2.18)

where

�F ≡ −
�R

R + γG
, (2.19)

�T ≡ δ̄ŵ − ∆̄
�R

R + γG
, (2.20)

and

δ̄ ≡ δ

R + γG
, ∆̄ ≡ ∆

γE
. (2.21)

�F is a “force” vector which determines the primary direction and magnitude of �ρ. �F is an-

tialigned with �R, and therefore its orientation is determined entirely by the amplitudes of the two

fields. It reaches unit length as R becomes much greater than γG. For vanishing δ and ∆, �ρ is
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aligned with �F . �T is a “torque” vector which rotates �ρ away from �F when δ �= 0. Its first term, δ̄ŵ,

is the only term which breaks the rotational symmetry of the model. It expresses the fact that the

Raman detuning is defined in the bare basis.

Eqn. (2.18) and the steady-state scalar equation for ρ33 can be solved independently. This is so

because �ρ scales directly with 1 − 3ρ33; that is, �ρ = (1 − 3ρ33) �ρ
η=1

. The steady-state solution of

eqn. (2.17) may then be written as

0 = ΓEρ33 − (1 − 3ρ33)
(
R + �R · �ρ

η=1

)
. (2.22)

Rearranging (2.22) gives

ρ33 =
R + �R · �ρ

η=1

ΓE + 3
(
R + �R · �ρ

η=1

) . (2.23)

The solution of (2.18) can be obtained readily by simple vector manipulations, yielding

�ρ = (1 − 3ρ33)

(
�F +

�T × �F + �T × (�T × �F )

1 +
∣∣�T ∣∣2

)
. (2.24)

The three vector contributions to �ρ are shown in Figure 2.5. The first contribution, �F = −�R/(R +

γG), places �ρ near the dark state −�R/R. The second contribution, �T × �F , is proportional to δ and

shifts the phase of ρ21. The third contribution, �T × (�T × �F ), shifts the inversion by an amount

proportional to δ∆. Eqn. (2.24) can be written more explicitly as

�ρ = (1 − 3ρ33)


�F +

δ̄
(
ŵ × �F

)
+ δ̄2

(
ŵ × (ŵ × �F )

)
+ δ̄∆̄

(
�F × (ŵ × �F )

)
1 + δ̄2 + ∆̄2F 2 + 2δ̄∆̄

(
ŵ · �F

)

 . (2.25)

I note that dotting (2.18) with �ρ/ρ yields ρ = (1 − 3ρ33)F cos φ, where φ is the angle between

�ρ and �F . This is the equation of a sphere whose surface touches the origin. That is, all solutions

for a given value of (1 − 3ρ33)�F lie on a sphere whose diameter is the vector (1 − 3ρ33)�F . By

dotting eqn. (2.18) with ŵ − ∆̄ŵ × �F , it can be shown that the solutions are constrained to a plane

which is independent of δ. Therefore, as δ is varied, �ρ must trace out the intersection of a plane

with a sphere: a circle. Some solution families are shown in Figs. 2.6, 2.7. At Raman resonance
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Figure 2.5: The contributions to the steady-state value of �ρ (eqn. 2.24).

(δ = 0), �ρ = (1 − 3ρ33)�F . For R � γG, this state coincides with the dark state −�R/R; |�ρ| is

close to 1, and the ground state coherence (the length of �ρ in the equatorial plane) is maximal. For

symmetric excitation (|Ω1| = |Ω2|, Fig. 2.6), the population is evenly split between the two ground

states and �ρ lies in the equatorial plane. For highly asymmetric excitation (|Ω1| � |Ω2|, Fig. 2.7), �ρ

lies near the north or south pole. As δ varies from 0, the magnitude of the coherence decreases and

the phase of the coherence (the angle of �ρ in the equatorial plane) deviates from the dark state phase,

i.e. the phase which leads to destructive interference of absorption. If ∆ = 0, and the fields are not

too strong, then varying the Raman detuning does not alter the ground state inversion. However, if

∆ �= 0, the circles are tilted from horizontal: as δ changes, one field tunes closer to the excited state

than the other and the population shifts toward the ground state which is less resonantly coupled.

The solutions for strong fields are not circular, but elliptical. This can be understood as follows:

As δ moves away from zero, the ground state coherence decreases and the two absorption pathways

interfere less destructively. Because the fields are strong, a significant amount of optical excitation

occurs. Depletion the ground state population forces the state vector to shrink, effectively stretching

the circles toward the origin.

I now examine the solutions in some specific cases.
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Figure 2.6: Representative steady-state solutions of the Bloch vector equation as a function of
Raman detuning δ, in the case of balanced fields (Ω1 = −Ω2). The black arrow points to the
dark state. (a) Weak field solutions. (b) Strong field solutions.
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Figure 2.7: Representative steady-state solutions of the Bloch vector equation as a function of
Raman detuning δ, in the case of imbalanced fields (Ω1 = −5Ω2). (a) Weak field solutions. (b)
Strong field solutions.
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2.4 Steady-State Solutions for Special Cases

2.4.1 Raman resonance

With δ = 0, eqn. (2.18) reduces to �ρ = (1 − 3ρ33)�F . Now, a desirable operating condition is that

γG, ΓG � ΓE . Under such conditions, it can be shown that

�ρ 	 −
�R

R + γG
(2.26)

ρ33 	 γG

ΓE

R

R + γG
. (2.27)

For R � γG, �ρ ≈ 0; the system remains in its thermalized condition (incoherent mixture of ground

states). For R � γG, �ρ approaches the dark state −�R/R. The excited state population saturates

at the small value γG/ΓE . This is to be contrasted with the value of 1/3 that is obtained with two

mutually incoherent fields.

2.4.2 Incoherent fields

For mutually incoherent fields, Ru = Rv = 0. Then �T , �F , and �ρ all lie along the w axis, and we

again have the simple solution �ρ = (1 − 3ρ33)�F , regardless of δ and ∆. The new algebraic feature

is that R is not equal to |�R| (= |Rw|). We find

�ρ
η=1

= − Rw

R + γG
ŵ, (2.28)

R + �R · �ρ
η=1

= R − R2
w

R + γG
. (2.29)

Again taking γG, ΓG � ΓE , the solutions are

�ρ = − ΓE (R2 − R1)
(γG + R1 + R2)ΓE + 12R1R2

ŵ (2.30)

ρ33 =
(R1 + R2)γG + 4R1R2

(γG + R1 + R2)ΓE + 12R1R2
(2.31)
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where Rj is defined according to eqn. (2.4) with Ωj in place of |Ω1|2 + |Ω2|2. At small R1,R2, eqns.

(2.30) and (2.31) reduce to eqns. (2.26) and (2.27). As R1, R2 → ∞, �ρ → 0 and ρ33 → 1
3 . These

results are the same as what is obtained from a rate treatment of a 3-level system.

2.4.3 Raman-Detuned Fields

Consider again coherent fields, but suppose now that δ̄ is very large2. Then

�ρ
η=1

≈ �F + ŵ ×
(
ŵ × �F

)
= ŵ(ŵ · �F ) = − Rw

R + γG
ŵ, (2.32)

R + �R · �ρ
η=1

= R − R2
w

R + γG
. (2.33)

These expressions are the same as those we just obtained for incoherent fields, eqns. (2.28) and

(2.29). It follows that solutions �ρ and ρ33 will also be the same. We conclude that at large Raman

detuning, mutually coherent fields produce the same effect as mutually incoherent fields.

2.5 The Equation of Motion for �ρ in a General Raman System

We have derived the equations of motion for a three–level system with two fields. Provided that

the excitation remains small (η 	 1), we can generalize (2.16) and (2.17) to describe a system

with multiple excited states and multiple pairs of fields. Let n index the Raman transitions, with

corresponding quantities �Rn, Rn, and ∆n. (The Raman detuning δ must be the same for all pairs of

fields.) Then eqns. (2.16) and (2.17) generalize to

d

dt
�ρ 	

(
δŵ −

∑
n

∆n

γE

�Rn

)
× �ρ −

(∑
n

Rn + Γ

)
�ρ −
∑

n

�Rn + Γ�ρrsv. (2.34)

d

dt
ρee 	 ΓEρee −

(
�ρ ·
∑

n

�Rn +
∑

n

Rn

)
(2.35)

for each excited state e. Eqns. (2.24) and (2.23) remain valid if one replaces ∆�R in eqn. (2.20)

with
∑

n ∆̄n
�Rn and then replaces all remaining occurrences of R and �R with

∑
n Rn and

∑
n

�Rn,

2With this supposition, we are in danger of violating the condition |δ| � |γE + i∆| that justifies the approximation
leading to (2.16). Nevertheless the model makes a useful prediction in this regime.
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respectively.

2.6 Summary

A novel geometric model was developed for simple Raman systems involving two ground states.

Under the conditions of adiabaticity and near-Raman-resonance, the dynamics of a 3-state Raman

system can be described by an ordinary vector differential equation involving Bloch’s vector to

represent the ground states of the system and a Stokes-like vector that represents the fields. The

steady-state solutions form circles or ellipses as functions of the Raman detuning, showing how the

ground state population and coherence vary in the vicinity of the Raman resonance. It was also

shown how the model may be extended to describe Raman systems with multiple excited states.
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Chapter 3

Coherent Nonlinear Optics in Λ and ΛΛ

Systems

Raman systems, such as the Λ and ΛΛ system, can develop a large ground state coherence when

the beat frequency of the driving fields matches the Raman frequency. This coherence produces a

quantum interference between the two absorption pathways which generally leads to cancellation

of the absorption. Electromagnetically induced transparency is just one example of how quantum

coherence can mediate strong interactions between optical fields. Other nonlinear optical processes,

such as four-wave mixing and Raman scattering, can occur with high efficiency (approaching that

of a linear process) as a result of large quantum coherence in a medium. Though simple, 3- and

4-state systems exhibit a rich variety of coherent effects and can be used to explain a great deal of

the behavior of more complicated media such as alkali vapors. Studying these simple systems will

reveal a number of basic physical phenomena and scaling laws that will serve as a foundation for

the analysis of coherence in sodium vapor, which is taken up in later chapters.

3.1 The Ground State Coherence

In a study of effects arising from quantum coherence, the first questions to ask are, How much

coherence can be achieved? What parameters determine its phase and magnitude? According to
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eqn. (2.2), the coherence is determined by the u and v components of �ρ:

ρ21 =
1
2
(û + iv̂) · �ρ. (3.1)

Without loss of generality we may take the relative phase the two fields to be such that Ω∗
2Ω1 is real.

Then the optical pumping vector �R lies in the plane v = 0 and we may write �F = −F (û sin θR +

ŵ cos θR) where F =
∣∣∣�F ∣∣∣ and

θR = 2 tan−1 |Ω1|2
|Ω2|2 (3.2)

is the polar angle of �R. (θR = 0 for Ω1 = 0, θR = π for Ω2 = 0, and θR = π/2 for |Ω1| = |Ω2|.)
Using the result (2.25), we have

û · �ρ = −F sin θR

[
1 + ∆̄2F 2 − δ̄∆̄F cos θR

1 + δ̄2 + ∆̄2F 2 − 2δ̄∆̄F cos θR

]
(3.3)

v̂ · �ρ = −F sin θR

[
δ̄

1 + δ̄2 + ∆̄2F 2 − 2δ̄∆̄F cos θR

]
(3.4)

or

ρ21 = −F

2
sin θR

[
1 + ∆̄2F 2 − δ̄∆̄F cos θR + iδ̄

1 + ∆̄2F 2 − 2δ̄∆̄F cos θR + δ̄2

]
. (3.5)

[In these equations and all that follow, I suppress the factor (1 − 3ρ33) which accounts for popu-

lation depletion.] Fig. 3.1 shows the behavior of ρ21 for various values of the parameters. When

∆̄ cos θR = 0, ρ21 behaves like an optical (single-field) coherence: its real and imaginary parts are

given by the standard absorptive and dispersive line shapes. When ∆̄ cos θR �= 0, the features are

asymmetric.

At the Raman resonance (δ = 0), ρ21 reaches its peak value of −1
2F sin θR, that is

ρ21
peak

= − 〈Ω∗
2Ω1〉

|Ω1|2 + |Ω2|2
s

s + 1
(3.6)

where

s ≡ R

γG
(3.7)
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Figure 3.1: The real (solid) and imaginary (dashed) parts of the ground state coherence ρ21, eqn.
(3.5), for varying degrees of Raman saturation. In order of increasing size of the curves, the values
of R/γG are 1, 3, and 20. Note that the scale of the horizontal axis also depends on R and γG [see
eqn. (2.21)].
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Figure 3.2: Dependence of the ground state coherence on the saturation of the Raman transition.

is the Raman saturation parameter. We will see that this dimensionless parameter determines the

degree of all coherent effects. The ground state coherence is small when s � 1 and approaches

its maximal value for s � 1 (Fig. 3.2). (As might be expected, the ground state coherence is also

proportional to the relative coherence of the fields.) We thus arrive at the condition for coherence

1
4

γE

∆2 + γ2
E

(|Ω1|2 + |Ω2|2
)� γG. (3.8)

In physical terms, the optical pumping rate must greatly exceed the ground state relaxation rate in

order to achieve large coherence. This is the first important lesson to learn from the Λ system.

From eqn. (3.6) we see that the peak coherence is maximized by using balanced fields (|Ω1| =

|Ω2|). In this situation one has

ρ21 = −F

2

[
1 + ∆̄2F 2 + iδ̄

1 + ∆̄2F 2 + δ̄2

]
. (3.9)

The dispersive and absorptive components of ρ21 each have a characteristic width of
√

1 + ∆̄2F 2.

In terms of the dimensional experimental parameters, this yields the coherence half-width

δcoh = (R + γG)

√
1 +

∆2

γ2
E

1
(1 + γG/R)2

. (3.10)
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The intrinsic linewidth of the resonance is (to within a small factor) the ground state relaxation rate

γG; however, it broadens with the optical pumping rate R as well as with the optical detuning ∆.

Note that R also depends on ∆.

The phase of ρ21 may generally be written as arg ρ21 = π + φR + Φ where φR is the azimuthal

angle of �R and Φ is the difference between arg ρ21 and the phase of the dark state. In the present

context, we find

tan Φ ≡ Im ρ21

Re ρ21
(3.11)

=
δ̄

1 + ∆̄2F 2 − δ̄∆̄F cos θR
. (3.12)

At δ = 0, ρ21 has the opposite phase of Ω∗
2Ω1. The destructive interference responsible for trans-

parency is directly attributable to this 180◦ phase shift. For the case ∆ = 0, tan Φ = δ/(R + γG).

Again, we find that the characteristic width of the Raman coherence resonance is R + γG. This is

the second significant insight to be gained from the Λ system.

Having attained a grasp of the coherent phenomenology of a Λ medium, we turn now to the

phenomenology of optical effects due to the quantum coherence of the medium.

3.2 Absorption and Electromagnetically Induced Transparency

One of the characteristic signatures of quantum coherence is a very narrow feature in the absorption

spectrum of a medium. Typically, an absorption dip of sub-natural width1 is the experimentalist’s

simplest indicator of coherent preparation. Hence it is important to understand how these absorption

features are related to the ground state coherence.

3.2.1 The Photon Absorption Rate

The rate at which an atom (such as a Λ system) removes photons from a field is the net rate at which

the atom is excited. In the steady state, this is equal to the rate at which the atom de-excites. Thus

1Sub-natural, meaning that the width of the feature as a function of the Raman detuning is less than the inverse of the
lifetime of the excited state(s).
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the total rate of absorption (in photons per unit time, including both fields) in a Λ system is ΓEρ33.

From eqn. (2.23) we have

absorption rate = ΓEρEE =
ΓER

(
1 − F̂ · �ρ

η=1

)
ΓE + 3R

(
1 − F̂ · �ρ

η=1

) (3.13)

where I have used the fact that �R/R = −�F/F . In the case that the excitation rate is small compared

to the spontaneous emission rate2, the absorption rate is just R
(
1 − F̂ · �ρ

η=1

)
. Now,

1 − F̂ · �ρ
η=1

= 1 − F

(
1 − 2δ̄∆̄F cos θR + ∆̄2F 2 + δ̄2 cos2 θR

1 − 2δ̄∆̄F cos θR + ∆̄2F 2 + δ̄2

)
. (3.14)

At Raman resonance the absorption rate is R(1 − F ). Far from Raman resonance, the absorption

rate is R(1 − F cos2 θR). Since cos2 θR ≤ 1, the absorption is less at Raman resonance. The

reduction of absorption at resonance may be quantified as follows:

resonant absorption factor =
absorption at Raman resonance

absorption away from Raman resonance
(3.15)

=
1 − F

1 − F cos2 θR
(3.16)

=
1

1 + s sin2 θR
. (3.17)

We see that the amount of induced transparency at the Raman resonance is directly related to the

Raman saturation s (Fig. 3.3). If only one field is applied (Ω1 = 0 or Ω2 = 0), then sin θR = 0 and

the absorption becomes independent of the Raman detuning (as one would expect). Conversely, the

maximum contrast in absorption occurs with balanced fields, in which case

absorption rate = R

[
1 − F

(
1 + ∆̄2F 2

1 + ∆̄2F 2 + δ̄2

)]
. (3.18)

2The degree of excitation will be small either if the fields are weak or if the system is in a dark state. Given that
γG � ΓE , a sufficient condition for weak excitation is |δ sin θR| � √

ΓEγG(s1/2 + s−1/2).
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Figure 3.3: Induced transparency at the Raman resonance may be understood as a saturation of the
Raman transition. “1” denotes the value of the absorption coefficient in the absence of ground state
coherence.

In this case, the shape of the absorption dip is Lorentzian (Fig. 3.4) with depth F = s/(s + 1) and

half-width

δabs = (R + γG)

√
1 +

∆2

γ2
E

1
(1 + γG/R)2

. (3.19)

Note that this is the same as the coherence width δcoh.

The analysis of the absorption in the most general case is less simple. However, a few general

comments can be made. Firstly, as R becomes larger, the absorption becomes less sensitive to δ [cf.

eqn. (3.13)]. This is because saturation of the optical transitions will reduce the absorption even

when quantum interference does not. Secondly, the absorption dip becomes asymmetric when both

∆ �= 0 and |Ω1| �= |Ω2| �= 0.

Finally, it should be remembered that the Bloch vector model (on which the results of this

section depend) is valid only for |δ| � |∆ + iγE |. If R � γE , then the width of the Raman

resonance is larger than the range of validity of δ and the widths given by eqns. (3.10) and (3.19)

should not be taken too seriously.
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Figure 3.4: The electromagnetically induced transparency feature which occurs at Raman reso-
nance.

3.2.2 Absorption Constants of Propagation

So far, we have considered only the total absorption. In many cases one would like to know the

absorption coefficients for the fields separately. Under the slowly-varying amplitude approximation,

the evolution of the electric field E is described by the differential equation

d

dz
E =

ik

2
χE (3.20)

where k = 2π/λ is the free space wavenumber of the field and χ is the optical susceptibility. In

dilute media, or whenever local field effects may be ignored,

χ =
N√
ε0E

(3.21)

where N is the number density of atoms and p is the local dipole moment per atom. In general, the

dipole moment is a vector given by

p(t) =
∑
a,b

µ∗
abρjk(t). (3.22)
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The evolution of the jth control field (j = 1, 2) obeys

d

dz
Ej =

ikj

2ε0
Nµ∗

3jρ3j . (3.23)

In terms of the Rabi frequency,

Ω∗
j

d

dz
Ωj = N ikj

ε0�
Ω∗

j |µ3j |2ρ3j (3.24)

giving

d

dz
|Ωj |2 = −2Nkj |µ3j |2

ε0�
Im
(
Ω∗

jρ3j

)
(3.25)

≡ −αj |Ωj |2. (3.26)

Now, it can be shown that

Im (Ω∗
1ρ31) =

1
2

[ΓEρ33 + γGw] (3.27)

Im (Ω∗
2ρ32) =

1
2

[ΓEρ33 − γGw] . (3.28)

(Note that the sum is proportional to ρ33, confirming the argument made at the beginning of section

§3.2.1.) A very simple result is obtained in the case δ = 0 :

Im
(
Ω∗

jρ3j

)
=

1
2
ΓEρ33

|Ωj |2
|Ω1|2 + |Ω2|2 (3.29)

which, by use of (3.25) and (2.27), leads to the absorption coefficients

αj =
Nkj |µ3j |2

ε0�

γE

∆2 + γ2
E

1
1 + s

. (3.30)

This expression is identical to that of a two-state atom whose saturation parameter is R/γG instead

of R/γE . In other words, the transparency of the dark state can be attributed to saturation of the

Raman transition, which is γE/γG times easier to saturate than an optical transition.
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Figure 3.5: Stimulated Raman scattering via coherent population trapping. The control fields Ω1, Ω2

create quantum coherence between the ground states. A weak probe field Ωp scatters off this coher-
ence, generating a signal field Ωs.

3.3 Coherent Raman Scattering

Besides inducing transparency, ground state coherence in a Raman system can also induce Raman

scattering. This process may be more generally viewed as four-wave mixing enhanced by coherent

population trapping. In this section we consider the evolution of two weak fields (a “probe” and

a “signal”, denoted p and s respectively) in a medium coherently prepared by a pair of strong

fields (Fig. 3.5). For simplicity, I will suppose that both pairs of fields are exactly resonant with

the Raman transition (δ = 0) and that the probe and signal fields do not disturb the ground state

coherence created by the strong fields. (See [38] for a more general treatment.)

3.3.1 Spatial Evolution of the Input and Scattered Fields

In the slowly-varying amplitude approximation, the probe and signal fields evolve according to

d

dz
Ep =

i

2
kpNµ∗

41ρ41 (3.31)

d

dz
Es =

i

2
ksNµ∗

42ρ42 (3.32)
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where “4” refers to a real or effective excited state. To first order in the weak fields we have

ρ41 =
i

2(γE′ − i∆′)
(ρ11Ωp + ρ21Ωs) , (3.33)

ρ42 =
i

2(γE′ − i∆′)
(ρ12Ωp + ρ22Ωs) , (3.34)

where γE′ and ∆′ are the detuning from and decay rate of state |4〉. The values of ρ11, ρ22, and ρ21

can be obtained from (2.26). It will be sufficient for the present derivation to take ∆ = 0, δ = 0,

and R/(R + γG) 	 1. One obtains

ρ21 	 − Ω∗
2Ω1

|Ω1|2 + |Ω2|2 , ρ11 	 |Ω2|2
|Ω1|2 + |Ω2|2 , ρ22 	 |Ω1|2

|Ω1|2 + |Ω2|2 . (3.35)

The resulting propagation equations may be written as

d

dz


 Ωp

Ωs


 =


 −κp κp

Ω1

Ω2

κs
Ω2

Ω1
−κs




 Ωp

Ωs


 (3.36)

where

κp =
kpN |µ41|2

2�ε0(γE′ − i∆′)
|Ω2|2

|Ω1|2 + |Ω2|2 , κs =
ksN |µ42|2

2�ε0(γE′ − i∆′)
|Ω1|2

|Ω1|2 + |Ω2|2 . (3.37)

The eigenvalues of this system are 0 and −(κp +κs). Supposing that there is no signal field incident

on the medium, the fields are given by

Ωp(z) =
κs + κpe

−(κp+κs)z

κp + κs
Ωp(0), (3.38)

Ωs(z) =
Ω2

Ω1

κs

(
1 − e−(κp+κs)z

)
κp + κs

Ωp(0). (3.39)

For ∆′ = 0 (Fig. 3.6a), κp and κs are real and energy is transferred from the probe to the signal in a

distance on the order of (κp +κs)−1, which is roughly equal to the absorption length for either field

((2κp)−1 and (2κs)−1 respectively). For |∆′| � γE′ (Fig. 3.6b), κp and κs are mostly imaginary;

energy oscillates between the probe and the signal with a spatial period of 2π/ Im(κp + κs), which
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Figure 3.6: Spatial evolution of the fields in coherent Raman scattering. (a) Resonant scattering.
(b) Non-resonant scattering. (c) Resonant scattering with 50% of maximal coherence. Note, the
absorption length is larger in (b) than in (a) and (c).
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will be much shorter than either of the absorption lengths (2 Re κp)−1 or (2 Re κs)−1. In both cases,

the fields eventually reach a configuration which is transparent to the medium, Ωp(∞)/Ωs(∞) =

Ω1/Ω2. In the initial stages of conversion, (κp + κs)z � 1 and

Ωs(z) 	 ksN |µ42|2 z

2�ε0(γE′ − i∆′)
Ω2Ω∗

1

|Ω1|2 + |Ω2|2 Ωp(0). (3.40)

In both of these cases, for which maximal coherence was assumed, half the power is lost before

the fields reach a steady state in which the pump and probe each have 25% of the input power.

When the coherence is less than maximal, a steady state does not exist; the Raman scattering is

eventually dominated by linear absorption. In the case of resonant scattering with 50% of the

maximal coherence (in which case the scattering susceptibility is half the linear susceptibility), the

signal power peaks after about 2 absorption lengths at about 4% of the input probe power (Fig.

3.6c). In order to get higher efficiencies, one must detune the probe and propagate further (or use a

denser medium).

Compared to most nonlinear processes, coherent Raman scattering is highly efficient: a signif-

icant fraction of the probe power is transferred to the signal in a distance characteristic of a linear

process. But more than just power is transferred. Since the complex amplitude of the output signal

is directly proportional to the complex amplitude of the input probe, the complete phase and ampli-

tude information of the probe is preserved in the output. Thus, coherent Raman scattering may be

used to shift the spatio-temporal content of a field at one frequency to another frequency. In case of

non-dissipative scattering (∆′ � γ′
E), even the quantum state of the input field is transferred. The

quantum operators âp and âs for the probe and signal fields obey a propagation equation which is

identical to eqn. (3.36), apart from a few constants of scale. The solution is


 âp(z)

âs(z)


 =




κs + κpe
−(κp+κs)z

κp + κs

√
κpκs

(
1 − e−(κp+κs)z

)
κp + κs√

κpκs

(
1 − e−(κp+κs)z

)
κp + κs

κp + κse
−(κp+κs)z

κp + κs




 âp(0)

âs(0)


 (3.41)

which describes a unitary transformation (κp and κs are imaginary). In the special case κp = κs

and (κp + κs)z = πi, one obtains âs(z) = âp(0) and âp(z) = âs(0). That is, the quantum states of
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the signal and probe field modes are exchanged.

3.3.2 The Scattering Bandwidth

A noteworthy feature of the system discussed in this section is that the ground state coherence

is constant—it is prepared by CW pump fields. Thus the scattering bandwidth is not limited by

the time it takes to achieve coherent population trapping. As I show below, the bandwidth is not

limited to the spontaneous emission rate. Coherent Raman scattering can in fact have a very large

bandwidth, making it of interest for telecommunications as well as novel applications including

characterization of ultrashort X-ray pulses.

Suppose that instead of a single excited state, the probe and signal fields interact with a manifold

of states. Or, suppose that the medium is inhomogeneously broadened. In either case the quantity

µ∗
4gρ4g in eqns. (3.31) and (3.32) should be replaced by

∑
e µ∗

egρeg where g = 1, 2 and e denotes

either a particular excited state in a manifold or a particular atom within an inhomogeneous distri-

bution. Now, for the purposes of this argument it is sufficient to consider either field in isolation, in

which case, for example,

ρ̇e1 = −(iωe − γe)ρe1 +
i

�
µe1Ep(t)ρ11. (3.42)

Assuming ρe1 is zero before the probe pulse arrives,

ρe1(t) =
i

�
µe1

∫ t

−∞
e(iωe+γe)(t′−t)Ep(t′)ρ11 dt′. (3.43)

Then the polarization is

p(t) =
i

�

∑
e

∫ t

−∞
e(iωe+γe)(t′−t) |µe1|2 Ep(t′)ρ11 dt′. (3.44)

In the limit of a continuous (or at least dense) distribution of excited states,
∑

e |µe1|2 may be

replaced by
∫

dω |µω|2 D(ω), where µω is the effective matrix element for the states with frequency

ω, and D(ω) is the density of states. For simplicity I will also suppose that each excited state has



CHAPTER 3 40

the same decay rate γ. Then

p(t) =
i

�

∫ t

t0

M(t − t′)eγ(t′−t)Ep(t′)ρ11 dt′ (3.45)

where

M(τ) =
∫

e−iωτD(ω) |µω|2 dω (3.46)

is the temporal response or “memory” of the manifold. If the manifold is broad and smooth (i.e.

|µω|2 D(ω) does not vary significantly over a bandwidth γ), then M(τ)e−γτ ≈ M(τ) and

p(t) ≈ i

�

∫
M(t − t′)Ep(t′)ρ11 dt′. (3.47)

or, in the spectral domain,

p(ω) ≈ 2πi

�
D(ω) |µω|2 Ep(ω)ρ11. (3.48)

This polarization and others of similar form enter directly into the equations governing coherent

Raman scattering, namely eqn. (3.36). From eqn. (3.48) it is apparent that the bandwidth of coherent

Raman scattering is the width of the band of states excited by the probe (the inhomogeneous line

width). The linewidth γ of the individual states plays no role. In the case that D(ω) |µω|2 is broader

and more slowly varying than Ep(ω), M(t−t′) ≈ δ(t−t′) and the scattering polarization is directly

proportional to the probe.

3.4 Summary

In this chapter, the Bloch vector model was used to make several predictions concerning coherence

and coherent nonlinear optics in Raman systems. We found that the three most important parameters

are the optical pumping rate R, the ground state relaxation rate γG, and the Raman detuning δ.

We found that near Raman resonance, a large coherence builds up in the ground states, resulting

in quantum interference which reduces the absorption. The magnitude of the coherence and the

reduction in absorption are both determined by the value of the Raman saturation parameter s =
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R/γG; the larger s, the larger the coherence and the greater the reduction in absorption. The width of

this Raman resonance is R+γG for fields tuned near the excited state; however, the width increases

for |∆| � R. We learned that at Raman resonance, the absorption coefficients for the fields have

the same form as that of a saturable 2-state system, but with a saturation intensity that is γE/γG

times smaller. Finally, we saw that the ground state coherence can act as an oscillator which scatters

a probe field, effectively shifting its amplitude and phase content to a different frequency band.

Because the coherence is large, the scattering susceptibility is comparable in magnitude to a linear

susceptibility, allowing for very high conversion efficiencies. The bandwidth is equal to the width of

the inhomogeneously broadened line, or in the case of a continuum of states, to the bandwidth of the

coupling to the continuum. In either case, large bandwidths are available for frequency conversion

of signals.
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Chapter 4

What About Coherence in Two-State

Systems?

In the previous chapters we have considered coherent preparation of a 3-state system by the mecha-

nism of coherent population trapping. Why bother with three states? Why not simply drive a 2-state

system with a strong laser to produce quantum coherence? “Coherent preparation” would then seem

to be a trivial subject. In this chapter I indicate why such an approach is not really advantageous,

either conceptually or practically.

4.1 Two States Driven by One Field

Let us review the behavior of the simplest possible system: two states driven by a monochromatic

optical field. If the system is closed, a steady state is reached which is characterized by the density

matrix elements

ρee =
1
2

s

1 + s
(4.1)

ρgg = 1 − 1
2

s

1 + s
(4.2)

ρeg =

√
Γe

4γe

√
s

1 + s
(4.3)
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where e and g denote excited and ground states, Ω is the Rabi frequency of the fields, and

s ≡ γe

Γe

∣∣∣∣ Ω
−∆ − iγ

∣∣∣∣
2

(4.4)

is the (optical) saturation parameter, not to be confused with the Raman saturation parameter s used

in other chapters. At low intensities nearly all the population is in the ground state and there is

little coherence. As the intensity increases, the excited state population grows to the asymptotic

limit of half the population in each state. Unlike in a 3-state system, the coherence does not grow

monotonically with intensity. Since the coherence goes as
√

s/(1 + s) instead of s/(1 + s), it

peaks (with a value of
√

Γe/γe/4) at s = 1. But the most important difference is that in the 2-state

system, increasing coherence corresponds to increasing interaction with the field. This is because

the coherence is directly related to the dipole moment. Thus coherence is achieved at the cost of

strong absorption, thereby limiting the thickness of the medium that can be coherently prepared.

One possible work-around is to tune the laser away from resonance, so that the material response

is mostly dispersive. But in this case a much higher intensity is required to achieve the same level

of saturation. Note that the saturation intensity of a 2-state system is already generally much higher

than that of a well-chosen 3-state system1. In terms of the amount of coherence that can be achieved,

the amount of absorption, and the intensity required, the 2-state system with one field is inferior to

the 3-state system with two fields.

4.2 Two States Driven by More than One Field

It would appear that a 2-state system with a single field is too simple to possess the desirable char-

acteristics (in regard to coherent preparation) of 3-state systems. Perhaps the problem is not the

number of states, but rather the number of fields? It is well-known that a strong field splits the

excited and ground states by putting significant amounts of population in energy levels defined by

the fields (Fig. 4.1). One may therefore expect that such a system could show many if not all of the

1If a two-state transition is optically allowed, the excited state must relax to the ground state, resulting in decoherence
and a larger saturation intensity. In a well-chosen 3-state system, the coherence is produced between two metastable
states.
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|e 〉

|g 〉

Figure 4.1: “Dressing” of states by a strong field. The field splits states |e〉 and |g〉, creating a
system with three resonance frequencies. When probed by weak fields, the driven system acts in
many ways like a system with more than two levels.

phenomena associated with quantum coherence: EIT, large wave-mixing susceptibilities (coherent

scattering), lasing without inversion, slow light, etc. Indeed, after the concept of EIT was intro-

duced, a number of workers re-examined the two-state system driven by multiple fields, looking for

effects similar to those attributed to EIT. There is now a vast literature on the subject [88]. At the risk

of oversimplification, this field may be summarized as follows: The weak-field susceptibility of a

2-state system is drastically modified when the system is driven by one or more strong fields. Many

effects occur which are reminiscent of quantum coherent effects; but they are not always the result

of similar physics. For example, a vanishing weak-field absorption (Fig. 4.2) is sometimes due to a

balance between absorption and emission (optical interference) rather than destructive interference

of two absorption processes (quantum interference). Analysis of these systems is actually rather

complicated, and distinguishing quantum interference from “ordinary” optical interference is not

always easy. It appears that multiple driving fields at different frequencies are required to produce

situations which are truly analogous to coherent preparation in 3- or 4-state systems [27]. Such

systems are just as complicated, if not more so, than the Λ system.

Thus one need not look past the 3-state system for direct and effective demonstrations of quan-

tum coherence and its associated affects. There are other reasons one might choose to work with

systems involving more than two states. For instance, large coherences at frequencies ranging from

RF to the visible can be generated with all-optical technology (just two low-power lasers). Coher-

ence can be produced between states for which direct transitions are forbidden by selection rules.
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Figure 4.2: Transparency in a driven 2-state system. The absorption of a weak field in the driven
system vanishes at the points indicated by arrows (left). However, the vanishing of absorption does
not correspond to a true dark state, since the dispersive component of the susceptibility does not
also vanish. This kind of transparency can be understood in the dressed-state basis as a balancing of
absorption and gain at either frequency (right). Parameters for the control field: Ω = 2γe, ∆e = 0.

Furthermore, the superposition states can be chosen to be metastable, resulting in very narrow spec-

tral features and low saturation intensities.

Regardless of the relative merits of 2- and 3-state systems, all the experiments reported in this

work involve coherent preparation of the sodium D1 system, which most closely resembles a 3-state

Λ system. Hence, I will not discuss 2-state systems any further. The interested reader may consult

the references indicated above for more information.

4.3 Summary

I have argued that the 3-state, 2-field system is the simplest system that illustrates coherent prepa-

ration and its benefits. While one can create quantum coherence by driving a 2-state system with

a single field, the coherence is accompanied by strong absorption and hindered by relaxation due

to spontaneous emission. These problems can be overcome by driving the system with a strong

polychromatic field; however, the resulting system is at least as complicated, both conceptually and

experimentally, as a 3-state system.
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Chapter 5

Coherent Preparation of Many-State

Atoms

In the previous chapters, 3- and 4-state systems were studied as the simplest examples of coherent

Raman systems. But the materials provided by nature are far more complex. Even alkali vapors,

which consist of relatively isolated, single-valence-electron atoms, possess numerous states and

are graced1 with many complicating effects. In this chapter, I explore some of the ways in which a

multiplicity of ground states affects coherent population trapping and complicates quantum coherent

optical processes.

5.1 Notation and Conventions

5.1.1 Nominal Rabi Frequencies

A spectroscopic line of an atom generally contains contributions from transitions involving many

different pairs of states. Each pair of states |e〉 and |g〉 (where e denotes a state in excited level E and

g denotes a state in ground level G) couples to the electric field with a strength that is characterized

by the electric dipole matrix element µeg. While it is generally necessary to know the values of the

matrix elements for all pairs of states in order to accurately model coherent phenomena, it can still

1If it weren’t for these complications, people like myself would be out of work.
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be useful to assign a nominal dipole matrix element to the spectral line as a whole. As explained

in Appendix A, there are two different effective matrix elements associated with spontaneous and

stimulated transitions.2 Of the two, the effective matrix element which characterizes spontaneous

emission is more fundamental. It is also the quantity reported by experimentalists who measure

“the” matrix element associated with a given spectral line.3 For these reasons, I define the nominal

electric dipole matrix element of a spectral line as

µ ≡
√

ΓE
3π�ε0c3

ω3
EG

(5.1)

where ωEG is the angular frequency of the transition and ΓE is the spontaneous emission rate of the

states in level E.4 µ is the dipole matrix element that a two-state atom would have if its spontaneous

emission rate were ΓE . For the sodium D lines, µ = 2.51ea0 where a0 is the Rydberg constant.

More generally, the nominal matrix element for a whole system (whether it encompasses one or

more spectroscopic lines) may be defined as

µ ≡
√

1
NE

∑
e,g

∣∣µeg

∣∣2 (5.2)

where NE is the number of excited states.

Having chosen a characteristic dipole moment, it makes sense to define the nominal Rabi fre-

quency of a field component E in analogy with eqn. (2.7):

Ω =
2µE

�
. (5.3)

The nominal Rabi frequency is convenient in that it is unique (independent of atomic structure) for

2The quick explanation is that spontaneous processes involve all polarizations while stimulated processes involve a
particular polarization.

3A common alternative to the effective matrix element µEG,spont is the oscillator strength

fGE ≡ 2

3

meωEG

e2�

NE

NG
µ2

EG,spont

where NE and NG are the number of states in the excited and ground levels, respectively [89].
4In an atom, the spontaneous emission rate is the same for all excited states in the same level. This fact can be inferred

from the principle of isotropy.
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each field component, yet is expressed in the same units as the rates and frequencies which appear in

the dynamical equations for the state of the atom. The actual Rabi frequency of E on each separate

transition is related to the nominal Rabi frequency by

Ωeg = Ω · µ̌eg (5.4)

where

µ̌eg ≡ µeg

µ
(5.5)

is the relative matrix element associated with states |e〉 and |g〉. The relative matrix elements have

the property
∑

g

∣∣µ̌eg

∣∣2 = 1.

5.1.2 The atomic response

The parameters that determine the behavior an atomic medium—the state energy levels, rates of

relaxation processes, and Rabi frequencies of the electric and magnetic fields—can all be measured

in units of frequency. The use of a common scale simplifies analytical results, makes it easier

to determine the dominant influences, and provides some degree of normalization. It is likewise

convenient to express the atomic response (i.e. the induced dipole moment) on this same scale. I

define the normalized dipole moment as

p̌ ≡ ΓE

µ
p =ΓE

∑
e,g

(
µ̌eg

)∗
ρeg. (5.6)

p̌ has units of frequency and is on the scale of the nominal Rabi frequency of the applied field; in

fact p̌ = iΩ in the case of weak, resonant excitation of a two-state atom. The atomic susceptibility

(a.k.a. polarizability) tensor χ̌ can be defined by the relation

p̌ = χ̌Ω. (5.7)

As a notational shorthand, I will write χ̌ = p̌/Ω and use the scalar χ̌ to denote a generic element

of χ̌. χ̌ is typically on the order of unity. More accurately, it is roughly equal to the square of the
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effective relative matrix element for the states involved5.

The atomic susceptibility is also very simply related to the optical susceptibility. Upon combin-

ing eqns. (3.21), (5.1), (5.3), (5.6), and (5.7) one obtains6

χ =
3

4π2
Ň p̌

Ω
	 0.076 Ň χ̌. (5.9)

where Ň ≡ Nλ3 is the number of atoms per cubic wavelength; a moderately dense vapor has

Ň ∼ 1. Sometimes it is useful to think of the optical interaction as a collision between a photon

and an atom with an effective area or cross section σ. The cross section may be written as

σ =
3λ2

2π
χ̌ 	 0.48λ2χ̌. (5.10)

Finally, I note that the spatial evolution of the fields can be expressed in terms of these normalized

quantities as
dΩ
dz

= ik
3

8π2
Ň p̌. (5.11)

Remarkably, these last three equations are valid regardless of the number of states or the values of

the matrix elements.

Thus we find that a system consisting of a multistate medium and optical field(s) can be charac-

terized by four sets of quantities which are either dimensionless or have units of frequency: (1) the

relative dipole matrix elements; (2) the spontaneous emission rate; (3) the nominal Rabi frequency

of the applied field; and (4) the nominal Rabi frequency of the induced dipole moment.

5If µ̌ is the effective relative matrix element for a transition, the weak-field susceptibility is

χ̌ =
i

2

Γ

γ − i∆
µ̌2ρ (5.8)

where ρ is the population of the initial state and Γ, γ, ∆ are the decay and detuning parameters of the transition. At
resonance, and in the absence of pressure broadening, this formula reduces to χ̌ = iµ̌2ρ.

6This result ignores inhomogeneous broadening. As rule-of-thumb, inhomogeneous broadening reduces the resonant
susceptibility by the ratio of the inhomogeneous to homogeneous line widths.
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5.2 Generalization of the Dark/Bright Basis

Coherent population trapping in a Λ system is easy to understand in terms of the dark and bright

states. It takes little more than inspection of eqn. (1.1) to determine that a particular combination of

the two ground states is decoupled from the excited field. However, when there are multiple ground

states coupled to multiple excited states by multiple fields, it is harder to see whether or not a dark

state exists. A more formal procedure for identifying dark states is needed.

The interaction between the atom and the optical field is characterized by the following part of

the Hamiltonian7:

ĤEG =
�

2

∑
e,g

Ωeg|e〉〈g|. (5.12)

In a certain basis for the ground states, this operator will be “diagonal.” That is, it is possible to

write

ĤEG =
�

2

∑
n

Ωn|En〉〈Gn| (5.13)

for some set of ground states |Gn〉, excited states |En〉, and scalars Ωn. This kind of diagonalization

is analogous to eigenmode decomposition and is known variously as Schmidt decomposition or

singular value decomposition8. The scalars Ωn are called the singular values. Each Schmidt state

|Gn〉 is a distinct superposition of bare ground states which is excited with effective Rabi frequency

Ωn. A vanishing singular value indicates a state which is not excited by the fields at all, i.e. a dark

state. Since there can only be as many (non-zero) singular values as there are excited states, we can

know that there is always a dark state if the number of ground states NG exceeds the number of

excited states NE . In fact, the number of dark states is always at least NG − NE .

The Schmidt basis, then, is the generalization of the dark-bright basis which is so helpful in

Λ systems. In this basis the multiple excitation pathways are separate and do not interfere. The

distribution of population among these states is therefore a study in optical pumping, for which (in-

coherent) rate equations are sufficient. In general, the atom will be optically pumped from the bright

7I will refer to the part of the Hamiltonian that describes photoexcitation as the interaction Hamiltonian, although this
term is usually applied to the Hermitian operator that describes both photoexcitation and photoemission.

8Any matrix M (whether square or not) can be diagonalized by a dual unitary transformation: U†MV = D where D
is a diagonal matrix and U and V are unitary matrices. Singular value decomposition of M amounts to a determination
of U, V , and the diagonal of D (the singular values).
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states to the dark states; the larger Ωn, the smaller the steady probability of |Gn〉. It should be noted,

however, that states with intermediate coupling constants will act like dark states at low intensities

and like bright states at high intensities: At low intensities, such a state will be excited more slowly

and will end up with more population than the strongly coupled states; at high intensities, it will be

excited rapidly enough to overcome relaxation and will be depopulated in favor of true dark states.

The Schmidt-basis approach can be very helpful, but one must use it with care since it ignores

the frequency distribution of the states and the fields. First of all, it is blind to the fact that off-

resonant transitions are less important than resonant transitions. Secondly, the frequency distribution

of states and fields may be such that it is impossible to choose a set of energy origins for the states (a

so-called “rotating frame”) which simultaneously eliminates the rotation of the coupling constants

Ωeg and of the ground states. In this case the Schmidt states will be time-dependent, and coherent

population trapping will be hindered because the trap state(s) will be continually changing. In such

situations the Schmidt basis is of little use. For example, it has already been noted (Chapter 2) that

the dark-bright basis is not helpful for analyzing the 3-state Λ system if the fields are not Raman

resonant.

For simplicity, in the following section I will consider only those systems in which every near-

resonant coupling between field and atom has the same detuning. Then it is possible to choose a

rotating frame in which all resonantly coupled states have the same energy and all the coupling

constants are time-independent. Generally, this occurs when an atom has well-separated levels in

the absence of DC electric and magnetic fields and the frequency differences between the various

field components equal the intervals between ground levels. In such cases, the behavior may be

understood in terms of optical pumping between Schmidt states. The rate equations for the Schmidt

states are then

ρ̇ej = −(ΓE + ΓG)ρej + 2Rj(ρgj − ρej ) (5.14)

ρ̇gj =
∑

k

bjkΓEρek
− ΓGρgj +

1
N

ΓG + 2Rj(ρej − ρgj ) (5.15)

where ΓE is the spontaneous emission rate of the excited states, beg is the spontaneous emission
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branching ratio, ΓG is the population relaxation rate between the ground Schmidt states, N is the

number of ground states, ρej (ρgj ) is the population of the jth excited (ground) Schmidt state, and

Rj =
1
4

γE

∆2
E + γ2

E

Ω2
j (5.16)

is (half) the optical pumping rate associated with the jth singular value.

5.3 Multi-state Effects

5.3.1 Relaxation Bias

In a Λ system, there are only two Schmidt states: the dark state and the bright state. An atom which

is in a thermal mixture of bare states has an equal probability of being found in the bright state or

the dark state. Hence, whenever a coherently prepared atom relaxes to the thermal state, it has a

50% chance of remaining in the dark state. Consider now a multistate system in which there are N

Schmidt states, one of which is dark and the remainder of which are bright. Then every time the

atom relaxes, the probably of remaining in the dark state is only 1/N . That is, it has a much higher

chance of relaxing to a bright state than the dark state (Fig. 5.1). I call this effect relaxation bias.

For the same intrinsic relaxation rate, it is harder to maintain the dark state population when there

are fractionally few dark states than when there are many.

This principle can be seen in the steady-state solution of eqns. (5.14) and (5.15) for the case

of ND dark states (R1 = R2 = · · · = RND
= 0), N − ND equal bright states (RND+1 = · · · =

RN = R), and uniform decay ratios (bjk = 1/N ). For 2ΓG/ΓE � ND/N, one finds that the total

population in the dark states is

trapped population =
M∑

j=1

ρg1 ≈ ND

N
+

N − ND

N

2R

2R + (N/ND)ΓG
. (5.17)

The population in the dark state(s) goes from its equilibrium value of ND/N at R = 0 to its

saturating value of 1 as R → ∞. The saturation parameter is 2R/(NΓG/ND) = (2ND/N)s where

s is the saturation parameter defined for the Λ system [eqn. (3.7)]. Although the branching ratios
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£

reservoir of atoms in thermal equilibrium

£

Figure 5.1: Relaxation bias in many-state systems. The more bright states there are, the more likely
relaxation is to move the system from the desired dark state to a bright (undesired) state.

to different Schmidt states are generally not equal as supposed, and the bright states generally have

different coupling constants, we may take as a rule-of-thumb that the smaller the fraction of states

that act as traps, the higher the optical intensity needed to achieve trapping.

5.3.2 Extraneous Trap States

As suggested previously, a given system may have more than one dark state. (Recall that if there

are NG ground states and NE excited states, then there are at least NG − NE dark states.) Even if

a system has only one dark state, it may have yet have multiple “dim” states, states with relatively

small coupling constants. Dim states will trap population almost as effectively as dark states for

weak or modest intensities, and will contribute little to the total absorption (since they have small

coupling constants). If the point of population trapping is simply to reduce absorption, then the more

trap states, the better (for the reasons discussed in the previous section). However, if the point is to

create coherence in the medium, then a multiplicity of trap states may not be desirable. Suppose,

for example, that there are NT trap states, only one of which involves the desired coherence. Then

even for large optical intensities the population will be roughly evenly distributed among the trap

states, and the coherence will be roughly NT times smaller than if the remaining trap states did not

exist (Fig. 5.2). These extraneous trap states keep some population from being pumped into the
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£

desired

superpositon

state
undesired

trap

states

{

Figure 5.2: Extraneous trap states in many-state systems. Not all uncoupled or weakly coupled
Schmidt states may possess a desired property (e.g. hyperfine coherence). Undesired trap states
compete for population with the desired dark state.

desired dark state. An even worse situation occurs when some of the trap states involve coherences

of opposite sign. In this case, little or no net coherence may be created even when all the population

is pumped into the dark states.

5.3.3 Zeeman Splitting and Magnetic Broadening

The eigenstates of a free atom are eigenstates of the total angular momentum (characterized by the

quantum number F ) and its projection onto some quantization axis (characterized by the “magnetic”

quantum number m). In the absence of a magnetic field, states of the same F (Zeeman states) have

the same energy. When a weak magnetic field is applied along the quantization axis, the energies

of the Zeeman states shift in proportion to their magnetic number m (Fig. 5.3). The Schmidt

decomposition is no longer helpful as the bare states attempt to rotate at different rates, thereby

mixing the Schmidt states. However, if the energy shifts are large enough, the off-resonant bare

states will have essentially no coherence with each other and may be treated using rate equations.

As I will show below, splitting the sodium Zeeman energies causes some of the dark states to shift

their Raman frequencies and causes others to become bright [90].
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F = 1

F = 2

F ′ = 1

F ′ = 2

0 +1 +2-1-2m:

3S1/2

3P1/2

Figure 5.3: Zeeman shifts of the sodium D1 states in the presence of a DC magnetic field along the
quantization axis. (Not to scale.)

5.4 Dark States in the Sodium D1 Line

In the absence of a magnetic field, the sodium D1 line (3S1/2 ↔ 3P1/2 transitions, Fig. 5.4) contains

4 hyperfine levels: 2 ground levels (with F = 1, 2) and 2 excited levels (with angular momentum

F ′ = 1, 2). The ground levels are split by 1772 MHz; the excited levels are split by 189 MHz.

At low vapor densities9 these splittings are much larger than the optical linewidth (10 MHz). A

field which resonantly couples one of the ground levels to one of the excited levels will be far from

resonance with any other pair of levels. Therefore, a pair of fields with a frequency difference of

1772 MHz can form a resonant Λ system involving either excited level. These two Λ systems may

be regarded separately since the fields can be resonant with only one excited level at a time.

5.4.1 Schmidt States for the Sodium D1 Λ1
1y,2x Subsystem

Consider two “control” fields, polarized in the x and y directions, with nominal Rabi frequencies

Ωx and Ωy, respectively. Suppose that the y-polarized field is resonant with the F = 1 ↔ F ′ = 1

transition and that the x-polarized field is resonant with the F = 2 ↔ F ′ = 1 transition. Because

the ground levels are far apart, the coupling of the x field to the F = 1 level and of the y field to the

F = 2 level can be ignored. As a reminder of which field is meant to couple to which ground level,

9With excessive pressure broadening, the excited hyperfine levels might not be well-separated.
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3S1/2

3P1/2

F = 1

F = 2

F ′= 2
F ′= 1

189 MHz

1772 MHz

g

g

Ωy
Ωx

Figure 5.4: The scheme for coherent preparation of sodium. The sodium D1 line contains four
hyperfine levels, each of which is a Zeeman multiplet. Through the process of coherent population
trapping, a pair of fields pumps the sodium into a superposition of the ground hyperfine levels.

I will sometimes use the subscripts 1y and 2x for quantities associated with the x and y fields. In

this fashion the subsystem formed by the fields, the F = 1, 2 ground states, and the F ′ = 1 states

will be denoted Λ1
1y,2x.

The interaction between the atom and fields is characterized by matrix elements of the form

�

2 〈F ′ = 1, m′|µ̌|F, m〉 · Ωx or y. These matrix elements can be evaluated using the first three rows

of Table B.1, yielding the interaction Hamiltonian

H1
1y,2x =

�

2




−iΩy√
24

Ωx√
4

−Ωx√
24

iΩy√
24

−iΩy√
24

Ωx√
8

−Ωx√
8

iΩy√
24

Ωx√
24

−Ωx√
4


 . (5.18)

The arrangement of states is the same as that of Table B.1. Vanishing elements are not shown. The

Schmidt states and singular values for this system are given in Table 5.1. With eight ground states

but only three (relevant) excited states, there are five dark states and three bright states. Out of the

five dark states, three do not involve any hyperfine coherence10. These three states therefore qualify

10The dark states are degenerate, so of course they are somewhat arbitrary. The states given in Table 5.1 were chosen
for their symmetry. As I will discuss in §5.4.3, a different set of dark states is convenient when a magnetic field is applied.
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3S1/2

3P1/2

F = 1

F = 2

F ′′= 2
F ′′= 1

Ωy
Ωx

Ωp

3P3/2

Figure 5.5: The scheme for coherent Raman scattering in sodium. A probe field Ωp scatters off the
ground hyperfine coherence created by the control fields. Selection rules allow scattering via states
with F ′′ = 1 or F ′′ = 2 only.

as extraneous traps. They limit coherent preparation because they leave only 40% of the population

to be coherently trapped. Furthermore, these states will still act as traps when the fields are not

tuned to the Raman resonance, making the EIT effect less dramatic.

The Schmidt states which possess hyperfine coherence have coherences between several differ-

ent pairs of states. While one could simply sum up these coherences to obtain a measure of the total

hyperfine coherence, a more relevant quantity is the effective hyperfine coherence which contributes

to a desired wave mixing process, such as Raman scattering. Table 5.1 gives the Raman scattering

susceptibility for each Schmidt state when the two pump fields are balanced (Ωx = Ωy). The sus-

ceptibilities are calculated in the following way: Suppose that a weak probe beam of nominal Rabi

frequency Ωp is tuned to the F ′′ = 1 or F ′′ = 2 hyperfine level in the 3P3/2 level (Fig. 5.5). If the

atom is in the nth Schmidt ground state, then the first-order polarization induced by the probe beam

is

p =
i

�

〈Gn|µ̂Ĥprobe|Gn〉
γE − i∆E

(5.19)

where Ĥprobe is the interaction Hamiltonian involving the probe beam and ∆E is the detuning
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from the nearest excited hyperfine level. Taking ∆E = 0 and assuming that there is no pressure

broadening, we have

p̌ = i
∑
g,g′

∑
e

〈Gn|g′〉〈g′|µ̌|e〉〈e| (µ̌ · Ωp) |g〉〈g|Gn〉 (5.20)

which gives the (tensor) polarizability

χ̌ =
p̌
Ωp

= i
∑
g,g′

∑
e

〈g|Gn〉〈Gn|g′〉µ̌g′eµ̌eg. (5.21)

If one wanted to obtain the linear susceptibility χ̌11 or χ̌22, g and g′ would be restricted to just the

F = 1 or F = 2 states, respectively. The Raman susceptibility χ̌12 is obtained by summing g over

the F = 1 states and g′ over the the F = 2 states11. Noting that the polarization associated with

Raman scattering is always perpendicular to the probe whenever the pump fields are cross polarized,

the Raman susceptibility is reported as a scalar.

The Raman susceptibilities are smaller than those of a symmetric 3-state system (namely 1/4,

since |ρ12| = 1/2 and µ̌2eµ̌e1 = 1/2). However, they are on the same order as the linear sus-

ceptibilities for the D2 line (i.e., about as large as the matrix elements in Table B.2), a feature in

keeping with the properties of 3-state Λ systems. Note that dark and bright states have equal and

opposite Raman susceptibilities. This too, is like the behavior of a 3-state Λ system. In the case of

complete trapping in the dark states, such that each dark state has population 1/5, the net Raman

susceptibility is 0.026i for scattering via the F ′′ = 1 level and 0.0125i for scattering via the F ′′ = 2

level.

5.4.2 Schmidt States for the D1 Λ2
1y,2x Subsystem

Suppose now that the y-polarized field is resonant with the 1 ↔ 2′ transition (ωy = ω2′ − ω1) and

that the x-polarized field is resonant with the 2 ↔ 2′ transition (ωx = ω2′ − ω2). This system will

11The Raman scattering susceptibility is the same for Stokes and anti-Stokes scattering because the polarizability
is completely symmetric [cf. eqn. (5.21)]: the polarization in mode 2 due to a field E in mode 1 is the same as the
polarization in mode 1 due to the field E in mode 2.
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Schmidt States of the Λ1
1y,2x System

Coupling constant Schmidt state χ̌12 Coupling

Ωn |Gn〉 1′′ 2′′ Scheme

0 |1,−1〉+|1,1〉√
2

0 0

0 |2,−1〉+|2,1〉√
2

0 0

0 |2,−2〉+√
6|2,0〉+|2,2〉√
8

0 0

0
√

3Ωx

(
|1,−1〉−|1,1〉

)
−iΩy

(
|2,−1〉−|2,1〉

)
√

6|Ωx|2+2|Ωy |2
i
16

i
16

0
√

32Ωx|1,0〉+iΩy(
√

3|2,−2〉−√
2|2,0〉+√

3|2,2〉)√
32|Ωx|2+8|Ωy |2

i
15 0

1
2
Ωx or 0.5Ω

|2,−2〉−|2,2〉√
2

0 0

√
1
12

|Ωy|2 + 1
4
|Ωx|2

or 0.58Ω

Ω∗
y

(
|1,−1〉−|1,1〉

)
+i

√
3Ω∗

x

(
|2,−1〉−|2,1〉

)
√

6|Ωx|2+2|Ωy |2
−i
16

−i
16

√
1
12

|Ωy|2 + 1
3
|Ωx|2

or 0.64Ω

√
2Ω∗

y |1,0〉−iΩ∗
x(

√
3|2,−2〉−√

2|2,0〉+√
3|2,2〉)√

8|Ωx|2+2|Ωy |2
−i
15 0

Table 5.1: One possible Schmidt decomposition of the sodium D1 Λ1
1y,2x subsystem. Numerical

values of the coupling constants are given for the case Ωx = Ωy ≡ Ω. χ̌12 is the atomic susceptibil-
ity for coherent Raman scattering. 1′′ and 2′′ refer to scattering via the F ′′ = 1 and F ′′ = 2 levels,
respectively, of 3P3/2.
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be denoted Λ2
1y,2x. The interaction Hamiltonian that describes this subsystem is

H2
1y,2x =

�

2




iΩy√
4

Ωx√
12

iΩy√
8

Ωx√
12

Ωx√
8

iΩy√
24

iΩy√
24

Ωx√
8

Ωx√
8

iΩy√
8

Ωx√
8

Ωx√
12

iΩy√
4

Ωx√
12




(5.22)

which can be obtained using the last five rows of Table B.1. The Schmidt states and singular values

for this system are given in Table 5.2. With five excited states, there are five bright states and three

dark states. One of the dark states does not possess any hyperfine coherence. Again, the bright and

dark states have equal and opposite Raman susceptibilities. In the case of complete trapping in the

dark states, such that each dark state has population 1/3, the net Raman susceptibility is 0.021i for

scattering via the F ′′ = 1 level and 0.069i for scattering via the F ′′ = 2 level.

5.4.3 Magnetic Fields and “The” Sodium D1 Dark State

The Schmidt states for the Λ1
1,2 and Λ2

1,2 subsystems appear to be very similar; indeed, many of them

have the same configuration. However, even those which have the same configuration have different

coefficients. Therefore, if frequent velocity-changing collisions cause the atom to be Doppler shifted

from one subsystem to the other on a time scale shorter than the optical pumping time, then little

coherent population trapping will occur. Furthermore, all the Schmidt states of Tables 5.1 and 5.2

are unstable in the presence of a magnetic field. However, the dark states of the Λ1
1,2 system may be

recombined to yield a different set of dark states which include the three states given in Table 5.3.

These three states remain dark when a z magnetic field is applied, although the Raman frequencies

of the latter two states shift with the Zeeman levels. Three similar states can be constructed for the

Λ2
1y,2x subsystem, although the two which involve the m = 1 or m = −1 ground states are not very

dark; they are coupled to the |2,−2〉 and |2, 2〉 excited states. Nevertheless, for either subsystem,

three separate trap states can be observed as a function of Raman frequency: the one involving the

m = 0 states at 1772 MHz, the one involving the m = 1 states at the upshifted (or downshifted)
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Schmidt States of the Λ2
1y,2x System

Coupling constant Schmidt state χ̌12 Coupling

Ωn |Gn〉 1′′ 2′′ Scheme

0
√

3|2,−2〉−√
2|2,0〉+√

3|2,2〉√
8

0 0

0
iΩx

√
32|1,0〉+Ωy(

√
3|2,−2〉+√

18|2,0〉+√
3|2,2〉)√

32|Ωx|2+24|Ωy |2
0 1

7

0
iΩx

(
|1,−1〉−|1,1〉

)
+
√

3Ωy

(
|2,−1〉−|2,1〉

)
√

2|Ωx|2+6|Ωy |2
i
16

i
16

1√
12

Ωx or 0.29Ω
|2,−2〉−|2,2〉√

2
0 0

√
1
4
|Ωy|2 + 1

12
|Ωx|2

or 0.58Ω

i
√

3Ω∗
y

(
|1,−1〉−|1,1〉

)
+Ω∗

x

(
−|2,−1〉+|2,1〉

)
√

2|Ωx|2+6|Ωy |2
−i
16

−i
16

√
1
4
|Ωy|2 + 1

3
|Ωx|2

or 0.76Ω

i
√

6Ω∗
y |1,0〉−Ω∗

x(
√

6|2,0〉+|2,−2〉+|2,2〉)√
8|Ωx|2+6|Ωy |2

0 −i
7

�
√

2−√
3

3

|ΩxΩy|2
|Ωx|2+|Ωy|2

or 0.21Ω

	 Ωx

(
|1,−1〉+|1,1〉

)
−iΩy

(
|2,−1〉+|2,1〉

)
√

2|Ωx|2+2|Ωy |2
0 i

4
√

3

�
√

1
3

|Ωx|4+|Ωy|4+
√

3|ΩxΩy|2
|Ωx|2+|Ωy|2

or 0.79Ω

	 Ω∗
y

(
|1,−1〉+|1,1〉

)
+iΩ∗

x

(
|2,−1〉+|2,1〉

)
√

2|Ωx|2+2|Ωy |2
0 −i

4
√

3

Table 5.2: The Schmidt decomposition of the sodium D1 Λ2
1y,2x subsystem. Numerical values of

the coupling constants are given for the case Ωx = Ωy ≡ Ω. χ̌12 is the atomic susceptibility
for coherent Raman scattering 1′′ and 2′′ refer to scattering via the F ′′ = 1 and F ′′ = 2 levels,
respectively, of 3P3/2.
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Trap States in the Presence of Magnetic Field

Coupling constant Schmidt state χ̌12 Coupling

Ωn |Gn〉 1′′ 2′′ Scheme

0 iΩx|1,0〉+Ωy |2,0〉√
|Ωx|2+|Ωy |2

−i
24

i
8

0 i
√

3Ωx|1,−1〉+Ωy |2,−1〉√
3|Ωx|2+|Ωy |2

i
32

3i
32

0 i
√

3Ωx|1,1〉+Ωy |2,1〉√
3|Ωx|2+|Ωy |2

i
32

3i
32

Table 5.3: Three alternative dark states in the sodium D1 Λ1
1y,2x subsystem, which remain stable in

the presence of a DC magnetic field.

frequency, and the one involving the m = −1 states at the downshifted (upshifted) frequency.

The first state in Table 5.3 is special: It is common to both systems, is essentially insensitive

to DC magnetic fields12, and involves hyperfine coherence. Because of its robustness and desirable

properties, it is in principle the best dark state for coherent preparation. Hence I designate it “the”

dark state of the D1 Λ system:

|d0〉 =
iΩ2x|1, 0〉 + Ω1y|2, 0〉√

|Ω2x|2 + |Ω1y|2
. (5.23)

What is the physical nature of the state (5.23)? The m = 0 states are superpositions of nuclear

12Although the m = 0 states are not shifted by a z magnetic field, the field induces a coupling between them (note the
off-diagonal elements in Table B.3). However, a static field is so far out of resonance with this transition (1772 MHz) that
the characteristic transition rate, ∼ L2/1772 MHz (where L is the magnetic Rabi frequency), is usually negligible.
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and electronic spin states:

|1, 0〉 =

∣∣1
2

〉∣∣↓〉− ∣∣−1
2

〉∣∣↑〉√
2

(5.24)

|2, 0〉 =

∣∣1
2

〉∣∣↓〉+
∣∣−1

2

〉∣∣↑〉√
2

(5.25)

where, e.g.,
∣∣1
2

〉∣∣↓〉 denotes the state with nuclear spin projection 1/2 and electron spin projection

−1/2. For the sake of discussion let us take Ω2x = Ω1y. In a physical reference frame where the

energy difference between hyperfine levels has not been mathematically removed, the dark state

evolves as

|d0(t)〉 =
|1, 0〉 + e−iω21t|2, 0〉√

2
(5.26)

= e−iω21t/2

(
cos

ω21t

2

∣∣1
2

〉∣∣↓〉− i sin
ω21t

2

∣∣−1
2

〉∣∣↑〉) (5.27)

Thus the hyperfine coherence between m = 0 states represents a simultaneous oscillation of the

electronic and nuclear spin projections. Similar interpretations can be given to other types of ground

state coherences. For this reason, ground state coherences in alkali vapors are sometimes referred

to as spin coherences or spin oscillations.

5.4.4 Schmidt States with Parallel Polarized Fields

For historical reasons, my work has always involved cross polarized control fields. One may ask

whether parallel polarized fields (say, both x polarized) could also be used for coherent popula-

tion trapping. I find that the Schmidt states for parallel polarized fields are superficially similar to

those for cross polarized fields, but at the level of detail there are important differences. Firstly,

the dark states of the Λ1
1x2x and the dark states of Λ2

1x2x span orthogonal spaces. That is, there

is no dark state common to both subsystems. Secondly, there is no linear combination of dark

states that is insensitive to magnetic fields. Finally, the signs of the hyperfine coherences are such

that the Doppler-averaged Raman susceptibility vanishes for every Schmidt state. Thus coherent

Raman scattering should not occur with parallel polarized fields. Experimentally, I have found elec-
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tromagnetically induced transparency to be extremely weak and coherent Raman scattering to be

nonexistent with parallel fields. Henceforth, I will consider only cross polarized control fields.

5.5 Numerical Studies

Having developed some physical intuition, we are now in a position to appreciate the results of

numerical studies of coherent population trapping in the D1 transitions of sodium. The results

which follow were obtained by numerically solving the steady-state equations for the density matrix

of a system comprised of the sixteen states in the sodium 3S1/2 and 3P1/2 levels and two linearly

polarized fields of equal intensity with a frequency difference close to the Raman frequency. (See

Appendix D for details of the master equation and method of solution.) The ground state relaxation

rate was taken to be 0.1 MHz for all calculations.

5.5.1 Without a Magnetic Field

The populations of the Λ1
1y,2x and Λ2

1y,2x Schmidt states as a function of optical intensity are shown

in Fig. 5.6. For Λ1
1y,2x the fields were tuned to the F ′ = 1 level (∆ = 0 MHz), while for Λ1

1y,2x

the fields were tuned to the F ′ = 2 level (∆ = 189 MHz). Consider first the Λ1
1y,2x subsystem:

At very low intensities, the population is evenly distributed among all 8 Schmidt states. As the

intensity increases, the populations of the 5 dark states increase to approximately 1/5 each, while

the populations of the bright states decrease to approximately zero. The pumping from bright to dark

states saturates when the nominal Rabi frequencies are approximately 5 MHz. Similar behavior

occurs in the Λ2
1y,2x subsystem: starting from an even distribution, the populations of the 3 dark

states increase to approximately 1/3 each, while the populations of the bright states decrease to

approximately zero. Note that one of the states (the 7th Schmidt state, a weakly coupled state), acts

as a trap state at low intensities (population initially increasing with intensity) and as a bright state

at high intensities (population decreasing with intensity). For the Λ2
1y,2x subsystem, the trapping

threshold occurs at approximately 10 MHz. For both subsystems, trapping is essentially complete

when the fields have nominal Rabi frequencies of 25 MHz.



CHAPTER 5 65

0 10 20 30
0

0.05

0.1

0.15

0.2

0.25

Rabi frequencies Ω
1y

, Ω
2x

 [MHz]

p
o

p
u

la
ti
o

n

Λ
1y,2x

1

dark states

bright states

0 10 20 30
0

0.1

0.2

0.3

0.4

Rabi frequencies Ω
1y

, Ω
2x

 [MHz]

p
o

p
u

la
ti
o

n

dark states

bright states

Λ
1y,2x

2

Figure 5.6: Population trapping in the Λ1
1y,2x and Λ2

1y,2x subsystems. As the Rabi frequencies of
the control fields increase, more population is pumped into the dark states. Conditions: δ = 0,
ΓG = 0.1 MHz.

The pumping of population into dark states causes a reduction of the absorption. The amount of

reduction may be characterized by the saturation parameter s, defined here by α = αweak field/(1+s).

In §3.2.2 we saw that the saturation parameter of a 3-state Λ system at Raman resonance is the same

for both fields and is proportional to the total intensity, in fact proportional to Ω2/Γg. In a system

with many ground states, the saturation also depends on this ratio. But as shown in Fig. 5.7, the

saturation parameter has a sub-linear dependence on this ratio. The reason is that as the intensity

increases, optical pumping moves population from Schmidt states with large coupling constants to

states with smaller coupling constants, and the fields become less effective at optical pumping. One

may say that the Rabi frequency of the interaction becomes much smaller than the nominal Rabi

frequencies of the fields, or that the saturation intensity increases as the optical intensity increases.

The net result is that the actual saturation is much less than the nominal saturation parameter (Ω2
x +

Ω2
y)/(4γGγE).

According to Tables 5.1 and 5.2, there are two dark superpositions for each subsystem involving

coherences between F = 1 and F = 2 ground states. Several of these coherences are shown as a

function of the Raman detuning in Fig. 5.8. The nominal Rabi frequencies of the fields are 25 MHz

each so that trapping is essentially complete. For the Λ1
1y,2x subsystem, the two dark states which
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Figure 5.7: Saturation of absorption. At the Raman resonance, saturation results from population
trapping. The saturation parameter increases sub-linearly with intensity (the horizontal scale is
linear in intensity) because optical pumping gets more difficult as more population becomes trapped
in dark states.

involve hyperfine coherence are approximately equally populated and contain approximately 40%

of the total population, resulting in coherences between the pairs of states with m = 0, m = 1, and

m = −1 of approximately 0.05. For the Λ2
1y,2x subsystem, the two hyperfine coherent dark states

account for over 70% of the population, resulting in somewhat larger coherences.

Associated with the trapping of population in dark states is a decrease in the susceptibility. A

pronounced dip in the susceptibilities13 occurs at the Raman resonance (Fig. 5.9, left) at both ∆ = 0

(Λ1
1y,2x dominant) and ∆ = 189 MHz (Λ2

1y,2x dominant). The reduction of absorption at Raman

resonance can also be seen by comparing the left and right plots of Fig. 5.10 (note the different

vertical scales). In these two plots, the peaks correspond to the F ′ = 1 and F ′ = 2 hyperfine

levels. Together, Figs. 5.9 and 5.10 show that coherent population trapping reduces the absorption

only by a factor of 2-4, even though the nominal pumping rate (R = 1
4

(25 MHz)2

(10 MHz)/2 = 30 MHz at

optical resonance) is much larger than the relaxation rate, 0.1 MHz. This result supports the idea

that coherent effects are harder to achieve and less pronounced in many-state systems.

13Both imaginary (absorptive) and real (dispersive) parts of the susceptibility are reduced at the Raman resonance.
However, the absorptive component is more easily measured and reveals the effect more clearly (at resonance the disper-
sive part is already at or near a zero crossing).
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Also associated with coherent population trapping is a large Raman scattering susceptibility. If

the pump fields prepare the atom with density matrix ρ̂, then the susceptibility of the prepared atom

to a weak probe field is

χ̌ = i
∑
g,g′

∑
e

ΓE/2
γE − i∆′

e

〈g|ρ̂|g′〉µ̌g′eµ̌eg, (5.28)

where ∆′
e is the detuning of the probe field from excited state e. Fig. 5.11 shows the dependence

of the Raman susceptibility χ̌12 on the detunings ∆ and ∆′ of the pump and probe fields from the

3P1/2 and 3P3/2 levels, respectively. (Just as ∆ = 0 means that the pump fields are tuned to the

lowest hyperfine level of 3P1/2, ∆′ = 0 means that the probe field is tuned to the lowest hyperfine

level of 3P3/2.) In this plot the pump and probe frequencies differ by a fixed amount, as is the case

when the frequency shifts are caused by the Doppler effect.14 The pump-probe frequency difference

was chosen so that ∆′ = 50 (F ′′ = 2) when ∆ = 189 (F ′ = 2), which maximizes both the peak

and Doppler-averaged Raman susceptibility. The Raman susceptibility peaks at a value of about

14The Doppler effect is described in §6.1.3. If the pump and probe fields are copropagating, the ratio of their Doppler
shifts is just the ratio of their wavelengths. The wavelengths of the D1 and D2 lines differ by only 0.1%; thus the pump
and probe frequencies are shifted by essentially the same amount.



CHAPTER 5 69

0 50 100

probe field detuning ∆′  [MHz]

100 150 200 250

0.1

0.05

0

-0.05

control fields detuning ∆ [MHz]

R
a
m

a
n
 s

u
s
c
e
p
ti
b
ili

ty 
χ 1

2

Bz = 0

δ = 0̆

 

0 50 100

100 150 200 250

0.1

0.05

0

-0.05

Bz = 4 G

probe field detuning ∆′ [MHz]

control fields detuning ∆ [MHz]

δ = 0

Figure 5.11: The real (dashed) and imaginary (solid) parts of the Raman scattering susceptibility
for a probe which scatters off the hyperfine coherence created by the control fields. Although the
distribution of ground state population is different in the presence of a magnetic field, the Raman
scattering susceptibility is not significantly affected. Conditions: Ω1y = Ω2x = 25 MHz, ΓG =
0.1 MHz.

0.07i, in agreement with the prediction of §5.4.2.

5.5.2 With a Magnetic Field

The calculations of the previous section were repeated, this time assuming a magnetic field of 4

Gauss in the z direction. As discussed in §5.4.3 the Schmidt basis is no longer meaningful in this

case, but nevertheless there exist three trap states which possess hyperfine coherence between pairs

of states with m = 0, m = 1, and m = −1. As shown in Fig. 5.12, these three coherences peak at

different Raman detunings. As mentioned previously, the m = 0 trap is a true dark state in both Λ1
1,2

and Λ2
1,2 subsystems. In contrast, the m = 1,−1 states are weakly coupled (i.e., poor traps) in the

Λ2
1,2 subsystem; hence the rather weak coherence features when ∆ = 189 MHz (Fig. 5.12, right).

In the presence of a magnetic field, a majority of the population can be trapped in one of these three

states, as opposed to being distributed over multiple trap states in the case of no magnetic field (see

Fig. 5.6). However, the total amount of trapped population is slightly less with a magnetic field than



CHAPTER 5 70

-10 -5 0 5 10
-0.1

0

0.1

0.2

0.3

Raman detuning δ [MHz]

g
ro

u
n
d
 s

ta
te

 c
o
h
e
re

n
c
e
 m = 1m = -1

m = 0

∆ = 0

-10 -5 0 5 10
-0.1

0

0.1

0.2

0.3

0.4

Raman detuning δ [MHz]

g
ro

u
n
d
 s

ta
te

 c
o
h
e
re

n
ce

m = -1 m = 1

m = 0

∆ = 189 MHz

Figure 5.12: Imaginary parts of hyperfine coherences involving states of particular same magnetic
number m. A magnetic field lifts the Zeeman degeneracy and leads to different Raman frequencies
for the hyperfine coherences. Conditions: Ω1y = Ω2x = 25 MHz, ΓG = 0.1 MHz.

without. This is probably due in part to relaxation bias and, depending on the size of the Zeeman

shift, in part due to the decrease in the optical pumping rates out of the bright states as the Zeeman

states are shifted out of resonance with the pump fields.

Associated with each trap state is a separate absorption dip (Fig. 5.9, right). Three dips are

clearly visible in the Raman spectrum when ∆ = 0 MHz. Note that the absorption outside the

Raman resonances is higher than the off-resonant absorption in the case of no magnetic field (Fig.

5.9, left). This occurs because, in the absence of a magnetic field, two out of five dark states do

not involve hyperfine coherence and can trap population regardless of the Raman detuning. When a

magnetic field is applied, these two trap states no longer exist; therefore the off-resonant absorption

is higher. For ∆ = 189 MHz, only one absorption dip is visible; because the trapping in m = 1,−1

states is very poor, the absorption dips are too small to be seen.

As suggested previously, the m = 0 superposition state is the most robust trap state in the

presence of a magnetic field. Nearly 80% of the population is pumped into this state when the pump

fields are tuned to F ′ = 2 (Fig. 5.13). Although this is slightly less than the amount of coherently

trapped population when no magnetic field is present (90%), the Raman susceptibility in this case

is slightly larger (Fig. 5.11, right).
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Figure 5.13: Population of “the” sodium D1 dark state [eqn. (5.23)] in the presence of a magnetic
field. Conditions: Ω1y = Ω2x = 25 MHz, ΓG = 0.1 MHz.

5.6 Summary

To understand coherent population trapping in systems with many states, the concept of dark states

and bright states (which helps explain the physics of coherent population trapping in 3-state systems)

was generalized to the concept of Schmidt states, which may be thought of as eigenstates of the

optical excitation. Schmidt states may be either dark (uncoupled), bright (strongly coupled), or

“dim” (weakly coupled). Under certain conditions, the action of multiple coherent fields in a many-

state system can be understood in terms of optical pumping among Schmidt states. When there

are relatively few trap states, relaxation tends to depopulate the trap states (relaxation bias). On

the other hand, if there are multiple trap states, some of them (extraneous trap states) may have

undesirable properties and compete with the desired states in trapping population. The behavior of

many-state systems is further complicated by the fact that magnetic fields lift the degeneracy of state

energies, causing different pairs of states to have different resonant frequencies. Generally speaking,

the complications of many-state systems make coherent population trapping more difficult than in

few-state systems, and correspondingly make coherent optical effects less pronounced.

The problem of a sodium atom interacting with two cross-linearly polarized fields to form a

3-level Λ system was analyzed in detail. Two such Λ systems exist in the D1 line of sodium, and
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their Schmidt ground states were presented and discussed. It was found that both systems have

multiple dark states, although only one state (a superposition of the two m = 0 ground states) is

dark for both systems in the presence or absence of a magnetic field, and that some of the dark states

do not involve any hyperfine coherence. Numerical studies showed that moderately large hyperfine

coherences, as well as coherent optical phenomena such as electromagnetically induced absorption

and coherent Raman scattering, can be induced via coherent population trapping; however, such

effects are less pronounced than what one would find for a comparable Λ system composed of only

three states.
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Chapter 6

Coherent Preparation of Atomic Vapors

So far I have pretended that the atoms being coherently prepared are stationary and isolated, the only

concession to the contrary being a phenomenological decay term which thermalizes the density ma-

trix. Of course, atoms exist within an environment, and they are usually not at rest on the optical

table just waiting to be experimented upon. In a typical atomic vapor experiment, the atoms are

moving at speeds of kilometers per second, colliding with each other and with their container. Fur-

thermore, the atoms act back on the electromagnetic field, producing an illumination different than

what was applied. Technical issues, which always come into play in an experiment, can complicate

or mask the desired phenomena. In this chapter I explore a variety of considerations which apply to

experiments in atomic vapors, with a particular view toward implications for coherent preparation.

Much of the relevant physics was developed in the 1950’s and 1960’s in studies of optical alignment

of spin in atomic vapors. Many of the lessons learned from these studies apply to the present re-

search because hyperfine coherences in alkalis are in fact coherences between different spin states.

For a definitive guide to the foundational work in atomic vapors, the reader should consult Happer’s

review on optical pumping [91].
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6.1 Effects Resulting from Atomic Motion

6.1.1 Exodus from the Interaction Region

In a typical vapor cell experiment, the control fields used to coherently prepare the atoms illuminate

only a portion of the cross section of the vapor. Since the atoms in a hot vapor have a thermal velocity

distribution, atoms which have been coherently prepared eventually leave the interaction region;

meanwhile, atoms outside the interaction region, which generally have little or no coherence1, enter

the interaction region. This process leads to decay of the average coherence of the vapor in the

interaction region. More generally, if we characterize the illuminated atoms by an average density

matrix ρ̄, atomic motion contributes the term −Γtrans(ρ̄ − ρrsv) to dρ̄/dt, where ρrsv is the density

matrix of an (unprepared) atom from the reservoir of unilluminated atoms and Γtrans is the inverse

of the characteristic transit time ttrans (the length of time an atom spends in the interaction region).

The interaction time depends on the size of the interaction region, the mean speed of the atoms,

and the type of movement (ballistic or diffusive). The average speed is

v̄ =

√
8kBT

πm
. (6.1)

where T is the vapor temperature in Kelvin, m is the atomic mass, and kB = 1.38 × 10−23 J/K

is Boltzmann’s constant. For sodium vapor, a typical operating temperature is 150 ◦C. At this

temperature v̄ = 622 m/s. The mean free path is

l =
1

σN (6.2)

where σ is the collisional cross section of atoms in a vapor and N is the number density of atoms.

Kinematic cross sections for gases are on the order of 5 × 10−15 cm2 [93]. For a sodium density

N = 1.4×1011 cm−3, the mean free path is l ∼ 1500 cm, which is much larger than the interaction

1Atoms outside the interaction region are subject to processes which decrease coherence and thermalize the population
distribution. In particular, collisions with the wall of the container cause spin flips which destroy hyperfine and Zeeman
coherences. However, it is experimental lore that decoherence due to wall collisions can be drastically reduced by coating
the container walls with paraffin wax [92]. (This technique would not seem to be applicable to sodium vapor, which
requires a moderately high operating temperature.) In such cases coherence is built up nearly uniformly throughout the
cell volume.
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region. Hence, at typical operating temperatures, a pure sodium vapor operates in the ballistic

regime. This means that the interaction time between an atom and beam of radius r = 1 mm is

ttrans � 2r/v̄ = 3 µs.

The interaction time can be increased by adding a buffer gas. When the mean free path becomes

small compared to the interaction region, the movement of atoms is diffusive with a diffusion con-

stant [89]

D ≈ v̄l

3
. (6.3)

For helium, N = 3.3 × 1016 cm−3 ×P where P is the pressure in torr. The total cross section for

velocity-changing collisions between helium and sodium has been measured to be 0.16×10−17 cm2

[94]. The mean free path is then l = (20P )−1 cm, which is 0.5 mm at P = 1 torr. This gives an

estimated diffusion coefficient of 1040 cm2/s · torr, which agrees with the results of more direct

measurements [95] to within experimental error. The interaction time is on the order of the time

it takes an atom to diffuse a distance r. Since the average distance an atom travels in a time t is

∼ √
Dt, we find ttrans ∼ r2/D = 10 µs.

The decay constant Γtrans can be related to the diffusion constant by a simple argument: If a

group of atoms intially covers and area A0, then after a time t the atoms are distributed over an area

of approximately A0 + Dt. Then the fraction of atoms in the original area2 is A0/(A0 + Dt) or

f =
1

1 + Γtranst
(6.4)

where Γtrans = D/A0. (Rigorous analysis of the diffusive spreading of an initial Gaussian distribu-

tion validates eqn. (6.4) and yields Γtrans = D/r2 = 1/ttrans.)

Since the density of the vapor is uniform at all times, every atom which leaves the interaction

region is replaced by an atom from outside the interaction region. The atoms outside the interaction

region will have varying amounts of coherence, since some have just come from the interaction

region while others been outside the interaction region long enough to completely lose their coher-

2In the early studies of vapor relaxation (in the 1950’s and 60’s), experimenters tended to illuminate the entire cell. In
such cases, the relaxation curves were close to exponential, corresponding to the decay of the lowest-order eigensolution
of the diffusion equation. In the present work only the central portion of the cell is illuminated, and the eigenmode
decomposition is less useful.
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ence. Thus the rate at which the total coherence in the interaction region decays is related to, but

somewhat less than, D/r2. However, the decay is still described reasonably well by a function of

the form (6.4), as shown in Fig. 6.1. In the mathematical model which serves as the basis for the

numerical studies in this work (see Appendix D), the effect of diffusion is approximated by expo-

nential decay of the density matrix along with a compensating infusion of population in a thermal

distribution.

6.1.2 Grating Washout

The coherence that exists throughout a coherently prepared vapor may be thought of as a type of

grating. Such gratings can be associated with most wave mixing phenomena. A phenomenon which

affects gratings in atomic vapors is “grating washout.” Since the grating is formed by atoms which

are free to move, travel of atoms causes the grating to dissipate. In the case of a hyperfine coherence

grating, the washout occurs as atoms with opposite phases migrate to the same region. How fast the

grating decays depends directly on the rate of travel and inversely on the period of the grating. For

the hyperfine coherence grating formed by two copropagating fields, the period is

Λ =
2π

k1 − k2
. (6.5)

For a first analysis, we may take k1 and k2 to be the free-space wavenumbers, in which case Λ =

c/(ν1 − ν2), where ν = ω/(2π) = c/λ. At the Raman resonance of sodium, ν1 − ν2 = 1772 MHz

which gives Λ = 17 cm. In a typical vapor cell of 8 cm or less, the grating goes through at most

half a period over the length of the cell. Thus the majority of atoms have similar phases, and

complete washout is not even possible. However, even if many periods are contained within the

length of the cell, the period of the grating will certainly be much larger than the transverse extent

of the beam. Most atoms will leave the beam region before travelling half a grating period in

the longitudinal direction. Thus, grating washout with copropagating beams should be negligible

compared to decoherence due to exodus.
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Figure 6.1: Diffusion in a cylindrical volume of unit radius. The diffusant density represents the
local degree of coherent preparation. The boundary condition is that coherence is destroyed at
the outer boundary (radius = 1). (a) The intensity profile of the control fields and the equilibrium
distribution of coherence as a function of radius. (b) The decay of the coherence in the illumination
region (solid line), along with a function of the form (6.4). The decay constant is Γtrans = 18,
whereas a simple argument gives Γtrans = D/r2 = 100.
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6.1.3 Doppler Shifts

An atom sees a slightly different laser frequency when it is moving than when it is at rest. The

shift in frequency (the Doppler shift) is ∆v = k · v where k is the wavevector of the laser and

v is the velocity of the atom. The distribution of velocities in any Cartesian dimension is g(v) =

exp[−1
2(v/vrms)2]/

√
2π(vrms)2 where

vrms =

√
kBT

m
. (6.6)

For sodium atoms at 150 ◦C, vrms = 390 m/s. This corresponds to a root-mean-square frequency

shift ∆rms = (2π/λ)vrms = 2π × 662 MHz for 589 nm wavelength light. The full width at half

maximum of g(v) is 1600 MHz, which is much larger than the splitting of the excited hyperfine

levels (189 MHz for 3P1/2) but comparable to the frequency difference of the ground hyperfine

levels (1772 MHz).

If the frequency difference of the ground states in a Raman system is small compared to the

frequencies of the two driving fields, then the Raman transition is “Doppler free”: both fields expe-

rience nearly equal Doppler shifts, so that the Doppler shift of the Raman frequency is negligible.

(This point will be examined further at the end of this section.) To good approximation, then, the

Doppler shift simply changes the value of the excited state detuning ∆. Let us consider the effect

this has on the induced absorption. At Raman resonance, the weak-field absorption rate is

absorption rate ∝ 1
∆2 + γ2

E

1
1 + s

. (6.7)

We may write s in terms of the line center saturation s0 as s = s0/(1+∆̄2). The Doppler-broadened

absorption rate is then

absorption rate ∝
∫ ∞

−∞
1

(∆̄0 − ∆̄v)2 + 1 + s0
g(∆̄v) d∆̄v (6.8)

where ∆̄0 is the normalized detuning for a stationary atom. This expression, the convolution of

a Lorentzian with a Gaussian, is known as the Voigt profile. Unfortunately it does not have a
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simple representation. However, if the width of the Lorentzian is much less than the width of

g(∆̄v), then g(∆̄v) can be approximated by its value at the peak of the Lorentzian. That is, if
√

1 + s0 � ∆rms/γE (= 132 for sodium in the absence of collisional broadening), then g(∆̄v) ≈
exp[−1

2(∆̄0/∆̄rms)2]/
√

2π∆̄2
rms and

Doppler-broadened absorption rate ∝ πg(∆̄0)√
1 + s0

. (6.9)

The factor πg(∆̄0), which is approximately equal to γE/∆rms when ∆0 = 0, is the usual factor

associated with the broadening of a line; if the fields were mutually incoherent or tuned outside

the Raman line, the right-hand side of this expression would be just πg(∆̄0). The factor
√

1 + s0

describes the effect of Raman saturation. We see that, in the limit of weak to moderate Raman

saturation, the factor which reduces the absorption at Raman resonance is only the square root of

what it would be in the absence of Doppler broadening. Thus Doppler broadening can significantly

reduce the size of the transparency feature associated with coherent population trapping. If coherent

population trapping would reduce the absorption by a factor of 100 without Doppler broadening, the

reduction factor will be close to 10 when Doppler broadening is included. If the Raman saturation

is very large, s0 ∼ (∆rms/γE)2, Doppler broadening does not reduce the transparency quite so

much. Others [28,96] have calculated the height and width of EIT features in a Doppler-broadened

medium under various approximations.

The average coherence
∫∞
−∞ ρ21g(∆̄v) d∆̄v may be calculated in a similar manner. However,

this is often not the relevant measure of coherence in an experiment. For example, coherent Raman

scattering may be used to measure the coherence. In such cases, the coherence is weighted by an

additional factor which accounts for the resonance of the probe. Based on the discussion in §3.3,

the amplitude of the scattered field is

CRS efficiency ∝ ρ21

∆4 + iγ4
∝ 1

∆̄v + i

s0

∆̄2
v + 1 + s0

. (6.10)

Here we have taken γ4 = γE and supposed that the probe field and control fields are nominally
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resonant with their respective transitions in order to maximize the scattered field. Then

CRS efficiency ∝
∫ ∞

−∞
∆̄v − i

∆̄2
v + 1

s0

∆̄2
v + 1 + s0

g(∆̄v) d∆̄v. (6.11)

Again, we consider the typical situation in which the Doppler distribution is much wider than the

other resonant responses, replacing g(∆̄v) with g(0). The term antisymmetric in ∆̄v vanishes,

leaving

CRS efficiency ∝ g(0)
∫ ∞

−∞
s0(

∆̄2
v + 1

) (
∆̄2

v + 1 + s0

) d∆̄v (6.12)

≈ γE

∆rms

√
π

2
s0

1 + s0
(6.13)

where the approximation is accurate for
√

1 + s0 � 1. In this case the factor s0/(1+ s0) which ac-

counts for Raman coherence is the same as what it would be at line center in the absence of Doppler

broadening. Thus the Raman scattering susceptibility is not proportional to the Doppler-averaged

coherence; but in a Doppler-broadened medium, the Raman scattering susceptibility is proportional

to the peak coherence and is reduced by the same line-broadening factor as the linear absorption.

This can be understood by arguing that the dominant contribution to the Raman scattering comes

from those atoms that are resonant with the probe; with the laser frequencies tuned as described

above, those atoms are also resonant with the control fields.

Above it was argued that the residual Doppler shift of the Raman detuning δ is negligible. This

point will now be considered more closely. The Raman Doppler shift is

δv = (k1 − k2) · v (6.14)

≈ ∆v

√(
ν1 − ν2

ν

)2

+ θ2
12. (6.15)

where θ12 is the angle between k1 and k2. In general we may write δv = ∆v(δrms/∆rms) where

δrms = ∆rms(ν1 − ν2)/ν1 	 ∆rms(ν1 − ν2)/ν2 is the width of the Raman Doppler distribution.

Now, the coherence at Raman resonance is proportional to s/(1 + s) [eqn. (3.6)]. Using the
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relation s = s0/[1 + (∆v/γe)2], one finds that the value of ∆v at which the coherence drops to 1/2

of its peak value (simply due to the reduced pumping rate) is

∆v = γE

√
1 + s0. (6.16)

At this value of optical detuning, the Raman linewidth [eqn. (3.10)] is δcoh = γG
√

1 + s0. Mean-

while, the residual Doppler shift which accompanies the optical shift ∆v is

δv =
(

δrms

∆rms

)
γE

√
1 + s0. (6.17)

Provided (δrms/∆rms)(γE/γG) � 1,3 δv is much smaller than δcoh. That is, the Raman coherence

disappears entirely due to the reduction in the optical pumping rate before the residual Doppler shift

exceeds the Raman line width.

Residual Doppler shifts, then, do not significantly diminish the height of a Doppler-weighted

Raman feature. Yet one might expect them to contribute noticeably to widths of such features. The

“transverse” component of the residual Doppler width is ∆rmsθ12, which works out to 662 kHz per

milliradian. This contribution can be eliminated by very careful alignment of the control fields or by

use of a spatial filter to ensure that the control fields occupy the same spatial mode. But even if the

fields are planar4 and copropagating, the broadening associated with the “longitudinal” component

is ∆rms(ν1 − ν2)/ν = 2.3 kHz. Thus Doppler broadening would seem to rule out sub-kHz line

widths. Yet the data I will report in §7.2 describes Raman line widths of only a few hundred Hz.

Features as narrow as 42 Hz have been observed by others [97].

This paradox can be resolved by arguing that the total coherence is dominated by atoms in a

narrow velocity subclass. As discussed above, the coherence begins to fall off at ∆v = γE
√

1 + s0.

If this ∆v is smaller than ∆rms, then the bandwidth of the coherence (i.e. the bandwidth of the

material oscillation) will be narrower than the residual Doppler distribution (Fig. 6.2). Furthermore,

3For the sodium D1 Λ system ∆rms/δrms = 2.8 × 105, while γE/γG is typically between 10 and 105 depending on
the experimental conditions.

4A focused beam has an angular bandwidth θ ∼ λ/d where d is the beam diameter. The present framework would
then suggest that the Doppler-broadened width of the Raman line is δrms ∼ vrmsθ/λ = vrms/d. In the regime of ballistic
atomic motion, this is just the linewidth associated with the transit time through the illumination region. But if the field
is planar, the angular bandwidth vanishes along with the associated contribution to the residual Doppler shift.
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Figure 6.2: The Doppler (Maxwell) distribution, the frequency dependence of the coherence, and
the resonant response to a probe field, shown as functions of the optical and Raman Doppler shifts.
The spectral distribution of an experimental coherence signal is typically the product of all three
functions. Hence the bandwidth of the coherence can be much less than the width of the Raman
Doppler distribution.

if the coherence is measured via an optically resonant interaction (e.g. coherent Raman scattering),

then the signal is dominated by those atoms which are resonant with the probe, i.e. by atoms whose

velocities yield Doppler shifts |∆v| � γE . Therefore the effective width of the Doppler distribution

is γE , and the effective width of the Raman Doppler distribution is γE(δrms/∆rms) = 17 Hz. In

most experiments, this value is much smaller than the dominant contribution to the Raman line

width. Thus we again find that residual Doppler broadening of the Raman line can be ignored (if

the experiment is properly designed).

6.2 Interactions Between Atoms

The atoms in a vapor are not isolated; they interact via collisions and longer-range forces (e.g. van

der Waals forces) to a degree that increases with number density. They also interact with the walls

of their container. These interactions are responsible for a great variety of effects. Broadly speaking,

these effects can be categorized as either elastic (kinematic) or inelastic (producing a change in the
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internal state of an atom). The latter type generally result in relaxation of the atomic state. Processes

of this type can be modelled by identifying an interaction Hamiltonian, determining the evolution of

the atomic state for a given set of collision parameters, then averaging the effects of many random

collisions (i.e. over the space of possible collision parameters) to obtain the average change to

the density matrix. Some of the more important effects resulting from atom-atom interactions are

summarized below.

Diffusion. As discussed in §6.1.1, collisions limit the movement of atoms and thereby increase

the time atoms remain in the beam region.

Velocity Diffusion. Collisions cause atoms to change velocities, resulting in sudden changes

to the Doppler shift an atom experiences. Since only resonant atoms are effectively pumped and

probed by the fields, velocity-changing collisions limit the average time an atom interacts with the

fields. If the time between collisions is shorter than the response time of the atom, an atom will be

knocked off resonance before the atom has time to determine whether or not the field is resonant—

before the coherence has time to build up. Velocity-changing collisions can measurably increase the

effective ground state relaxation rate [98]. Optical coherences are affected far less, since they have

much shorter lifetimes than Raman coherences.

Spin relaxation. In §5.4.3 we saw that ground state coherences in alkalis involve nuclear and

electron spins. Any process that randomizes the orientation of spin will therefore cause relaxation

of hyperfine and Zeeman coherences. Such processes include spin-exchange (in which spins of like

atoms interact) and spin-orbit interactions (coupling between the spin of one atom and the field of

another atom’s orbiting electron). The cross section for spin exchange between sodium atoms is

10−14 cm2. The cross section for spin-orbit relaxation of sodium ground states in helium is on the

order of 10−26 cm2 [95]. These lead to relaxation rates∼ 6×10−11 Hz cm3 N and ∼ 10−5 Hz/torr,

respectively. For realistic experimental conditions, say N = 2 × 1011 cm−3 and 1 torr of helium,

these rates are negligible. Collisions with the walls of the container strongly disturb the electronic

spin, and in fact it is often the case that the spin is completely randomized by a single collision.

However, it is known among vapor physicists that coating the walls with paraffin wax can almost

completely eliminate spin relaxation in wall collisions. This approach does not appear to be viable
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for sodium since moderately high temperatures (150 ◦C) are required to produce a sufficient number

density for most experiments.

Pressure broadening. The excited states of alkali atoms are less tightly bound than the ground

states and are much more strongly affected by the forces which act during a collision. Effects such

as disorientation of the electronic and nuclear spins, transitions between states of different J or F ,

and dephasing of excited states become relevant at pressures on the order of 1 torr. The net result

is that the lifetime of optical coherences (coherences between excited states and ground states) is

decreased; correspondingly, the spectral line is broadened. A vapor may be self-broadened, but

pressure broadening can also occur as a result of interaction with a foreign gas. Whatever the cause,

the (half) width of the spectral line typically goes as γE = 1
2ΓE + βP where P is the pressure

of the broadening gas and β is the broadening coefficient. In most of my experiments, a helium

buffer gas was the dominant perturber. At a typical vapor temperature of 150◦C, the broadening

coefficient for the FWHM of the sodium 3P1/2 level is 3.9× 10−9 cm3 rad/s [99], which translates

to β = 10 MHz/torr.

As pressure broadening is an excited state phenomenon, it does not directly affect ground state

coherences. However, an increase in the optical linewidth results in a decrease in the optical pump-

ing rate [cf. eqn. (2.4)], which reduces the steady dark state population. Therefore pressure broad-

ening is a hindrance to coherent population trapping.

Quenching. In a collision between an atom and a molecule of a foreign gas, the atom may

transfer energy to the molecule and de-excite without emitting a photon; fluorescence of the atom is

quenched. Quenching could conceivably help (or hinder) coherent population trapping by causing

the atom to de-excite to a superposition of ground states with the right (or wrong) sign; but coherent

de-excitation with preferential sign seems unlikely. It is more likely that quenching hinders coher-

ent preparation by decreasing the excited state lifetime, which increases the optical linewidth and

reduces the optical pumping rate.

Quenching is common with molecular perturbers; nitrogen (N2), for example, is known to be

very effective in quenching alkali vapors. Inert atoms, on the other hand, have fewer channels for

energy transfer and generally have extremely low quenching cross sections. Most of my experiments
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were performed with a helium buffer gas, so in principle quenching should not occur. But even in

those experiments in which nitrogen buffer gas was used, the effect on coherent preparation was

slight. Thus I conclude that quenching was not an important process in any of my experiments.

Radiation Trapping. If the absorption length is smaller than the extent of the vapor, then the

resonant fluorescence is likely to be absorbed and re-emitted many times before it leaves the vapor.

The fluorescence builds up to form a background of incoherent5 radiation which can be seen as

a diffuse glow surrounding the illuminated part of the vapor. If the vapor is dense enough, this

background can become intense enough that the rate at which it optically pumps population out of

a dark state is non-negligible. Thus radiation trapping is capable of hindering coherent population

trapping. A recent experiment [100] in rubidium vapor, involving a geometry similar to that of my

experiments, indicates that radiation trapping can make a significant contribution to the ground state

relaxation rate at number densities ∼ 1012 cm−3. Although the number density in my experiments

is closer to 1011 cm−3, the critical number density depends on enough experimental parameters that

radiation trapping cannot be summarily dismissed. An experimental investigation of the effect of

radiation trapping in our setup would be a prime candidate for future work.

6.3 Considerations Associated with Propagation

In a nonlinear medium, both the fields and the optical properties of the medium can vary in compli-

cated ways throughout the course of propagation. One could imagine that the fields which prepare

the medium in the desired way at the input evolve in such a way that after some distance they no

longer produce the desired material state. I now consider some potentially relevant aspects of spatial

evolution.

Attenuation of the control fields. In an ideal situation, absorption would be very large in the

absence of coherent preparation and negligibly small when the vapor is coherently prepared. In

many experiments, including my own, coherent preparation does not lead to complete transparency.

Often the control fields are significantly weaker at the exit of the vapor than the input; therefore the

5Spontaneously emitted light is often called incoherent, which is true in the sense that the light has no definite phase.
However, it should not be forgotten that spontaneous emission is the result of coherent evolution of the state of joint
system consisting of the atom(s) and electromagnetic continuum.
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degree of coherent population trapping varies along the length of the vapor, being largest at the input

and smallest at the exit. According to the 3-state model, a coherently prepared medium acts like a

simple saturable absorber with a low saturation intensity, allowing one to qualitatively understand

the evolution of the fields. The ground state coherence and Raman scattering susceptibility will

decrease with distance, to the point that absorption of the probe and signal may dominate over

Raman scattering.

Intensity Divergence. Propagation may also cause the control fields to become highly imbal-

anced. An asymmetry in the input intensities or line strengths will cause one field to be absorbed

more than the other. Propagation only exaggerates this difference since the weaker a field becomes,

the less it saturates its corresponding transition and the larger its absorption coefficient becomes.

Thus the tendency is to end up with one strong field and one weak field. If this occurs under coher-

ent trapping conditions, then the hyperfine coherence will decrease with propagation distance as the

hyperfine populations become more and more imbalanced.

The Kerr Effect. The refractive index experienced by either control field will depend on the

intensity of both fields. A Gaussian beam can undergo self-focusing or self-defocusing because

the intensity-dependent refractive index varies from the center to the edge of the beam. In my

experiments, the vapor density and beam power are too low and the beam diameter is too large

for self-focusing to be significant. Even so, one might imagine that the different phase shifts ex-

perienced by different parts of the beam could lead to problems associated with transverse phase

dependence (see the discussion “transverse uniformity” in the next section). However, the Kerr ef-

fect should be unimportant for a couple of reasons. Firstly, most of the experiments are performed

at line center, where the susceptibility is almost completely imaginary (absorptive rather than dis-

persive). Secondly, both fields will acquire similar if not the same phase shifts in the case that they

have the same intensities. Thus the relative phase variation (which is what determines the phase of

the dark state) should be quite small.

Wave mixing. A pair of intense fields can undergo wave mixing in many types of nonlinear

media. When population trapping enhances the quantum coherence, wave mixing can occur with

even greater efficiency. For example, in §7.3 I show data in which four-wave mixing induced by
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coherent population trapping causes power transfer from one control field to the other. The larger

the ground hyperfine splitting, the further this process is from resonance and the smaller the suscep-

tibility. Hence four-wave mixing of the control fields is almost certainly negligible in atoms such as

Rubidium, for which the ground hyperfine splitting is much larger than the Doppler width. But even

in sodium, the mixing process is found to be conservative and sufficiently weak that it has little to

no impact on coherent population trapping (see §7.3).

Coherent Raman scattering is, of course, also a wave mixing process. The analysis of §3.3

ignores the fact that the probe and signal fields affect the dark state. This interaction does not

necessarily prevent coherent population trapping [38]; nevertheless, in my experiments, the probe

was kept much weaker than the control fields to the extent that it had little to no observable effect

on the degree of electromagnetically induced transparency.

Phase-matching. Wave mixing processes are subject to phase matching criteria: if momentum

is not conserved in a multiphoton transition, i.e. if the wavevectors of the fields do not sum to zero,

then the sign of the nonlinear process will oscillate with distance, resulting in little net change in

the fields. Some processes are automatically phasematched. EIT is one such process: since the

phase of the dark state is determined at each point by the fields themselves, the wavevector of the

dark state exactly makes up for the difference in the wavevectors of the fields. (However, the dark

state grating is subject to washout, §6.1.2.) Coherent Raman scattering will be phase-matched if the

difference in probe and signal wavevectors matches that of the control fields. In my experiments,

the control fields are so similar in frequency (as are the probe and signal fields) that the reciprocal

of the wavevector mismatch is larger than the length of the cell. Thus for both fundamental and

technical reasons, phasematching is not a concern.

Nonlinear absorption. In a saturable absorber, the light intensity decreases linearly for inten-

sities far above the saturation intensity, and only decays exponentially well below the saturation

intensity. This does not present a physical problem, but it does make analysis more difficult. Even

for straightforward saturation of the form (1 + I/Isat)−1, the evolution of the intensity is mathe-

matically nontrivial (the solution is a transcendental equation). In a medium such as sodium vapor,

in which the saturation does not follow a simple form (cf. Fig. 5.7), it is very difficult to solve
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the “inverse problem”—i.e., to use the transmittance to obtain an accurate determination of the in-

tensity (or intensity-dependent absorption coefficient) at an arbitrary point within the vapor. One

must numerically propagate the beam, adjusting the (possibly many) parameters of the medium in

order to obtain a fit to the measured transmittance. A calculation of the transmission spectrum may

take from hours to days depending on the sophistication of the physical model. In lieu of lengthy

calculations, one must rely on intuition built upon idealized media to close the gap between theory

and experiment.

6.4 Technical Considerations

Besides complications arising from fundamental physics, there are complications associated with

the practical realities of implementing an experiment.

Polarization control. In my experiments, the control fields are intended to be cross polarized.

There are several places in the optical train where the polarization may be corrupted. First, the two

control fields are combined at a polarizing beamsplitter and coupled into a polarization-maintaining

fiber. The beam splitter ensures that the two components entering the fiber are perpendicular to a

very high degree (extinction ratio of several thousand to 1). If the axis of the fiber is not aligned to

the fields, the polarizations of the fields will be scrambled. Some residual polarization mixing also

occurs in propagation through the fiber. The measured polarization purity of the light exiting the

fiber (defined as power in the desired polarization divided by the power in the undesired polariza-

tion) was on the order of 2000 and was subject to both thermal drift and mechanical stress (i.e. it

depended on the exact way in which the fiber was coiled).

The second potential cause of polarization mixing is the birefringence of the windows on the

cell containing the sodium vapor. If the crystal axes of the windows are not aligned to the field

polarizations, then polarization mixing will result. When the cell was built, the entrance and exit

windows were aligned with a laser to minimize polarization mixing. In the end, the polarization

purity of the entire optical train varied in the range 300-1500.

The effect of polarization rotation or scrambling on coherent population trapping may be esti-

mated as follows. In the worst case, the unwanted polarization components act as incoherent pump
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fields. Thus they increase the effective relaxation rate by R/P, where P is the polarization purity.

This means the Raman saturation parameter is limited to R/(γG + R/P ) ≤ P . A saturation pa-

rameter of P ∼ 500 is large enough to achieve strong coherent trapping. This analysis is overly

conservative, however. As discussed in §5.4.4, even the “wrong” kind of input polarization (parallel

polarized fields) produces some degree of coherent preparation. Thus I do not expect small amounts

of polarization mixing to have any significant effect on coherent population trapping in a sodium

vapor, although this is a point which could be explored further.

Transverse uniformity. If the control fields do not have the same transverse dependence, the

phase of the dark state (i.e. the phase of the hyperfine coherences) may vary across the diameter of

the beams. Movement of an atom across the beam diameter will cause a decay of the net coherence

of the vapor, much like grating washout. By having both fields pass through a spatial filter (such

as a single mode fiber), their transverse modes are guaranteed to be identical as they enter the

cell. But since one field sees the ordinary refractive index of the window while the other sees the

extraordinary index, the relative phase of the two fields depends on the thickness of the window. A

wedged or otherwise non-uniform window will result in a variation in relative phase of the fields

and of the dark state across the diameter of the beam. By examining interference fringes formed

by the Fresnel reflections at each surface, I observed that both input and output windows had slight

wedges. The input window was measured to have a wedge of 7 waves per transverse centimeter.

Since the ordinary and extraordinary refractive indices of the sapphire differ by only 0.5%, across a

0.4 cm diameter beam the relative phase of the control fields varies by only 0.005× 7× 0.4 = 0.01

waves. Thus for all purposes the phase of the dark state is the same across the beam diameter.

Transverse spatial dependence should not be ignored, though, even when it is the same for both

fields. Consider the typical situation that the fields have a Gaussian profile. Atoms near the center

of the beam see the most intense fields and are most strongly coherently prepared; atoms in the

periphery experience weaker fields and are less completely pumped into trap states. Diffusion is

expected to smooth out spatial variations in the average atomic state to some extent; nevertheless,

both the degree of electromagnetically induced transparency and Raman susceptibility are likely to

vary over the beam area. Any measurement that collects the entirety of a beam exiting the vapor
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must be regarded as a weighted average of beamlets that experienced different optical properties.

Phase and Frequency Stability of the Control Fields. The relative phase of the control fields

is φR = φ2−φ1 +2π(ν2−ν1)t, where φ1,2 is the phase of control field 1,2. If φR is not constant in

time, the phase of the dark state will be continually changing and the coherent population trapping

will be less complete than it would otherwise. The impact of temporal phase fluctuation can be

estimated using the Bloch vector model. In this model, fluctuation in the relative phase of the

control fields appears as fluctuation in the polar angle of the pumping vector �R. To lowest order in

the dark state phase slip Φ = arg(ρ21) − φR + π, the time-averaged coherence and absorption are,

for δ = 0,

ρ21 = −
(

�R

R + γG

)
= − s

1 + s
cos Φ (6.18)

absorption ∝ 1 −
�R · �ρ

R + γG
=

1 + s
(
1 − cos Φ

)
1 + s

. (6.19)

where · · · denotes an average over time. For a field phase fluctuation of the form φR = φmax sinωφt,

it can be shown that cos Φ 	 J0(Φmax) where Φmax =
(
ωφ/
√

ω2
φ + (R + γG)2

)
φmax. For

cos Φ = 0.9, the coherence cannot exceed 90% of the maximal value, and the absorption can never

be reduced more than 90%. Clearly, phase fluctuations have an adverse effect.

Control fields with a stable relative phase can be formed using two frequency- and phase-locked

lasers, or by deriving both control fields from a single laser and a modulator. Of course, in either case

the driving electronics must be stable. In our experimental setup the Raman beat note is obtained

by the use of several frequency-shifting modulators. Unfortunately, we discovered that the drivers

for some of the modulators possess a 300 kHz phase modulation, causing the phase of one control

field to vary sinusoidally with an amplitude of 1.2 rad. This modulation visibly broadened the

Raman spectra. The simulation results shown in Fig. 6.3 indicate that the modulation was severe

enough to hinder EIT in some experiments. However, I did perform one experiment using a different

configuration which was free of the phase modulation, and found in that particular case that EIT was

not noticeably improved.

Stray magnetic fields. As discussed in sections 5.3.3, 5.4.3, and 5.5.2, magnetic fields cause
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Figure 6.3: The adverse effect of fluctuation (or in this case, modulation) of the relative phase of
the control fields on EIT and CRS. (a) In this simulation the average absorption is nearly twice
as large with phase modulation than without it. (b) Although the magnitude (dashed line) of the
hyperfine coherence is hardly affected, the phase (solid line) varies with that of the control field. This
phase variation will be imparted to any field generated by coherent Raman scattering. Parameters:
Ω1y = Ω2x = 25 MHz, ∆ = 189 MHz, δ = 0, Bz = 4 G, helium pressure 3 torr (Γg = 0.5 kHz,
γG = 3 kHz, γE = 35 kHz), and phase modulation φR = 0.64 sin[2π(300 kHz)t].
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level shifts and transitions between ground states. While a strong, spatially uniform, longitudinal

field can be useful for isolating the m = 0 dark state, weak and/or non-uniform fields broaden the

dark state resonance (via dark state decay or inhomogeneous level shifts). There is also a type of

relaxation associated with motion through a spatially varying field, whose rate is proportional to

the gradient of the field and the atom velocity [91]. In any case, spurious magnetic fields hinder

coherent population trapping. According to Table B.3, the magnetic field interaction energies for

the sodium 3S1/2 states are on the order of 1 MHz/G. Thus, a vapor with a ground state relaxation

rate γG = 10 kHz will be affected by fields as weak as 10 mG. Our magnetometers were not

sensitive enough to measure such fields. However, it was found that wrapping a sheet of high

permeability metal around the vapor cell noticeably narrowed the dark state resonances. Due to the

awkward geometry of the vapor cell apparatus and the lack of sufficiently sensitive magnetometers,

the strength of stray magnetic fields in the interior of the vapor cell is largely unknown. However,

the effects of stray fields are manifest in the net relaxation rate of the vapor. In §7.2 I will present

data which shows that we were able achieve ground state relaxation rates as small as several hundred

Hz, which indicates that stray magnetic fields were not a limiting factor.

Fresnel reflections. Reflections at the back window surface produce counterpropagating fields

that interfere with the control fields. At low to modest vapor densities, the refractive index of the

vapor is close to unity, meaning that the field reflection coefficient is just r = (n−1)/(n+1) where

n is the index of the window. For sapphire windows (n = 1.75), r = 0.27, which is not negligibly

small. Since both control fields experience the same reflection coefficient, and both fields have

approximately the same wavevector, the relative phase of the reflected fields is the same as that of

the incident control fields. Thus although a longitudinal grating is formed, both fields experience

the same interference pattern in both phase and amplitude, Hence the optical grating does not lead

to a dark state spatial grating. Wave mixing processes are also unlikely to develop because any

atomic grating which does form has a very high spatial frequency and is subject to severe grating

washout. If there remains any doubt about the influence of reflections, the overlap between incident

and reflected fields can be greatly reduced by tilting the beam axis relative to the window normals.

Vapor Impurities. It has been noted that unless great care is taken, a vapor cell typically
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contains enough impurities to dramatically alter the vapor’s optical and spin relaxation rates [101].

The vacuum system I used is functional, but not ideal or well characterized. The vacuum station

itself could reach pressures between 10−6 and 10−7 torr, but the station was removed from the cell

by two meters of tubing. Owing to the restriction of flow this creates, the background pressure in

the cell was likely higher. Additionally, the system contained a line to backfill the cell with an inert

buffer gas, such as helium. This line was made of copper tubing, whose joints are known not to hold

high vacuum. I was also unable to obtain impurity data for the buffer gases I used. In all, vapor

purity is the least well characterized aspect of my experiments.

6.5 Simulation of Coherent Preparation of Sodium Vapor

A model which takes into account all the physics just discussed would be intractable as well as

unnecessarily complicated, since I have argued that many of the complications can safely be ignored.

Complications which certainly need to be included are atom transit, Doppler shifts, and collisional

broadening of the excited states. A very complete model would yield the set of equations

d

dt
ρ(r,v) = − i

�
[H(r), ρ] − Γ(ρ)+D∇2ρ − γvcc

[
ρ −

∫
Wv′→vρ(r, v′) dv′

]
(6.20)

d

dz
E(r, z) = i

N
2kε0

Tr(µEρ) (6.21)

together with appropriate boundary conditions. Here ρ is the density matrix, E is the electric field, r

is position, v is longitudinal velocity, H is the Hamiltonian describing interaction between an atom

and electric and magnetic fields, Γ is term which accounts for spontaneous emission and other state-

randomizing forms of relaxation (see eqn. (C.33) and §D.2), D∇2 accounts for diffusion, γvcc is

the rate of velocity-changing collisions, and Wv′→v describes the nature of velocity redistribution

in a collision. Analytically solving eqn. (6.20) alone, much less together with eqn. (6.21), is all

but impossible; even numerical solution is rather imposing. One is therefore motivated to seek

reasonable simplifications. The transverse spatial dependence may be eliminated mathematically,

as it is experimentally, by performing an intensity-weighted spatial average. In the case that wall

collisions and other influences outside the illumination region completely thermalize the atomic
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state, one may approximately account for diffusion by causing the spatially averaged density matrix

ρ̄ to decay and be replaced by the thermal equilibrium state ρ̄eqb at some rate Γ which is on the

order of the transit rate Γtrans. Similarly, one can account for velocity changes by integrating over

the velocity probability distribution and adding γvcc to the appropriate decoherence rate parameters.

For greater accuracy, the total effective relaxation rates may be obtained from experiment. By

alternately solving eqns. (6.20) and (6.21), one may determine the longitudinal evolution of the

fields and the ensemble density matrix. I have developed a set of computer routines to perform this

task. Additional details of the model and its numerical implementation are given in Appendix D.

Figs. 6.4 and 6.5 show the results of simulation of coherent population trapping in sodium

vapor with 3 torr of helium and a longitudinal magnetic field of 4 G. The control fields were taken

to be 10 mW Gaussian beams of radius r = 1 mm. The average nominal Rabi frequencies are

then Ω1y = Ω2x = 25 MHz and the relaxation coefficients are ΓG = 0.5 kHz, γG = 3 kHz,

and γE = 35 MHz (see Fig. 7.6). These are the conditions of some of the experiments discussed

in chapter 7. This calculation ignores four-wave mixing of the control fields, laser instabilities,

inhomogeneous stray magnetic fields, vapor impurities, and the influence of extraneous optical

fields (“wrong” polarization components and resonance fluorescence). Fig. 6.4 shows the two-

field absorption spectrum of the D1 line when tuned to the Raman resonance and when tuned away

from the Raman resonance. Both fields experience a significant reduction of absorption due to

coherent population trapping. At the center of the Doppler-broadened D1 line (∆ = 95 MHz), three

absorption dips are visible corresponding to the m = −1, 0, 1 dark states discussed in Chapter 5

(Fig. 6.5). The absorption of both fields is reduced by a factor of 7 at the m = 0 Raman resonance

(δ = 0). The full-width-half-max of this absorption dip is 1 MHz, which can be attributed almost

wholly to power broadening6. The average coherences between pairs of ground states with m =

−1, 0, 1 are shown in Fig. 6.5b. The Doppler-averaged m = 0 coherence is largest at 0.2i. Since

it is found that the atoms resonant with the fields have maximal coherence (0.5i), we may say that

about 40% of the atoms are coherently prepared.

6Based on the analysis in §3.1, the half-linewidth may be interpreted as effective pumping rate R. Then eqn. (6.9)
predicts the resonant absorption reduction to be (1 + s0)

1/2 = (1 + R/γG)1/2 ≈ 11, a value which is not in bad
agreement with the result of the full calculation.
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Figure 6.4: Simulation of EIT in a sodium vapor with helium buffer gas. The Doppler-broadened
absorption spectra of both fields are significantly reduced at the Raman resonance (δ = 0) as a result
of coherent population trapping. Parameters: Ω1y = Ω2x = 25 MHz, beam radius r = 1 mm,
Bz = 4 G, helium pressure PHe = 3 torr (ΓG = 0.5 kHz, γG = 3 kHz, γE = 35 kHz).
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Figure 6.6: Spatial evolution of the control fields (a) and coherent Raman scattering signal (b). The
number density is N = 2 × 1011 cm−3; the other calculation parameters are the same as those in
the previous figures. (a) The attenuation of the control fields is significantly reduced at the Raman
resonance (δ = 0). In the off-resonant case, the inequality of line strengths for the F = 1 and F = 2
hyperfine transitions causes intensity divergence. (b) Generation of a coherent Raman signal via D2
transitions. When all four fields are tuned to the centers of their respective lines, Raman generation
is overcome by absorption (dashed line). When the fields are tuned to the red side of the D1 and D2
lines, the Raman signal emerges with a maximum of 4% of the input probe power.

The model predicts that the attenuation of the fields is significantly reduced at the central Raman

resonance (Fig. 6.6a). For this calculation the number density was taken to be N = 2× 1011 cm−3.

The calculation also shows intensity divergence in the Raman-detuned case; the fact that F = 2

states are more strongly coupled than F = 1 states causes Ω2x to be attenuated much faster than

Ω1y.

At δ = 0, the (non-normalized) Raman scattering susceptibility is χ12 = (0.4 + 4i) × 10−6,

while the self- (single-field) susceptibilities are χ11 = (−0.3+9i)×10−6 and χ22 = (0.1+10i)×
10−6. These numbers are obtained when, for zero-velocity atoms, the control fields are resonant

with the 3P1/2, F ′ = 2 level and the probe field is resonant with the 3P3/2, F ′′ = 2 level. The

Raman susceptibility is less than half the self susceptibilities, but not because the coherence is not

maximal; rather, it is because there are more and/or larger non-vanishing matrix elements for the

single-field processes than the Raman process. An 8-cm long vapor is about 8 times the absorption
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length for the probe and signal fields. Over this many absorption lengths, the Raman scattering

becomes overwhelmed by resonant absorption so that almost no signal field emerges from the vapor.

However, by tuning both the control fields and the probe fields about 1 GHz to the red side of the

D1 and D2 lines, respectively, the signal power peaks at the end of the vapor7, reaching about 4%

of the input probe power (Fig. 6.6b). This conversion efficiency is reasonably large compared to

many other wave mixing processes, but is much smaller than one might have expected given that

the participating atoms have maximal coherence.

6.6 Summary

In this chapter I considered a great variety of physical phenomena which have the potential to

affect coherent preparation of a vapor such as sodium. Doppler shifts and transit of atoms through

the illumination region are perhaps the two most significant of these phenomena. Doppler shifts

broaden the optical resonances, but are found to have a minimal effect on the width of Raman

resonances provided that the fields are copropagating and not tightly focused. Raman line widths

of 10’s of Hz are possible in principle. Nevertheless, the broadening of the optical line reduces the

effective rate of optical pumping into the dark state, such that the amount of electromagnetically

induced transparency is only the square root of what it would be without Doppler broadening. The

effective coherence of the vapor for resonant Raman scattering is not reduced, although the Raman

susceptibility is reduced by the same line-broadening factor as the linear susceptibility.

Atom transit may be ballistic or diffusive. In either case, the average atomic density matrix

of the illuminated part of the vapor contains contributions from atoms with different histories. The

interplay between transport, velocity randomization, and the quantum state evolution makes realistic

simulation numerically challenging. Transit effects may be accounted for in an approximate way by

adding relaxation terms with appropriate coefficients to the equation of motion of the atomic density

matrix.
7In calculating the spatial evolution of the probe and signal fields, the influence of the probe and signal fields on the

coherent population trapping was neglected. Also, the spatial evolution of the dark state was ignored as it was found to
change little over the course of propagation.
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Collisions also play a major role in vapor physics, producing velocity changes, level shifts, and

relaxation of both optical and Raman (spin) coherences. While collisional relaxation of the ground

states is negligible for the alkali and inert gas densities typical of my experiments, collisions strongly

affect excited states. The collisional effect most relevant to coherent population trapping is pressure

broadening of the optical line, which results in a reduced trapping rate.

The experimentalist must also take care to control the stability and uniformity of the optical

and magnetic fields. Fluctuations in the relative phase or frequency of the control fields effec-

tively broaden the Raman line, reducing the maximum coherence that can be produced. Fluctuating

or spatially varying magnetic fields can have a similar effect, although a strong longitudinal field

can help isolate Raman resonances with different magnetic numbers. It is very important that the

control fields have the same spatial profiles, particularly that they have the same transverse phase

dependence; otherwise, Raman coherences will rapidly decay in the manner of grating washout.

Wave mixing and saturation complicate attempts at coherent preparation in that the control fields

may attenuate at different rates and new frequency components may be generated which directly

interact with the dark states and remove or transfer power between the control fields. If the vapor is

optically thick, the state in which the vapor is prepared may vary with propagation distance.

Coherent preparation of a vapor under realistic conditions was studied with several calculations.

The calculations predict that nearly half the atoms in the illumination region can be prepared with

maximum hyperfine coherence using 10-milliwatt, collimated control fields and a few torr of buffer

gas. This produces a significant but not overwhelming degree of electromagnetically induced trans-

parency (reduction of the absorption by a factor of 7). While the coherence for Raman scattering

through the D2 states is maximal, more states effectively participate in absorption than in Raman

scattering, causing Raman scattering to be dominated by absorption when all fields are tuned to line

center. In a vapor which is on the order of eight (resonant) absorption lengths, a maximum con-

version efficiency of 4% is predicted. Ultimately, the feasibility of coherently preparing a sodium

vapor in a useful way seems to be limited more by the structure of sodium itself than complications

arising from vapor physics.
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Chapter 7

Experimental Studies of Coherence in

Sodium Vapor

This chapter details my experimental studies of ground state coherence in sodium vapor. The first

section describes the equipment and optical layout used to perform all the experimental studies.

Section 7.2 investigates relaxation, which competes with optical pumping and limits the degree of

coherence that can be obtained. In §7.3, the effect of coherence on the optical properties of the vapor

is examined. Finally, the use of coherence to perform signal frequency conversion is demonstrated in

§7.4. Broadly speaking, the experimental studies show that coherent population trapping in sodium

vapor results in distinctive and potentially useful coherent optical effects. In particular, hyperfine

coherence was used to transfer amplitude and phase signals from one wavelength to another with

excellent fidelity. Nevertheless, the signatures of coherence were smaller than expected, indicating

that attempts at coherent preparation were only partially successful.

7.1 The Experimental Setup

Fig. 7.1 shows the setup used to create and characterize ground state coherence in sodium vapor.

The primary equipment consisted of: two Coherent 699 ring dye lasers, each able to produce several

hundred mW of narrow band (∼ 10 MHz) radiation; a Burleigh 4500 wavemeter having a precision
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of 10−4 nm (100 MHz) and an accuracy of 10−3 nm (1 GHz); a Brimrose acousto-optic modulator

with a computer-tunable frequency between 1.5 and 2.0 GHz; several Isomet acousto-optic mod-

ulators with center frequencies of 80 MHz and bandwidths of 15 MHz; a few silicon detectors; a

balanced detector with saturation intensity of 2 mW and bandwidth of 600 MHz; a photomulti-

plier tube (PMT); a 300 MHz digital oscilloscope; a 1.8 GHz spectrum analyzer; and an 8 cm long,

stainless-steel sodium cell built by myself (Fig. 7.2). The sodium vapor was produced by heating

approximately 1 g of bulk sodium to a temperature between 150 ◦C and 200 ◦C depending on the

desired number density. The heating was accomplished using several loops of fiberglass heating

tape. The temperature was monitored by several type-E thermocouple wires placed in direct contact

with the cell at various locations. The entire cell was surrounded with fiberglass insulation. A metal

valve connected the cell to a vacuum system which allowed the cell to be evacuated as needed but

also to be filled with various buffer gases. The vacuum system regularly reached pressures of 10−6

torr. The ends of the cell were fitted with sapphire windows, chosen because of their resistance to

corrosion1. The c-axis of the sapphire was in the plane of the window. The windows were carefully

oriented such that the crystal axes were aligned with the polarizations of the fields, thereby mini-

mizing birefringent effects. The cell itself was surrounded by a cylinder of high permeability metal

to minimize stray magnetic fields and to align any residual fields along the axis of the cell (the z

axis). A pair of Helmholtz coils placed near the ends of the mu-metal casing were sometimes used

to produce a longitudinal magnetic field within the cell.

Dye laser #1 was used to create quantum coherence between the F = 1 and F = 2 hyperfine

levels of the 3S1/2 level. It supplied two control fields, linearly and orthogonally polarized, nomi-

nally tuned to the D1 line (3S1/2 → 3P1/2, 589.8 nm), but differing in frequency by the hyperfine

splitting of the 3S1/2 level (1772 MHZ). The light first passed through one of the acousto-optic

modulators (MOD1) which allowed the control fields to be intensity modulated. Approximately 1/3

of the light was double-passed2 through a second Isomet module (MOD2) whose frequency could

1Due to the highly reactive nature of sodium, ordinary glass will darken after a few days of exposure to a sodium
vapor.

2The reflective double pass geometry allowed the frequency of the beam to be shifted without changing its direction.
In the single pass geometry, the dependance of spatial mode on RF frequency resulted in unacceptably large variation in
the amount of power coupled into the fiber.
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(a) (b)

(c) (d)

Figure 7.2: The experimental apparatus. (a) Lasers and modulators. (b) The vacuum system. (c)
Detection. (d) The sodium cell. (Yes, those are soda cans. Cut in half, they make good non-
magnetic, non-flammable end casings.)
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be controlled by a voltage from a function generator. MOD2 provided a total shift of 160 + δ MHz,

where |δ| � 4 MHz. The remaining 2/3 of the light passed through the Brimrose modulator (MOD3)

which provided a fixed frequency shift of −1612 MHz. These two fields were combined at a polar-

izing beamsplitter and coupled (with a typical efficiency of 45%) into a single-mode, polarization-

maintaining optical fiber. The light exiting the fiber was collimated (at a diameter of 2 mm) by a 5×
objective and directed into the sodium cell. The fiber functioned as a spatial filter which not only

produced a smooth Gaussian input to the cell, but (more importantly) ensured that the control fields

had identical spatial modes.

Dye laser #2 provided both a probe beam to scatter off the hyperfine coherence and a reference

for heterodyne detection of the scattered field. The probe component was passed through a fourth

modulator (MOD4) which provided either amplitude or frequency modulation of the probe, depend-

ing on the experiment. This laser was tuned to the D2 line (3S1/2 → 3P3/2, 589.2 nm) so that the

probe interacted with the 3S1/2 coherence but was spectrally distinguishable from the control fields.

The light exiting the cell was passed through another polarizing beamsplitter, which separated

the probe and one control field from the signal and other control field. A λ/2 plate prior to the

beamsplitter allowed one to choose which pair of fields was sent to which detector. The fields

transmitted by the beamsplitter were separated by a reflective diffraction grating with a ruling of

2400 mm−1. In the hyperfine relaxation experiments, the D2 light was detected directly with the

PMT; in the absorption/transparency experiments, the D1 light was detected directly by silicon

detectors; in the signal conversion experiments, the D2 light was heterodyne detected with the

balanced mixer.

The output of each dye laser was usually between 200 and 300 mW. The power (measured

just prior to the cell input window) of each control field was typically 10 mW, corresponding to an

average intensity of 80 mW/cm2. Accounting for the 7% reflection loss of the cell window, this

intensity corresponds to a nominal Rabi frequency of 24 MHz in the vapor. The power of the probe

field was typically 1 mW.
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7.2 Coherence Relaxation Studies

As discussed in previous chapters, the rate of decay of the ground state coherence is a critical ex-

perimental parameter. The more rapid the decoherence, the less coherence can be generated and

the weaker the associated optical effects. To first approximation, the effective decoherence rate

for the vapor is just the linewidth of the Raman resonance. However, the relationship between

linewidth (a frequency) and decoherence (a rate) is complicated by power broadening, inhomoge-

neous broadening, and the intrinsic nonlinearity of the system [cf. eqn. (3.19)]. A direct measure of

the decoherence rate can be obtained by using a weak probe to monitor, as a function of time, the

decay of the coherence after the driving fields are turned off. This free decay signal has very little

background, is independent of the control field power, and includes the effects of inhomogeneous

broadening (due to Doppler shifts or stray magnetic fields) in the manner relevant to intended uses

of the coherence.

Relaxation of both the hyperfine population and hyperfine coherence in sodium vapor was stud-

ied as a function of the partial pressure of helium in the cell. To measure the population relaxation,

the probe field was tuned to the 3S1/2, F = 2 ↔ 3P3/2 transition, the x polarized control field

was tuned to the 3S1/2, F = 2 ↔ 3P1/2 transition, and the y polarized control field was blocked

(Fig. 7.3a). The control field was chopped on and off using MOD1 with a period ∼ 40 ms. When

the control field was on, the population would be rapidly optically pumped out of the F = 2 level

into the F = 1 level, causing the probe absorption to decrease. When the control field was off, the

population would slowly relax back to the F = 2 level, causing the absorption to “charge up” to

its thermal equilibrium value (Fig. 7.3b). To measure the coherence relaxation, the y polarized field

was unblocked. When the control fields were on, the hyperfine coherence would develop and lead

to coherent Raman scattering of the probe field (Fig. 7.4a). When the control fields were off, the

coherence would decay, leading to a similar decay of the signal (scattered) power (Fig. 7.4b).

In principle, only one trace would be needed per rate constant to be determined. In practice,

three traces were taken for most data points. Because of imperfect separation of the probe and

control fields at the output, and because the control fields were generally much stronger than the

transmitted probe or signal fields, each trace would contain a non-negligible contribution from the
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Figure 7.3: The scheme for measuring the ground hyperfine population relaxation rate ΓG. The
transmittance of the probe is monitored after the control field is turned off and the population relaxes
back to the F = 2 hyperfine level.
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Figure 7.4: The scheme for measuring the ground hyperfine decoherence rate γG. The strength
of the CRS signal is monitored when the control fields are turned off and the ground hyperfine
coherence they created decays away.
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chopped control field(s). To determine this contribution, a first trace (a background) was taken with

the probe field absent. A second trace was then taken with the probe beam. At helium pressures

above about 1 torr, the optical pumping produced by the probe itself made a noticeable contribution

to the measured decay constant. In these cases, a third trace was taken with half the probe power so

that the zero-power rate could be extrapolated.

It should also be noted that a DC magnetic field in the z direction was applied to the cell for

these measurements. As discussed in §5.4, the D1 Λ system possesses a number of dim states

which involve coherences between different combinations of ground states. Residual magnetic

fields which perturb the Zeeman degeneracy can cause these coherences to have slightly different

Raman transition frequencies. In such cases the coherences will dephase as they decay, resulting in a

more rapid decay of the net hyperfine coherence and a broadening of the Raman feature. However, if

a “strong” magnetic field is applied, the Zeeman degeneracy is lifted, and only the m = 0 dark state

[eqn. 5.23] has its Raman resonance at δ = 0. The contributions to the net hyperfine coherence from

the other dim states become smaller (because they are off-resonant) and spectrally distinguishable

from that of the desired dark state. Experimentally, it was found that the Raman feature at δ = 0

narrowed slightly and that the hyperfine coherence decayed a little less quickly when the magnetic

field was applied.

The population in the F = 2 hyperfine level can be written as ρ22 = ρeqb
22 + ∆ρ22fpop(t),

where fpop(t) (0 ≤ fpop(t) ≤ 1) describes the relaxation after the control field is turned off. As the

absorption seen by the probe is proportional to ρ22, the transmittance of the probe has the form

Tprobe = exp[−Aeqb − ∆Afpop(t)]. (7.1)

The primary mechanism for population relaxation is believed to be exodus of atoms from the beam

region; spin-changing cross sections for the 3S1/2 states are too small to have a noticeable effect (see

§6.2). As discussed in §6.1.1, diffusion leads to relaxation with a characteristic curve (1 + Γt)−1.

Fig. 7.5a shows a typical population relaxation curve − lnTprobe together with the best fit to a



CHAPTER 7 107

function of the form Aeqb + ∆Afpop(t), where

fpop(t) =




1 t ≤ t0
1

1 + Γ(t − t0)
t ≥ t0

. (7.2)

The quantities Aeqb, ∆A, t0, and Γ are the free parameters of the fit. The fact that the data is fit well

with a function of this form confirms that the population relaxation is indeed due to diffusion. As

expected, the relaxation rate Γ decreases with increasing density of buffer gas.

The average hyperfine coherence of the vapor ρ21 can be written as ρ21 = ρmax
21 fcoh(t), where

fcoh(t) describes the decay of coherence after the control fields are turned off. In the weak scattering

regime, the signal field is proportional to
∫ L
0 ρ21Eprobedz. Hence the power Psignal of the generated

signal field is proportional to |fcoh(t)|2. Fig. 7.5b shows a typical experimental trace of
√

Psignal

together with the best fitting function of the form ρmax
21 fcoh(t) where

fcoh(t) =




1 t ≤ t0
exp[−γdeph(t − t0)]

1 + Γ(t − t0)
[(1 − X) + X cos 2πνL(t − t0)] t ≥ t0

. (7.3)

The motivation for (7.3) is as follows: Firstly, the diffusion of coherently prepared atoms out of the

beam causes the average coherence to fall off as the fraction of remaining atoms, i.e. as [1 + Γ(t −
t0)]−1. Secondly, unspecified mechanisms (e.g. collisions) can cause the coherence of any single

atom to decay as exp[−γdeph(t − t0)]. Finally, a fraction X of the total coherence is due to the

m = 1 and m = −1 dark states, whose Raman frequencies differ from that of the m = 0 dark state

by the Larmor frequency νL. The value of νL can be obtained by measuring the frequency separation

of the Zeeman-split Raman features in the spectral domain. The value of Γ can be obtained from

analysis of the population relaxation. This leaves ρmax
21 , t0, and γdeph as the free parameters of the

fit.

By differentiating (7.2) and (7.3) we find that ḟpop(t0) = −Γfpop(t0) and ḟcoh(t0) = −(Γ +

γdeph)fcoh(t0). That is, the effective decay constants for the hyperfine population and coherence are

ΓG = Γ and γG = Γ+γdeph. The dependence of ΓG and γG on helium pressure is shown in Fig. 7.6.
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Figure 7.5: Typical data and fits for relaxation of hyperfine population (a) and hyperfine coherence
(b).

With no buffer gas (not shown), ΓG and γG are both about 0.1 MHz, corresponding to the ballistic

transit time of about 1.6 µs. As expected, both of the decay rates decrease as the amount of buffer

gas increases. At high pressures, decoherence rates as small as several hundred Hz are obtained.

Surprisingly, the decoherence rate is consistently 5-10 times larger than the population relaxation

rate. Both datasets show a linear trend with a slope of approximately −1, which is the expected

pressure dependence of a process governed by diffusion. At high pressures the slope appears to

become slightly smaller. This is most likely a manifestation of pressure broadening of the ground

states. But whatever the mechanisms of relaxation are, it is clear that the addition of buffer gas

can dramatically reduce the hyperfine decoherence rate and lead to millisecond lifetimes for dark

states. Of itself, this should greatly improve the ability to coherently trap population. However,

as discussed in §6.2, the decrease in the ground state decoherence rate with pressure is somewhat

compensated by an increase in the optical decoherence rate, so that the ability to saturate the Raman

transition does not increase as much as one would like. With a collisional broadening coefficient of

10 MHz/torr, the Raman saturation parameter peaks at a few torr (Fig. 7.7). This result suggests

that adding buffer gas to increase the amount of hyperfine coherence is of limited usefulness.
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Figure 7.6: A buffer gas can greatly increase the time an atom spends interacting with the control
fields, thereby decreasing the ground state relaxation rates.
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Figure 7.7: A plot showing how the nominal Raman saturation parameter (Ω2
x + Ω2

y)/(4γGγE),
which indicates the ability to trap ground state population, is affected by the simultaneous narrow-
ing of the Raman line and broadening of the optical line in the presence of buffer gas. For our
experimental geometry, a pressure of about 3 torr is optimal. Note, the actual degree of saturation
in sodium is much less than the nominal saturation parameter (see Fig. 5.7 and the discussion on
page 65). The values indicated by dots were computed using the measured values of γG and taking
Ωx = Ωy = 25 MHz, γE = 5 MHz +10PHe. The curve is an interpolation to guide the eye.
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7.3 Coherence-Induced Transparency, Absorption, and Raman Scat-

tering

A number of effects resulting from coherent preparation were observed. To provide some context

for these results, the single field absorption spectrum of “pure” sodium vapor at different intensity

regimes is shown in Fig. 7.8. At very weak intensities, two broad transmission dips (absorption

peaks) are discernable, corresponding to the excitation of the F = 1 and F = 2 hyperfine levels to

the 3P1/2 manifold. The weak field transmittance is accurately given by

T = exp
(
−2π

λ
L Im χ

)
(7.4)

where

Im χ =0.076 · Nλ3

×
[

1
48

g(∆) +
5
48

g(∆ − 189) +
5
48

g(∆ + 1772) +
5
48

g(∆ + 1772 − 189)
]

, (7.5)

g(∆) =
γE

∆rms

√
π

2
exp
(
−1

2
∆2

∆2
rms

)
(7.6)

and the parameters are: cell length L = 8 cm, wavelength λ = 590 nm, atom density N = 1.4 ×
1011 cm−3, excited state decoherence rate γE = 5 MHz, and Doppler width ∆rms = 662 MHz.

(The number density is in good agreement with the value 1.7 × 1011 cm−3 which is based on a

measurement of the cell temperature.) The factors 1
48 and 5

48 are the effective strengths of the

transitions between the various D1 hyperfine levels (see Table A.1). At higher intensities, the two

transmission dips merge into a single dip approximately halfway between the F = 1 and F = 2

resonances. This effect is a manifestation of (incoherent) optical pumping between the ground

hyperfine levels: at either resonance the resonant ground state is strongly depopulated, so that the

absorption is not very strong; but between the two resonances, there is no net optical pumping and

the absorption is maximum, in spite of the fact that the field is significantly detuned from both

resonances.

With two fields, I observed signatures of hyperfine coherence (Fig. 7.9). Each trace is the



CHAPTER 7 111

 4000  3000  2000  1000 0 1000 2000
0

0.2

0.4

0.6

0.8

1

single-field detuning ∆ [MHz]

tr
a
n
s
m

it
ta

n
c
e

33 mW/cm2

0.5 mW/cm2

Figure 7.8: The transmittance of a single field of various intensities through an 8 cm-long sodium
vapor. In units of mW/cm2, the intensities are 0.5, 1.5, 4, 6, 11, 17, and 33. The dashed line shows
the theoretical transmittance assuming a number density of 1.4 × 1011 cm−3.

transmittance of one of the control fields. To obtain this data, the frequency of dye laser #1 (which

supplied both control fields) was scanned slowly (≈ 3 Hz) across the Doppler-broadened D1 line

(a range of 10 GHz). Simultaneously, the frequency of MOD2 was rapidly3 (≈ 60 Hz) dithered

over a range of about 10 MHz. Hence the beat note of the fields was swept across the Raman

resonance many times at different places within the Doppler profile. Each narrow feature in Fig. 7.9

is associated with the creation of coherence between of the F = 1 and F = 2 hyperfine levels.

Near the center of the D1 line, both fields show increased transmittance (reduction of absorp-

tion) at the Raman resonance, which is the signature of coherent population trapping. In the wings, a

surprisingly different behavior occurs: one field apparently experiences coherently induced absorp-

tion while the other experiences coherently induced transparency and/or gain. (This behavior will

be explained at the end of this section.). The data of Fig. 7.9 were taken with a small background

pressure (∼ 0.5 torr) of helium gas. Similar experiments were performed with varying pressures

of helium, nitrogen, or argon. It was found that the coherently induced transparency features were

not increased significantly by adding any amount of any kind of buffer gas, and that in fact too

3Care must be taken not to scan too rapidly, lest the Raman feature be broadened. As a rule-of-thumb, to measure a
spectral feature of bandwidth ∆ν Hz, the sweep rate (in Hz /s) should be well below ∆ν2/2π.
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Figure 7.9: The two-field spectrum of the sodium D1 line, separated by polarization component.
While the optical detuning ∆ is swept slowly, the Raman detuning δ is rapidly dithered. Sweeping
∆ reveals the Doppler-broadened structure of the D1 line. Scanning δ reveals the effect of hyperfine
coherence each time the beat note of the fields equals the Raman frequency.

much buffer gas diminished coherent effects (Fig. 7.10; similar behavior was observed with Ar and

N2). It is my belief that the increase in the transit time was counteracted by the decrease in the

optical pumping rates of the fields due to pressure broadening, so that addition of buffer gas did not

significantly increase the ratio of pumping rate to relaxation rate.

The transparency feature and Raman scattering peak shown in Fig. 7.11a,b are typical. In these

plots, the control fields were tuned to the center of the D1 line and the probe field was tuned to max-

imize the scattered signal. No magnetic field was applied. Both features have triangular lineshapes

and are of sub-natural linewidth. When a longitudinal magnetic field was applied, the transparency

feature was observed to split into three features (Fig. 7.11c; compare to Fig. 6.5). The Raman

scattering spectrum also contained three features, appearing very similar to the three transparency

features.

In the end, the signatures of coherent preparation (and by inference the amount of hyperfine

coherence) were never dramatically large. In light of chapters 5 and 6 this is perhaps not too sur-
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Figure 7.10: Two-field spectra of sodium in the presence of helium at various partial pressures.
Although adding buffer gas increases the lifetime of the ground state coherence, the size of the
Raman features (and thereby the degree of hyperfine coherence) is evidently not increased.

prising; complications from the multiplicity of states and vapor physics hinder coherent population

trapping. Even so, the simulations in Chapter 6 predicted signatures of coherent preparation roughly

3-5 times larger. Radiation trapping is a good candidate for the discrepancy between simulation and

experiment, since it would contribute to the ground state relaxation rate during coherent prepara-

tion but would not contribute to the measured relaxation rate used for the simulations, which was

obtained with the control fields turned off. It is also possible that unidentified factors, for example

vapor impurities, were in some part responsible.

Apart from mode matching (which was ensured by the use of the optical fiber), the intensity of

the control fields was the controllable parameter which had the most impact on the strength of the

coherent effects. Sometimes it was observed that applying a longitudinal magnetic field of several

Gauss would slightly heighten and narrow the central (δ = 0) transparency and Raman scattering

features, suggesting the slightly deleterious presence of stray magnetic fields. The strongest coher-

ent effects were observed with optical intensities � 80 mW / cm2 (Ωx, Ωy � 25 MHz) and with

buffer gas pressures � 5 torr. Under such conditions, the absorption coefficient of the vapor would
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Figure 7.11: Typical data showing optical features which result from ground state coherence. (a)
Electromagnetically induced transparency at the Raman resonance. (b) Coherently induced Raman
scattering. (c) EIT in the presence of a DC longitudinal magnetic field. The data were taken on
different days, under different conditions, but in all three cases the control fields were tuned to the
center of the D1 line.
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(a) (b) (c)

Figure 7.12: Coherently induced wave mixing between the control fields. On the red or blue side
of the D1 line (a,c) wave mixing transfers power from one polarization to the other. At the center
of the line (b), both processes occur. However, the evolution is conservative, and there is no change
in the total power in either polarization component. In all three regions, new frequency components
are produced.

be reduced at Raman resonance by an estimated 30-35% (based on a typical change in transmit-

tance from 12% to 27% and the assumption of exponential attenuation), while the Raman scattering

efficiency would be roughly 0.5% (resulting in a few µW of scattered signal).

I now return to the subject of the unexpected absorption and gain features in the wings of the

D1 line. Upon frequency resolving the transmitted fields, it was found that in each wing, one of

the polarization components contained not only the transmitted control field, but a new frequency

component 2 × 1772 MHz away from the control field. This frequency component was present

only when the control fields were tuned to the Raman resonance. This observation indicates the

presence of four-wave mixing with the control fields. Indeed, the features in the wings of Fig. 7.9

can be understood by the two FWM processes illustrated in Fig. 7.12a,c. On the red side of the D1

line, the higher frequency control field (Ω1y) becomes resonant with the lower frequency transition

(F = 2 to 3P1/2), Fig. 7.12a. At the Raman resonance, coherent population trapping creates a small

amount of hyperfine coherence (small because the control fields are far detuned). This coherence

induces Stokes scattering of the Ω1y field into the x polarization. Hence, power is transferred from

the y polarization to the x polarization. On the blue side of the line, the situation is reversed (Fig.

7.12c): the Ω2x field becomes resonant with the F = 1 to 3P1/2 transition, and coherently induced

anti-Stokes scattering transfers power from the x polarization to the y polarization.
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One might expect that similar FWM processes also occur near the center of the D1 line (Fig.

7.12b), and that these processes might interfere with EIT. Indeed, frequency-resolved detection

revealed that new frequency components are also generated in this region of the D1 line. However,

the generated fields are significantly weaker than the control fields. Analysis of this process in a

3-state system indicates that the characteristic length for generation of the new field components is

larger than the length for residual absorption of the control fields by the factor (ν2−ν1)/[γE(1+s)].

Numerical studies confirm that under realistic conditions, the generated field components remain

very small. Furthermore, it can be shown that the mixing process is conservative; generation of the

new fields does not diminish the total power in either polarization. Thus FWM does not affect EIT

features such as those found in the spectra of Fig. 7.9.

7.4 Frequency Conversion of an Optical Signal Using Hyperfine Co-

herence

Although the generation of hyperfine coherence and the optical effects it produces are interesting

topics for academic study, the scientist is often asked by friends, relatives, and funding agencies,

What is it good for? As mentioned previously, a material coherence can act as an oscillator which

mixes with an optical signal, shifting it up or down in frequency. The usefulness of this approach

depends on the fidelity, bandwidth, efficiency of the conversion. In principle the fidelity is excellent,

since the scattered field is directly proportional to the input field; the efficiency is high, since the

typical conversion length can be as short as an absorption length (see §3.3.1); and the bandwidth is

large, being (in the case of resonant scattering) the width of the inhomogeneously-broadened line,

which is ∼ 1 GHz in sodium. Although the frequency shift obtained with sodium is not large, the

principle applies just as well to systems with ground (or metastable) states that have much larger

frequency separations which cannot be obtained using RF technologies.

To study frequency conversion of a signal in sodium, an amplitude modulated probe beam was

scattered off the coherence created by two CW control fields (Fig. 7.1). MOD1 was set to provide

constant output (no intensity modulation), and the frequency of MOD2 was adjusted to bring the
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control fields into resonance with the Raman transition. The light from dye laser #2 was down-

shifted by 80 MHz and amplitude modulated with a 4 MHz square wave by MOD4, forming a

probe field with a time-varying envelope Ep(t). The probe field passed through MOD3, where it

was downshifted by 1612 MHz together with the horizontally polarized control field. Just before

the cell, the probe power was 1.3 mW. Inside the cell, the probe field scattered off the hyperfine co-

herence created by the control fields, generating a vertically polarized “signal” field with envelope

Es(t) at a carrier frequency 1772 MHz above that of the probe. Thus the frequency of the signal

field was −80 − 1612 + 1772 = 80 MHz higher than dye laser #2. I found that the power of the

signal reached a maximum of about 8 µW when dye laser #1 and dye laser #2 were tuned to the

centers of their Doppler-broadened lines (D1 and D2 respectively). The signal field was angularly

separated from the remnant of the vertically polarized control field by reflecting the beam off the

grating. Immediately following the grating was a lens of focal length 1000 mm. At the back focal

plane of the lens, the control and signal fields were a few hundred microns wide and separated by

about 3 mm. A 750 µm pinhole passed only the signal field. The signal field was combined with

a local oscillator field ELO from dye laser #2; the power of the local oscillator was 1 mm. The

intensity of the combined fields,

I =
∣∣∣ELO + iEs(t)e−2πi(80 MHz)t

∣∣∣2 (7.7)

= |ELO|2 + |Es(t)|2 + iE∗
LOEs(t)e−2πi(80 MHz)t + c.c. (7.8)

was measured with the balanced detectors and the beat note was monitored on a digital oscilloscope.

Since ELO was constant (to the extent that dye laser #2 was stable), the beat note was proportional

to Es(t). By numerically isolating the positive-frequency portion of the beat note and downshifting

it by 80 MHz, the complex amplitude Es(t) of the scattered field was obtained.

To compare Es(t) to the input probe field Ep(t), a second measurement was made. For this

measurement, the control fields were blocked and the unshifted component of the probe field from

MOD3 was coupled into the fiber. Dye laser #2 was tuned well outside the D2 line to ensure that

the probe field did not interact with the vapor. The half-wave plate after the vapor cell was rotated
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so that the horizontally polarized probe and control fields were passed to the grating. The intensity

at the balanced detector was then

I =
∣∣∣ELO + iEp(t)e2πi(80 MHz)t

∣∣∣2 (7.9)

= |ELO|2 + |Ep(t)|2 + iE∗
LOEp(t)e2πi(80 MHz)t + c.c. (7.10)

To obtain Ep(t), the negative-frequency portion of the beat note was numerically isolated and up-

shifted by 80 MHz.

Fig. 7.13a shows a portion of the traces Re Ep(t) and Re Es(t). The traces have been normalized

and time-shifted to coincide. Clearly, the signal field envelope Es(t) is identical to the input field

envelope Ep(t). The fidelity of the conversion is |F| = 0.99 where

F =

∫
E∗

p(t)Es(t) dt√∫ |Ep(t)|2 dt
√∫ |Es(t)|2 dt

. (7.11)

The normalized spectral densities |Ep(ν)| and |Es(ν)| are shown in Fig. 7.13b, where

Es,p(ν) ≡ 1√
2π

∫
Es,p(t) exp(2πiνt) dt. (7.12)

Again, the faithfulness of the conversion process is evident as the two spectra are nearly identical.

A slightly more informative measure of the faithfulness of the scattering process is the complex

transfer function

T (ν) ≡
Es(ν)/

√∫ |Es(t)|2 dt

Ep(ν)/
√∫ |Ep(t)|2 dt

. (7.13)

Perfect reproduction of the signal occurs if T (ν) = 1. Fig. 7.13c shows the magnitude and phase of

T (ν). Within experimental error, the transfer function describes a flat, uniform response up to the

highest measurable frequency components in the signal. As was predicted in §3.3.2, the bandwidth

of the scattering process is not limited to the homogeneous line width (10 MHz).

To demonstrate that a phase-encoded signal can also be converted using coherent scattering,

MOD4 was changed from an amplitude modulator to a frequency (or phase) modulator with a
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Figure 7.13: Frequency conversion of an amplitude-modulated optical signal using coherent Raman
scattering. (a) The temporal amplitudes of the input and output fields. (b) The spectral amplitudes of
the input and output fields. (c) The magnitude and phase of the normalized transfer function (eval-
uated at locations of spectral peaks); a value of unity at all frequencies means perfect reproduction
of the input field. For this particular signal, the conversion fidelity was 99%.
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Figure 7.14: Frequency conversion of a phase (frequency) modulated optical signal using coher-
ent Raman scattering. (a) The temporal phases of the input and output fields. (b) The spectral
amplitudes of the input and output fields. The conversion fidelity for this signal was 99.9%.

period of about 0.5 µs. Again, two measurements were performed, one to obtain Es(t) and one to

obtain Ep(t). The temporal phases and spectral densities of the probe and signal field envelopes are

shown in Fig. 7.14. Once again, the scattered field is essentially identical to the input field. In this

experiment, the fidelity was 0.999.
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7.5 Summary

The generation of quantum coherence in a sodium vapor was demonstrated in a variety of experi-

ments. Coherence between the 3S1/2 hyperfine levels was generated when two cross-linearly polar-

ized control fields tuned to the D1 line were applied to the vapor and the beat note of the fields was

within a few hundred kHz of the hyperfine level separation (1772 MHz). As a result of coherent

population trapping, the absorption of the control fields was reduced by 30-35% and a probe field

tuned to the D1 line was Raman scattered with 0.5% efficiency. It was also found that coherent

preparation induces four-wave mixing processes involving the control fields, resulting in electro-

magnetically induced gain and absorption features in the wings of the D1 line. Arguments suggest

that similar FWM processes do not significantly influence the coherent preparation of the vapor at

line center.

The effects of introducing an inert buffer gas into the vapor were also investigated. It was found

that tens of torr of He, Ar, or N2 can significantly increase the hyperfine population and coherence

lifetimes (milliseconds or more), but nevertheless the degree of coherence does not increase. The

decrease in relaxation is compensated by a decrease in the efficacy of the control fields due to

pressure broadening of the excited states. Although both ground state relaxation rates show the

expected trend for a diffusive process, a satisfactory explanation is lacking as to why the ground

state coherence lifetime is consistently 5-10 times smaller than the population lifetime.

Finally, coherent preparation was used to demonstrate wavelength conversion of amplitude and

phase information imprinted on a weak probe field. Both AM and FM signals with multi-MHz band-

widths were Raman scattered into new frequency bands with extremely high fidelity (> 99%). The

measured transfer function for the conversion was very broad and uniform, indicating a conversion

bandwidth of at least tens of MHz.
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Chapter 8

Summary and Perspective

8.1 Summary

Coherent preparation is an approach to nonlinear optics in which multiple optical fields put a

medium into a superposition of quantum states with large coherence. The quantum coherence

leads to interference between optically induced transitions, and thereby mediates strong interac-

tions between light fields. In the process called coherent population trapping, a medium settles into

a superposition state that is completely uncoupled from the exciting fields. In this work I have ex-

plored coherent population trapping with a view toward its utility in converting optical signals from

one frequency band to another. In particular, I have performed a detailed analysis of the physics

of coherent population trapping in alkali vapors and have performed numerical and experimental

studies of optical processes which result from creating ground state hyperfine coherence in sodium.

Although a two-state system can be made to exhibit phemonena similar to those associated with

coherent population trapping, the clearest examples of coherent preparation involve at least three

states and two fields. I found that such a system can be modelled rather nicely using a geometri-

cal formalism based upon Bloch’s vector. This model brings out the major principles of coherent

population trapping, namely: (1) ground state coherence builds up to a large value at the Raman

resonance; (2) dramatic reduction of the absorption occurs in conjunction with the build-up of co-

herence; and (3) the peak coherence and transparency increase with the ratio of the optical excitation
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rate to the ground state relaxation rate. One also finds that a weak field can Raman scatter off the

ground state coherence, producing a field that carries the amplitude and phase content of the input

field, but shifted in frequency by the Raman frequency. This coherent Raman scattering can be as

efficient as linear scattering, allowing 100% of the power to be converted to the new frequency in a

few resonant absorption lengths. The scattering can also have a very large bandwidth, being equal to

the total spectral width of the excited band or inhomogeneously broadened level. Coherent Raman

scattering is also predicted to transfer (under ideal conditions) the quantum state of the probe field

to the Raman scattered field.

Analysis of coherent population trapping in many-state, few-level systems can sometimes be

aided by diagonalizing the photoexcitation operator. The ground states of the diagonalization gen-

eralize the bright and dark states which are commonly employed in discussions of 3-state systems.

In this basis, coherent population trapping can be understood as a competition between optical

pumping—out of strongly coupled (bright) states into weakly coupled (dark) states—and ground-

state relaxation. The difficulty of coherent population trapping generally increases with the number

of ground states, for several reasons which ultimately reduce to the fact that, the more states there

are, the more possibilities nature has to put the system in a state other than the one you want. Analy-

sis of the sodium D1 states reveals that two essentially independent systems exist, one for each of the

excited hyperfine levels, and that each of these systems possesses multiple dark states, only some of

which possess Raman (hyperfine) coherence. However, application of a longitudinal magnetic field

lifts the degeneracy and isolates a single dark state that is a superposition of the |F = 1, m = 0〉 and

|F = 2, m = 0〉 states. This dark state has maximal coherence and is capable of inducing coherent

Raman scattering via the D2 line with relatively high efficiency.

A wide variety of factors which can affect experimental implementations of coherent population

trapping in vapors were considered. The most important factors are Doppler shifts, transit of atoms

from the illumination region, spin relaxation due to wall collisions, and pressure broadening of the

excited states. Some influences, such as ground state relaxation due to collisions between vapor

atoms, velocity diffusion, and wave mixing, are also typically present; however, they are too weak

to have a significant effect in experiments involving only modest vapor densities. Radiation trapping
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may or may not be important, depending on the details of the experiment. In addition, successful

coherent preparation requires certain technical criteria to be met, most notably good spatial mode

overlap of the control fields, phase and frequency stability of the control fields, and elimination of

stray fields. These requirements are not overly stringent, however, and can be satisfied with reason-

able experimental effort. Simulations predict that relatively large amounts of hyperfine coherence

(involving ∼ 50% of all illuminated atoms, or 	 100% of resonant illuminated atoms, in a max-

imally coherent state) should be achievable under realistic experimental conditions. Nevertheless,

electromagnetically induced transparency and especially coherent Raman scattering are predicted to

be surprisingly less pronounced in sodium than in idealized 3-state systems. Under the conditions

believed to exist in my experiments, resonant absorption should be reduced by a factor of about 7,

while the maximum efficiency of Raman scattering with a several-cm thick vapor is limited to a

few percent. The reason for this latter situation is that more D2 hyperfine states can participate in

absorption of the probe and scattered fields than in Raman scattering.

Besides analytical studies, a number of experiments were conducted. The critical ground state

relaxation rate was measured directly as a function of the density of an inert buffer gas (helium).

Reduction of the population and coherence relaxation rates to � 1 kHz was possible with several

tens of torr of buffer gas. However, the accompanying pressure broadening of the excited state

was found to compensate for the advantage gained by increasing the ground state lifetime, such

that a density of about 3 torr was optimal for our experimental geometry. Both electromagnetically

induced transparency and coherent Raman scattering were clearly demonstrated, although to a lesser

degree than simulations predicted. The reduction in absorption at Raman resonance was inferred

to be 35% (transparency factor of 1.5) on a typical day, while the Raman scattering efficiency was

typically 0.5 to 1%. Argon and nitrogen were also tried as buffers with little difference in the results.

Finally, and most significantly, frequency conversion of optical signals using coherent Raman

scattering was demonstrated. Both amplitude- and frequency-(phase-) modulated signals with band-

widths well in excess of 10 MHz were transferred from an input probe beam to a Raman scattered

beam with excellent (> 99%) fidelity, demonstrating the potential of this technique.

Several issues remain unresolved. The first is the fact that the ground state decoherence rate is
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5-10 times larger than the population relaxation rate over several orders of magnitude of buffer gas

pressure. No mechanism which can explain this feature has come to mind. The second unresolved

issue is the discrepancy between the relatively pronounced coherent effects predicted by simulation

and the underwhelming effects seen in the laboratory. Roughly speaking, simulations predicted

coherent effects 4-5 times stronger than what was observed. The most obvious explanation for this

discrepancy is a ground state relaxation mechanism not included in the model. While this argument

might seem to be irrelevant in light of the fact that experimentally measured relaxation rates were

used for the simulations, one could argue that the measured rates are not entirely appropriate for

the simulations. For example, the ground state relaxation rates were measured “in the dark” and

would not include relaxation caused by radiation trapping, which would only occur during actual

coherent prepration. Excited state relaxation was modelled using rates reported in the literature,

which were assumed (but not verified) to be appropriate for our own vapor. It is possible that

impurities significantly altered the (single-field) optical properties of the vapor when buffer gas was

added to the system, as the vacuum system I used is now understood to be not of high quality.

One could also argue that relaxation was modelled in too simple a manner—that a few exponential

decay parameters do not suffice to characterize the complex spatio-temporal aspects of diffusion

and collisional relaxation. Although this is a fair point, I doubt it could explain a factor of 4-5

discrepency. I would be more inclined to believe that the relative phase modulation of the control

fields (which was inadvertantly imposed by the frequency shifting modulators) was a factor limiting

EIT and CRS in my experiments; although it could not have been the only factor, since the EIT and

CRS signals did not improve significantly on the one day in which the modulation was eliminated

by a reconfiguration of the apparatus. While none of these unresolved issues is critical, they are

worthy topics of future efforts in both exprimental and theoretical domains.

8.2 Perspective

The goal of this research was to study and demonstrate the feasibility of using coherent preparation

to perform frequency conversion of light while preserving the spectral and temporal structure of the

field. By this criteria the research was a clear success: a deep understanding of coherent population
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trapping was gained and high-quality frequency conversion of optical signals was demonstrated.

But it is fair to say that sodium, and perhaps even alkali vapors in general, are less than ideal for im-

plementing coherently-induced nonlinear optical processes. Certainly they are capable of providing

clear demonstrations of the desired physics. But at least sodium seems to have limited usefulness

as a functional coherent medium. While the bandwidth and fidelity of frequency conversion were

very satisfactory, the efficiency was less than one would hope, especially since electromagnetically

induced processes are supposed to have an advantage of efficiency compared to traditional nonlinear

processes.

Much of the problem lies in the structure of sodium itself. The ground hyperfine splitting is

barely larger than the Doppler width, meaning that a non-negligible fraction of atoms are nearer

to the “wrong” transition. The multiplicity of ground states makes trapping harder than in simpler

systems (such as atoms with smaller nuclear spin). The fact that sodium has a higher vapor tem-

perature than other alkalis means that ground state relaxation must be controlled by the use of a

buffer gas, which limits diffusion but also broadens the optical transitions. The critical hindrance to

efficient coherent Raman scattering through the D2 levels arises from the similarity of their energies

combined with the differences in their selection rules. If the excited levels were separated by more

than a Doppler width, it would be possible to perform coherent Raman scattering through one level

without the resonant absorption associated with the adjacent levels.

In retrospect I would choose a medium other than sodium and use different experimental tech-

nologies. 87Rb, for example, has the same D1 structure as sodium (and therefore has the same dark

state(s)), but the hyperfine levels are better separated. The transitions can be excited using diode

lasers, which are more reliable and easier to work with than ring dye lasers. Because sufficient

vapor densities can be achieved without requiring high temperatures, wall coatings may be used

to increase ground state lifetimes without producing the detrimental excited state broadening that

occurs with the use of buffer gases. In this case a professionally-made closed glass cell could be

used instead of an assembled steel cell, eliminating the need to build a high-quality vacuum system.

I would better shield the cell from stray magnetic fields and use a solenoid rather than Helmholtz

coils to produce a more uniform longitudinal magnetic field. Together, these changes should result
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in improved experimental results. And as I indicate below, there may be vapors even better than

rubidium.

Given the time, I would also like to refine the model which was the basis for all my simula-

tions. A more accurate model of collisional relaxation, which allows for different relaxation modes,

would not increase the computational costs of simulation. Furthermore, I would like to incorporate

diffusion and velocity changing collisions explicitly (i.e. to solve eqn. (6.20)) without increasing the

computational cost by two orders of magnitude. It may be possible to do this by treating velocity

diffusion perturbatively and utilizing the symmetry of the cell to isolate a small number of dominant

diffusion modes.

With more coherence, stronger transparency, and more efficient Raman scattering, one could

imagine a number of interesting experiments. To start, there are the many proposed uses of EIT

and ground state coherence mentioned in chapter 1. In §3.3 it was predicted that CRS preserves the

quantum properties of the converted light. It would be interesting to prepare a pair of polarization-

entangled beams, shift one to a different frequency using CRS, and then verify that Bell’s in-

equalities can be violated using the shifted beam. Far from being an acacemic issue, the ability

to preserve quantum entanglement in shifting from one wavelength to another could be a significant

enabling technology for distributed quantum cryptographic systems [102–105] and the “quantum

internet” [106]. A more ambitious experiment, which would require extremely large transparency,

would be to frequency convert a squeezed state [107] and show that the squeezing is preserved.

Of course, frequency conversion of even classical state information has scientific and telecom-

munication applications. While my studies in sodium clearly show the potential for coherent

population trapping to perform this task, it will not be considered seriously as a practical tech-

nique until more convenient media with much better performance are found. Lead vapor has

been used to demonstrate EIT with much greater succes than sodium [14]. I would consider us-

ing vapors for further fundamental studies of coherent prepartion; but they are still too inconve-

nient for widespread use. A number of groups have begun studying coherent population trap-

ping and EIT in solids [72, 108–110], including both doped crystals [111–113] and semiconduc-

tors [70, 79, 114–119]. The challenge of using solids is that strong interactions betweens electrons
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and neighboring atoms usually leads to rapid relaxation of quantum coherences. Clearly, there is

much opportunity for progress.

In conclusion, there are some technical challenges which remain before coherent preparation

leaves the laboratory. But it is a real phenomenon based on readily accessible physics. It is reason-

able to hope that continuing developments in material science and/or nanofabrication technologies

in the next few years will lead to media that can be easily and conveniently prepared in maximally

coherent states. And in turn, these media will form the heart of devices that perform a variety of

useful tasks, including frequency conversion of optical signals.
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Appendix A

Effective Matrix Elements for Multiplets

In the absence of strong electric or magnetic fields, the states of an atom fall into groups of states

having the same (or approximately the same) energy but different values of angular momentum. The

multiplicity of states at the same level of energy is called Zeeman structure. In many experiments

the Zeeman structure is neither evident nor of interest. In modelling such experiments one would

like to be able to ignore the Zeeman structure and talk about optical fields coupling pairs of levels

rather than pairs of states. In this chapter I show how the matrix elements of the Zeeman states

may be used to derive effective matrix elements for spontaneous and stimulated transitions between

levels. As we will see, the effective matrix elements for these two processes are not necessarily the

same.

• The effective matrix element for spontaneous emission. Consider a pair of levels E and

G. From a study of the interaction of a two-state system with the electromagnetic continuum

(§C.2.3), one finds that the rate of spontaneous emission from a state e to a lower-energy state

g is

C
∣∣µeg

∣∣2 ρee. (A.1)

where C is a constant of proportionality. The rate of decay out of e into G is
∑

g∈G C
∣∣µeg

∣∣2 ρee.
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Hence the total rate at which population moves from level E to level G is

ρ̇EE =
∑
e∈E

ρ̇ee = −
∑
e∈E
g∈G

C
∣∣µeg

∣∣2 ρee = −
∑
g∈G

C
∣∣µeg

∣∣2 ρEE (any e). (A.2)

In the last step I have used the well-known fact that
∑

g∈G

∣∣µeg

∣∣2 is the same for all Zeeman

states e within an atomic level. (This fact can be derived from the principle of isotropy.) From

this equation, we see that the effective matrix element for spontaneous emission from level E

to level G is

µ2
EG,spont ≡

∑
g∈G

∣∣µeg

∣∣2 (any e). (A.3)

The quantity

bEG =

∑
g∈G

∣∣µeg

∣∣2
∑
all g

∣∣µeg

∣∣2 =
µ2

EG,spont

µ2
(A.4)

is called the branching ratio.

• The effective matrix element for absorption. According to Fermi’s Golden Rule, the rate

of population transfer from a state g to an unpopulated state e is

C ′ ∣∣ε̂ · µeg

∣∣2 ρgg (A.5)

where ε̂ is the direction of the field and C ′ is another constant of proportionality. The total

rate of population loss out of g into E is
∑

e∈E C ′ ∣∣ε̂ · µeg

∣∣2 ρgg. Now, let us suppose that all

the states in G are equally and incoherently populated. This is not unreasonable, as excited

state decay and interaction with a thermal reservoir will both tend to distribute population

more or less evenly and incoherently among the ground states. In particular, this condition

holds under conditions of weak illumination such that excitation rate is much smaller than the
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rate of thermalization. The total rate at which population is removed from G is then

ρ̇GG =
∑
g∈G

ρ̇gg =
∑
e∈E
g∈G

C ′ ∣∣ε̂ · µeg

∣∣2 ρgg =
ρGG

Ng

∑
e∈E
g∈G

C ′ ∣∣ε̂ · µeg

∣∣2 (A.6)

where NG is the number of states in level G. Hence, the effective matrix element for excitation

from G to E is

µ2
G→E =

1
NG

∑
e∈E
g∈G

∣∣ε̂ · µeg

∣∣2 . (A.7)

• The effective matrix element for stimulated emission. The analysis above did not make

any assumptions about whether level E or G was higher. Hence, one might expect that the

matrix element for stimulated emission could be obtained simply by changing e for g and

E for G. However, the result would only be relevant if the excited states were equally and

incoherently populated, which is generally not the case. Rather, excitation from a ground state

produces a superposition of excited states which is coupled back to the ground state by the

same coefficient. (We know the coefficient is the same because the interaction Hamiltonian

must be Hermitian). Hence the effective coefficient for stimulated emission is the same as

that for absorption:

µ2
E→G = µ2

G→E . (A.8)

Tables A.1 and A.2 show the effective matrix elements for the sodium D1 and D2 hyperfine

levels, which may be calculated from the matrix elements given in Tables B.1 and B.1. The sum of

the transition strengths is 16/48 for D1 and 32/48 for D2, which is why it is sometimes said that the

strengths of the D1 and D2 lines (relative to a two-state transition) are 1/3 and 2/3, respectively.

Before concluding this appendix, a disclaimer is in order. While the effective matrix elements

derived here are useful in some situations, one should keep in mind that it is generally impossible

to summarize the interactions between all the states in a many-state, few-level system with just

a few parameters. Apart from a few specialized situations, there are no shortcuts to obtaining

quantitatively accurate results.
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branching ratio coupling strength population line strength

F ′, F bF ′F µ̌2
F ′F ρFF µ̌2

F ′F ρFF

1,1 1
6

1
18

3
8

1
48

2,1 1
2

5
18

3
8

5
48

1,2 5
6

1
6

5
8

5
48

2,2 1
2

1
6

5
8

5
48

Table A.1: The effective parameters for sodium D1 hyperfine transitions. (F denotes the ground
level, F ′ denotes the excited level.)

branching ratio coupling strength population line strength

F ′′, F bF ′′F µ̌2
F ′′F ρFF µ̌2

F ′′F ρFF

0,1 1 1
9

3
8

2
48

1,1 5
6

5
18

3
8

5
48

2,1 1
2

5
18

3
8

5
48

1,2 1
6

1
30

5
8

1
48

2,2 1
2

1
6

5
8

5
48

3,2 1 7
15

5
8

14
48

Table A.2: The effective parameters for sodium D2 hyperfine transitions. (F denotes the ground
level, F ′′ denotes the excited level.)
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Appendix B

Matrix Elements of the Electric and

Magnetic Dipole Operators

In this appendix I evaluate the matrix elements of the electric dipole operator µ̂E and the magnetic

dipole operator µ̂B . I choose as a basis the eigenstates of the total angular momentum, which in

this context includes orbital angular momentum, electronic spin, and nuclear spin. Formulas for

the matrix elements are derived in the orbital state basis, followed by a discussion of how they

are combined to yield the matrix elements for hyperfine states (eigenstates of the total angular

momentum). Finally, the matrix elements are evaluated for states of the sodium D1 and D2 lines

and listed in several tables.

B.1 Derivation of the Matrix Elements

B.1.1 The Eigenstates of Angular Momentum

If the Hamiltonian for a spinless particle is rotationally symmetric, the eigenstates of the Hamilto-

nian are also eigenstates of orbital angular momentum L. These eigenstates may be written

|n, l, ml〉 = Rnl(r)|l, ml〉, (B.1)

|l, ml〉 = Fml
l (θ) eimlφ (B.2)
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where n is the principle quantum number, l is the quantum number for L2 and ml is the quantum

number for Lz . Rnl(r) is a radial function that depends on the form of the potential. Fml
l (θ) =

Nml
l Pml

l (cos θ) where Pm
l (µ) is the (l, m) associated Legendre polynomial and Nm

l = [(2l +

1)(l − m)!/4π(l + m)!]1/2 is a normalization constant. The F functions have the property

∫ π

0
Fm

l′ (θ)Fm
l (θ) sin θ dθ =

1
2π

δll′ (B.3)

such that 〈l′, m′
l|l, ml〉 = δll′δmlm

′
l
.

For a particle with spin, one may form a set of basis states from outer products of the orbital

angular momentum states |n, l, ml〉 and spin states |s, ms〉. For an atomic electron, the nuclear spin

state |i, mi〉 is also relevant in which case the basis states have the form |n, l, ml〉|s, ms〉|i, mi〉.

B.1.2 Evaluation of µ̂E for Orbital Angular Momentum States

The electric dipole operator is µ̂E = −er where r is the position. Since r does not act on spin

states, we need only to calculate the dipole matrix elements 〈n′, l′, m′
l|r|n, l, ml〉. For readability, I

will abbreviate ml as m. In spherical coordinates,

x = r sin θ cos φ (B.4)

y = r sin θ sinφ (B.5)

z = r cos θ. (B.6)

Then

〈n, l′, m′|z|n, l, m〉 =
∫ ∞

0
R∗

n′l′(r)Rnl(r)r3 dr

×
∫ π

0
Fm′

l′ (θ)Fm
l (θ) cos θ sin θ dθ

∫ 2π

0
ei(m−m′)φ dφ (B.7)

= 2πRn′l′
nl δmm′

∫ π

0
Fm

l′ (θ)Fm
l (θ) cos θ sin θ dθ (B.8)
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where Rn′l′
nl denotes the radial component of the matrix element. The integral can be evaluated by

making use of the orthogonality and recursion relations of the Legendre polynomials. After several

lines of algebra, one obtains

〈n′, l′, m′|z|n, l, m〉 = Rn′l′
nl δmm′

(
δl′,l−1

√
(l′ + m)(l′ − m)
(2l + 1)(2l′ + 1)

+ δl′,l−1

√
(l + m)(l − m)
(2l + 1)(2l′ + 1)

)
.

(B.9)

For the transverse components it is convenient to write x = (σ++σ−)/
√

2 and y = (σ+−σ−)/
√

2i

where

σ+ ≡ 1√
2
r sin θ eiφ (B.10)

σ− ≡ 1√
2
r sin θ e−iφ. (B.11)

We have

〈n, l′, m′|σ+|n, l, m〉 = 2πRn′l′
nl δm′,m+1

∫ π

0
Fm+1

l′ (θ)Fm
l (θ) sin θ sin θ dθ. (B.12)

A little algebra yields

〈n′, l′, m′|σ+|n, l, m〉 = Rn′l′
nl ×

δm′,m+1

(
δl′,l−1

√
(l − m)(l′ − m)

2(2l + 1)(2l′ + 1)
− δl′,l+1

√
(l′ + m′)(l + m′)
2(2l + 1)(2l′ + 1)

)
. (B.13)

Now,

〈n′l′m′|σ−|nlm〉 = 〈nlm|σ†
−|n′l′m′〉∗ = 〈nlm|σ+|n′l′m′〉∗. (B.14)

Thus, we can obtain the matrix elements for σ+ from those of σ− simply by making the switches

l ↔ l′ and m ↔ m′ and conjugating the result. To express the final answer, I note that the position

vector can be written as r = σ+σ̂− + σ−σ̂+ + zẑ where σ̂± = (x̂ ± iŷ)/
√

2 are the circular unit
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vectors. The final result is therefore

〈n′, l′, m′|µ̂E |n, l, m〉 = −eRn′l′
nl ×[

δmm′

(
δl′,l+1

√
(l′ + m)(l′ − m)
(2l + 1)(2l′ + 1)

+ δl′,l−1

√
(l + m)(l − m)
(2l + 1)(2l′ + 1)

)
ẑ

+ δm′,m−1

(
δl′,l+1

√
(l′ − m′)(l − m′)
2(2l + 1)(2l′ + 1)

− δl′,l−1

√
(l + m)(l′ + m)

2(2l + 1)(2l′ + 1)

)
σ̂+

+ δm′,m+1

(
δl′,l−1

√
(l − m)(l′ − m)

2(2l + 1)(2l′ + 1)
− δl′,l+1

√
(l′ + m′)(l + m′)
2(2l + 1)(2l′ + 1)

)
σ̂−

]
. (B.15)

This expression is physically valid for |m| < l and |m′| < l′. As a computational expression, it

should be taken to vanish when these inequalities are not satisfied.

B.1.3 Evaluation of µ̂B for Orbital States and Spin States

The magnetic dipole operator has both orbital and spin contributions:

µ̂B = − e

2me
L̂ +

e

2me
geŜ+

e

2mn
gnÎ (B.16)

where me, mn are the electron and nucleon masses and ge, gn are the electron and nucleon Lande

factors (approximately −2 and 2, respectively). If the spin and orbital components do not vanish,

the contribution from the nuclear spin is negligible since mn � me. Thus

µ̂B = − e

2me
(L̂ + 2Ŝ). (B.17)

The expressions for the matrix elements have the same form for both L̂ and Ŝ operators, so it is

convenient to perform the derivation using the generic angular momentum operator Ĵ. In terms of

the circular unit vectors, Ĵ =
(
Ĵ+/

√
2
)

σ̂− +
(
Ĵ−/

√
2
)

σ̂+ + Ĵz ẑ where Ĵ± = Ĵx ± iĴy is the
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raising (lowering) operator. Using the fundamental properties of these operators, we have

〈j′, m′|Ĵ|j, m〉 = �δj′,j

[√
j(j + 1) − mm′

2
δm′,m+1σ̂−

+

√
j(j + 1) − mm′

2
δm′,m−1σ̂+ + mδm′,mẑ

]
(B.18)

and thus

〈l′, m′
l, s

′, m′
s|µ̂B|l, ml, s, ms〉 =

− e

2me
δl,l′δs,s′

[
δm′

s,ms〈l′, m′
l|L̂|l, ml〉 + 2δm′

l,ml
〈s′, m′

s|Ŝ|s, ms〉
]
. (B.19)

B.1.4 Obtaining µ̂E and µ̂B for Hyperfine States

When the particle of interest is an electron bound to a nucleus, the Hamiltonian includes the electron

spin (S) and nuclear spin (I). The uncoupled basis for the angular momentum consists of states of

the form |l, ml〉|s, ms〉|i, mi〉. (I’ll ignore the quantum number n in this section.) In many cases the

physically relevant basis is the coupled basis whose states are of the form |f, mf , l, s, i, j〉. These

states may be called “hyperfine” states since they are relevant when one resolves the hyperfine

structure of an atom. Here j is the quantum number for J2 = (L + S)2, f is the quantum number

for the total angular momentum F (F2= (L + S + I)2), and mf is the quantum number for the z

projection of F. The matrix elements between these states can be determined by expanding them in

terms of the orbital angular momentum eigenstates and summing up the relevant matrix elements.

To relate the hyperfine states to the orbital angular momentum states, I first write states of

“good” J in terms of the L and S states:

|j, mj , l, s〉 =
∑

ml,ms

C l,s
j,mj ,ml,ms

|l, ml〉|s, ms〉. (B.20)

Here C l,s
j,mj ,ml,ms

is the Clebsch-Gordon coefficient1. Then, these J states may be combined with

1I implement the Clebsch-Gordon coefficients as six-index tensor which vanishes for mj �= ml + ms.
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the I states to yield the F states:

|f, mf , l, s, i, j〉 =
∑

mi,mj

Cj,i
f,mf ,mj ,mi

|j, mj , l, s〉 (B.21)

=
∑

mi,mj

∑
ml,ms

Cj,i
f,mf ,mj ,mi

C l,s
j,mj ,ml,ms

|l, ml〉|s, ms〉|i, mi〉 (B.22)

≡
∑

ml,ms,mi

Ql,s,i,j
f,mf ,ml,ms,mi

|l, ml〉|s, ms〉|i, mi〉 (B.23)

where Ql,s,i,j
f,mf ,ml,ms,mi

≡
∑
mj

Cj,i
f,mf ,mj ,mi

C l,s
j,mj ,ml,ms

. The matrix element between different F

states is then

〈f ′, m′
f , l′, s′, i′, j′|µ̂|f, mf , l, s, i, j〉 =

∑
m′

l,m
′
s,m′

i

∑
ml,ms,mi

(
Ql′,s′,i′,j′

f ′,m′
f ,m′

l,m
′
s,m′

i

)∗
Ql,s,i,j

f,mf ,ml,ms,mi

× 〈l′, m′
l, s

′, m′
s, i

′, mi
′|µ̂|l, ml, s, ms, i, mi〉. (B.24)

For the electric dipole operator one has

〈f ′, m′
f , l′, s′, i′, j′|µ̂E |f, mf , l, s, i, j〉 =

δss′δii′
∑

m′
l,ml

[ ∑
mi,ms

(
Ql′,s,i,j′

f ′,m′
f ,m′

l,ms,mi

)∗
Ql,s,i,j

f,mf ,ml,ms,mi

]
〈l′, m′

l|µ̂E |l, ml〉 (B.25)

and for the magnetic dipole operator one has

〈f ′, m′
f , l′, s′, i′, j′|µ̂B|f, mf , l, s, i, j〉 = δll′δss′δii′

∑
m′

l,ml

∑
m′

s,ms[∑
mi

(
Ql,s,i,j′

f ′,m′
f ,m′

l,m
′
s,mi

)∗
Ql,s,i,j

f,mf ,ml,ms,mi

]
〈l, m′

l, s, m
′
s|µ̂B|l, ml, s, ms〉. (B.26)
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B.2 Computed Matrix Elements

B.2.1 Matrix Elements of the Electric Dipole Operator

The tables in this section list the relative values of the electric dipole operator µE , that is, the

elements of the normalized operator µ̌E= µE/µ. Tables B.1 and B.2 include electronic and nuclear

spin-orbit coupling and are relevant to the 3S → 3P transitions of sodium (as well as to the 5S →
5P transitions of 87Rb). Due to space limitations, the vector nature of the matrix elements has

been suppressed. However, this is no real loss as the vector component follows a simple pattern:

Within each quadrant, elements along the diagonal (m = m′) have ẑ polarization, elements above

the diagonal (m = m′ + 1) have σ̂+ polarization, and elements below the diagonal (m = m′ − 1)

have σ̂− polarization.

The elements listed in Table B.1 satisfy

∑
F ′,m′

∣∣〈F ′, m′, 1, 1
2 , 3

2 , 1
2

∣∣µ̌E

∣∣F, m, 0, 1
2 , 3

2 , 1
2

〉∣∣2 = 1 (B.27)

∑
F,m

∣∣〈F ′, m′, 1, 1
2 , 3

2 , 1
2

∣∣µ̌F

∣∣F, m, 0, 1
2 , 3

2 , 1
2

〉∣∣2 = 1. (B.28)

The branching ratios bF ′F for spontaneous emission and the effective matrix elements µ̌F ′F for are

given by the partial sums

bF ′F =
∑
m,m′

∣∣〈F ′, m′∣∣µ̌E

∣∣F, m
〉∣∣2 (B.29)

µ̌2
F ′F =

∑
m,m′

∣∣〈F ′, m′∣∣µ̌E · ε̂
∣∣F, m

〉∣∣2 (B.30)

where ε̂ is any unit vector. The values of bF ′F and µ̌F ′F for the D1 hyperfine levels are given in

Appendix A.
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Electric Dipole Matrix Elements for the Sodium D1 Line

|1,−1〉 |1, 0〉 |1, 1〉 |2,−2〉 |2,−1〉 |2, 0〉 |2, 1〉 |2, 2〉

〈1,−1|
√

1
12 −

√
1
12

√
1
2

√
1
4 −

√
1
12

〈1, 0| −
√

1
12 0 −

√
1
12

√
1
4

√
1
3 −

√
1
4

〈1, 1| −
√

1
12 −

√
1
12

√
1
12

√
1
4 −

√
1
2

〈2,−2|
√

1
2 −

√
1
3

√
1
6

〈2,−1|
√

1
4

√
1
4

√
1
6 −

√
1
12

√
1
4

〈2, 0| −
√

1
12

√
1
3

√
1
12

√
1
4 0

√
1
4

〈2, 1| −
√

1
4

√
1
4

√
1
4

√
1
12

√
1
6

〈2, 2| −
√

1
2

√
1
6

√
1
3

Table B.1: The matrix elements of the normalized electric dipole operator µ̌E , evaluated for states
in the sodium 3S1/2 and 3P1/2 levels. In this table, |F, m〉 is shorthand for

∣∣F, m, l, s, i, j
〉

=∣∣F, m, 0, 1
2 , 3

2 , 1
2

〉
and 〈F ′, m′| is short for

〈
F ′, m′, l′, s′, i′, j′

∣∣ = 〈F ′, m′, 1, 1
2 , 3

2 , 1
2

∣∣.
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Electric Dipole Matrix Elements for the Sodium D2 Line

|1,−1〉 |1, 0〉 |1, 1〉 |2,−2〉 |2,−1〉 |2, 0〉 |2, 1〉 |2, 2〉

〈0, 0| −
√

1
3 −

√
1
3

√
1
3

〈1,−1|
√

5
12 −

√
5
12 −

√
1
10 −

√
1
20

√
1
60

〈1, 0| −
√

5
12 0 −

√
5
12 −

√
1
20 −

√
1
15

√
1
20

〈1, 1| −
√

5
12 −

√
5
12 −

√
1
60 −

√
1
20

√
1
10

〈2,−2|
√

1
2

√
1
3 −

√
1
6

〈2,−1|
√

1
4

√
1
4 −

√
1
6

√
1
12 −

√
1
4

〈2, 0| −
√

1
12

√
1
3

√
1
12 −

√
1
4 0 −

√
1
4

〈2, 1| −
√

1
4

√
1
4 −

√
1
4 −

√
1
12 −

√
1
6

〈2, 2| −
√

1
2 −

√
1
6 −

√
1
3

〈3,−3| 1

〈3,−2|
√

1
3

√
2
3

〈3,−1| −
√

1
15

√
8
15

√
2
5

〈3, 0| −
√

1
5

√
3
5

√
1
5

〈3, 1| −
√

2
5

√
8
15

√
1
15

〈3, 2| −
√

2
3

√
1
3

〈3, 3| −1

Table B.2: The matrix elements of the normalized electric dipole operator µ̌E , evaluated for states
in the sodium 3S1/2 and 3P1/2 levels. In this table, |F, m〉 is shorthand for

∣∣F, m, l, s, i, j
〉

=∣∣F, m, 0, 1
2 , 3

2 , 1
2

〉
and 〈F ′, m′| is short for

〈
F ′, m′, l′, s′, i′, j′

∣∣ = 〈F ′, m′, 1, 3
2 , 3

2 , 1
2

∣∣.
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The elements listed in Table B.2 satisfy

∑
F ′,m′

∣∣〈F ′, m′, 1, 1
2 , 3

2 , 1
2

∣∣µ̌E

∣∣F, m, 0, 1
2 , 3

2 , 3
2

〉∣∣2 = 2 (B.31)

∑
F,m

∣∣〈F ′, m′, 1, 1
2 , 3

2 , 1
2

∣∣µ̌E

∣∣F, m, 0, 1
2 , 3

2 , 3
2

〉∣∣2 = 1. (B.32)

The values of bF ′F and µ̌F ′F for the D2 hyperfine levels are given in Appendix A.

B.2.2 Matrix Elements of the Magnetic Dipole Operator

Tables B.3 and B.4 list some of the matrix elements for the magnetic dipole operator µB . More

specifically, they give the matrix elements of (2me/e�)µB = −
(
L̂ + 2Ŝ

)
/� for the Zeeman

states of the sodium S1/2 and P1/2 levels. Note that the diagonal elements in these tables go as

−gF m, where gF is the Lande factor.
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Magnetic Dipole Matrix Elements for the Sodium 3S1/2 States

|1,−1〉 |1, 0〉 |1, 1〉 |2,−2〉 |2,−1〉 |2, 0〉 |2, 1〉 |2, 2〉

〈1,−1| −1
2

1
2

〈1, 0| 1
2 0 1

2 see adjoints

〈1, 1| 1
2

1
2

〈2,−2| −
√

3
2 1 −

√
1
2

〈2,−1| −
√

3
4 −

√
3
4 0 −

√
1
2

1
2 −

√
3
4

〈2, 0|
√

1
4 −1 −

√
1
4 −

√
3
4 −

√
3
4

〈2, 1|
√

3
4 −

√
3
4 −

√
3
4 −1

2 −
√

1
2

〈2, 2|
√

3
2 −

√
1
2 −1

Table B.3: The matrix elements of the operator (2me/e�)µB , evaluated for the states in the sodium
3S1/2 levels. In this table, |F, m〉 is shorthand for

∣∣F, m, l, s, i, j
〉

=
∣∣F, m, 0, 1

2 , 3
2 , 1

2

〉
and 〈F, m| is

shorthand for the adjoint state. Interaction energies can be obtained by multiplying these elements
by −e/2me = −1.4 MHz / Gauss.
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Magnetic Dipole Matrix Elements for the Sodium P1/2 States

|1,−1〉 |1, 0〉 |1, 1〉 |2,−2〉 |2,−1〉 |2, 0〉 |2, 1〉 |2, 2〉

〈1,−1| −1
6

1
6

〈1, 0| 1
6 0 1

6 see adjoints

〈1, 1| 1
6

1
6

〈2,−2| −
√

1
6

1
6 −

√
1
18

〈2,−1| −
√

1
12 −

√
1
12 −

√
1
18

1
3 −

√
1
12

〈2, 0|
√

1
36 −

√
1
9 −

√
1
36 −

√
1
12 0 −

√
1
12

〈2, 1|
√

1
12 −

√
1
12 −

√
1
12 −1

6 −
√

1
18

〈2, 2|
√

1
6 −

√
1
18 −1

3

Table B.4: The matrix elements of the operator (2me/e�)µB , evaluated for the states in the sodium
2P1/2 levels. In this table, |F, m〉 is shorthand for

∣∣F, m, l, s, i, j
〉

=
∣∣F, m, 1, 1

2 , 3
2 , 1

2

〉
and 〈F, m| is

shorthand for the adjoint state. Interaction energies can be obtained by multiplying these elements
by −e/2me = −1.4 MHz/Gauss.
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Appendix C

Relaxation in Quantum Systems

A quantum system which interacts with its environment typically evolves irreversibly and experi-

ences a dissipation of energy. This phenomenon is known variously as relaxation, decay, or damp-

ing. A familiar example of relaxation is the spontaneous decay of an atom from an excited state

to a lower state by emission of a photon. For many calculations it is sufficient to treat relaxation

phenomenologically, i.e. to “fix up” the density matrix equations by adding relaxation terms with

coefficients chosen to match observed relaxation rates. However, interaction with the environment

can also produce effects other than relaxation. Such effects include frequency shifts of transitions,

spontaneous transfer of coherence from excited states to ground states [22] and the coupling of

dipole oscillations associated with different transitions [6]. In order to make sure that all the rele-

vant phenomena are represented, and to predict the values of the relaxation coefficients, one must

explicitly treat the environment and its interaction with the system of interest. In this appendix I

give my own abbreviated derivation of the Bloch-Redfield theory of relaxation, which considers a

generic system coupled to a generic environment. By formally solving the dynamical equations

and eliminating the environment variables, an equation motion for the reduced density matrix of the

system is obtained. To illustrate the use of the theory, I conclude with a few examples involving

atoms and the electromagnetic continuum.
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C.1 Derivation of the Relaxation Terms

Suppose we have a system S coupled to a reservoir R. If the reservoir’s modes of excitation span

a wide range of frequencies, then energy will flow essentially one-way, from the system to the

reservoir. The reason for this is that once energy from the system is distributed across the many

modes of the reservoir, the modes never come back into phase with the system all at the same time

to return the energy. This is the mechanism responsible for decay of a quantum system.

Let us write the total Hamiltonian as

Ĥ = ĤS + ĤR + ĤI (C.1)

where ĤS is the Hamiltonian for our system alone, ĤR is the Hamiltonian for the reservoir alone,

and ĤI is the interaction energy which accounts for the coupling between S and R. To describe the

state of S at a given time we will use the transition/population operators Ŝjk(t), where

Ŝjk(0) ≡ | j〉〈k| (C.2)

and |j〉 is the jth eigenstate of S. [Recall that these Heisenberg operators are simply related to the

density matrix elements in the Schrodinger picture: 〈Ŝjk(t)〉 = ρkj(t)]. We will model the reservoir

as a collection of independent harmonic oscillators1. The coordinate of the µth harmonic oscillator

or “mode” is âµ + â†µ where [âµ, â†µ′ ] = δµµ′ . Then

ĤS =


∑

j

�ωjŜjj


 ÎR (C.3)

ĤR =

[∑
µ

�Ωµâ†µâµ

]
ÎS (C.4)

where ωj is the natural frequency of system eigenstate j, Ωµ is the natural frequency of mode µ,

and Î stands for the identity operator. Lowest-order coupling between S and R yields an interaction

1This model is more applicable than it would first seem. The fact is, any system will act like a harmonic oscillator (or
set of harmonic oscillators) near its equilibrium point.
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Hamiltonian of the form

ĤI = �

∑
j>k

∑
µ

(
gjk,µŜjk + g∗jk,µŜkj

)(
âµ + â†µ

)
. (C.5)

Here gjk,µ is the coupling coefficient between the k → j transition and mode µ. The normally

ordered form2 of this Hamiltonian is

ĤI = �

∑
j,k

∑
µ

gjk,µŜjkâµ + g∗jk,µâ†µŜkj . (C.6)

The sum above includes energy-conserving terms as well as non-conserving terms. The non-

conserving terms lead to counter-rotating components in the dynamical equations which contribute

little over timescales comparable to the evolution time of the system. Such terms can be effectively

removed by setting gjk,µ to zero for ωj < ωk. (If they are to be retained, then one should set

gkj,µ = g∗jk,µ.). The aim now is to eliminate the reservoir variables and obtain dynamical equations

for the Ŝjk’s alone. We will find that the presence of the interaction Hamiltonian leads to additional

terms in these equations which describe decay and frequency shifts in the states of S.

The Heisenberg equations of motion for the system operators are

d

dt
Ŝjk =

i

�

[
Ĥ, Ŝjk

]
(C.7)

=
i

�

[
ĤS , Ŝjk

]
+

i

�

[
ĤR, Ŝjk

]
+

i

�

[
ĤI , Ŝjk

]
. (C.8)

Now

[
ĤS , Ŝjk

]
= �(ωj − ωk)Ŝjk ≡ �ωjkŜjk, (C.9)[

ĤR, Ŝjk

]
= 0, (C.10)[

ĤI , Ŝjk

]
= �

∑
l

∑
µ

(
glj,µŜlk − gkl,µŜjl

)
âµ + â†µ

(
g∗jl,µŜlk − g∗lk,µŜjl

)
. (C.11)

2As the system and reservoir variables are independent, they will always commute. We are therefore free to impose
whichever ordering suits us at the start of the problem.
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Therefore

d

dt
Ŝjk = −iωkjŜjk + i

∑
l

∑
µ

[(
glj,µŜlk − gkl,µŜjl

)
âµ + â†µ

(
g∗jl,µŜlk − g∗lk,µŜjl

)]
. (C.12)

Similarly, we have for the reservoir operators

[
ĤS , âµ

]
= 0, (C.13)[

ĤR, âµ

]
= −�Ωµâµ, (C.14)[

ĤI , âµ

]
= −�

∑
j′,k′

g∗j′k′,µŜk′j′ (C.15)

which gives
d

dt
âµ = −iΩµâµ − i

∑
j′,k′

g∗j′k′,µŜk′j′ . (C.16)

This differential equation is linear in the unknowns and may be integrated formally:

âµ(t) = âµ(t0) e−iΩµ(t−t0) − i
∑
j′,k′

g∗j′k′,µ

∫ t

t0

e−iΩµ(t−t′)Ŝk′j′(t′) dt′ (C.17)

The term âµ(t0) exp [−iΩµ(t − t0)] ≡ âµ,hom(t) describes the describes free evolution of the reser-

voir from its “initial state” which may be taken to be in the infinite past. Substituting eqn. (C.17)

into eqn. (C.12) with t0 → −∞ gives

d

dt
Ŝjk = −iωkjŜjk + i

∑
l

∑
µ

[(
glj,µŜlk − gkl,µŜjl

)
âµ,hom(t) + â†µ,hom(t)

(
g∗jl,µŜlk − g∗lk,µŜjl

)]

+
∑

µ

∑
l,j′,k′

[(
glj,µŜlk − gkl,µŜjl

)
g∗j′k′,µ

∫ t

−∞
e−iΩµ(t−t′)Ŝk′j′(t′) dt′

−
∫ t

−∞
eiΩµ(t−t′)Ŝj′k′(t′) dt′ gj′k′,µ

(
g∗jl,µŜlk − g∗lk,µŜjl

)]

(C.18)

The homogeneous terms are not of interest here; in the common situation that the reservoir is ini-

tially in its ground state, the normally ordered expectation values vanish and do not affect the density
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matrix. We are left to evaluate terms of the form

damping term = Ŝwx(t)
∑

µ

gab,µg∗cd,µ

∫ t

−∞
e∓iΩµ(t−t′)Ŝyz(t′) dt′. (C.19)

To accomplish this task we invoke the premise that the reservoir is “large”. Specifically, a reservoir

is expected to be spectrally dense, broad, and smooth. “Dense” means that the mode frequency

spacing is much smaller than the reciprocal of the longest timescale of interest. “Broad” means

that the bandwidth of the modal distribution is much larger than the bandwidth of any dynamical

variable of interest. Finally, “smooth” means that the coupling coefficients are essentially constant

over the bandwidth of any Ŝjk.

Under the assumption of denseness, the discrete sum over modes may be replaced by an integral.

From here on, instead of using the index µ to number the reservoir modes, let us identify each mode

according to its frequency Ω and a parameter χ which includes all remaining degrees of freedom.

Then gab,µ is rewritten as gab(Ω, χ) and the sum over µ is replaced by
∫ ∫∞

0 D(Ω, χ) dΩ dχ where

D(Ω, χ) is the density of modes. With these replacements, eqn. (C.19) becomes

Ŝwx(t)
∫ ∫ ∞

0

∫ t

−∞
gab(Ω, χ)g∗cd(Ω, χ)D(Ω, χ)Ŝyz(t′)e∓iΩ(t−t′) dt′dΩ dχ. (C.20)

Now,

∫ t

−∞
Ŝyz(t′)e∓iΩ(t−t′) dt′ = e∓iΩt

∫ t

−∞

[∫ ∞

−∞
Ŝyz(ω)e−iωt′dω

]
e±iΩt′ dt′

= e∓iΩt

∫ ∞

−∞
Ŝyz(ω)

[∫ t

−∞
e−i(ω∓Ω)t′dt′

]
dω.

Making use of the Fourier identity

∫ 0

−∞
eiωtdt = πδ(ω) +

i

ω
(C.21)

we have ∫ t

−∞
e−i(ω∓Ω)t′dt′ =

[
πδ(ω ∓ Ω) − i

ω ∓ Ω

]
e−i(ω∓Ω)t. (C.22)
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Putting these results into eqn. (C.20) gives

damping term = Ŝwx(t)
∫ ∫ ∞

−∞
Ŝyz(ω)G±

abcd(ω, χ) e−iωtdω dχ (C.23)

where

G±
abcd(ω, χ) ≡

∫ ∞

0
gab(Ω, χ)g∗cd(Ω, χ)D(Ω, χ)

[
πδ(ω ∓ Ω) − i

ω ∓ Ω

]
dΩ. (C.24)

Now, under the assumptions of broadness and smoothness of the reservoir, G±
abcd(ω, χ) is a slowly

varying function of frequency compared to Ŝyz(ω). Thus it is a good approximation to simply

evaluate G±
abcd(ω, χ) at ωyz , the natural frequency of Ŝyz(ω). Thus

damping term ≈ Ŝwx(t)Ŝyz(t)
∫

G̃±
abcd(ωyz, χ)dχ (C.25)

Since operators such as Ŝwx(t)Ŝyz(t) reduce to Ŝwz(t), the equation of motion for the system

operators is finally reduced to an ordinary differential equation:

d

dt
Ŝjk = −iωkjŜjk+homogeneous terms

+
∑
l,m

∫ [
G+

ljmk(ωmk, χ)Ŝlm − G+
klml(ωml, χ)Ŝjm

−G−
mljl(ωlm, χ)Ŝmk + G−

mjlk(ωjm, χ)Ŝml

]
dχ (C.26)

Eqn. (C.26) is the general solution for the situation of “weak” coupling to a broad, smooth,

dense reservoir. It can be cast in a simpler form if we make one additional assumption. Let us

suppose that each term such as
∫

G±
abcd(ω, χ) dχ is factorable such that it can be written in the form

∫
G±

abcd(ω, χ)dχ = gabg
∗
cdη(±ω). (C.27)

This occurs, for example, if we can factor gab: gab(Ω, χ) = µabC(Ω, χ). Now, I note that any given

term in eqn. (C.26) will not have a significant long-term effect unless its frequency is close to that
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of Ŝjk. For example, the term G̃+
ljmk(ωmk, χ)Ŝlm is important only for ωml ≈ ωkj , or equivalently

ωmk ≈ ωlj . Thus there is no harm in replacing η(ωmk) with
√

η(ωmk)η(ωlj). This factorization

allows us to write ∑
l,m

∫
G+

ljmk(ωmk, χ)Ŝlm dχ ≈
[
g†Ŝg + id†Ŝd

]
kj

where Ŝ is the matrix whose j, k element is the operator Ŝkj and g and d are matrices whose

elements are

[g]ab = µab

√
π

∫
C2(ωab, χ)D(ωab, χ)dχ (C.28)

[d]ab = µab

√∫ ∫ ∞

0

C2(Ω, χ)
ωab − Ω

D(Ω, χ) dΩ dχ. (C.29)

Upon performing a similar decomposition of the remaining terms, we find that eqn. (C.26) can be

expressed more concisely as the matrix equation

d

dt
Ŝ =

i

�

[
ĤS , Ŝ

]
+ homogeneous terms (C.30)

+
(
2g†Ŝg − gg†Ŝ − Ŝgg†

)
− i
(
dd†Ŝ − Ŝdd†

)
. (C.31)

To obtain the equation of motion for ρ, the (reduced) density matrix of the system, I note that

ρ =
〈
Ŝ
〉
. As indicated previously, the expectation value of the homogeneous terms vanishes for

the case that the reservoir is initially in its ground state. At last we arrive at the main result of this

appendix:
d

dt
ρ = − i

�
[Hs, ρ] + Γ − i∆ (C.32)

where

Γ ≡ 2g†ρg − gg†ρ − ρgg†, (C.33)

∆ ≡ dd†ρ − ρdd†. (C.34)

The first term in eqn. (C.32) describes the evolution of the system in the absence of coupling to the
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reservoir. Γ describes population relaxation and decoherence while ∆ describes frequency shifts. I

note that if there is more than one reservoir, each adds a separate matrix. That is, Γ → Γ1+Γ2+· · ·
and ∆ → ∆1 + ∆2 + · · · .

C.2 Examples

C.2.1 Decay and Frequency shift in a two-level system

With two levels (ω2 > ω1), and under the rotating wave approximation, the only non-zero elements

of g and d are the (2,1) elements. We may write these matrices as

g =


 0 0

√
γ 0


 (C.35)

d =


 0 0

√
δ 0


 . (C.36)

where the values of γ and δ are determined by the intrinsic coupling constant g21and the integrals

over the mode parameters ω, χ. Then

Γ =


 2γρ22 −γρ12

−γρ21 −2γρ22


 , ∆ =


 0 −δρ12

δρ21 0


 (C.37)

and we obtain the density matrix equation

d

dt


 ρ11 ρ12

ρ21 ρ22


 =


 2γρ22 [−i(ω12 − δ) − γ]ρ12

[−i(ω21 + δ) − γ]ρ21 −2γρ22


 . (C.38)
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C.2.2 Decoherence in a two-level system

Consider coupling of the upper state in a two-level system to itself via a reservoir mode of zero

frequency. In this case the interaction can be expressed in terms of matrices:

g =


 0 0

0
√

γ


 , d =


 0 0

0
√

δ


 . (C.39)

for appropriate values of γ and δ. Then

Γ =


 0 −γρ12

−γρ21 0


 , ∆ =


 0 −δρ12

δρ21 0


 . (C.40)

This kind of coupling leads to decoherence and frequency shifts without changing the population

relaxation rate. Pressure broadening is an example of this effect.

C.2.3 The Spontaneous Emission Rate and Lamb Shift

Suppose that the reservoir is the electromagnetic field. The quantized electromagnetic field is de-

scribed by the operator

Ê(r, t) =
∑

p

∫ ∞

0

√
�ω

16π3ε0

[
εk,pâk,p(r, t) + εk,pâ

†
k,p(r, t)

]
d3k

where k is the wavevector, ω = |k| c is the mode frequency, p = 1, 2 indexes the polarization,

and εp is a unit vector definition the direction of polarization. Instead of the wavevector it will be

convenient to use the frequency and spherical angles of k to label each mode. Now, consider that

the system is located at the origin and is small compared to the wavelength of any field it might

emit. In this case the interaction Hamiltonian may be approximated as ĤI = −µ · Ê(0, 0), which

yields the coupling constants

gab(ω, χ) ≡ gab(ω, θ, φ, p) =
√

ω

16π3c3ε0�
(εp · µab). (C.41)
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The number of modes of a given polarization in a differential volume element is ω2 sin θ. Thus

∫
gab(ω, χ)g∗cd(ω, χ)D(ω, χ) dχ =

ω

16π3c3ε0�

∑
p

∫ π

0

∫ 2π

0
(εp · µab)(εp · µcd)

∗ω2 sin θ dθ dφ.

(C.42)

Without loss of generality, let us first assume that µab and µcd are parallel. If we call this direction

the “north pole” of a spherical coordinate system, then it is convenient to choose θ̂ and φ̂ as the two

polarization unit vectors perpendicular to the wavevector. Then

∑
p

(εp · µab)(εp · µcd)
∗ = µabµ

∗
cd

[
(θ̂ · ẑ)2 + (φ̂ · ẑ)2

]
(C.43)

= µabµ
∗
cd sin2 θ. (C.44)

Then

∑
p

∫ π

0

∫ 2π

0
(εp · µab)(εp · µcd)

∗ sin θ dθ dφ = µabµ
∗
cd

∫ 2π

0

∫ π

0
sin3 θ dθ dφ (C.45)

=
8π

3
µabµ

∗
cd. (C.46)

On the other hand, if µ̂ab and µ̂cd are perpendicular, say in the z and x directions, then

∑
p

(εp · µab)(εp · µcd)
∗ = µabµ

∗
cd

[
(θ̂ · ẑ)(θ̂ · x̂) + (φ̂ · ẑ)(φ̂ · x̂)

]
(C.47)

= µabµ
∗
cd sin θ cos θ cos φ (C.48)

which leads to ∑
p

∫ π

0

∫ 2π

0
(εp · µab)(εp · µcd)

∗ sin θ dθ dφ = 0. (C.49)

Thus, for arbitrary µ̂ab and µ̂cd,

∫
gab(ω, χ)g∗cd(ω, χ)D(ω, χ) dχ =

ω3

6πc3ε0�
µab · µ∗

cd. (C.50)
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According to eqns. (C.28) and (C.29), the elements of the g and d matrices are then

[g]ab =

√
ω3

ab

6π�ε0c3
µab (C.51)

≡ √
γabµ̂ab (C.52)

[d]ab =

√
1

6π2�ε0c3

∫ ∞

0

Ω3

ω − Ω3
dΩµab. (C.53)

≡
√

δabµ̂ab. (C.54)

where µ̂ab = µab/ |µab|. Unfortunately, the integral determining δab diverges. However, the upper

frequency limit of ∞ is unreasonable, since the electric dipole approximation becomes invalid at

short wavelengths (high frequencies). Hence it is customary to cut off the frequency integration at

some maximum frequency ωmax. For a two-level system, we obtain the spontaneous emission rate

2γ and an estimate3 of the Lamb shift:

2γ =
ω3

21 |µ21|2
3π�ε0c3

(C.55)

δ =
|µ21|2

6π2�ε0c3

∫ ωmax

0

Ω3

ω − Ω
dΩ. (C.56)

3Some derivations of the Lamb shift lead to an integral over ω2Ω/(ω −Ω) instead of Ω3/(ω −Ω). The origin of this
discrepancy can be traced to the use of p ·A for the interaction Hamiltonian instead of −µ ·E. As the two Hamiltonians
are related by a gauge transformation, they must lead to the same result in an exact calculation. Which is better to use
in the case of approximations has been the subject of many complicated discussions; unfortunately, there is no general
answer. The present approach indicates the source of the Lamb shift but is too simple to really predict its value. (I thank
Prof. Eberly for a brief but helpful discussion on this point.)
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Appendix D

Theory for Numerical Solution of a

Two-Manifold System

My research has been greatly assisted by the ability to model the spectral and temporal response of

both physical and idealized atomic systems. This modelling was performed with a set of computer

routines and user interface (Fig. D.1) that I wrote in MATLAB. The set of routines is extremely flex-

ible as the density matrix equations are constructed at run-time in accordance with user input, rather

than being hard-coded. In this appendix I present the mathematical theory behind the computer

routines. §D.1 presents a physical model for the class of systems under study. §D.2 derives the mas-

ter equation, and §D.3 discusses the numerical methods used to obtain its solutions. Finally, §D.4

explains how polarizations and susceptibilities are obtained from a solution to the master equation.

D.1 The Physical Model

The purpose of this model is to allow one to determine the optical response of an alkali vapor

illuminated by a several classical fields. To this end, I consider a system whose states can be

grouped into two sets or manifolds: a set of “ground” states, and a set of “excited” states. The

ground manifold and excited manifold are assumed to be separated by an optical frequency, while

within each manifold there may be hyperfine levels separated by radio frequencies. Each hyperfine
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Figure D.1: The user interface for the computer routines used to model “two-manifold” atomic
systems.
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Figure D.2: The type of system under study, consisting of a set of ground states |g〉 coupled to a set
of excited states |e〉 by optical fields E(m) with frequency spacing δ. The influences of ensemble
relaxation and a DC magnetic field are also included in the model.

level may further consist of multiple Zeeman states. This system interacts with a polychromatic

field which consists of several frequency components spaced at regular intervals. I also allow for

the presence of a DC magnetic field which causes level shifts and transitions between Zeeman states.

The system is specified by

• the energy or frequency of each hyperfine level

• the degeneracy of each hyperfine level

• the vector matrix elements of the electric and magnetic dipole operators

• the frequencies and complex amplitudes of all the fields, and

• the value of the DC magnetic field.

The state energies are relative to an arbitrary origin. When providing the input parameters for a

calculation it is convenient to specify the energies relative to the lowest-lying states of each manifold

and to specify the center field frequency relative to these states. The density matrix equations are
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easiest to solve, though, when as much time dependence as possible has been eliminated. This

is done by moving to a frame which rotates with the central field component. In this frame, the

frequency of the mth spectral component is mδ.

Regarding the matrix elements, values for real atoms can be obtained as described in Appendix

B; however arbitrary values may also be used to define idealized systems. Whether the system

is real or fictitious, only the relative values of the electric dipole matrix elements are needed. As

discussed in §5.1, the relevant atomic quantities can be expressed conveniently in terms of the

relative values, with the spontaneous emission rate providing the absolute scale where needed. The

spontaneous emission rate also determines the nominal matrix element, which allows the electric

field amplitudes to be specified in terms of nominal Rabi frequencies instead of in laboratory units.

D.2 Derivation of the Master Equation

D.2.1 Equation of Motion for a Single Atom

Ignoring damping processes for the moment, the equation describing the evolution of the density

matrix for a single atom is
d

dt
ρ̂ = − i

�
[Ĥ, ρ̂] (D.1)

where, in the electric and magnetic dipole approximations,

Ĥ =

(∑
a

�ωa|a〉〈a|
)

− µ̂E · E − µ̂B · B (D.2)

for the electric field E(t) = Ẽ(t) + Ẽ
∗
(t), the magnetic field B, the bare-atom eigenstate energies

�ωa, and the electric and magnetic dipole operators µ̂E , µ̂B . Evaluating [Ĥ, ρ̂] yields

ρ̇ab = −i(ωa − ωb)ρab +
i

�

∑
x

(µax,Bρxb − ρaxµxb,B) · B (D.3)

+
i

�

∑
x

(µax,Eρxb − ρaxµxb,E) · Ẽ(t) +
i

�

∑
x

(µ∗
xa,Eρxb − ρaxµ∗

bx,E) · Ẽ∗
(t). (D.4)
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All terms involving µjk,E or µ∗
jk,E with ωj < ωk correspond to off-resonant or counter-rotating

terms, which I drop in accordance with the rotating-wave approximation. The strength of the cou-

pling between a pair of states (e for excited, g for ground) and the mth sideband of the optical field

may be expressed as the Rabi frequency

Ω(m)
eg =

2µeg,E · E(m)

�
. (D.5)

where Ẽ(t) =
∑

m E(m)e−imδte−iωct. In similar fashion the strength of interaction with the mag-

netic field is conveniently expressed in terms of the magnetic Rabi frequency

Lgg′ =
2µgg′,B · B

�
(D.6)

for each pair of ground states g, g′ (or excited states e, e′). Let the states be organized so that all

the ground states are indexed first, followed by all the excited states. Then it is convenient to define

Rabi frequency matrices

R(m) =


 0 0

�Ω(m)
eg � 0


 , L =


 �Lgg′� 0

0 �Lee′�


 (D.7)

where �Zab� denotes the matrix whose elements are Zab.

I now move into the frame that rotates with the central field component. In this frame the

slowly-varying density matrix ρ obeys

ρ̇ab = i(∆b − ∆a)ρab +
i

2

∑
x

Laxρxb − i

2

∑
y

ρayLyb

+
i

2

∑
x

∑
m

R(m)
ax e−imδtρxb − i

2

∑
y

∑
m

ρayR
(m)
yb e−imδt

+
i

2

∑
x

∑
m

R(m)∗
xa e+imδtρxb − i

2

∑
y

∑
m

ρayR
(m)∗
by e+imδt. (D.8)
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This may be written in tensor notation as

d

dt
ρ = Mρ (D.9)

where M =
∑
m

M(m)e−imδt and

M
(0)
abxy no damping

= i(∆b − ∆a)δaxδby

+
i

2

[
(Lax + R(0)

ax + R(0)∗
xa )δby − δax(Lyb + R

(0)
yb + R

(0)∗
by )

]
(D.10)

M
(m)
abxy =

i

2

[(
R(m)

ax + R(−m)∗
xa

)
δby −

(
R

(m)
yb + R

(−m)∗
by

)
δax

]
. (D.11)

As discussed in Appendix C, coupling to the electromagnetic continuum adds the terms

2G†ρG − GG†ρ − ρGG† (D.12)

to the expression for ρ̇, where

Gab =




√
γabµ̂ab a ∈ {e}, b ∈ {g}

0 else
, (D.13)

γab =
ω3

0 |µab|2
6π�ε0c3

. (D.14)

We have

[
2G†ρG − GG†ρ − ρGG†

]
ab

= 2
∑
xy

(G†)ax · Gybρxy −
∑
n,x

Gan · (G†)nxρxb

−
∑
n,y

ρayGyn · (G†)nb. (D.15)

This gives

M0
abxy = M0

abxy
no damping

+ 2(G†)ax ·Gyb −
∑

n

Gan · (G†)nxδby −
∑

n

δaxGyn · (G†)nb. (D.16)
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A similar set of terms may be added to incorporate dephasing. For simplicity, I assume that

each state dephases via a separate interaction channel. The additional terms then have the form

δaxδby[(γdeph,x + γdeph,y)δxy − γdeph,x − γdeph,y] where γdeph,x is the dephasing rate of state x.

D.2.2 Equation of Motion for the Atomic Ensemble

Eqn. (D.9) is the equation of motion for a single atom. In the case of an atomic vapor, atomic motion

produces a continuous turnover of the atoms in the illumination region, with optically prepared

atoms being replaced by atoms from a reservoir in some state ρrsv. The ensemble density matrix

may be written as

ρ̄ =
1
N

N∑
j=1

ρj . (D.17)

where N is the number of atoms in the illumination region and ρj is the density matrix of the jth

atom. Let p(τ) dτ be probability that an atom remains in the illumination region between τ and

τ + dτ seconds. Then (dp(τ)/dτ) p−1dτ is probability that an atom which has remained for a time

τ will leave in the interval dτ . The equation of motion for ρ̄ is then

d

dt
ρ̄(t) =

1
N

N∑
j=1

d

dt
ρj +

1
N

N∑
j=1

1
p(t − tj)

dp(t − tj)
dt

(
ρj − ρrsv) . (D.18)

Now, the first term is given by eqn. (D.9). Assuming that all atoms experience the same illumination,

1
N

N∑
j=1

d

dt
ρj =

1
N

N∑
j=1

Mρj = Mρ̄. (D.19)

To evaluate the second term, I pick a particular form for p:

p(τ) = Γe−Γτ (D.20)

which implies that all atoms inside the illumination region have an equal chance of leaving it in a

given (short) time interval. This is not the most realistic model (for instance, in §6.1.1 we found that

f(τ) =
∫ τ
0 p(t) dt = (1 + Γτ)−1 for diffusive motion), but it makes the resulting equations much
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simpler. With p−1dp(t − tj)/dt = Γ we obtain

d

dt
ρ̄(t) = Mρ̄ − Γ(ρ̄ − ρrsv). (D.21)

The density matrix will contain frequency components at all multiples of δ:

ρ̄ =
∞∑

m=−∞
ρ̄(m)e−imδt. (D.22)

Here ρ̄(m) denotes the component of the ensemble density matrix at frequency mδ, which is accurate

to all orders in the field strengths1. Then (D.21) becomes

d

dt

∞∑
m=−∞

ρ̄(m)e−imδt =
∑
m′′

M(m′′)e−im′′δt
∑
m′

ρ̄(m′)e−im′δt − Γ
∞∑

m=−∞
ρ̄(m)e−imδt + Γρrsv.

(D.23)

This yields the Floquet relation

d

dt
ρ̄(m) =

∑
n

M(n)ρ̄(m−n) + (imδ − Γ) ρ̄(m) + δm,0Γρrsv (D.24)

This equation may either be solved directly in the steady-state case or numerically integrated to

obtain temporal behavior of the system.

D.3 Solving the Master Equation in the Steady-State

The steady-state solution of (D.24) is appropriate for modelling the interaction between time-

independent field components and an atom of constant velocity. In this case we have

∑
n

M(n)ρ̄(m−n) + (imδ − Γ) ρ̄(m) = −δm,0Γρrsv. (D.25)

1For small or vanishing values of δ the various orders of the Floquet series should probably be summed to get a
physically meaningful result, as there is little distinction between them.
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This equation describes a linear system of equations which may expressed symbolically in matrix

form as

Bs = −z, (D.26)

where

s =




...

ρ̄(−1)

ρ̄(0)

ρ̄(1)

...




, z = Γ




...

0

ρrsv

0
...




, (D.27)

and

B =




. . .
...

M0 + (−iδ − Γ)I M(−1) M(−2)

· · · M(+1) M0 − ΓI M(−1) · · ·
M(+2) M(+1) M0 + (iδ − Γ)I

...
. . .




. (D.28)

In implementing (D.26) on a computer, the matrices ρ̄(m) and ρrsv are reshaped into column vectors

and the rank-4 tensors M(m) are reshaped into matrices. If the number of states is N and the Floquet

series is truncated at F terms, then s is of length FN2 and B is of size FN2 × FN2. Clearly, the

computational demands grow rapidly with the number of states. On a personal computer with an

850 MHz Intel processor and 256 MB RAM, a 3-order solution of the sodium D1 system (F = 3,

N = 16) requires approximately 1/3 second.

Now a confession must be made: M(0) is singular, which means that B as given above cannot be

inverted. This singularity is artificial, however; it occurs because conservation of population makes

one of the equations redundant. To eliminate this artificial singularity and normalize the solution, I

replace one of the population rate equations in (D.26) with an equation expressing conservation of

population: ∑
aa

ρ̄(m)
aa = δm,0. (D.29)
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D.4 Calculating Optical Properties

D.4.1 Calculating Dipole Moments and Susceptibilities

Once the ensemble density matrix components ρ̄(m) have been obtained, the induced atomic dipole

moment can be calculated. The complex amplitude of the atomic dipole moment at frequency

ωc + mδ is

p(ωc + mδ) =
∑
eg

µ∗
egρ̄

(m)
eg . (D.30)

The polarization and susceptibility are related to atomic dipole moment by P =Np and χ =

P/(ε0E) where N is the atomic number density and E is the appropriate input field. Terms with

m = 0 correspond to pump susceptibilities, terms with m = 1 correspond to probe susceptibili-

ties, and terms with m = −1 correspond to idler susceptibilities. Terms with |m| > 1 correspond

to higher-order processes. The polarization is not broken down into contributions from particular

nonlinear orders, but if desired they can be obtained by a polynomial fit to solutions calculated over

some range of Rabi frequencies.

To determine, for example, the dressed linear susceptibility of a right-hand circularly polarized

probe beam, the relevant quantity is p(ωc + δ) · (x̂+iŷ)∗/
√

2 as calculated with a small value for

the probe Rabi frequency.

D.4.2 Spatial Propagation

Under steady-state conditions, the mth order of the electric field obeys

(
∂2

∂z2
+ k2

m

)
E(m) = −k2

m

ε0
P(m) (D.31)

where km = ωm/c = (ω0 + mδ)/c is the free-space wavevector. (I assume all fields are co-

propagating.) The solution for each field will consist of a rapidly oscillating factor exp(ikmz),

which is of little interest, and a slowly varying amplitude A(m) whose evolution is affected by

P(m). The common dependence exp(ik0z) may be factored out. Then, under the typical condition



APPENDIX D 178

∣∣∣∂2A(m)/∂z2
∣∣∣� ∣∣∣k∂A(m)/∂z

∣∣∣ , we have

∂A(m)

∂z
=

i

2
kmP(m) exp(−imδz/c). (D.32)

Here P(m) is obtained by solving the master equation (D.9) with the field components E(m) =

A(m) exp(−imδz/c).


