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Abstract 
 
 

 The transverse structure of an optical field can carry a large amount of 

information.  Such a simple concept is the basis for important technologies such as 

imaging and photolithography.  However, some effects in nature will effectively 

destroy any useful transverse structure the field may possess.  In this thesis, both 

desirable and undesirable transverse optical effects will be studied. 

 The ultimate limit to the amount of energy that may be usefully transmitted 

through a medium in a laser beam is imposed by the nonlinear response of the 

medium.  This nonlinearity can be a thermal effect for continuous-wave or long-pulse 

lasers, while for short-pulse lasers will tend to be an electronic or molecular effect.  

Whenever the intensity-nonlinearity product is too large, the transverse structure of 

the beam will be so greatly distorted as to make the beam essentially useless.  This 

beam degradation is discussed in the thesis for both the continuous-wave thermal case 

as well as for the short-pulse case, known as laser beam filamentation. 

 The undesirable effect of filamentation is a single-beam four-wave mixing 

effect.  Similar physical processes exist for two-beam four-wave mixing.  In the two-

beam case, however, there is reason to believe that the generated transverse structure 

may possess very useful properties for applications in quantum optics.  Such effects 

are explored in this thesis.   



ABSTRACT 

 

ix 
 After discussing physical effects that can alter the transverse structure of a 

beam, two applications of the use of transverse structure to carry information are also 

explored.  The first of these is coincidence imaging.  This is a technique for 

generating an image of an object with photons that do not directly interact with the 

object.  Experiments were performed to compare the quality of the technique when 

done using classical versus quantum methods. 

 The second application of transverse effects that is developed is a new method 

for generating lithographic patterns with super-resolution.  The method is shown 

theoretically for any level of resolution improvement, and is demonstrated 

experimentally for up to a factor of three improvement over the traditionally accepted 

limit. 
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Chapter 1 

Introduction 

 

From the first uses of mirrors and lenses in the earliest days of optics to as far into 

the future as one can foresee, the transverse structure of optical fields has been of 

primary importance to many applications.  These applications include areas such 

as imaging, lithography, interferometry, and optical computing to name a few.  In 

this thesis, several fundamental optical interactions which affect the transverse 

structure of an optical field, as well as two advanced applications of such 

transverse structure, will be studied.  All of the interactions and applications to be 

discussed here can be categorized either as a nonlinear optical or quantum optical 

transverse effect. 
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 Before presenting an overview of the thesis at the end of this chapter, it 

will first be useful to give a brief introduction to the general areas of transverse 

effects in nonlinear and quantum optics.  The major goals of these sections will be 

to present the key features that tie the effects and applications presented in this 

thesis together, while at the same time highlighting the differences between them 

and why such effects are of interest.   

  

1.1 Transverse effects in nonlinear optics 

The field of nonlinear optics grew rapidly after the invention of the laser.  A wide 

variety of temporal, longitudinal, transverse, and other effects have since been 

explored.  Transverse effects have long been of interest, with one of the first 

major topics to be studied being that of laser beam filamentation [1-6].  It was 

seen that in the presence of intense optical fields, many materials displayed 

nonlinearities which caused their refractive index profile to follow the intensity 

profile of the laser field.  In such cases, an effective lens was created within the 

material.  When that effect became stronger than the countering process of 

diffraction, the beam would begin to focus.  The power at which the nonlinear 

self- focusing exactly matches diffraction is denoted the critical power (the exact 

definition of which will be presented in Chapter 3).  At exactly that power, 

solitons, waves which maintain their shape without diffracting, will be created.  
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However, in a three-dimensional bulk structure such solitons are unstable as a 

slight amount of noise will shift the power either slightly above or below the 

critical power.  At powers above the critical power, the beam will undergo whole 

beam self- focusing, which will continue until some loss mechanism (such as 

material damage) causes the process to halt.  At very high intensities, rather than 

focusing as a single beam, the beam will undergo small-scale filamentation.  This 

process will be described in great detail in Chapter 3, but from a qualitative point 

of view it is the break-up of the beam into several small intense filaments of light, 

each containing approximately one critical power [1]. 

 To this point, the discussion of nonlinear transverse optical effects has 

focused entirely on changes in the refractive index profile due to high laser 

powers.  Such effects can be classified as single-beam χ(3) effects, where the 

polarization of a material can be written as  

            ∑=
=

N

n

nn tEtP
1

)( )()( χ        (1.1) 

where χ (1) is the linear susceptibility, χ (n) (n > 1) is the nonlinear susceptibility of 

order n with N being the highest order process being considered in the truncated 

power series expansion, and E(t) being the electrical field strength of the applied 

laser field [7].  Even order susceptibilities require a break in symmetry, such that 

they are not found in most materials other than crystals except at surfaces and 

interfaces [7].   
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 For the fundamental processes to be studied in Chapters 2-4, the nonlinear 

effects to be discussed are all either χ(3) or simulated χ(3) based on secondary χ(1) 

effects (as will be the case for the thermal nonlinearities of Chapter 2).  For the 

applications to be discussed in Chapters 5-6, the nonlinear processes used are both 

χ(2) effects, namely parametric downconversion for the generation of quantum 

entangled photons in Chapter 5 and second harmonic generation and sum 

frequency generation in Chapter 6 (although the process of multiphoton 

absorption being simulated is a higher order process).   

 For the current discussion, the focus will be on the fundamental processes 

of Chapters 2-4.  In all three chapters, complex (and in some cases random) 

transverse structure is imposed on simple Gaussian input beams via a nonlinear 

process.  Generally, this is an undesirable effect, which would almost always be 

the case for the situations in Chapters 2-3.  However, if the imposed structure has 

features such as high levels of correlation across parts of the beam, such a process 

could prove useful.  Thus, although from a fundamental standpoint the processes 

in Chapters 3-4 are very similar, it is believed that there may be some use of the 

processes described in Chapter 4 as potential sources for quantum states of light.  

The exact details of the generated structure in the various cases are still under 

further experimental investigations, but theory and preliminary results are both 

promising. 
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1.2 Transverse effects in quantum optics 

There is much interest in quantum optics for a variety of applications [8-14] due 

to the hope for improved performance.  Applications in which transverse 

resolution is important, such as imaging [13,15-22] and photolithography [14, 23-

29] have been of particular interest.  The increased resolution can be accessed by 

using the fact that the effective wavelength of quantum entangled photons is half 

the actual wavelength (for two-photon entanglement) [30-31].  Also by making 

use of quantum entanglement, methods of indirect imaging (coincidence imaging 

to be discussed in Chapter 5) have been developed. 

 Due to the complexity of experimental implementation of quantum optical 

systems, from a practical point of view one would often prefer to use a classical 

system instead if doing so will allow desired performance.  Thus an important 

question for a given process or application is how, if at all, it can be made better 

through the use of quantum states of light, and in some cases even if the process 

can only be achieved through the use of such sources.  Two applications related to 

these questions are explored in this thesis.  The first is the area of coincidence 

imaging, which was claimed in one paper to only be possible using a quantum 

entangled source [32].  Experiments described in Chapter 5 first show this not to 

be the case [15], but then go further into explore in what ways using a quantum 

source for the process might be beneficial as compared to a classical source [21]. 
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 Another application for which quantum sources have been proposed to 

increase transverse resolution is photolithography.  A proposal claimed that 

making use of quantum entangled photons and multiphoton absorption, a pattern 

of any resolution could be written with unity visibility [14].  However, not only 

have we shown the visibility to fall off rapidly with the gain of the quantum 

process [23, 27-28], but in this thesis it is also shown that similar results can be 

achieved using a much simpler and purely classical technique.  

 There truly are great advantages to be gained for many applications 

through the use of quantum sources, such as potentials for increased resolution 

and the flexibility of system design without complete knowledge.  However, the 

caveat of this section and thesis is that it can be easy to contribute an effect to the 

quantum nature of light when the effect can be described accurately classically.   

 

1.3 Overview of thesis 

In this chapter, we briefly explored the topics of transverse effects in nonlinear 

and quantum optics.  We saw that there are both desirable and undesirable effects  

The specific effects and applications will be discussed in detail in the following 

chapters as discussed below. 

 In Chapter 2, experiments studying the thermal nonlinearity of gases using 

high-finesse Fabry-Perot cavities will be discussed [33-34].  First, an experiment 
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measuring the thermal nonlinearity and absorption of air and its major 

constituents will be described [33].  Then a similar experiment at higher gas 

pressures exploring thermal nonlinear pattern formation in the cavity will be 

presented [34]. 

 Chapter 3 explores the topic of laser beam filamentation.  Filamentation is 

generally a very undesirable process in which the desired spatial structure of a 

laser beam is badly degraded.  An introduction to the theory of filamentation will 

be briefly given.  A method to reduce filamentation using appropriate seeding will 

then be described.  An experimental verification of the method is then discussed, 

showing an expected reduction. 

 Nonlinear pattern formation in two-beam interactions [35-36] are 

discussed in Chapter 4.  Processes including self-diffraction [37-40], seeded 

conical modulational instability [41-53], and two-beam excited conical emission 

(TBECE) [54-55] are shown experimentally in nonlinear liquids.  These processes 

are similar in many respects to the fundamental process leading to filamentation, 

but due to the extra parameters available from the interactions the processes tend 

to be more controllable and potentially much more desirable and useful.   

 Chapter 5 discusses the area of coincidence imaging [13].  This is a 

technique that allows an object to be indirectly imaged by photons that do not 
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directly interact with the object.  The technique is performed using both quantum 

and classical methods.  The qualities of the two methods are compared. 

 A new technique for generating patterns with ultra-high sub-Rayleigh 

resolutions is introduced in Chapter 6.  The theory for the technique, which 

involves phase shifting and multi-photon absorption, is described.  The new 

technique is compared to other proposed or existing methods [14, 56-57].  The 

technique is then demonstrated experimentally.  Resolution increases of two and 

three times better than the Rayleigh limit are demonstrated. 
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Chapter 2 

Thermal Nonlinearities and Pattern Formation 

 

2.1 Introduction 

Optical nonlinearities are effects which explicitly depend on the strength of the 

optical field.  There are several variety and sources of such nonlinearities.  Some 

of the major classifications are electronic, molecular, and thermal.  Due to the 

differences of their origins, the various types of nonlinearities have vastly 

different properties.  Two of the properties most dependent on the type of 

nonlinearity are response time and strength.  On one end of the spectrum, 

electronic nonlinearities tend to respond very rapidly, generally at least on the 

femtosecond time scale.  Such nonlinearities also tend to be very weak relative to 

other nonlinearities.  Typical electronic nonlinearities are on the order of 10-16 
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cm2/W.  At the other end of the spectrum, thermal nonlinearities respond very 

slowly, with time scales generally in the millisecond range.  However, such 

nonlinearities also tend to be very large, often several orders of magnitude larger 

than electronic nonlinearities, with typical values of thermal nonlinearities on the 

order of 10-6 cm2/W [7]. 

 Even with the large magnitude of thermal nonlinearities [58-61], they can 

often be quite difficult to access due to the slow response time.  With electronic 

nonlinearities, very intense, short laser pulses can be used to explore the effects.  

However, such pulses tend to be much too short to cause a thermal effect.  

Therefore, continuous wave lasers are generally needed to meet the response time 

requirements of thermal systems.  Since the power of continuous wave lasers 

tends to be very limited with respect to the peak powers of pulsed lasers, even 

with the large size of thermal nonlinearities, the overall effect can be hard to 

measure.  Thus, to study thermal nonlinearities, one needs a strong continuous 

optical field.  Although extremely high power continuous wave lasers do exist, 

they are not readily available and tend to not be well suited for precise laboratory 

studies. 

 A solution to the need for very large continuous optical fields is to use a 

modest power continuous wave laser in conjunction with a high-finesse Fabry-

Perot cavity [62].  The optical field within the cavity can be orders of magnitude 
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larger than originally generated from the laser, thus creating an excellent tool with 

which to explore thermal nonlinearities. 

In this chapter, background on the operation of high-finesse Fabry-Perot 

cavities will first be introduced, including both theory as well as practical 

limitations due to losses.  Next, a discussion of thermal nonlinearities will 

introduce the theoretical origins of the effects.  The experiments to measure the 

thermal nonlinearity of air and its constituent gases will then be described in 

detail [33].  Finally, the subsequent experiments exploring pattern formation in 

such a system will be discussed [34]. 

 

2.2 High-finesse Fabry-Perot cavities 

A Fabry-Perot cavity is simply two partially reflective mirrors aligned to support 

optical modes.  Fabry-Perot cavities are very useful in spectrally sensitive analysis 

as they can have a narrow bandwidth about a central wavelength that can be 

relatively easily tuned.  The bandwidth (BW) of the cavity is given by its free-

spectral range (FSR) divided by its finesse (F),  

                F/FSRBW =                     (2.1) 

where  

        lcFSR 2/=                          (2.2) 

and 
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       )1( γγπ −=F ,                    (2.3) 

 with l  being the mirror spacing and γ being the round-trip amplitude factor given 

by 

Re lintαγ −= ,                   (2.4) 

where intα is the absorption coefficient of the material within the cavity (for 

example, air) and R is the intensity reflection coefficient of the mirrors (assuming 

equally reflective mirrors on each end of the cavity).  In situation where the 

absorption within the cavity is small, it is often common to approximate Equation 

2.3 by 

      )1()1( RRR −≈−= ππF                    (2.5) 

where the second approximation is valid for highly reflective mirrors. 

Another important parameter describing a Fabry-Perot cavity is the level 

of optical build-up (B) created inside the cavity.  The build-up is defined as the 

power inside the cavity, Pcav, divided by the incident power, Pinc, and is given by 

   π// cavinccav TPPB F=≡                     (2.6) 

where Tcav is the transmission of the cavity on resonance.  The cavity transmission 

is given by 

2)]/([ ATTTcav +=        (2.7) 
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where T and A are the intensity transmission and absorption of the cavity mirrors, 

respectively, with 

    1=++ RAT .        (2.8) 

For most standard Fabry-Perot cavities, the mirror absorption is negligible as 

compared to the mirror transmission, such that the cavity transmission is very 

close to one.  Thus, the build-up is usually taken to only depend on the finesse.  

However, for high finesse cavities, cavity transmissions can be much lower than 

unity even at resonance as the coatings that are necessary for very highly 

reflective mirrors often cause the mirror absorption to be on the same order as the 

mirror transmission (often in the range of a few parts per million) [63].   

 Based on the above analysis, it would seem that the only limitation to 

cavity finesse and build-up factor are the reflection, absorption, and transmission 

of the cavity mirrors.  In theory that is correct, but in practice the radius of 

curvature of the mirrors (r) is also a very critical parameter in creating a useful 

high-finesse cavity.  With flat mirrors ( )∞=r , it is very difficult to make a stable 

cavity with a finesse greater than about 30.  This is because any plane parallel 

resonator is only conditionally stable, with any angular deviation from perfectly 

parallel reducing the resonator quality.  For low finesse values, small deviations 

can be tolerated.  However, as the finesse increases even extremely small 

deviations can cause the cavity modes to walk off in fewer round trips than the 



2.2.  HIGH-FINESSE FABRY-PEROT CAVITIES   

 

14 

cavity would support.  To overcome this problem, a cavity using curved mirrors is 

used for high-finesse cavities.   

 To explore the idea of cavity stability more quantitatively, we will use the 

g parameters [64] from Gaussian optics: 

     ii rlg /1+=  ( =i 1, 2).       (2.9) 

In terms of these parameters, we can define the stability condition for a cavity as 

10 21 ≤≤ gg .      (2.10) 

If this condition is not met, the cavity is unstable and is not well designed to 

support modes.  However, there is one important application of unstable 

resonators.  This is for use in certain very high power lasers where mode structure 

is not an important consideration. 

When the equalities are met, the cavity is conditionally stable.  Note that 

for the plane parallel cavity,  121 =gg , showing the cavity is conditionally stable as 

stated above.  Many other types of common cavities are also only conditionally 

stable.  These include confocal ( lrr −== 21 , 021 =gg ) and concentric ( 2/21 lrr −== , 

121 =gg ).  Neither unstable nor conditionally stable cavities are useful for high 

finesse Fabry-Perot cavities, as the need for exact alignment makes them 

impractical.  It is thus important to use a curved mirror configuration that gives a 

value strictly between 0 and 1.  For the experiments to be described, lrr 1021 −== , 

yielding 81.021 =gg , which is well away from the unstable region.  Even with such 
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a value, cavity alignment is critical, as is the stability of the alignment.  For this 

reason, to achieve very high-finesse cavities in practice, it is common to rigidly 

mount the cavity mirrors to a spacer. 

There is a final important feature of high-finesse cavities to be discussed.  

A curved mirror cavity as described can support only very specific modes.  To 

efficiently couple power into the cavity, it is necessary to match the input beam to 

the cavity mode.  This includes matching the radius of curvature at the mirrors 

and the corresponding beam waist at the center of the cavity.  For high-finesse 

cavities, even small errors in the mode matching can cause large coupling losses 

which will act to greatly reduce the stored power in the cavity.  Thus, for practical 

use of a high-finesse cavity a multiple lens system is used. 

  

2.3 Thermal nonlinearities 

Thermal nonlinearities [7, 58-61] are changes in the optical properties of materials 

based on density fluctuations within the material due to heating.  The heating is 

generally taken to be caused by optical absorption for optical nonlinearities, 

though just as there are electrooptic effects corresponding to electronic and 

molecular nonlinearities where the driving field is applied electrically rather than 

optically, the thermal field can also have its energy applied artificially and the 
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optical field can simply probe the effect.  In this chapter, we will focus on purely 

optical interactions. 

 Thermal nonlinearities can occur in any material, but in the present work 

the focus will be on thermal nonlinearities in gases.  As was discussed earlier, 

thermal nonlinearities are very large, but require significant cw laser fields to 

access them.  As we also saw, high-finesse Fabry-Perot cavities are well suited for 

enabling such fields.  This will now be used to explore the thermal nonlinearity of 

various gases. 

 In this study, gases will be exposed to large cw optical fields inside a high-

finesse Fabry-Perot cavity.  The optical field causes a heating of the gas, ∆T, 

which leads to a temperature-dependant decrease in the refractive index, ∆n.  

Since the cavity resonance is based on the refractive index between its mirrors (in 

this case the refractive index of the gas under investigation), a decrease in 

refractive index will lead to an increase in cavity resonance by the relation 

nnn ∆−≈∆−=∆ ννν /      (2.11) 

where ν is the frequency of the light and n is the refractive index of the gas (very 

close to one, allowing the approximation).  Thus to measure the thermal 

nonlinearity of a given gas, it is necessary to measure the shift in cavity resonance 

as a function of incident optical power. 
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 To directly relate the change in refractive index to a change in 

temperature, the relation 

TdTdnn ∆=∆ )/(                 (2.12) 

is used, where for an ideal gas 

TndTdn /)1(/ −−= .      (2.13) 

The change in temperature can be predicted through the steady state solution of 

the heat transport equation, which yields [65] 

    ]635.0)/)[ln(/( +=∆ owRPT πκα     (2.14) 

where α is the absorption coefficient of the gas, κ is the thermal conductivity of 

the gas (values of which are readily available), R is the radius of the thermal 

boundary (defined here by the metal cylinder, with R = 1.27 cm), wo is the radius 

of the laser beam at the center of the cavity (0.23 mm for the experimental 

configuration used).  Thus, by using Equations 2.11-14 and measuring the change 

in cavity frequency for the change in power, the absorption coefficient of the 

gases can be calculated. 

Note that Equations 2.12-14 predict that the change in refractive index is 

dependent upon power, not intensity.  The beam waist only scales the effect based 

on its relative size as compared to the thermal boundary.  Since in most practical 
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problems the thermal boundary will be much larger than the beam waist, the 

dependence on beam waist will be extremely small (much less than linear).  As an 

example, even for the relatively small thermal boundary size used for this 

experiment, a change of 100% in beam size (doubling or halving the beam waist) 

would result in only a change of 15% in the value for change in refractive index.  

This can be compared to the inverse square relationship between beam waist and 

change in refractive index for intensity dependent nonlinearities, which would see 

a factor of 4 change for a 100% change in beam size.   

Based on the above argument, it is appropriate to define a power-

dependent nonlinear refractive index, 

PnnP 2/∆=       (2.15) 

where the factor of 2 is necessary to account for the fact that both the forward and 

backward waves in the cavity contribute to the effect.  For comparison to other 

nonlinearities, it would be convenient to have an intensity dependent value.  

Although this cannot be defined in general for this case, if we assume a fixed 

geometry, we can define an effective thermal nonlinear refractive index by the 

relation 

2
2 / oP wnn π= .      (2.16) 
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2.4 Measurement of thermal nonlinearities of gases 

To experimentally explore the thermal nonlinearities of various gases, the 

experimental set-up shown schematically in Figure 2.1 was used.  The gas under 

investigation is contained in the high-finesse cavity (HFC).  The cavity is 

constructed of 1-m radius-of-curvature mirrors.  The mirrors are rigidly mounted 

on a 10-cm Zerodur spacer inside a metal cylinder for mechanical and thermal 

stability.  The cylinder is suspended in a vacuum chamber to minimize the effect 

of vibrations.  The cavity has a finesse of 12,000 and a transmission of 12%, 

leading to a power build-up of 1300.  The output of a 500-mW cw Nd:YAG 

nonplanar ring oscillator laser (NPRO) [66] is mode-matched to the HFC by 

lenses L1 and L2.  The laser is protected from possible backreflections by a 

Faraday isolator (FI).  Since the power from the NPRO is fixed, a combination of 

a half-wave plate (HWP) and polarizing beamsplitter (PBS) are used for power 

control.  The Pound-Drever-Hall feedback method [67-68] is used to frequency 

lock the NPRO to the HFC.  An electro-optic modulator (EOM) places weak 

sidebands at 40 MHz on the laser field.  As the bandwidth of the cavity is only on 

the order of 125 kHz while its FSR is 1.5 GHz, when the NPRO is resonant with 

the cavity the sidebands will be reflected.  Since the reflected light double-passes 

the quarter-wave plate (QWP), it is directed by the PBS onto the detector D1.  

The detected signal is then electrically mixed with the same 40 MHz signal that is 
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used to drive the EOM using a standard radio frequency mixer (X).  The mixed 

signal is then passed through frequency filters to extract the low-frequency 

components, which provide the error signal needed for locking.  The signal is fed 

into the fast (pressure) and slow (temperature) frequency tuning controls on the 

NPRO, thus keeping the laser locked to the cavity.  The system responds fast 

enough to be dynamic with changes in the cavity, yet is also stable enough to 

remain locked for several days at a time.  

 

 

  

Figure 2.1:  Schematic of the experimental set-up.  Optical paths are shown as solid lines 
and electrical paths as dashed lines.  FC are the feedback controls, FG is the (40 MHz) 
function generator, R is the ramp generator driving the PZTs, and C is the computer for 
data acquisition. 
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The light transmitted by the HFC falls onto a low-finesse cavity (LFC) 

with a finesse of 1000.  The LFC is continuously scanned by piezoelectric 

transducers such that the laser frequency can be monitored by the detection of the 

transmitted signal at D2.  Due to the constraints placed by the locking and 

detection systems, the range of incident powers used for the experiment was 240 

to 520 mW.  For the HFC used, this gives a power variation inside the cavity of 

360 W.  Figure 2.2 shows typical data showing the resonance shift when the 

cavity is filled with CO2 and the power is varied.  The left peak shows the initial 

resonance at low power, and the large peak on the right shows the shifted 

resonance after the incident power is increased.   

 

 

 

 

Figure 2.2:  Traces showing the shift of the cavity resonance frequency between low 
power (left) and high power (right), when the cavity is filled with 0.75 atm of CO2.   
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Both the absorption coefficient and dn/dT are proportional to the pressure 

of the gas.  Thus, the measured frequency shift should be proportional to the 

square of the pressure.  Data was taken at 0, 0.25, 0.5, 0.75, and 1 atm and fitted 

to a quadratic curve to minimize experimental error.  Figure 2.3 shows the curve 

obtained for air.  We believe he small shift at zero pressure to be due to effects of 

heating the mirrors. 

Using the values obtained for ∆n at 1 atm and accepted values for κ [69] 

for the various gases values for the nonlinear refractive indices and absorption 

coefficients were calculated.  The values are summarized in Table 2.1.  To 

appreciate the size of these values, it is useful to compare to the fast  

 

 

 

 

 

 

 

 

 

Figure 2.3:  Shift of the cavity resonance frequency plotted as a function of the pressure 
of air within the cavity, for a difference in circulating laser power of 360 W. 
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nonlinearity of air, n2 = 5 x 10-19 cm2/W [70].  The dependence of these values on 

the relative humidity was also measured.  The measurements indicated the values 

to be essentially independent of relative humidity.  The measured absorption 

coefficient of air is within the expected range [71]. 

 One might question how the absorption of the gases affects the finesse of 

the cavity.  This requires a comparison of the values obtained from Equations 2.3 

and 2.5, using the absorption of the gases as the internal absorption in Equation 

2.4.   Doing so, even for the case of oxygen which displayed the largest 

absorption, yields only about a 0.1% reduction in the cavity finesse.  This implies 

that it is not necessary to try to compensate the calculations to account for this 

loss, as the experimental error was much larger than this factor. 

 

 

 

 

 

Property CO2 O2 N2 Air 

α (cm-1) 5.7 x 10-9 4.2 x 10-8 6.7 x 10-10 3.8 x 10-9 

np (W-1) -3.8 x 10-11 -9.6 x 10-11 -1.9 x 10-12 -1.1 x 10-11 

n2 (cm2/W) -6.6 x 10-14 -1.7 x 10-13 -3.3 x 10-15 -1.9 x 10-14 
 

Table 2.1:  Measured absorption coefficients and thermal nonlinear properties of various gases. 
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2.5 Experimental studies of thermal pattern formation 

The experimental set-up used to explore pattern formation [72-75] in the gases is 

shown in Figure 2.4.  Note that through the output of the high finesse cavity, the 

experimental set-up is the same as that from Figure 2.1 discussed in the previous 

section.  The difference is in the equipment used to analyze the output of the 

cavity.  The light transmitted through the cavity is divided at a nonpolarizing 

beamsplitter (BS).  The light that passes through the beamsplitter is imaged onto a 

CCD camera (CCD1) via a lens (L3) to give the near- field pattern.  The remainder 

of the light is sent onto another CCD camera (CCD2) to record the far-field 

  

 

Figure 2.4:  Schematic of the experimental set-up.  Optical paths are shown as solid lines 
and electrical paths as dashed lines.  FC are the feedback controls, FG is the (40 MHz) 
function generator, R is the ramp generator driving the PZTs, and C is the computer for 
data acquisition. 
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Figure 2.5:  Examples of patterns observed.  Note that central TEM00 mode is saturated. 

 

pattern.  Example patterns are shown in Figure 2.5.  The patterns were the same in 

the near- field and far-field except for small divergence. 

 The patterns observed, such as the ones pictured in Figure 2.5, were 

repeatable, observed definite thresholds, and followed a hysterisis condition.  

After a careful study of the threshold conditions for several patterns over a variety 

of laser powers, P, and gas pressures, p, it was determined that the thresholds 

depended on a parameter defined as 

    2)/()/( oo ppPPX β=                  (2.17) 
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Figure 2.6:  Curve for the parameter X defined in Equation 2.17.  The levels (a)-(d) represent the 
patterns observed.  Solid lines show increasing optical power, while dashed lines are decreasing. 
 

where β  is a material-dependent parameter.  Figure 2.6 shows the values of the X 

parameter for the appearance (and disappearance) of the first four nontrivial 

patterns (labeled a, b, c, and d for reference).  The values have been normalized 

such that the first transition occurs at X = 1.  Note that such normalization is 

trivially achieved by setting Po and po to one set of the power and pressure values 

for the onset of the first pattern.   

 Although a definition of the parameter β  in terms of fundamental material 

properties (for example, absorption and thermal conductivity) was not achieved, 

values for β  were determined for CO2 and O2.  For carbon dioxide, the value was 

found to be 04.063.0 ±=β , while for oxygen the value is 02.042.0 ±=β . 

 It should be noted that this experiment was performed for several gases, 

including Ar, He, N2, CO2, O2, and N2O, but patterns were only observed in the 
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last three.  Also, the effect was not sufficiently strong in N2O to allow a full set of 

data to be taken, thus making it impossible to find a value of β  for that gas.  

 The physical origin of the pattern formation is a thermal lensing effect 

inside the cavity.  An approximate solution to the steady-state heat equation inside 

the cavity [65] predicts that the refractive index of the gas in the area of the laser 

beam has a parabolic variation, with the smallest index in the center.  That is, the 

optical heating of the gas causes the gas to act as a negative lens.  The predicted 

equivalent focal length of the lens would be 

lgf 2/1−=       (2.18) 

where g is the gradient of the refractive index and l being the mirror spacing.  Of 

course if the effect became too strong, it would greatly degrade the finesse of the 

cavity.  However, one can calculate that the parameters used here would lead to 

2)atm1/)(W500//(m32 pPf −=        (2.19) 

which is much weaker (even at the highest power and pressure used) than the end 

mirrors, which have a focal length m5.0=f .  Thus the thermal effect can be 

treated as a weak perturbation to the cavity. 
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2.6 Conclusion 

In this chapter, studies on thermal nonlinearities of gases using a high-finesse 

Fabry-Perot interferometer were discussed.  By using a modestly powered cw 

laser with a high-finesse cavity, the absorption coefficients and thermal 

nonlinearities of air and its major constituents (N2, O2, and CO2) were measured.  

Such measurements require extremely large cw optical fields, and such fields 

were achieved by a large build-up factor in the Fabry-Perot cavity. 

 It was noted that at sufficiently high powers and/or gas pressures, the 

output cavity mode was no longer the simple TEM00 mode that was viewed at 

normal operating conditions.  Thus, a study was performed on several cases to 

explore the origins of the effect and attempt to quantize the pattern formation.  It 

was found that the patterns were repeatable and occurred at very predictable 

thresholds based on power and pressure, which were dependent on a newly 

defined material parameter.   

 These studies provide much experimental data on the thermal 

nonlinearities of gases, as well as providing a basis for many future studies 

requiring high cw optical fields.  They have also raised new questions into 

fundamental interactions in such gases, with an open question being the nature of 

the dependence of the pattern formation parameter on fundamental material 

properties. 
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Chapter 3 

Filamentation 

 

3.1 Introduction 

In the previous chapter, we saw that in the presence of a large nonlinearity a 

strong laser beam will develop complicated transverse structure, leaving the 

resulting beam useless for most applications.  In this chapter we will explore a 

similar degradation of intense laser beams, but now for short pulses rather than 

continuous wave beams.  For this case, the duty cycle of the laser is too low to 

cause a significant heating of the material, so the thermal effects that were 

discussed previously will not be an important factor.  However, the peak 

intensities of these pulses are many orders of magnitude larger than those for the 

continuous wave beams, such that even the relatively weak electronic and 
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molecular nonlinearities will be sufficient to cause a significant change in the 

pulse structure. 

 The theory of filamentation [1] will be discussed in the next section, but 

the process can essentially be considered an amplification of noise on the laser 

beam.  In such a view of filamentation, undesirable off-axis modes couple to the 

main beam and grow at the expense of the energy in the main beam.  This view is 

also key to the method that was used to show an experimental reduction in the 

level of laser beam filamentation.  In the method used, it is the nature of the mode 

couplings that is altered to reduce the energy taken from the pump to the side 

modes.  In theory, the energy flow can be not only reduced, but also completely 

reversed, such that any energy in the weak no isy side modes is actually fed back 

into the main pump beam. 

 

3.2 Theory of laser beam filamentation 

Filamentation can be viewed as a near- forward four-wave mixing process.  Figure 

3.1 displays the interaction schematically.  Two on-axis photons from the main 

beam are annihilated, creating two off-axis photons, with equal but opposite 

transverse wave vectors.  It is generally assumed that the main beam is very 

strong, while the off-axis modes are initially weak perturbations.  In the classical 

case, these perturbations are slight distortions to the wavefront, while in the  
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Figure 3.1:  Schematic representation of filamentation.  

 

quantum case the perturbations are vacuum fluctuations.  Making the strong pump 

approximation, the system can then be analyzed by writing and solving a set of 

coupled equations for the side modes. 

As with many areas in nonlinear optics, research into filamentation began 

soon after the invention of the laser.  A detailed theory of filamentation was first 

developed by Bespalov and Talanov [1].  According to the theory they put forth, 

the size of the generated filaments will be 

In
n

k 22
π

=Λ         (3.1) 

where 
λ
π2

=k is the magnitude of the wave vector for a beam of wavelength λ, n is 

the linear refractive index of the medium of propagation, n2 is the nonlinear 

refractive index of the medium, and I is the intensity of the incident laser beam.  

Each filament is predicted to contain approximately one critical power.  The 
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critical power is the power at which the effects of nonlinear focusing exactly 

balances the effects of diffraction, and is given by 

2
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8
)61.0(

nn
Pcr

λπ
= .         (3.2) 

As an example, at λ = 1 µm carbon disulfide has a nonlinear refractive index n2 = 

2.6 x 10-14 cm2/W, a linear index n = 1.7, and thus has a critical power of 33 kW 

[7].  During the formation of each filament, the perturbations are predicted to 

display exponential growth, with the exponential gain factor for a given mode is  
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Kg −=         (3.3) 

where K is the magnitude of the transverse wave vector a the given mode and E is 

the rms field strength.   

 The relation of these small-scale filaments to stimulated Raman scattering 

(SRS) were also explored during this time frame [2].  Also, molecular exitation is 

predicted as a dominating mechanism for the filamentation process rather than the 

electronic Kerr effect for filaments of very small size.    It was also at this time 

that the moving focus model was developed, being experimentally explored by 

Loy and Shen [5].  This model says that in many cases, the filaments one sees are 

nothing more than tracks of moving foci rather than quasi-stable self- trapped 

filaments.  That model is still one of the most widely used to describe 

filamentation, though recent discussions arising from the study of ultrafast 



3.2.  THEORY OF LASER BEAM FILAMENTATION 33 

filamentation question how widely applicable the model really is.  The interplay 

between filamentation and stimulated Rayleigh-wing scattering (SRWS) was also 

first explored during this period [76].  Another early key paper in this area 

explores the amplification of nonforward Fourier components of a beam as the 

source of filamentation [3].  In addition to seeing multiple filaments, through use 

of single mode laser beams single filaments were also observed [4].  A good 

summary of this early work, as well as its connection to other areas of self-action 

effects and current research was written by Nagasako and Boyd [77]. 

 For experimental exploration of the properties of filamentation, the side 

modes are often purposely populated.  This can be achieved by putting a 

transverse spatial modulation on the beam.  As long as the depth of modulation is 

weak, the above analysis is still correct.  

 During most of the 34 years since the original development in the field of 

filamentation, the new experiments and theoretical studies have involved attempts 

to quantify and limit the effects of filamentation.  One notable experiment was the 

verification of Equation 3.3 [6].  For this experiment, weak transverse structure 

with various periodicity was imposed on the beam using a shear plate.  The 

growth of the modulation depth was then measured as a function of the 

modulation period.  Figure 3.2 shows a plot of Equation 3.3 using parameters of 

the given experiment.  
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Figure 3.2:  Plot of side mode gain versus transverse wave vector.  From Equation 3.3, using the 
experimental parameters used in this study.  The peak of the curve corresponds very closely to an 
angle of 3 mrad. 
 

 With the recent availability of ultrafast table top laser systems, 

filamentation is also being explored in the femtosecond regime [78-83].  Although 

the basic theory is the same as in other regimes such as picosecond and 

nanosecond, there are marked differences in the characteristics of the filamented 

beam.  One of the most studied of these is the presence of supercontinuum 

generation (SCG) in a cone about the main beam.  Also, new models to explain 

the dynamics of filamentation have been developed.   

 According to the classical theory of filamentation, small off-axis modes 

grow during propagation at the expense of the desired beam.  Thus, the theory 
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would predict that with a perfect beam, for example an infinite plane wave, 

filamentation would be eliminated.  However, in the quantum mechanical theory, 

the off-axis modes can arise from quantum fluctuations even for a classically 

perfect input beam [84].  However, it has been theoretically predicted that even 

such quantum induced filamentation can be suppressed [85].  The analysis used is 

very similar for that described for the classical case, but the classical side mode 

amplitudes are now replaced by quantum mechanical mode amplitudes.  The gain 

eigenmodes are then determined.  For the case in which the side mode amplitudes 

are perfectly squeezed, they define a reduction factor of the intensity of the 

generated light with respect to the amount that would be generated for a vacuum 

field input as the side modes.  The reduction factor depends on the input side 

mode intensity and is given by 

    
2
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where ao is the input quantum mechanical amplitude of one of the side modes.  

The remainder of this chapter, however, will focus on a method that was 

experimentally implemented to reduce classically induced filamentation.  The 

method is closely related to that described here for quantum induced filamentation 

as will be seen. 
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3.3  Theory of filamentation reduction 

There are several possible techniques to attempt to control filamentation.  From a 

general point of view, these can be divided into techniques which either alter the 

beams to reduce their coupling to the nonlinearity responsible for filamentation or 

alter the material to directly reduce the nonlinearity.  In the remainder of this 

chapter, several of these will briefly be introduced, while the bulk will focus on a 

technique of the first kind, namely controlling the phases of the side modes of the 

beam to decrease the nonlinear gain experienced.  

 One technique developed for reducing the effects of filamentation is to 

introduce a transverse structure on the beam [86-88].  The basis of the technique 

is to split the beam into two or four beams, for one or two dimensional control 

respectively.  The beams are then allowed to interfere within the nonlinear 

medium where the filamentation would normally occur.  The interference creates 

a grating which produces a large diffraction.  Since filamentation occurs when 

small-scale nonlinear induced focusing overrides diffraction, by increasing the 

level of diffraction the threshold for filamentation is also increased.  This 

technique will be discussed further in the next chapter in relation to two-beam 

interactions. 

 A second proposed method for reducing classical filamentation is using 

population trapping [89].  In this method, two copropagating laser beams are used 
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to prepare the atoms of the nonlinear medium in an off-resonant trapped state.  

This eliminates any dipole moment and thus the nonlinearity that is responsible 

for filamentation goes to zero. 

 The two methods introduced thus far, as well as the method used here 

which will be discussed in detail below, all alter the coupling of the beams to the 

filamentation gain, although the method of population trapping can also be 

viewed as a way to temporarily alter the properties of the material.  Other 

permanent material changes include using composites which have similar linear 

properties to the desired transmission material, but which have nearly zero 

nonlinearities [90].   

 The method which is the focus of this study is controlling the relative 

phases of the spatial side modes to change the coupling to the pump beam.  The 

experiment that was performed will be discussed in the next section, while the 

remainder of this section will present the theory of this interaction. 

 The theory behind the above described technique is based on the idea of 

minimizing the gain coefficient associated with the exponentially growing 

solution to the coupled wave equations describing the side modes [7].  Assuming 

the main beam does not get depleted by the side modes and the nonlinear medium 

does not exhibit gain or loss, the equations are  

       kzieAdzdA ∆= *
211 / κ            (3.5a) 
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       kzieAdzdA ∆−= 1
*
2

*
2 / κ                 (3.5b) 

where A1 and A2 are the side mode amplitudes, κ1 and κ2 are the nonlinear 

coupling coefficients, and ∆k is the phase mismatch.  By solving Equations 3.5a 

and 3.5b, one finds that the two amplitudes each have two components which 

experience exponential gain, though based on the relative sizes of the coupling 

coefficients, the phase mismatch, and the relative phases of the input amplitudes, 

the gain eigenmodes can be controlled to cause growth (positive real gain), loss 

(negative real gain), or oscillation (imaginary gain).  For experimental purposes, 

the coupling coefficients are fixed by the medium used, and the phase mismatch 

can generally be taken to be zero since the near- forward four-wave mixing prefers 

the phase matched condition.  Thus, the only practical control one has over the 

gain coefficients is controlling the relative phase of the input side modes.  One 

finds that the case for maximum loss (negative real gain) is achieved when [85] 

          iAA =)0(/)0( 1
*
2 .        (3.6) 

Thus, side modes occupied by equal amplitude fields separated in phase by π/2 

radians at the input of the nonlinear interaction region would be predicted to 

undergo exponential loss rather than exponential gain, thus completely 

suppressing filamentation into those modes. 
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3.4 Filamentation reduction experiment 

The experimental configuration shown in Figure 3.3 was used to explore the 

theory of filamentation reduction discussed in the previous section.  The second-

harmonic output (532 nm) of a 25 ps, 10 Hz Nd:YAG laser is used.  The total 

energy used was on the order of 20 mJ.  A ha lf-wave plate (HWP) and polarizing 

beamsplitter (PBS) are used to control the fraction of the laser intensity that is 

split from the main (pump) beam.  A second HWP is used to control the relative  

 

 

 

 

Figure 3.3:  Experimental configuration used for filamentation reduction experiment. 
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polarization of the sidemodes with respect to the pump beam.  The sidemode 

intensity is then divided into two equal beams by a nonpolarizing beamsplitter 

(BS1).  One of the sidemodes can then be phase shifted with respect to the other 

beams.  For this experiment, the phase shifter (PS) is a microscope cover slip 

which is rotated to change the incidence angle by a precision rotation stage.  The 

sidemode beams are then redirected about the pump beam via a second 

nonpolarizing beamsplitter (BS2).  The placement of the mirrors and 

beamsplitters, as well as the initial angle of the phase shifter, are adjusted such 

that when the three beams overlap in the 10 cm cell containing the nonlinear 

liquid, the relative phase between any two of the beams is zero.  The crossing 

angle is chosen such that the sidemode beams are near the peak of the 

filamentation gain curve as determined by Equation 3.3.  For the current 

parameters, the angle is approximately 3 mrad.  Behind the nonlinear cell, an 

aperature is placed to only pass one of the sidemodes.  A detector records the 

intensity of the sidemode.  Pump reflection from BS2 is used to monitor energy 

stability of the pump to minimize noise.   

Figure 3.4 shows the detected sidemode intensity versus phase angle.  

Note that the shape of the curve is in agreement with the theory presented in the 

previous section.  The visibility of the curve, however, is low, with the maximum 

reduction observed being 20%.  It is believed that the primary reason for the low  
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Figure 3.4:  Generated side-mode energy versus phase shift for filamentation reduction 
experiment. 
 

visibility of the experimental results was the level of overlap (spatial and 

primarily temporal) in the nonlinear interaction region.  If the peaks of all three 

beams did not perfectly coincide, the effect would have only taken place over 

certain regions of the beams.  A very slight error in overlap could easily account 

for all of the residual filamentation gain seen in the experiment.   
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3.5 Conclusion 

Filamentation of laser beams is in general a very undesirable process that destroys 

the transverse structure of the beam.   The process depletes useful energy from the 

main portion of the beam and provides energy to undesirable off-axis modes.  

This process often places a practical upper bound on the amount of energy that 

can be propagated through a given material. 

 In this chapter, we initially explored the theoretical basis for the process of 

filamentation.  The bulk of the chapter focused on methods to reduce the effects 

of the process.  It was seen that the primary choices towards such an end are 

reducing (or otherwise altering) the coupling of the unwanted modes with respect 

to the main beam or directly reducing the nonlinearity of the material in which the 

laser beam is to be propagated.  Since the second option requires either new 

material development or complicated multiple beam structures, a method of the 

first type was explored. 

 It was discussed theoretically and then shown experimentally that one way 

to reduce the gain seen by the unwanted side modes is to control the relative 

phase of two corresponding modes on each side of the main beam.  If the phase is 

correctly selected, in theory such modes would no longer grow, but would instead 

decay.  An experiment was performed to verify this theory.  The experiment was 

unable to show an actual decay of the input modes, but did show a marked 
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reduction in the gain of the input side modes based on the control of the relative  

phases.  It is believed that with more precise optics and more stable mounts such 

that the overlap of the three short (picosecond), small (sub-millimeter) pulses 

could be better optimized, results much closer to the theoretical predictions could 

be achieved. 

 Finally, a few notes on possible extensions and applications of this method 

should be mentioned.  As was briefly discussed, this method is directly related to 

a technique to reduce quantum induced filamentation as well as classically 

induced filamentation [85].  Achieving this would allow for the propagation of 

extremely intense laser pulses through highly nonlinear media without significant 

degradation.  Such capabilities would open the door to many interesting 

applications in optical processing. 
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Chapter 4 

Pattern Generation by Two-Beam Interactions 

 

4.1 Introduction 

In the previous chapter, we explored the process of laser beam filamentation and a 

method of reducing its effects.  As we saw, filamentation is a third-order 

nonlinear process by which off-axis modes grow.  If instead of one strong beam, 

two strong beams are interacted in a third-order nonlinear material, other related 

processes can also lead to the growth of off-axis modes.  These processes are 

often studied under the general heading of nonlinear pattern formation, which has 

been of considerable interest [35-55].   

 In this chapter, we will explore various third-order, two-beam pattern 

formation processes.  These include self-diffraction [37-40], seeded conical 

modulational instability [41-53], and two-beam excited conical emission 

(TBECE) [54-55].  Although studies have been performed on these effects in 
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some material systems, there exists little if any published analysis of such effects 

in nonlinear liquids such as will be discussed here.   

 One reason for the interest in pattern formation processes is the possibility 

for the development of new nonlinear sources of light.  Currently, the primary 

source for nonlinear states of light are second-order (χ(2)) crystals (as will be the 

case for the quantum optics experiments discussed in Chapter 5).  Such crystals 

have several drawbacks as quantum sources, including (but not limited to) high 

cost, fragility, and possibly most importantly, increased signal wavelength with 

respect to the pump.  Since the crystals use the process of parametric 

downconversion, the generated photons have twice the wavelength (for the 

degenerate case as is generally used) as compared to the pump laser.  With the 

processes discussed in this chapter, a third-order (χ(3)) nonlinearity is used.  

Unlike χ(2) nonlinearities which do not exist in symmetric structures, any material 

can exhibit χ(3) nonlinearities.  Thus, the high cost and fragility of the crystals is 

no longer an issue.  Also, the χ(3) processes discussed here are all based on 

degenerate four-wave mixing and thus the generated photons have the same 

wavelength as the pump laser.  Therefore, such processes have great potential as 

sources for quantum states of light if subsequent experiments can adequately 

detect quantum correlations within the generated patterns and separate these from 

the uncorrelated light for use in quantum optics experiments. 
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 In the remainder of this chapter, the observed processes will be discussed 

in detail.  The physical origins and  the agreement of the experimental results with 

theory will be explored.  Relation of this work to filamentation reduction 

experiments (as discussed in the previous chapter) will also be discussed. 

  

4.2 Processes of pattern formation 

A large number of third-order nonlinear processes can lead to pattern formation.  

An excellent experimental study of several such processes in barium vapor is 

given by Chalupczak et al. [35].  A detailed theoretical treatment of some of these 

processes and their interplay was performed by Kauranen et al. [36].  In this 

section a brief description of the origin of the patterns witnessed will be given, 

with the experimental results given in the next section. 

 As stated earlier, three basic forms of two-beam pattern formation were 

witnessed in this study.  These included self-diffraction, seeded conical 

modulational instability, and two-beam excited conical emission.  Although vastly 

different from an experimentally qualitative point of view, from a theoretical 

standpoint the first two types of pattern formation are very closely related.  In this 

section, we will first discuss the similarities and differences of those two effects 

while discussing their general family of effects, namely modulational instabilities.  
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Then two-beam excited conical emission, which is a vastly different process, will 

be discussed. 

As a first step in discussing the pattern formation, it is useful to note the 

connection between filamentation and modulational instability.  Modulational 

instability is a general term that can be used to describe temporal or spatial effects 

in a variety of systems.  Filamentation actually refers to a special case of 

modulational instability, namely that of single-beam spatial modulational 

instability.  Normally, filamentation is also taken to be unseeded whereas 

modulational instability is often analyzed in either an unseeded or a seeded 

regime.  In the last chapter a seed was introduced purely for proof-of-principle, 

but the source for filamentation is generally taken to be random noise.  However, 

since filamentation is a special case of the general class of physical phenomena 

known as modulational instability, much of what was discussed in the last chapter 

on gain properties and transverse wavevectors will apply to the cases of two-beam 

modulational instabilities to be discussed in this chapter. 

 One very important difference in almost all of the cases to be discussed in 

this chapter as compared to those discussed in the previous chapter is that the 

level of seeding is large.  That is, the visibility of the intensity modulation in the 

nonlinear interaction region is high.  In most cases to be discussed here, the two 

beams are of nearly equal intensity, giving nearly 100% depth of modulation.  
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This is as opposed to depths of modulation of generally much less than 1% in the 

previous chapter.  Thus, now rather than analyzing the pump as a very strong 

plane wave used merely to find the exponential gain parameter for the weak side 

modes and ignoring any effects one beam has on another, it is now clear that the 

dynamics of the process strongly depend on both beams and the analysis must be 

more precise. 

 To study the dynamics of how the interplay between the beams affects the 

propagation, one can describe the interaction by the nonlinear Schrödinger 

equation (NLSE) [7] given by 

  AAiAkizA o
22)2/(/ γ+∇=∂∂ ⊥        (4.1) 

where A is the amplitude envelope of the optical field and γ is the measure of the 

nonlinearity given by 

πωγ 2/2 oonn≡         (4.2) 

with no and n2 the linear and nonlinear refractive indices as before and ωo the 

optical frequency.  We will return to the NLSE later to compare its predictions to 

the experimental results for the case of self-diffraction. 

 Note that in Equation 4.1, the field envelope was written as a single 

variable.  To account for the two beam interactions, the field envelope used is the 

appropriate sum of the two pump beams, which are shifting in relative position 

during propagation in space and time.  Due to both the complexity of the equation 
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and of the input field, an analytical solution is not possible and thus only 

numerical solutions will be possible. 

 Due to the similar physical origin of two-beam modulational instability 

and single-beam filamentation, one might assume that there will only be 

significant coupling when the effective transverse wave vector defined by the 

crossing angle of the two beams falls in the high-gain region as defined by 

Equation 3.3.  However, as will be shown, all of the interactions to be described 

in this chapter happened well outside of this range.  In fact, it is clear that 

Equation 3.3 defines a maximum transverse wave vector for which one should 

expect exponential growth, and above that value the gain will become imaginary 

leading only to sinusoidal oscillations.  In all cases in this chapter, even in the 

small crossing-angle studies leading to self-diffraction, the beam intensities were 

held to such a low level that Equation 3.3 would have always predicted the 

transverse wave mode of interest should oscillate rather than grow.  The fact that 

the modes do actually grow exponentially (which is predicted by the NLSE and 

was observed experimentally) shows directly how significant the difference of 

strongly seeded modulational instability is from that of weakly seeded (or 

unseeded) modulational instability (filamentation). 

 It is instructive to examine the form of the generated fields from these 

processes.  For modulationa l instability, the nonlinear polarization is given by  
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where Ap is the pump field and An is the noise (seed) field  [45].  However, for the 

current case, it should be noted that generally one of the two beams acts as the 

pump while the other of the two beams acts as the “noise” rather than having a 

nominally unseeded process.  Thus, the pump and noise amplitudes can be of 

nearly equal levels for these studies.  The effect of varying the relative strength of 

the two beams was explored in the experimental studies (as well as the computer 

simulations) as will be discussed in the next section. 

 It should be noted that in the case of unseeded modulational instability, the 

generated mode grows in a cone about the pump at the angle of maximal gain as 

given by Equation 3.3.  However, in the case of seeded modulational instability, if 

the seed intensity is a significant fraction as compared to the pump intensity, not 

only does the angle of maximal growth match the seeding angle, but the form of 

the output can also change significantly.  Note that both the cases of self-

diffraction and seeded conical modulational instability can be described by the 

same mathematics and basic theory, but are qualitatively very different processes.   

 The process of two-beam excited conical emission has many differences 

(both qualitative and in origin) from modulational instability.  If we examine the 

nonlinear polarization for this process, we find 
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Note that unlike the case of modulational instability, now two distinct pump fields 

are now required.  Thus, each of the two beams acts as a pump and the noise field 

truly is now noise and not a strong laser field.  This leads to a strong dependence 

on the rela tive properties of the two beams for the appearance of this cone, 

whereas for the modulational instability cones depended only on single-beam 

properties, not relative properties (other than crossing angle). 

 

4.3 Two-beam experiments in nonlinear liquids 

To explore two-beam interactions, the experimental configuration shown in 

Figure 4.1 was used.  The second harmonic output (532 nm) of a 25 ps, 10 Hz 

Nd:YAG laser is used.  A half-wave plate (HWP) and polarizing beamsplitter 

(PBS) are used to divide the output into two beams with controllable power ratios.  

A second HWP is used to control the relative polarizations of the two beams.  A 

nonpolarizing beamsplitter is then used to direct the two beams into a cell 

containing a nonlinear liquid.  The system is aligned such that the two beams are 

in phase when they overlap in the cell.  The output of the cell is then imaged to a 

detection plane.  The pump beam intensities are monitored at the other output of 

the beamsplitter. 

 A variety of parameters are explored in the experiment.  Both a 3 cm and 

a10 cm cell are used to determine the dependence on interaction length.  The 
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Figure 4.1:  Experimental layout for two-beam studies.   

 

nonlinear material is varied, with carbon disulfide (CS2), carbon tetrachloride 

(CCl4), and toluene (C7H8) being used.  The beam crossing angle is also varied 

over a wide range, from approximately 3-40 mrad.  Finally, the parameters of the 

beams are also varied, including energy (relative and absolute), beam waist, and 

relative polarization.   

 For the current study, beam crossing angle was the most important factor 

in determining the qualitative structure of the generated patterns.  For small 

crossing angles, those on the order of a few milliradians, an area of spots as that 

shown in Figure 4.2 is seen.   
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Figure 4.2:  Experimentally obtained self-diffraction pattern.  The pattern was generated by 
crossing two intense frequency-doubled Nd:YAG pulses in CS2 at small angles.  The two strong 
central spots are the pump beams after the cell, while the four spots on either side of the pump are 
the generated modes.  The center-to-center spacing on each beam is equal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3:  Simulation of self-diffraction experiment at low intensities.  All cases represent a 10-
cm CS2 cell with 3.2 mrad crossing and equal intensity pumps.  The pumping intensities are 2.8 
MW/cm2 (blue), leading to almost no change in beam profile; 5.7 MW/cm2 (red), in which the 
onset of whole-beam self-focusing is observed; and 8.6 MW/cm2 (green), in which the pump 
experiences significant self-focusing and filamentation, and the first-order self-diffraction modes 
appear. 
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Figure 4.4:  Simulation output for parameters matching experimental conditions of Figure 4.2.  
Two generated orders are easily observed.   
 

 The experimental data obtained at the small crossing angles such as shown 

in Figure 4.2 was compared to theory by numerically solving the nonlinear 

Schrödinger equation using a split-step Fourier method [91] with Matlab code 

written by John Heebner [92].  Figure 4.3 shows the results for three cases at low 

pumping intensities.  Note that for sufficiently low intensities, the beams are 

essentially unaffected, as would be the case for a linear regime.  At a slightly 

higher intensity, whole beam self- focusing is observed, but beam interaction 

effects are still not witnessed.  At yet higher intensities, not only do the individual 

pump beams undergo significant whole-beam self- focusing and small-scale 
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filamentation, but also the onset of the two-beam generated self-diffraction spots 

can be seen.  By increasing the intensity yet further to match the experimental 

conditions used for Figure 4.2, the output of the simulation shown in Figure 4.4 is 

obtained.  Now two self-diffraction orders are clearly visible on either side of the 

pump beams.  Also, the pump beams show serious degradation due to 

filamentation.   Although it is not visually obvious how well the simulation results 

of Figure 4.4 agree with the experimental data of Figure 4.2, careful 

measurements of the energy in the various spots in Figure 4.2 show the 

quantitative agreement to be excellent.  To quantify the energy distribution in the 

output profile of Figure 4.2 with respect to the input, first about 12.2% is lost to 

reflection losses from the cell.  Slightly over half of the energy is contained in the 

highly filamented modes surrounding the pump beams (the large gray regions in 

Figure 4.2).  Approximately 28% of the energy remains in the main mode of the 

pumps.  Another 7.3% of the energy is found in the first-order self-diffraction 

modes, while about a tenth of that amount is found in the second-order modes.  

Much less than 1% of the total energy resides in the higher-order self-diffraction 

modes.  Thus, even though the camera saturation and response allowed it to show 

four orders, the third and fourth orders would be predicted to be far too weak to 

appear in the simulation results, as is the case.  As many as six orders on either 

side of the pumps were visible in some cases. 
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 As the crossing angle is increased, the spots are no longer seen, but are 

instead replaced by conical structure.  Two distinct types of conical emissions 

were observed, and could occur either independently or simultaneously.    The 

cone connecting the two pumps is two-beam excited conical emission (TBECE).  

The theory behind TBECE has been well established [55].  Figure 4.5 shows a 

TBECE pattern obtained in the experiment.  An interesting feature that can be 

seen in that figure as well is the bright spot in the center of the cone.  Note that the 

phase matching condition satisfied by the bright spot is exactly the same as that  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.5:  Two-beam excited conical emission.  Note also the bright spot obtained in the center 
of the cone, similar to reverse filamentation process. 
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for filamentation, but now with the off-axis modes acting as the pump and the 

central spot growing from noise. 

The larger cones are a form of seeded modulational instability.  Figure 4.6 

shows a case when both occurred simultaneously.  A clear threshold was 

identified for this process.  Table 4.1 summarizes the threshold condition.  Several 

parameters were varied to determine that the threshold is independent of material 

and only depends on the nonlinear phase shift.  The three liquids previously 

mentioned were all used.  In addition, two cell lengths were used to determine that 

dependence.  Also, two beam waists were used to separate power effects from 

intensity effects.  For all of the cases, it was found that the threshold for  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6:  Simultaneous presence of both TBECE and seeded modulational instability.  Note 
also the bright spots opposite the pump beams. 



4.3.  TWO-BEAM EXPERIMENTS IN NONLINEAR LIQUIDS 58 

Material Nonlinearity, 
n2 (cm2/W) 

Cell Length, L 
(cm) 

Intensity, I 
(MW/cm2) 

Threshold, 
n2ILko (rad) 

CS2 2.6 x 10-14 3 20.7 0.19 
CS2 2.6 x 10-14 10 6.2  0.19 
CCl4 1.5 x 10-15 3 * * 
CCl4 1.5 x 10-15 10 107.5 0.19 
C7H8 1.1 x 10-14 3 49.0 0.19 
C7H8 1.1 x 10-14 10 14.7 0.19 

 
Table 4.1:  Experimentally determined threshold conditions for seeded conical modulational 
instability.  Note that the required nonlinear phase remains constant for all cases.  The * denote the 
case for which beam degradation due to high intensities prevented conical formations. 
 

noticeable onset of the seeded modulational instability cones was about 0.19 rad 

of nonlinear phase in the pump beam.  For comparison, the cones shown in Figure 

4.6 were generated from a configuration yielding 0.75 rad of nonlinear phase for 

each pump. 

 Figure 4.7 shows a case in which one of the two pump beams is greatly  

 

 

 

 

 

 
 
 
Figure 4.7:  Seeded conical modulational instability with one (right) beam greatly attenuated.  
Attenuated beam contains 80% less intensity than strong beam, with strong beam well above 
stated threshold condition and weak beam just below threshold.  Note that the strong beam 
generates a cone, while the weak beam merely acts as a seed for the strong beam. 
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attenuated.  The strong beam shown on the left again generates approximately 

0.75 rad of nonlinear phase, whereas the weak beam on the right only generates 

0.15 rad of nonlinear phase.  Since the weak beam is below threshold, it cannot 

generate a cone.  However, the strong beam still creates a cone that is nearly 

independent of the strength of the seed (as the seed attenuation becomes very 

large, such that the seed is orders of magnitude weaker than the pump, the 

strength of the cone does strongly depend on the strength of the seed, but that case 

is more close to the weakly seeded filamentation regime of the previous chapter).   

 Upon investigating the properties of the cone, it was determined that while 

the energy of the cone was primarily due from the pump beam (about which the 

cone is formed), essentially all of the properties of the beam are dependent on the 

seed, including the polarization of the cone.  The fact that the polarizations of the 

cones will follow the polarizations of the seeds gives good reason to believe that 

this process could be a candidate for a polarization entangled quantum optical 

source. 

 It is worth mentioning here that a primary motivation for first performing 

these experiments was to investigate methods for control of filamentation as 

discussed in the previous chapter.  A previous work [86] stated that by interfering 

two (or four, for control in two dimensions) beams in a nonlinear medium to 

increase the effect of diffraction, the threshold for filamentation would be greatly 
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increased, as filamentation occurs when nonlinear focusing greatly dominates 

diffraction.  Using an experimental configuration essentially identical to the one 

described in the paper, the first goal was to reproduce the results listed (which 

claimed a very large increase in threshold), and then to expand upon the 

technique.  However, instead of being able to reproduce the results of the paper, 

the beams were seen to lose energy to the off-axis modes described in this 

chapter.   

  

4.4 Conclusion 

This chapter explored the transverse structure generated when two intense laser 

pulses were crossed in nonlinear liquids.  It was seen that at small crossing angles 

(a few milliradians), a line of spots appeared at the output, an effect known as 

self-diffraction.  Computer simulations numerically solving the nonlinear 

Schrödinger equation for the experimental parameters were performed, and the 

results closely matched the experimental data.   

 For larger angles (tens of milliradians), conical emissions replaced self-

diffraction.  Two types of conical emissions were observed, either separately or 

simultaneously, depending on experimental conditions.  The one form of conical 

emission was seeded conical modulational instability, which obeys the same form 

of phase matching as the self-diffraction process.  In that process, one of the 
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beams acts as a seed while the other beam acts as a pump, with a cone forming 

around the pump beam and passing through the seed beam.  The formation of 

such a cone is only dependent upon the strength of the pump, but its properties 

(such as polarization) are dependent upon the seed.  A well-defined threshold 

condition was identified for that process. 

 The other type of conical emission was two-beam excited conical 

emission.  In that process, a cone forms connecting the two pump beams.  Unlike 

the processes described above which were directly seeded, this process grew from 

noise and thus depended critically upon the overlap and intensity balance of the 

two pump beams.   

 My work is believed to be the first detailed study of these three processes 

in nonlinear liquids, which is significant because most previous studies have been 

done in highly resonant nonlinear materials as opposed to the nonresonant 

materials studied here.  One conclusion to be drawn from these studies is the 

inability to reproduce the filamentation reduction experiment using two-beam 

interference [86].  It is not known whether the original work was flawed or if 

there was an unpublished difference in the original experiment and the one 

performed here.  Finally, it is hoped that the processes studied here will lead to 

the development of new nonlinear sources of light.  While indications suggest that 
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useful quantum correlations may exist within the patterns, further studies are 

required to demonstrate this effect conclusively. 

 



 63 

 

 

 

 

 

Chapter 5 

Coincidence Imaging 

 

5.1 Introduction 

To this point in the thesis, we have focused on fundamental transverse nonlinear 

optical effects.  The remainder of the thesis will explore two applications of 

transverse information contained within an optical field.  In this chapter, the 

application we will discuss is coincidence imaging [13, 15-22]. 

 Coincidence imaging is a technique in which an object is imaged by 

photons that do not directly interact with the object.  Two highly correlated beams 

of light are required.  One beam of light is incident on the object.  Behind the 

object, a detector determines if the light was transmitted, but does not spatially 
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resolve the light.  The other beam is simultaneously spatially resolved in an 

object- free region.  When there is a coincidence between the detection of light 

transmitted through the object with the detection of a portion of the spatially 

resolved beam, that portion is added to the image to be formed.  Over time, as the 

correlated beams cover the entire area of the object, a complete image is formed.  

 Prior to the work described in this thesis, all coincidence imaging 

experiments had been done using quantum entangled photon beams [13] as the 

source.  One paper [32] went so far as to claim that the technique required 

quantum entanglement.  The experiments described in this chapter, however, 

show that coincidence imaging can be performed using highly correlated classical 

beams of light [15].  By doing a series of experiments using classical and 

quantum sources, it is determined that the primary advantage for using quantum 

entangled photons as the source for coincidence imaging is the ability to image an 

object in any plane with high resolution without altering the source [21]. 

  

5.2 Classical coincidence imaging experiments 

Many of the features of quantum coincidence imaging can be reproduced 

classically.  In the initial experiment to explore classical coincidence imaging, the 

configuration shown in Fig. 5.1 was used.  The entangled photon source used in 

the quantum experiments is simulated classically by the shaded box.  The output  
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Figure 5.1: The experimental configuration used for the proof-of-principle classical imaging 
experiment. 
 

of a 5 mW cw helium neon (HeNe) laser at 633 nm is temporally modulated by a 

chopper, creating pulses of light.  A mirror is then scanned in two dimensions.  

The beam then is split equally by a nonpolarizing beamsplitter.  Each resulting 

beam is then directed onto a lens.  In the upper path, the object is placed in the 

back focal plane of the lens.  In the lower path, a CCD camera is placed in the 

back focal plane of the lens.  The object used is a transparence with “UR” printed 

on it.  It can be considered a binary amplitude mask, with the printed letters 

having essentially zero transmission and the remainder of the transparency having 

nearly unity transmission.  The lens was chosen such that the focal spot in the 

object plane is small compared to the dimensions of the object.  When light is 

transmitted through the object, it is collected by a bucket detector which is then 

used to trigger the CCD camera.  Each frame of the camera is captured by 

computer and summed.  The resulting image is shown in Fig. 5.2.   
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Figure 5.2:  The image produced by the classical coincidence imaging experiment. 

 

After completion of the above described experiment in which it was 

verified that classical coincidence imaging could produce a sharp image, further 

experiments were needed to compare the technique to that of quantum 

coincidence imaging.  One important question was whether a classical source 

could be used for situations other than imaging simple amplitude masks.  It has 

been previously shown that using a quantum entangled source a ghost diffraction 

image could be acquired [18].  Using the experimental configuration shown in 

Fig. 5.3, we explored the possibility of performing ghost diffraction classically.  

The experimental set-up is similar to that described above, but a few crucial 

changes were made.  First, rather than focusing the light prior to the beam splitter, 

the light is collimated.  In the object arm, the amplitude mask is replaced with a 

double slit.   
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Figure 5.3:  The experimental configuration and data of the classical ghost imaging experiment. 

 

The slit configuration was two 150 µm slits separated by 450 µm.  In the other 

arm, the light is focused onto the detector plane.  Also, the bucket detector and 

CCD used above are replaced by two small-area (0.04 mm2) detectors.  The 

detector in the object arm is scanned horizontally.  The product of the signals 

from the two detectors were averaged over 10 seconds and recorded.  The results 

(also shown in Fig. 5.3) show the expected diffraction pattern for the double slit 

used in the experiment to very high accuracy. 

 A second feature of classical coincidence imaging that was explored was 

the ability for a single source to accurately image an object in an arbitrary plane.  

By choosing an appropriate imaging configuration, it was already shown that the 

technique can be used to make a sharp image, but simple diffraction theory would 

imply that if the image is sharp in one plane it must be blurry in other planes.  Fig. 

5.4 shows the experimental configurations used in this study.  The combination of 
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a HeNe laser, a 200 mm focal length lens, and the mirror on the rotating 

galvanometer created a virtual source, represented by the dashed line.  The 

parameters to create the virtual source were chosen to mimic the size and spatial 

bandwidth of the available quantum source that was used for the experiments to  

 

Figure 5.4:  Experimental configurations and data for near-field (a, c) and far-field (b, d) classical 
coincidence imaging. 
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be described in the following section.  The object used was a simple amplitude 

mask with two opaque regions 200 µm wide separated by 200 µm.  For both the 

near-field and far- field cases, the light was split by a beamsplitter.  In one arm, the 

light passes through the amplitude mask and falls onto a bucket detector.  In the 

other arm, the light falls onto a small-area detector such as was used for the ghost 

diffraction experiment.  The data was collected as above.   

 For the near- field case (a), the source plane was imaged onto the object 

(and the corresponding plane in the other arm) with unity magnification using a 

100 mm focal length lens.  In the far- field case, a 50 mm focal length lens was 

used in the object arm to focus the light onto the object, while in the other arm a 

100 mm focal length lens focuses the light into the corresponding plane.  The data 

for the near-field case (c) shows that the object is barely resolvable in that plane, 

while for the far- field case (d) the object is much better resolved.  Translating the 

image resolutions back to the source, it was determined that the system had a joint 

uncertainty product of approximately 1.5.  Classical diffraction theory limits the 

value to be equal to or larger than 1.  Thus, the system obeys the limits of 

classical diffraction theory. 

 

 

 



5.3.  QUANTUM COINCIDENCE IMAGING EXPERIMENTS 70 

5.3 Quantum coincidence imaging experiments 

In the previous section, the technique of coincidence imaging was performed 

using a classically correlated source.  We now will explore the same technique 

using a quantum entangled source.   

The experimental configuration used for quantum coincidence imaging is 

shown in Fig. 5.5.  The second  harmonic (λ = 390 nm, P = 40 mW) from a diode 

laser is directed onto a 2-mm thick Type-II BBO crystal.  A prism (not shown) 

and a colored glass filter (SF) are used to remove any remaining red photons from 

the pump beam.  The crystal is used to generate entangled photon pairs by the 

process of degenerate spontaneous parametric down conversion (SPDC).   

The process of SPDC is represented schematically in Fig.  5.6.  One blue 

pump photon is annihilated in the crystal, with two entangled red photons  being 

created.  As with any physical process, the interaction is limited by the laws of 

conservation of energy and momentum.  Thus, in general for down conversion, 

    isp λλλ /1/1/1 +=                    (5.1) 

where λp is the wavelength of the pump and λs and λi are the wavelengths of the 

generated photons, denoted signal and idler.  For degenerate down conversion, we 

have the relation 

pis λλλ 2== .        (5.2) 
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Figure 5.5:  Experimental configurations and data for near-field (a, c) and far-field (b, d) classical 
coincidence imaging. 
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Figure 5.6:  Schematic representation of spontaneous parametric downconversion. 

 

In addition to the relation given above set by conservation of energy, conservation 

of momentum also requires that the sum of the generated photon wavevectors 

equal that of the pump photon wavevector: 

pis kkk
rrr

=+ .        (5.3) 

Note that in the case of the degenerate process, this implies that the generated 

photons will be generated with equal but opposite angles with respect to the pump 

beam.  Finally, the Type-II designation means the crystal generates orthogonally 

polarized photons, as compared to Type-I which generates photons of the same 

polarization. 

 After the BBO crystal, a prism is used to remove the remaining pump 

photons from the beam path.  The entangled photons are separated at a polarizing 

beamsplitter (PBS).  An interference filter (SF) with 10 nm bandwidth is used to 

eliminate any excess blue or other noise photons in the area of the detector, 

passing only the desired wavelength.  In one arm, the object to be imaged is 
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placed before the filter.  The object used was the same amplitude mask used for 

the final classical experiment described in the previous section.  Microscope 

objectives are used to couple the photons into multimode optical fibers, which 

guide the photons to single-photon counting avalanche photodiode modules (SPC-

APD).  Note that the microscope objective in the arm containing the object is 

arranged such the optical fiber is in its back focal plane, thus maximally coupling 

any photons which are transmitted through the object mask into the fiber.  

However, the objective in the other arm is positioned such that it images the plane 

that corresponds to the object plane rather than to collect all of the photons.  The 

electronic signals are sent to computer, where the photon counts on each channel 

are collected.  Also, the computer determines when a photon arrives at each 

detector simultaneously, known as a coincidence.  The experiment used a 6 ns 

window for determining coincidence.   

 The above system description is general for the entire experiment, but we 

now wish to focus on the specifics of the two imaging configurations shown, that 

of near- field (a) and far- field imaging (b).  For the near-field case, a 100 mm focal 

length lens is used to image the crystal onto the object plane with a magnification 

of approximately 1.7.  Thus, every point in the object plane corresponds to a 

particular point in the source plane.  In the far-field case, 50 mm lenses are used 

in both arms with the object (and the corresponding plane in the other arm) in the 
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back focal plane.  Thus, every point in the object plane corresponds to a particular 

angle (wavevector) from the source plane. 

 In both cases, the fiber in the arm without the mask was scanned 

horizontally, and the coincidence rate as a function of position was recorded.  

This data is shown for the near-field (c) and far- field (d) cases.  Note that the 

object features are well resolved in both cases.  Using the near-field resolution, 

the joint uncertainty in the location of the creation of the entangled photons ( −∆x ) 

can be calculated to be approximately 33 µm.  The joint uncertainty in the 

wavevector of the entangled photons ( +∆k ) can be calculated from the far- field 

resolution to be approximately 11 mm-1.  This yields a joint uncertainty product of 

15.035.0 ±=∆∆ +− kx .       (5.4) 

Thus, using a quantum entangled source a joint uncertainty product much smaller 

than that allowed by classical diffraction theory is possible.  This ability to be able 

to image an object in any plane without altering the source is the primary 

advantage to using a quantum entangled source for coincidence imaging 

applications. 
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5.4 Conclusion 

In this chapter the technique of coincidence imaging was explored.  In particular, 

experiments were performed to determine how the technique varies with a 

classically correlated source as compared to a quantum entangled source. 

 A series of three experiments in coincidence imaging using a classically 

correlated source were performed.  The first of these was a two-dimensional 

proof-of-principle experiment used to simply prove that classical coincidence 

imaging was possible, something that had previously been denied in the literature 

[32].  The second showed that not only could a classical source be used for 

imaging an amplitude mask, but could also be used for ghost diffraction imaging.  

Finally, an experiment was performed to do coincidence imaging in the near-field 

and far- field of the classical source.  This result showed that, as expected, the 

technique using a single classical source for imaging an object in an arbitrary 

plane is restricted by classical diffraction theory. 

 To see if the technique using a quantum entangled source faced the same 

restrictions as that of the classically correlated source, the near-field/far-field 

experiment was repeated using a quantum entangled source.  It was demonstrated 

that such a source could provide imaging in any plane with a high resolution.  A 

result a factor of three better than would be allowed by classical diffraction theory 

was achieved. 
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 In summary, it was well demonstrated that for a predetermined object 

plane, the technique of coincidence imaging can be performed equally well using 

either a classically correlated source or a quantum entangled source.  However, it 

was further determined that if the object plane is not known, the use of a quantum 

entangled source allows high resolution imaging for any object location, whereas 

a classical source would only image the object well in one given plane.   
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Chapter 6 

Super-Resolution for Nonlinear Optical Lithography 

 

6.1 Introduction 

Continually improving resolution capabilities of lithographic systems is critical to 

maintain advances in speed and power of computers.  This resolution can be 

stated in terms of a minimum feature size, or critical dimension (CD), given by 

[93] 

NA
kCD

λ
1=      (6.1) 

where k1 is a parameter defining the quality of the resolution, λ is the wavelength 

of the illumination source, and NA is the numerical aperture of the system.  The 

traditional theoretical limitation on k1 is given by the Rayleigh criterion [94] to be 
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0.25 (not 0.5 here since CD is the feature size, or half-period, not the full period 

of the imaging).  Without special resolution enhancement techniques (RETs), k1 is 

generally limited to about 0.75, while with currently developed RETs this can be 

lowered to about 0.35, approaching the theoretical limit [93].  The current 

industry standard for λ in optical lithography is 193 nm, although there are 

proposals for 157 nm and some even project the use of 126 nm [93, 95].  Due to 

both source and material limitations, it is doubtful that wavelengths for optical 

lithography will extend much further into the ultraviolet.  The NA of lithographic 

systems tends to be practically limited by depth-of- focus issues to about 0.75-0.85 

[93], with a normal theoretical limit of 1.  However, through immersion imaging 

techniques, lithography with an effective NA of 1.25 has been demonstrated [95].   

 Technologies such as x-ray or e-beam lithography offer much shorter 

wavelengths and thus the lure of greatly improved resolutions, but due largely to 

the well established techniques and the cost of switching technologies, there is a 

desire to push the optical lithography as far as is possible.  Most of the focus has 

gone into the RETs and reducing system NA for mask lithography systems, but 

since the idea of interferometric lithography was introduced [56], proposals to 

reduce the effective wavelength by a factor of N have recently gained interest.   

 Interferometric lithographic techniques modulate the pattern by interfering 

two beams, rather than by modulating the spatial intensity profile of a single beam 
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by a mask technique as has traditionally been done.  This would generate a pattern 

with a minimum pitch of  

θ

λ
χ

sin2
=      (6.2) 

where θ is the half-angle of the interference (note that the CD here would be the 

half-pitch).  The idea of reducing effective wavelength is to somehow generate 

patterns that have a pitch related to 
N2

λ
such that the resulting resolution would 

be the same as if you had used traditional techniques with a source wavelength a 

factor of N shorter.   

 All of the current proposals have two basic features in common.  The first 

is that they require N-photon absorbing lithographic substrates.  This takes the 

fundamental sinusoidal interference pattern of spatial frequency q and introduces 

all integer multiples of that frequency up to the maximum of N*q.  The second 

common feature is a method for removing all undesired spatial frequencies to 

leave the desired pattern.  Depending on the technique, however, this process can 

leave a large dc component, greatly reducing the visibility of the generated 

pattern.   

 The first major proposal in this area involved a classical method of 

nonlinear frequency conversion and spectral masks [57, 96-97].  In addition to its 

experimental complexity, the technique was limited to N = 2, and without 
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developing materials with extremely exotic properties had a visibility limited to 

1/3.  The next proposal to gain attention used the properties of entangled photon 

pairs generated by spontaneous parametric down conversion [14, 26].  This 

proposal in theory would allow for an arbitrary resolution enhancement with unity 

visibility, but it also had some major limitations.  The first is that although an 

experimental configuration was proposed for N = 2, it is unclear how to extend 

the technique to higher N.  The second is that even for N = 2, to achieve unity 

visibility, only 2 photons are allowed to fall onto the substrate at any 

given time, leading to what would almost certainly be an unacceptably low 

deposition rate.  In a comment on this work, we showed that the visibility falls off 

rapidly to a classical asymptotic limit of 1/5 when this low intens ity level is not 

maintained [23].  Finally, the technique commonly used for generating the 

photons doubles the wavelength with respect to the pump, giving no ultimate 

resolution increase. 

 In this chapter, I will present a proposal for a classical technique which 

can in principle allow for arbitrary resolution enhancement with unity visibility 

using a simple experimental arrangement without suffering from any of the 

limitations of the previous proposals.  I will present the theory, the experimental 

configuration, and results for up to a three-times improvement in resolution.    
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6.2 Super-Resolution Technique Theory 

A schematic representation of the technique is shown in Fig. 6.1.  A strong laser 

pulse is equally divided using a non-polarizing 50/50 beamsplitter.  One 

component is phase-shifted with respect to the other, and the two are then 

interfered on an N-photon absorbing substrate.  For a factor of M resolution 

enhancement (M = N), this is repeated M times with the phase shift of the kth 

component given by 

M
k

k
π

φ
2

=∆ .      (6.3) 

The field incident on the substrate is then given by 

kixixi
k eeeE φχπχπ ∆−+= // .         (6.4) 

Note that this would result in the normally expected sinusoidal interference 

pattern if a single photon absorber were used.  However, when incident on an N-

photon absorber, and repeated M times, the total deposition is given by 

 

 

 

 

 

Figure 6.1  Super-resolution schematic.  A strong laser beam is split at the beamsplitter (BS).  One 
portion is phase shifted, and the two components are then interfered on an N-photon absorber.   
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( )∑
=

=
M

k

N
kkMN EEI

1

*
, .           (6.5) 

For the case of M = N, it is straightforward to show that this reduces to  

χ
πMx

AAI NMNMN
2

cos,,0 +==     (6.6) 

where Aj,N is the amplitude of the component with spatial frequency χ/j found by 

expanding Nx
)

2
cos1(

χ
π

+ .  The visibility of the pattern given by Equation 6.6 is  

N

NM

A
A

V
,0

,=    (6.7) 

which falls off rapidly with increasing resolution.  However, if we now evaluate 

Equation 6.5 for the case where N > M, we now find 

..
2

cos,,0 hh
Mx

AAI NMNMN ++=> χ
π

         (6.8) 

where h.h. represents potential higher harmonic terms (2M/χ, 4M/χ, etc.) that will 

exist when N is sufficiently large.  Note that the fundamental frequency (and thus 

the resolution) of the pattern in Equation 6.8 is the same as that in Equation 6.6, 

but there are now two changes.  One is that the higher harmonic terms can provide 

some sharpening to the pattern.  However, the more important change is that the 

ratio from Equation 6.7 can now be greatly increased.  Accounting for the effects 

of the harmonics, the visibility is in general given by 
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∑+
∑+

=
MHeANA
MHoANMA

V
,0

,     (6.9) 

where AMHo represents the amplitudes of the odd harmonics and AMHe the even 

harmonics that are present.  The coefficients are given by 

                            ])!()!/[()!2(, kNkNNA Nk +−=  0≠k               (6.10a) 

and                                   ])!(2/[)!2( 2
,0 NNA N =                                                (6.10b) 

where k may take on values ...3,2, MMMk =  with the restriction Nk ≤ .  In the limit 

of large N, this allows for a visibility approaching unity for any level of resolution 

enhancement.  Table 6.1 summarizes these theoretical visibilities for various 

combinations of N and M.   

     As expected, the visibility in Table 6.1 falls off rapidly for N = M, but will 

always approach 100% for large N.  However, the levels of N required could 

present a large practical limitation to the technique.  Also, any absorption for P < 

N will not change the resolution, but will act to reduce the pattern visibility 

further. 

     It is important to note that the above procedure only depends on wavelength in 

the selection of the multi-photon absorber.  That is, even though the proof-of-

principle experiment to be described was done with a long wavelength source due 
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Resolution Enhancement (M ) Order of Absorption (N) Visibility(V ) 

2 2 33% 
2 3 60% 

2 6 94% 
2 8 98% 
3 3 10% 
3 6 48% 
3 8 67% 

3 17 97% 
4 4 3% 
4 6 14% 
4 8 28% 
4 30 97% 

10 10 0% 
10 50 27% 
10 100 71% 
10 200 97% 

 

Table 6.1:  Visibility as a function of resolution and absorption process. 

 

to availability of equipment, this process would work equally well for more 

typical lithographic wavelengths in the ultraviolet.   

     Another interesting feature of this technique is the ease with which it extends 

to the generation of arbitrary patterns.  To this point, and in the experimental 

discussion to follow, the focus was on generating simple high resolution 

sinusoids.  However, by modulating the pulses appropriately using Fourier 

amplitude weightings, it would be possible to write any pattern.   
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6.3 Super-Resolution Technique Experiment 

The experimental set-up used to explore the technique is shown in Fig. 6.2.  The 

output of a Nd:YAG laser with λ = 1064 nm, 25 ps pulse lengths, and a 10-Hz 

repetition rate is equally divided by a non-polarizing plate beamsplitter.  One of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2  Experimental set-up.  M—mirror; BS—beamsplitter; L—loss. 
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the components is simply reflected from a mirror and redirected onto the 

beamsplitter, but at a small angle.  The other component is directed into a prism 

acting as a retro-reflector.  The prism also acts to translate the beam.  When the 

two components return to the beamsplitter, they are separated by 4-5 mm.  In the 

current set-up, half of the energy is lost at the beamsplitter, but the laser produces 

several orders of magnitude more energy than was needed for the experiment.  

The two components are aligned such that they recombine approximately 2.5 m 

from the beamsplitter at an N-harmonic generator.  Harmonic generation was used 

to simulate multi-photon absorption for this experiment due to equipment 

availability.  For simulating N = 2, a second harmonic generation crystal was 

used, while for simulating N = 3 a combination of a SHG crystal and a sum 

frequency generation (SFG) crystal was used.  The angle used gives a 

fundamental fringe period on the order of mµχ 300≈ .  After filtering out the pump 

wavelengths, the resulting pattern is imaged onto a CCD camera with a 

magnification of approximately 2.4.  The captured images are collected by 

computer.   After each image is collected, the relative phase is shifted an 

appropriate amount using a translation of the retro-reflecting prism.  The frames 

are then summed by computer.  This was performed for three cases:  N = M = 2; N 

= 3, M = 2; and N = M = 3. 
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6.4     Super-Resolution Data 

Examples of the collected images are shown in Fig. 6.3.  Single frames for N = 1 

(a), N = 2 (b), and N = 3 (c) are shown.  Note that in each case the fringe spacing 

is equal, but continually sharpened with increasing N.  Part (d) shows the sum of 

two frames for N = 2.  The resolution doubling is clearly visible. 

     For each image that was collected, the data was averaged over the vertical 

dimension.  In the horizontal dimension, the data was divided by a Gaussian 

envelope and scaled to account for shot-to-shot fluctuation in pulse energy.  The 

data for a single frame then closely matched the expected form of Nx
)

2
cos1(

χ
π

+  as 

shown in Figure 6.4. 

 

  

 
 
 
                                
                                              (a)                                             (b) 
 
 
                                          
 
 
 
 
 

(c)                           (d) 
 
Figure 6.3.  Experimental intensity profiles for single shot at (a) N = 1, (b) N  = 2, 
and (c) N = 3 and (d) for sum of two shots for N = 2. 
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Figure 6.4.  Experimentally obtained data (solid lines) compared to theoretical 
data (dashed lines).  (a)  N = M = 2.  (b) N = 3, M = 2.  (c) N = M = 3. 
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6.5     Conclusion 

In this chapter, a novel technique for super-resolution lithography was introduced.  

Unlike previous classical and quantum mechanical proposals which have been 

very limited, the current proposal allows for large field strength, arbitrary pattern 

generation, has no fundamental limitations on either resolution or visibility, and is 

in principle simple to implement for any desired system performance.  The only 

foreseeable practical limitation to this technique is the need for high quality multi-

photon absorbers. 

     The technique applies a series of interfering pulses to a multi-photon absorber.  

Each successive set of pulses has a relative phase difference incremented an 

amount based on the level of resolution increase desired.  The combination of the 

phase shifts and the summing of pulses results in the elimination of all undesired 

low spatial frequency components, leaving only components of the desired 

frequency or higher and a constant background which reduces the visibility.  With 

the appropriate system characteristics, the background can be made small with 

respect to the signal such that a visibility approaching unity can always be 

achieved in principle. 

     A set of proof-of-principle experiments were performed to verify the 

technique.  In these experiments, multi-photon absorption was simulated using 

harmonic generation.  The three cases that were explored were resolution 
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doubling using both simulated two- and three-photon absorbers, and resolution 

tripling using a simulated three-photon absorber.  The obtained patterns had 

visibilities and resolutions very close to that predicted by the theory.  To extend 

beyond simple sinusoids, the technique could be used to write arbitrary patterns 

by summing the Fourier components of the patterns [24, 98-99]. 
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Chapter 7 

Conclusions 

 

In this thesis, several transverse effects in the areas of nonlinear and quantum 

optics were explored.  These effects included undesired beam degradations  

through the processes of thermal lensing in high-finesse cavities and laser beam 

filamentation, possibly useful pattern formations in two beam interactions, 

classical and quantum coincidence imaging, and high-resolution 

photolithography.   

Initially, thermal nonlinearities in gases were discussed.  Using a high-

finesse Fabry-Perot cavity within a vacuum chamber, strong cw laser fields were 

applied to the various gases, causing the gases to heat.  Such heating led to a 

decreased density and a resulting decreased refractive index.  This effect was 

quantified to determine the thermal nonlinear refractive indices of air and its 

major constituent gases.  When the nonlinearity- intensity product was raised 
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above a certain threshold, a thermal lensing effect was created by the altered 

index profile within the cavity.  The lensing was sufficient to greatly change the 

transverse structure of the supported modes.  Several such high-order modes were 

witnessed, each of which were repeatable and followed a hysterysis.  The 

thresholds for the patterns were determined to depend on the input laser power, 

the gas pressure, and a newly defined material-dependent parameter.  The 

parameter is believed to be related to material properties such as the absorption 

and thermal conductivity, but an exact relation has not been established. 

 Although it is convenient to describe the thermal effect described above in 

terms of a nonlinear refractive index, n2, it is not actually related to χ(3).  Rather, it 

is based on the imaginary component of χ(1).  The process of laser beam 

filamentation that was discussed next truly is based on a χ(3) nonlinear refractive 

index.  Laser beam filamentation causes an intense beam to be badly degraded 

due to exponential growth of small noise components on the beam.  An 

experimental procedure for reducing the effects of laser beam filamentation was 

explored.  Weak spatial side modes that would see high gain in the filamentation 

process were artificially imposed on a strong laser beam.  The gain experienced 

by these side modes was measured as a function of their relative phase.  As 

predicted by theory, the gain was sinusiodally dependent on the phase, with a 

minimum gain experienced when the two components were out of phase by π/2.  
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For the experiment performed, a maximum reduction of 20% was realized.  In 

theory, the technique could ideal lead to a loss rather than just a reduction of gain, 

but experimental limitations did not allow such an ideal result. 

 After exploring the features of the single beam phenomenon of 

filamentation, related two-beam effects were studied.  In these experiments, two 

strong laser beams were crossed in a nonlinear medium, and the properties of the 

resulting outputs were examined.  Three basic types of pattern generation were 

witnessed in these studies.  One was a form of self-diffraction, in which several 

higher-order spots were emitted, all in the same plane as the crossing, and 

forming an array of equally spaced beams.  For larger angles, conical emissions 

were the dominant effect.  Depending on the experimental conditions, it was 

possible to witness two-beam excited conical emission, stimulated spatial 

modulational instability, or both simultaneously.  The thresholds, conditions for 

onset, and properties of the various patterns were studied in detail.  It is thought 

that such structures may hold promise as future sources of quantum states of light.  

If such sources could be developed, they would hold many potential advantages to 

current quantum sources, with a key advantage being that the generated quantum 

correlated photons would be at an equal wavelength to the pump rather than twice 

the wavelength as with most current quantum sources.  
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 After exploring some fundamental nonlinear interactions as described 

above, studies were done into nonlinear and quantum optical applications 

involving the spatial structure of the light field.  The first of these was 

coincidence imaging, a process in which one beam interacts with an object and a 

second beam, highly correlated with the first, is spatially resolved.  Combining 

transmission information of the first beam with the spatial information of the 

second beam leads to high quality imaging.  Both classical and quantum 

experiments were performed to compare the performance of the two approaches.  

For the classically correlated beams, it was shown that the coincidence imaging 

could be done with a very high resolution in a given plane.  However, the 

resolution is greatly degraded in any other plane for a given classically correlated 

source, as would be expected from classical diffraction theory.  In the quantum 

mechanical case, a quantum entangled photon source was used.  For such a case, 

the photons are correlated in all conjugates, and thus the imaging can be of an 

arbitrarily high resolution in any plane, showing that imaging with quantum 

entangled sources is not limited by diffraction theory. 

 Finally, a new technique for increasing the resolution available for 

photolithography was developed.  In the technique, intense laser pulses are 

equally divided and interfered on an N-photon lithographic plate.  To achieve a 

factor of M resolution enhancement (where NM ≤ ), the process is repeated M 
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times with the relative phase shift between the two components being increased 

by M/2π  each pulse.  Also, by keeping M sufficiently smaller than N, an 

arbitrarily high visibility can be achieved.  General patterns (rather than just high 

resolution sinusoids) can in principle be created with the technique by combining 

Fourier components.  Unlike other proposals for high resolution lithography, this 

technique is experimentally simple for any desired resolution, visibility, or 

pattern.   
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