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Abstract

In this thesis, I have investigated the linear and nonlinear optical properties

of whispering-gallery microdisk and microring resonators side coupled to an ordi-

nary waveguide. A waveguide-coupled disk or ring resonator behaves much like

a Gires-Tournois interferometer [1] which is simply a Fabry-Perot interferometer

with a 100% reflecting back mirror. The configuration is simple and yet extremely

interesting because, unlike a Fabry-Perot resonator which has two output ports,

a Gires-Tournois interferometer restricts light to a single output port (reflection).

For the waveguide-coupled microresonator, the equivalent reflection port is in the

forward direction and no light is coupled into the backward direction. Thus,

the device behaves as an “all-pass” or “phase-only” filter which only modifies

the phase of light traversing it. The phase shift imparted is however, detuning-

dependent and highly sensitive near resonance. In addition to this increased

phase sensitivity, the light circulating inside the resonator is coherently built up

to a higher intensity than that incident upon the resonator. The combined ac-

tion of these two effects results in dramatically enhanced nonlinear phase-shifting

properties. Additionally, the all-pass resonator exhibits strong group delay and
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group delay dispersion effects. The elegant simplicity of such a configuration

allows it to serve as a building block for constructing compact integrated opti-

cal switches, optical logic devices, and engineerable waveguides for exotic pulse

modification. I have derived theoretical predictions for the construction of useful

photonic devices and have outlined the physical limitations of their implementa-

tion. Finally, in order to test these predictions, I designed, fabricated, and tested

several microresonator-based devices using nanofabrication technology.
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Chapter 1

Introduction

Optical resonators were employed as useful devices as early as 1899, when

Fabry and Perot described the use of a parallel-plate resonator as an interfero-

metric filter. [2] Through the use of recirculating feedback, a Fabry-Perot in-

terferometer is able to increase the effective path length of light traversing it by

a factor equivalent to its finesse. A configuration with strongly reflecting end

mirrors will possess a high finesse and will proportionately possess a much nar-

rower passband than that of a configuration with weakly reflecting mirrors. The

narrowing of the passband is accompanied by a proportional coherent build-up

of intensity circulating within the cavity. While this build-up is of little con-

sequence to the linear transmission properties, it has a dramatic effect on the

nonlinear transmission properties. In 1969, Szöke, et al. realized this fact and

proposed inserting a nonlinear material (saturable absorber) between the mirrors

and described optical multistability with possible applications for optical logic.
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[3] Marburger and Felber later described the theory of a Fabry-Perot resonator

containing a medium possessing a nonlinear (intensity-dependent) refractive index

and showed that under certain operating conditions, the device could be imple-

mented as an all-optical switch. [4] Miller [5] later experimentally demonstrated

refractive bistability in a Fabry-Perot for use as an optical switch. Resonators

constructed from guided-wave optical geometries (as opposed to previous bulk

geometries or microwave-based guides) first surfaced in 1982, when Stokes, et

al. of Stanford University analyzed and demonstrated the transmission charac-

teristics of a 2-port single-mode fiber ring resonator (first schematic in 1.1). [6]

Ohtsuka in Japan, [7] Yariv and Crosignani, of Caltech [8] analyzed in detail the

effects of partial source coherence and multistability. [9] In the late eighties, ring

resonators began seeing application in quantum optics. Shelby, et al. of IBM

Almaden observed a finesse-squared enhancement dependence of squeezed light

generation in a fiber ring resonator. [10,11] In 1988, the first quantum nonde-

molition (QND) experiments were performed by Bachor and Levenson et al. in a

similar fiber ring resonator. [12] In 1989, Braginsky et al. in Russia studied the

nonlinear properties of optical whispering-gallery modes; modes that skim along

the inner curved surface of a cladded dielectric disk or sphere. [13] Braginsky

proposed the application of such modes to the lofty goal of switching with a single

quantum. [14] In the early nineties, ring resonators began seeing application as

all-pass filters (purely phase-modifying elements) for dispersion compensation and
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phase equalization in optical communications. In 1990, Cimini, Greenstein, and

Saleh at Lucent, Holmdel proposed the use of the closely related Gires-Tournois

interferometer (see schematic in 1.1) for just these means. [15] In 1992, Pandian

and Seraji at the Indian Institute of Technology carried out an extensive study

of the dynamic pulse response of a ring resonator with particular attention to

chirping and dispersion compensation. [16,17] At around the same time, Richart

Slusher et al. at Lucent, Murray Hill built the first whispering-gallery based disk

lasers [18,19] ushering in a new class of semiconductor laser. Working with a

fiber-based ring resonator, Capmany in Spain pointed out the dramatic increase

in phase sensitivity near resonance, and observed differential phase amplification.

[20] Along these lines, Inoue, et al. of NTT, Japan observed that a ring resonator

side coupled to one arm of a Mach-Zehnder interferometer serves to flatten, or

square-off the cosine-squared response curve, an effect related to decreased phase

sensitivity and applications in the construction of flat filter response. [21] In

1995, Lefevre in France observed an extremely high Q of 109 associated with the

whispering gallery resonances of fused silica microspheres side coupled to an op-

tical fiber. [22] Shortly after, in 1996, Vernooy and Kimble at Caltech performed

cavity QED experiments which exploited the small mode volumes and high field

strengths associated with the modes of micro-cavities. [23] In 1997 Chang et al.

at Yale demonstrated Q-switching using enhanced saturable absorption associated

with the WGM resonances of microdroplets. [24] In 1997, Blom et al. (Nether-



4

lands) proposed the development of an integrated all-optical switch based upon

the high-Q whispering gallery modes of a nonlinear polymer disk. [25,26] More

recently, Haus (MIT) and Little (Little Optics) have been the major proponents

of a microring channel dropping architecture. [27] In 1998, Madsen and Lenz at

Lucent, Murray Hill presented a framework for employing all-pass filters in the

form of cascades of ring resonators for the design of any desired dispersion profile

[28] and filter response. [29] Today, there continues to be much active work in the

field of whispering gallery based microresonators, though mostly applied to dis-

persion compensation and overwhelmingly in the context of constructing add-drop

wavelength division multiplexed (WDM) filters. [30] Some applications as lasers,

most recently using the raman effect [31] and cavity QED [32,33] still continue to

be explored. All-optical switching was recently demonstrated for the first time

in a compact microring geometry based on principles similar to those derived in

this thesis. [34–36] To the best of my knowledge however, the nonlinear phase

transfer characteristics of microresonators have not been systematically studied,

and few research groups appear to be interested in constructing devices exploiting

the nonlinear phase shift enhancements offered by microresonators despite their

great latent potential.
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Chapter 2

Linear Microresonator Theory

2.1 Introduction

A simple ring resonator is created by taking one output of a generic directional

coupler and feeding it back into one input (see figure 2.1). Such a device exhibits a

periodic cavity resonance when light traversing the ring acquires a phase shift cor-

responding to an integer multiple of 2π radians. The resonator is mathematically

formulated from two components: a coupling strength and a feedback path.

2.2 Mathematical Formulation

The basic relations amongst the incident E1, transmitted E2, and circulating

E3, E4 fields of a single resonator are derived by combining the relations for the

coupler with that of the feedback path. In the spectral domain, the fields exiting
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Figure 2.1: A prototypical all-pass ring resonator.

the coupling region1 are related to the input fields via the following unitary matrix:




E4 (ω)

E2 (ω)



 =




r it

it r








E3 (ω)

E1 (ω)



 , (2.1)

where the self- and cross-coupling coefficients2 r and t are assumed to be inde-

pendent of frequency and satisfy the relation r2 + t2 = 1. The feedback path (of

length 2πR) connects the output from port 4 back into input port 3 where the

field is expressed as:

E3 = e−
α
2 LeikLE4 ≡ aeiφE4 (2.2)

1In the case of a microresonator, while the coupling is distributed over a significant angular
portion of the disk, the coupling can be treated as being lumped and localized to a single point
without loss of generality [37]

2The symbols, r and t were chosen to represent the amplitude coupling ratios because they
are analogous to the reflectivity and transmissivity of an ordinary beam-splitter
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Here, a represents the single-pass amplitude transmission and φ represents the

single-pass phase shift. Because adding or subtracting an integer number m

of 2π radians from the single-pass phase shift does not change the value of the

function, the single-pass phase shift for all resonances is defined such that its

value is zero for a local resonance of interest. Furthermore, because the single-

pass phase shift is directly related to the radian frequency as φ = ωTR where TR

is the transit time of the resonator, φ is interpreted as a normalized detuning.

2.3 Intensity Build-Up

Equations 2.1 and 2.2 are solved to obtain an expression for the ratio of the

circulating field to the incident field:

E3

E1
=

itae+iφ

1 − rae+iφ
. (2.3)

The ratio of circulating intensity to incident intensity, or the build-up factor B, is

given by the squared modulus of this result,

B =
I3

I1
=

∣∣∣∣
E3

E1

∣∣∣∣
2

=
(1 − r2) a2

1 − 2ra cosφ+ r2a2
−→

φ=0,a=1

1 + r

1 − r
, (2.4)

where the last form of this result refers to the situation in which the incident

light is resonant with the ring (φ = m2π) and attenuation is negligible (a = 1).
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A passive ring resonator under these conditions attains the maximum ratio of

circulating power to incident power that can be achieved (see figure 2.2). As a

result of this coherent build-up of intensity, the incident power required to achieve

a desired single-pass nonlinear phase shift may be reduced accordingly.

It is crucial that this is a coherent build-up of intensity. That is, were the

resonator to be excited by partially coherent light, then the degree of build-up

would be diminished. If the resonator is excited with completely incoherent light,

there would be no build-up of intensity circulating in the resonator. In this case,

the field intensity rather than the field amplitude combines in an additive manner.

The situation is analogous to a fluid dynamic model where some fraction of current

flowing in a pipe (waveguide) is diverted into an enclosed volume (resonator).

In the absence of dissipation, the fluid pressure (intensity) is equal in the pipe

and enclosed volume. Mathematically this can be demonstrated in a number of

ways. Completely incoherent light possesses a uniform “white light” spectrum.

Integrating over the periodic build-up function over a single period and dividing by

the period width results in unity. Thus, the average build-up over all frequencies

is simply one. This may be viewed as a basic conservation law for resonators.

A resonance is typically characterized by a parameter termed the finesse which is

defined as the periodicity of resonant peaks (or free-spectral range,

∆νFSR =
c

n2πR
=

1

TR
, (2.5)
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Figure 2.2: A plot of the build-up factor vs. single-pass phase shift for a ring
resonator.

divided by the full-width at half depth, ∆νFWHD of a resonant peak.

F =
∆νFSR

∆νFWHD
=

2π

2 arccos
(

2ra
1+r2a2

) −→
ra≈1

π

1 − ra
. (2.6)

A comparison of this expression with the build-up demonstrates the conservation

law in another way. The peak of the build-up resonance is directly related to

the compression of its width B0 ≈ 2
πF such that the area under the build-up

(within a free-spectral range) is constant for any value of coupling r provided

that energy is conserved i.e. no internal attenuation. Finally, it is sometimes

common to characterize the resonance in terms of a quality factor, Q. The

quality factor is defined as the resonant frequency divided by the bandwidth,
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Q = ν0/∆νFWHM. The quality factor is simply related to the finesse by the

number of optical wavelengths per ring circumference.

Q =
n2πR

λ
F = mF (2.7)

where m is referred to as the azimuthal number. For some purposes, it is useful to

approximate the build-up curve as a Lorentzian. See appendix A for a description

of this approximation.

2.4 Effective Phase Shift

An examination of the transfer characteristics of the resonator reveals another

periodically resonant feature. Equations 2.1 and 2.3 are solved to obtain the

ratio of the transmitted field to the incident field:

E2

E1
= e+i(π+φ) a − re−iφ

1 − rae+iφ
. (2.8)

The intensity transmission is given by the squared modulus of this quantity and

has previously been studied extensively. [6,38] For negligible attenuation (a = 1),

the equation predicts a unit intensity transmission for all values of detuning φ.

Such a device is directly useless as an amplitude filter, allowing 100% transmission

for all frequencies and is aptly termed an “all-pass” filter. This result is satisfying
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from an intuitive standpoint because light is offered only two choices: leave the

device at port 2 or (re)enter the resonator at port 4. There is no mechanism

for light to exit via port 1 and in steady state the optical powers entering and

exiting the resonator are equal. Thus, to satisfy energy conservation, the device

must transmit pass all frequencies completely. This requirement, however does

not impose the same uniform requirement of constant phase across all frequencies.

The phase of the transmitted light, as will be shown, can be dramatically different

for differing frequencies especially near resonance. The effective phase shift is

defined as the phase argument of the field transmission factor and is the phase

shift acquired by light in crossing the coupler from port one to port two:

Φ = π + φ+ arctan
r sin(φ)

a − r cos(φ)
+ arctan

ra sin(φ)

1 − ra cos(φ)

−→
a=1

π + φ+ 2 arctan
r sin(φ)

1 − r cos(φ)
. (2.9)

A plot of the effective phase shift vs. the single pass phase shift φ for different

values of r2 is shown in figure 2.3.

Near resonance (φ ≈ 0) the slope of the curve becomes very steep indicating

that the phase that the device imparts is sensitively dependent upon the nor-

malized detuning. [39] The phase sensitivity is obtained by differentiating the



2.4. EFFECTIVE PHASE SHIFT 13
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Figure 2.3: A plot of the effective phase shift vs. single-pass phase shift for a
ring resonator. Note the increasing sensitivity near resonance for increasing
values of R.

effective phase shift with respect to the detuning to obtain

Φ′ =
dΦ

dφ
=

(1 − r2) a2

1 − 2ra cos(φ) (1+a2)
2 + r2a2 +

(
sin2(φ) (1 − a2)2) r2 − (1 − a2)

−→
φ=0,a=1

1 + r

1 − r
(2.10)

The last form of this result refers to the situation in which the incident light is

resonant and attenuation is negligible (a = 1). A comparison with equation 2.4

reveals that under these conditions, the level of phase sensitivity is exactly equal

to the level of intensity build-up. The main features associated with all-pass ring

resonators are summarized in figure 2.4.
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quired on transmission, and d) phase sensitivity (derivative of c) plotted vs.
the internal phase shift for a waveguide-coupled ring resonator with a finesse
of 10π.

A finite difference time domain simulation at the level of Maxwell’s equations

for a ring resonator reveals that the approximations derived thus far in this chap-

ter accurately describe the essential features associated with cavity resonances.

Figure 2.5 displays the incident and circulating intensity for an all-pass ring res-

onator on resonance. Figure 2.6 displays spectral intensity and phase for the same

resonator. The resonator contribution to the transmitted phase clearly dominates

the waveguide contribution (which primarily introduces a linear offset).

If a device possess a unit frequency response but affects the phase of transmit-

ted light in an nonuniform manner, it appears at first glance that such a device
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Figure 2.5: Finite difference time domain simulation demonstrating resonator
build-up at 1.5749 µm. Guide and ring widths are 0.4 µm. Resonator
radii are 2.5 µm (outer) and 2.1 µm (inner). All guiding structures have a
refractive index of 2.5 that is cladded by air.
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has violated the Kramers-Kronig relations [40,41]3 which often hold for a causal

device. This however is not the case as it can be shown that the real and imagi-

nary parts of the transfer function do in fact satisfy the Kramers-Kronig relations.

It is clear from examination of the impulse response (a comb of weighted delta

functions appearing only for positive times) that causality is not violated. Thus,

while the real and imaginary parts of the transfer function vary in a complicated

manner, they do so in such a way that the amplitude is always unity. In cer-

tain cases it is possible to formulate Kramers-Kronig relations for the amplitude

and phase of a transfer function. This is accomplished by taking the natural

logarithm of the transfer function - a procedure which maps the amplitude and

phase into real and imaginary components. Due to the presence of zeros in the

upper half complex frequency plane of the transfer function, the logarithm of the

transfer function is not everywhere analytic in the upper half plane. [42–45] As a

result, Kramers-Kronig relations cannot be applied to the amplitude and phase.

See appendix B for a more detailed description.

3In optics, it is the real and imaginary parts of the complex susceptibility and not the
amplitude and phase which are related by a Hilbert transform in the frequency domain. The real
part corresponds to the scattered field mixing in quadrature with the exciting field and imparting
a phase delay which is parameterized macroscopically as a refractive index. The imaginary part
corresponds to the scattered field mixing π radians out of phase with the exciting field and
imparting a decrease in amplitude which is parameterized macroscopically as an attenuation
coefficient.
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2.5 Group Delay and Group Delay Dispersion

The increased phase sensitivity is directly related to the increase in effective path

length. This correspondence can be seen by examining the delay imposed by the

resonator on a resonant pulse. The group delay for a linear device is given by the

radian frequency derivative of the phase of the transfer function,

(TD =
dΦ

dω
). (2.11)

Because the detuning is related to the radian frequency as φ = ωTR, the group

delay is simply related to the phase sensitivity as TD = Φ′TR. The phase sensitiv-

ity can thus be interpreted as the effective number of round trips light traverses

in the resonator.

Because the group delay associated with an all-pass filter is a frequency-

dependent function, its transmission characteristics are inherently dispersive. The

group delay dispersion (GDD) for a linear device is defined as the radian frequency

derivative of the group delay,

GDD =
d2Φ

dω2
= Φ′′T 2

R. (2.12)

The GDD can be strong enough to significantly disperse a pulse. On resonance,

the GDD (and all even dispersive orders) is zero although higher-order dispersion

exists. The GDD has extremum values at φ = ±π/F
√

3 where it attains the value
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Figure 2.7: Four simulations of pulsed excitation of an all-pass ring resonator.
The resonator parameters, kept constant in all cases, consisted of r = 0.905,
TR = 0.157 ps, Tcav = FTR=5 ps. The pulse widths vary as a)1.25 ps, b)2.5
ps, c)5 ps, and d) 10 ps. Note that pulse fidelity is well preserved for widths
larger than the cavity lifetime.
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Figure 2.9: Simulations of interfering output field amplitudes for 6 input
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is completely detuned from resonance. In d, e, and f, the carrier frequency
is tuned directly on resonance. Note that for ultrashort pulse excitation,
the output pulses are representative of the impulse response of an all-pass
resonator. For pulsewidths of the order of the cavity lifetime (TC) the pulse
remains mostly undistorted. Plots g and h show the corresponding pulse
spectra superimposed upon the effective phase of the transfer function.
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3
√

3F2T 2
R/4π2. Assuming a Gaussian pulse of FWHM equal to the cavity lifetime

of a resonator, the quadratic depth of phase imparted across the FWHM of the

spectrum is equal to 1
2GDDmax

(
2 ln 2
FTR

)2
which is approximately 0.1265 radians.

A convenient parameter characterizing the depth of the spectral quadratic phase

resulting from GDD across a pulse spectrum is the chirp parameter. The chirp

parameter (C) is defined by the following expression for the spectral field of a

Gaussian pulse:

E(ω) = E0e
− 1+iC

2

(
ω

ωp

)2

(2.13)

At a spectral chirp of unity, the pulse spreads such that its peak intensity falls

to 1/
√

2 of its minimum value4. The maximum chirp per resonator then is of

the order of 3
√

3 ln 2/π2 which is approximately 0.365. Thus approximately 3

resonators are required to impart a chirp of unity.

Because the properties of resonators are periodic in frequency, there exists a

possibility for imparting equivalent phase profiles across multiple spectral bands.

In this manner, ring resonators may be used to perform dispersion compensa-

tion across multiple wavelength division multiplexed channels simultaneously. [46]

Similarly, a delay line may be built that operates for multiple wavelength mul-

tiplexed channels simultaneously. Furthermore, carrying this concept over for

time division multiplexed signals it also appears that it is possible to operate a

resonator with extremely short pulses (much sorter than the usual cavity lifetime

4This is analogous to the Raleigh range for a Gaussian beam
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imposed restriction) as along as they are spaced by the round trip time. This

method of operation is sometimes termed synchronous pumping. Such a pulse-

train possesses a wideband spectrum but only in the discrete sense. That is the

pulsetrain spectrum may completely lie within multiple resonance bandwidths and

can thus advantage of the phase enhancing properties of the resonator. However,

unless the pulse train changes take place at a time scale which is longer than

a F number of pulses, spectral components will be present in the signal which

will not lie within any resonance bandwidths and the synchronous operation will

fail. Thus, it is fallacious to think that employing synchronous operation can

circumvent the bandwidth limitation imposed by a resonator resonance on an

information carrying signal.

2.6 Doubly-Coupled Resonators

The resonator analyzed thus far is coupled to a single waveguide and consequently

behaves as an all-pass filter. The free-space analogy was previously shown to be

a Gires-Tournois interferometer or Fabry-Perot interferometer with a 100% re-

flecting back mirror. The direct waveguide analogy of a free-space Fabry-Perot

is obtained by adding a second guide which side couples to the resonator as in

figure 2.10. This configuration now possess two output ports and is no longer

an all-pass filter. Rather, because this configuration behaves as a narrow-band

amplitude filter which can add or drop a frequency band from an incoming signal,
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Figure 2.10: A prototypical doubly-coupled ring resonator.

it is commonly termed an add-drop filter. Because this configuration is mathe-

matically equivalent to the extensively studied classic Fabry-Perot interferometer,

the equations for build-up factor, finesse, and transmission coefficients are simply

stated. The build-up factor is given by

B =
I3

I1
=

∣∣∣∣
E3

E1

∣∣∣∣
2

=
(1 − r2

1) r2
2a

2

1 − 2r1r2a cosφ+ (r1r2a)2

−→
a=1,r2

1=r2
2≡r2

(1 − r2) r2

1 − 2r2 cosφ+ r4
−→
φ=0

r2

1 − r2
, (2.14)
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and the finesse:

F =
∆νFSR

∆νFWHD
=

2π

2 arccos
(

2r1r2a
1+r2

1r2
2a2

) −→
r1r2a≈1

π

1 − r1r2a
. (2.15)

Note that, for this configuration, the build-up factor is only 1/4 as strong and fi-

nesse is only 1/2 as large and the as that of the singly-coupled ring resonator. The

intensity reflection coefficient corresponding to light exiting the same waveguide

is:

T1 =
I2

I1
=

r2
2a

2 − 2r1r2a cosφ+ r2
1

1 − 2r1r2a cosφ+ (r1r2a)2 −→
a=1,r2

1=r2
2≡r2

4r2

(1−r2)2
sin2

(
φ
2

)

1 + 4r2

(1−r2)2
sin2

(
φ
2

) . (2.16)

This corresponds to a transmitted signal of which a narrow frequency band5 has

been extracted, see figure 2.11. The extracted band exits at the transmission

port with transmission coefficient:

T2 =
I5

I1
=

(1 − r2
1) (1 − r2

2) a

1 − 2r1r2a cosφ+ (r1r2a)2 −→
a=1,r2

1=r2
2≡r2

1

1 + 4r2

(1−r2)2
sin2

(
φ
2

) . (2.17)

While there are similar enhancements (as in the all-pass resonator) in the

transmitted effective phase shifts at the two output ports, they are intermingled

with amplitude effects. Thus, it is not expected that the phase transfer charac-

teristics of this device would prove to be useful. Finally it is worth stating an

5The shape of the transmission curve as with the build-up, is effectively Lorentzian centered
on a resonance
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Figure 2.11: Transmission curves associated with the pass (or reflect, R)
and drop (or transmit, T ) ports of a doubly-coupled ring resonator. These
curves are equivalent to those of a Fabry-Perot resonator.
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interpretation of the doubly-coupled resonators. Whereas in the lower coupler,

interference exists between the input and circulating field, the upper coupler does

not display any interference (provided that excitation is from the lower guide

only). The upper coupler may thus be viewed simply as a “tap” which leaks

power out of the cavity. This tap is formally equivalent to a lumped loss which

is the subject of the following section.

Figure 2.12 displays the results of an FDTD simulation. The steady-state

intensities near resonance for a balanced doubly-coupled ring resonator are shown

graphically. Figure 2.13 displays spectral intensity and phase for the resonator

in figure 2.5. The phase variation near resonances here differs qualitatively from

that found in the all-pass resonator simulation results in figure 2.6. In the all-pass

case, while some radiation loss is unavoidably present, the resonator is nevertheless

over-coupled. In this case, the couplers are designed to be balanced but the

loss thrusts the resonator into the under-coupled regime. A discussion of these

coupling regimes is treated in the following section. Figure 2.14 graphically

depicts the sum of phasors contributing to the net complex output field for an

all-pass resonator and a balanced doubly-coupled ring resonator6. Note that

for small detunings near resonance (φ = 0), the net phasor in each case sweeps

through π radians very rapidly. In the balanced case the output amplitude is

zero on resonance and grows as the net phasor sweeps away from the origin.

6or critically-coupled all-pass resonator
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Figure 2.12: Finite difference time domain simulation demonstrating res-
onator build-up and rerouting (channel dropping) at 1.5736 µm. Guide and
ring widths are 0.4 µm. Resonator radii are 2.5 µm (outer) and 2.1 µm
(inner). All guiding structures have a refractive index of 2.5 that is cladded
by air.
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Figure 2.13: Transmitted spectral intensity and phase associated with the
ring resonator in figure 2.12. Deep transmission dips in the spectrum result
from wavelength bands extracted near resonances into the upper waveguide.
The spectral phase includes primarily linear contributions from the waveg-
uide and a reversed ”stair-step” contribution associated with the effective
phase shift induced by the resonator. The slope of the phase reverses here
near resonances because loss in the resonator disrupts the balanced couplers
forcing the resonator to be under-coupled. The resonator effective radius of
2.3 µm and index of 2.5 should result in a free-spectral range of 71 nm near
1600 nm which is in excellent agreement with the obtained spectrum.
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field for a single all-pass (r = 0.9) and balanced double-coupler (r1 = r2 = 0.9
or r = a = 0.9 ) resonator.
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2.7 Attenuation

In reality, internal attenuation mechanisms are always present and thus render

limitations as to when a ring resonator may closely approximate a true all-pass,

phase-only filter. In particular, near resonance, the internal attenuation is in-

creased such that dips appear in the transmission spectrum,

T =
a2 − 2ra cosφ+ r2

1 − 2ra cosφ+ (ra)2 . (2.18)

Here, a = e−απR is the lumped amplitude transmission coefficient for a single pass

through the resonator. The attenuation at the dips is equal to the single-pass

attenuation magnified by the phase sensitivity. The width of the resonance also

broadens, lowering the finesse:

F =
2π

2 arccos
(

2ra
1+(ra)2

) −→
ra≈1

π

1 − ra
. (2.19)

If the attenuation is comparable to the cross-coupling, light is resonantly attenu-

ated strongly. Under the condition known as critical coupling, (r = a), the finesse

drops by a factor of 2 and more importantly the transmission at resonances drops

to zero. The circulating intensity peaks are diminished (eqn 2.4) and the phase

sensitivity is paradoxically increased (eqn. 2.10). At resonances, the phase sensi-

tivity increases without bound at the expense of a decreasing transmitted signal

until the transmission is zero and the phase sensitivity is infinite. Of course
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the phase only undergoes a finite and discrete phase jump at this point. If the

resonator is dominated by bending or scattering loss, then the waveguide mode

is perfectly coupled to the continuum of outward-going cylindrical waves outside

the resonator. Under-coupling occurs when the loss dominates (r > a). Many

contra-intuitive effects may take place in this regime such as the inversion of the

phase sensitivity demonstrated in figure 2.13. Over-coupling occurs when the

round-trip loss does not exceed the coupling (r < a) and is typically the favor-

able mode of operation for an all-pass resonator. For an add-drop filter, it is

desirable to have critical coupling for complete extinguishment of a band in the

through guide. Here the sum of all losses incurred in the resonator including at

the outcoupled drop port must be taken into account.

Finally it is worth examining the introduction of gain. Gain may be imple-

mented if possible to offset loss mechanisms and restore the all-pass nature of a

normally lossy ring resonator. [47] If the round trip gain is equal to the round

trip loss (r−1 = a) the resonator achieves the self-lasing condition. If the gain is

increased beyond this value, the resonator becomes extremely unstable.

2.8 Partial Coherence

Because ring resonators rely on interference between subsequent round trips, a

coherent source is essential to achieving a build-up of intensity. In the following
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Figure 2.15: A plot of the net transmission of a ring resonator with varying
loss for various values of the self-coupling coefficient, r.



2.8. PARTIAL COHERENCE 34

-2 0 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-2 0 2
0

1

2

3

4

5

6

7

a = 0.00

a = 0.20

a = 0.50

a = 0.75

a = 0.90

a = 0.96

a = 0.99

a = 0.20
a = 0.50

a = 0.75

a = 0.90

a = 0.96

a = 0.99

Figure 2.16: A plot of the a) net transmission and b) build-up vs normalized
frequency for a resonator with r=0.75 and varying loss. The single-pass field
transmission, a is displayed for each curve in the figure.
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analysis, it is assumed that subsequently delayed fields possess some degree of

partial coherence which is related to random phase noise, δφ(t) in the source field.

Including the effects of random temporal phase noise, the circulating field is

expanded as a sum of successively delayed field amplitudes in the time domain,

A3(t) = itae+iφ
∞∑

m=1

(
rae+iφ

)m−1
e−iδφ(t−mTR)e+iδφ(t)A1(t). (2.20)

If the statistics of the source are time-stationary, ensemble averages may be per-

formed on the intensity autocorrelation. The partially coherent build-up of in-

tensity can thus be expressed as,

B =

〈(
A3

A1

)(
A3

A1

)%〉
= t2a2

∞∑

m=1

∞∑

n=1

(
rae+iφ

)m−1 (
rae−iφ

)n−1 〈
e−iδφ(t−mTR)+iδφ(t−nTR)

〉
.

(2.21)

The autocorrelation of phase noise terms can be reduced to a single lumped pa-

rameter [48,7,8] denoted the degree of coherence,

〈
e−iδφ(t−mTR)+iδφ(t−nTR)

〉
≡ d. (2.22)

According to this definition, an infinitely narrow linewidth source with infinite

coherence time possesses d = 1 for interference between two copies of the source

with arbitrary time delay. On the other hand, a delta-correlated source with zero

coherence time possesses d = 0 for all interferences except at zero time delay. Via
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the Einstein-Wiener-Khintchine theorem, a Lorentzian source with bandwidth δω

is correlated in time via a decaying exponential, d = e−δω|t|. Equation 2.21 may

be simplified to the following expression,

B =

(
1 − (rad)2

1 − (ra)2

)[
(1 − r2) a2

1 − 2rad cos(φ) + (rad)2

]
. (2.23)

Inserting d = 1 into the equation returns the perfectly-coherent build-up expres-

sion derived earlier in equation 2.4. Inserting d = 0 and a = 1 into the equation

however, results in a build-up of unity for all detunings. This is an intuitive result

which is easily derived by matching intensities rather than field amplitudes:

I3 = t2I1 + r2I3 −→ I3 = I1 (2.24)

Thus, for perfectly incoherent excitation, (and no attenuation) the intensity in

the cavity equalizes with the incident intensity. This is analogous to the equal-

ization of pressure between coupled cavities in hydrostatics. Implementation of a

coherent source does not change the average build-up across a free-spectral range.

Rather, with coherent excitation, the build-up greatly exceeds unity near reso-

nances and is reduced below unity away from them such that the average never

deviates from the incoherent case. The finesse is degraded slightly with partial
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source coherence in the same manner as with attenuation,

F =
2π

2 arccos
(

2rad
1+r2a2d2

) −→
rad≈1

π

1 − rad
. (2.25)

2.9 Summary

In this chapter, the linear properties of ring resonators were derived from 3 simple

parameters: coupling, phase, and attenuation. The properties derived included

the coherent build-up of intensity, the increase phase sensitivity or group delay,

the induced group delay dispersion, and the concept of critical coupling.
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Chapter 3

Whispering Gallery Modes

3.1 Introduction

In 1912, Lord Raleigh analyzed the curiosity of the “whispering gallery” which

involved the propagation of sound waves skimming along the dome of St. Paul’s

Cathedral. [49] The term has since come to be applied to a family of modes of

a cyclical curved interface such as a cylindrical or spherical surface, where wave

propagation is confined primarily to the inside surface of an interface and guided

by it by repeated reflection.

3.2 Modes

Light propagating in a straight waveguide is confined via total internal reflection

(TIR) by two dielectric interfaces (along one dimension) to a region of high re-

fractive index. The guiding region of high refractive index is formally equivalent

to a potential well wherein the electric fields may be decomposed into eigenmodes
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which are solutions of the Schrödinger equation. Light propagating in a curved

waveguide is still guided via TIR at the outer interface, but no longer demands an

inner interface to complete the confinement. Elimination of the inner boundary

leaves a dielectric disk which supports whispering gallery modes. These modes

consist of azimuthally propagating fields guided by TIR at the dielectric interface

and optical inertia which prevents the field from penetrating inward beyond a fixed

radius1. Mathematically, a whispering gallery mode is a solution of the Helmholtz

equation in a curved coordinate geometry. Attention is restricted to a cylindrical

geometry appropriate for the analysis of planar disk and ring resonators.

The Helmholtz equation (∇2 + k2) Ez = 0, written in cylindrical coordinates

for the axial field of a TM2 whispering gallery mode is

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
+ k2

)
Ez (r, ϕ) = 0. (3.1)

The equation can be simplified via the method of separation of variables by which

it is split into two equations for radial and azimuthal dependance. An integer3

parameter, m is introduced which connects the two equations and physically cor-

responds to the number of optical cycles the field undergoes when completing one

1The inner bounding radius is termed the internal caustic
2The accepted nomenclature for assigning TE or TM designations for cylindrical whispering

gallery modes, is to follow the conventions for that of planar waveguides. For example, the TM
mode solution is the one in which in the limit of an infinitely long cylinder, only one electric
field component exists and is directed axially. As a result, the TE and TM designations with
respect to the sidewall seem to be reversed.

3the restriction that m be an integer assumes a resonance.
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revolution around the disk. The azimuthal equation takes the form,

(
∂2

∂ϕ2
+ m2

)
Ez (ϕ) = 0, (3.2)

and has solutions which are simply complex exponentials, Ez (ϕ) = e+imϕ, e−imϕ.

The radial equation:

(
∂2

∂r2
+

1

r

∂

∂r
+ k2 − m2

r2

)
Ez (r) = 0, (3.3)

is Bessel’s equation. Solutions of Bessel’s equation are the Bessel functions of the

first, Jm and second, Ym kind. Because the second kind function is singular at the

origin, only the first kind function is retained inside the disk. Outside the disk,

both functions are well behaved4 and must be retained. The Hankel functions

are linear superpositions of the two Bessel function solutions corresponding to

outward, H(1)
m = Jm + iYm and inward, H(2)

m = Jm − iYm propagating cylindrical

waves. The analysis of waves arriving back at the resonator from the radial

horizon is not considered here and thus only the Hankel function of the first kind,

H(1)
m is retained. Thus, the appropriate solutions for the radial field dependence

4The fields outside the disk are not modified Bessel functions of the first kind, Km as in the
case of bound modes of a circular dielectric waveguide or optical fiber. This is because the
absence of an axial propagation constant eliminates the possibility of modified Bessel function
solutions.
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both interior (r < R) and exterior (r > R) to the dielectric disk [50] are

Ez(r < R) = AmJm(k̃1r) (3.4)

Ez(r > R) = Bm H(1)
m (k̃2r). (3.5)

The complete axial electric field interior and exterior to the disk is constructed

from the azimuthal and radial solutions including the boundary condition at the

interface (r = R) which forces the tangential electric field to be continuous:

Ez (r, ϕ) = AmJm

(
k̃1r

)
ei(±mϕ−ω̃t) (3.6)

Ez (r, ϕ) = Am

Jm

(
k̃1R

)

H(1)
m

(
k̃2R

) H(1)
m

(
k̃2r

)
ei(±mϕ−ω̃t). (3.7)

Finally, the radial and azimuthal magnetic fields are easily derived from the axial

electric field by use of Maxwell’s equations,

Hr =
−i

Z0k̃

1

r

∂

∂ϕ
Ez =

m

Z0k̃r
Ez (3.8)

Hϕ =
i

Z0k̃

∂

∂r
Ez. (3.9)

Intuitively, the WGM is characterized by some energy and confined within a

radial potential well. Figure 3.2 depicts an optical whispering gallery mode with

the associated radial potential well and illustrates the regions where the fields in
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Figure 3.1: Geometry for a TM whispering gallery mode.

the mode are bounded, evanescent and radiative (outwardly propagating). The

nature of the radiative component of the field is examined in the following section.

3.3 Radiation Loss

For an open-boundary structure such as a dielectric disk,5 whispering gallery

modes are in fact inherently “leaky.” [51] The mechanism for loss is a tunnelling

or coupling of the azimuthally guided mode into radially outward-going radiation

modes. This phenomena is known as whispering gallery loss, bending loss, or

radiation loss and is a property of any curved open boundary waveguide config-

uration. A convenient measure parameterizing this loss is the intrinsic quality

factor which gives a measure of how many optical cycles a mode will last confined

within a resonator. Theoretical predictions show that the intrinsic quality fac-

5As opposed to a closed-boundary structure i.e. dielectric guiding region with perfectly
conducting walls.
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tor (Q = mF , where m = 2πR/λ) can be as high as 1011 and experiments have

confirmed this fact. [52]

The radiation loss associated with whispering gallery resonators may be viewed

physically as a tunnelling of the confined field through a potential barrier defined

by the disk boundary and an external fixed radius out into a region of lower po-

tential. This external radius is termed the external caustic and corresponds to

the radius at which, following an evanescent decline, the field becomes propagat-

ing again. For a typical high-Q disk resonator, the field has decayed to such

a low value that its leakage into cylindrical radiating waves is very small. The

predominant propagation direction for a WGM is of course primarily in the az-

imuthal direction such that the phase contours behave like revolving spokes of a

wheel. The pattern revolves about the disk center with a angular frequency of

ω/m. Because the azimuthal phase contours increase in separation with radius,

the azimuthal phase velocity likewise increases without bound. At the external

caustic, the azimuthal phase velocity is equal to the phase velocity in the sur-

rounding medium. Beyond this radius, the fields cannot keep up and thus spiral

away. Figure 3.3 graphically illustrates this fact for a very low Q WGM.

In order to calculate the mode propagation constants and quality factors for

particular WGMs one must solve the complex WGM dispersion relation.6 For

6The dispersion relation for whispering gallery modes can also be derived from the dispersion
relation for fibers by setting the axial propagation constant to zero. See appendix D for more
a more detailed description.
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Figure 3.2: Propagation constant kφ as a function of radial distance from
disk axis for a whispering gallery mode. The circulating power is confined
between an inner caustic and the disk edge. Beyond the outer caustic the
radially evanescent field becomes propagating and acts as a loss mechanism.
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Figure 3.3: Plot of the electric field associated with the 6th order TM (axial
E-field) whispering gallery mode. Here n1 = 2, n2 = 1, and the resonant
radius (solid line) is 1.04 µm at λ =1.55 µm. This configuration was chosen
because it is poorly confined with a low Q of 64 and thus allows easy visu-
alization of the super-evanescent component of the field below the caustic
radius (inner dotted line) and the radiating component of the field past the
radiative caustic radius (outer dotted line).
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an infinite cylinder of dielectric material with negligible absorption and no axial

component of the propagation vector, the TM dispersion relation can be written

analytically as:

n1J ′
m

[
n1

2πR
λ

(
1 − i 1

2Q

)]

Jm

[
n1

2πR
λ

(
1 − i 1

2Q

)] =
n2H

′(1)
m

[
n2

2πR
λ

(
1 − i 1

2Q

)]

H(1)
m

[
n2

2πR
λ

(
1 − i 1

2Q

)] (3.10)

For a given size parameter
(

2πR
λ

)
, dielectric contrast (n1, n2), and azimuthal mode

number (m), a Q-value may be obtained for a particular radial mode. The lowest

order whispering gallery mode possesses the highest Q and corresponds to the

highest order azimuthal mode that is supported by the structure.

3.4 Disks and Rings

A mode may be considered a “whispering galley mode” if the confinement along

some dimension is provided by only a single reflective interface. For a given

core-to-cladding refractive-index difference, the loss at a given bend radius de-

creases with increasing waveguide width until a limit is reached at which only the

outer core interface is important for guiding. [53] A mode of a curved waveg-

uide (forming a ring) defined by two interfaces would be considered a whispering

gallery mode if the inner caustic radius (defined by the azimuthal index m and

the wavelength) lies between the inner and outer interfaces. In this regime, light

cannot penetrate (towards the origin) beyond the inner caustic and thus the in-
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Figure 3.4: Radiation-loss-limited finesse of the lowest order radial TE and
TM whispering-gallery modes of a dielectric cylinder of index n1 in a medium
of index n2 plotted vs. normalized radius (n1ω/c) R. The family of diagonal
lines represents varying refractive index contrast (n1/n2). The family of
nearly vertical lines corresponds to whispering gallery mode resonances, each
characterized by an azimuthal mode number m. The plots were obtained by
numerically solving the dispersion relation for whispering-gallery modes.
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terior interface plays a negligible role in the guidance. Thus, a curved waveguide

will have similar bending loss per unit radian as a disk with the same exterior

radius. It is worthwhile pointing out the advantages and disadvantages of disks

vs. rings. A microdisk may possess higher order radial modes primarily depend-

ing on the location of the inner caustic. These radial modes possesses differing

resonant wavelengths and thus might be discriminated against by properly choos-

ing the excitation wavelength. Depending on the quality factors associated with

the modes, the resonant wavelength of a particular mode of a microdisk (defined

by a radial and azimuthal number) might still overlap another. This may be a

problem if only a single mode is desired7. A properly designed ring can be used

instead to force single-radial-mode operation. However, as will be investigated

in more detail in a later chapter, the presence of an extra sidewall contributes to

nearly double the scattering losses. Figure 3.5 shows the radial field distribution

associated with the TM modes of 1 micron radius disk resonator supporting 3

radial modes. Each of the modes possesses an energy (k2
0) that lies within the

potential energy, (m/nr)2, dictated by the azimuthal number and structure8. A

ring resonator formed by removing the material within a 0.65 micron radius would

cut off the second and third order radial modes. Its potential energy distribution,

7While the modes may overlap, the higher-order modes will typically posses a low coupling
coefficient and high loss.

8Strictly speaking, these “energies” do not have the correct units of energy. However, they
are formally mathematically equivalent to the energies involved in the solution of the radial
Helmholtz equation.
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Figure 3.5: A plot of the 3 supported TM radial modes of an m=8, 1 micron
radius microdisk resonator with index contrast n=2.5:1. The resonance
wavelengths for the first, second, and third modes are 1438, 1079, and 874nm
respectively. Mode quality factors are 3247, 224 and 72 respectively. By
eliminating the interior of the disk to form a ring, here illustrated by a dashed
line, elimination of higher order modes is possible.
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Figure 3.6: FDTD simulation of an integrated disk sensor operating in the
16th whispering gallery mode. Parameters include a disk radius of 2.54
µm, guide width of 0.4 µm, gap width of 0.25 µm, index contrast of 2:1 and
TM polarization. The particle was modelled as an absorbing species with
conductivity 3000 Ω−1m−1 and particle radius of 0.25 µm. a) A build-up
of 16 in the absence of the particle b) the build up is reduced to 3 in the
presence of the particle.

shown as a dashed line, forms a potential well that will only support the lowest

order mode.

3.5 Summary

Whispering gallery modes have found applications in spectroscopy, [54] linewidth

narrowing of diode lasers, [55] explicitly as lasers, [18,31] cavity QED media, [23]

add-drop filters, [56] and biosensing. [57] As an example of the capability of a

whispering gallery disk resonator to act as an integrated biosensor [58,59] see

figure 3.6.

Propagating whispering gallery modes have been imaged by scanning a near-
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field probe across the surface of fused-silica microspheres, [60,61] and silicon nitride

cylindrical disks [62] whereby light is collected (as it is injected [63]) via frustrated

total internal reflection. In the past decade WGMs have attracted increasing

attention for their ability to sustain very high Q-factors and low mode volumes.

This thesis aims to implement the enhancing properties of resonators at a very

compact scale in which guidance is primarily governed by whispering gallery total

internal reflections from the outer interface.
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Chapter 4

Nonlinear Microresonator Theory

4.1 Introduction

The previous two chapters were concerned with the fundamental linear optical

properties of microresonators. This chapter examines how the contributions of

coherent build-up and increased phase sensitivity combine to enhance the nonlin-

ear optical properties of microresonators.

4.2 Material Nonlinear Susceptibility

The material polarization, P may be expanded in a Taylor expansion of electric

field strength, E as follows: [64]

P = χ(0) + χ(1)E + χ(2)E2 + χ(3)E3... (4.1)
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where χ(N) refers to the Nth order susceptibility. The first order susceptibility

gives rise to the linear refractive index,

n = Re
[√

1 + χ(1)
]

(4.2)

and linear attenuation coefficient,

α = Im
[√

1 + χ(1)
]
4π/λ. (4.3)

The second-order polarization term cannot have a frequency component which is

composed of field components at that same frequency. This term is responsible

for describing second-harmonic generation, the more generalized sum-frequency

mixing, degenerate one-half subharmonic generation, the more general difference

frequency mixing and optical rectification. Furthermore, in the case of a cen-

trosymmetric material, the second-order polarization and all subsequent even or-

ders vanish. The third-order polarization term describes third harmonic genera-

tion, four-wave mixing, intensity dependent refractive index, saturable absorption,

and two-photon absorption

P (3)(ω = ω1 + ω2 + ω3) = χ(3)(ω1, ω2, ω3)E(ω1)E(ω2)E(ω3). (4.4)
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The last of these phenomena can occur for all three fields at the same frequency

and has a degeneracy factor of 3

P (3)(ω) = 3χ(3)(ω,−ω, ω)E(ω)E∗(−ω)E(ω). (4.5)

This gives rise to an intensity-dependent refractive index also known as the optical

Kerr effect,

n(I) = n + n2I, (4.6)

where the nonlinear coefficient is related to the third-order susceptibility as

n2 = 3Re[χ(3)]/n2ε0c. (4.7)

Two-photon absorption is a nonlinear effect by which two photons arrive within

a coherence time of each other and can be simultaneously absorbed exciting an

electron in a material at twice the photon energy. This gives rise to either induced

or saturable absorption depending on the sign of the imaginary part of the third

order susceptibility:

α(I) = α + α2I, (4.8)

where the two-photon attenuation coefficient is related to the third-order suscep-

tibility as

α2 = 12πIm[χ(3)]/n2ε0cλ. (4.9)
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4.3 Nonlinear Enhancement

If a microresonator is constructed with a material that possesses a third-order

nonlinearity manifested as an intensity dependent refractive index, then the single-

pass phase shift acquires a power-dependent term, φ = φ0 +2πLn2P2/λAeff where

φ0 is a linear phase offset. The derivative of the effective phase shift with respect

to input power gives a measure of the power-dependent accumulated phase. This

derivative can be expressed as

dΦ

dP1
=

dΦ

dφ

dφ

dP3

dP3

dP1
−→

φ=0,a=1

2πLn2

λAeff

(
1 + r

1 − r

)2

=
2πLn2

λAeff

(
2

π
F
)2

=
π

Pπ

(
2

π
F
)2

.

(4.10)

where Pπ = λAeff/2n2L is the threshold power required to achieve a nonlinear

phase shift of π radians. The effect of the resonator is to introduce two sepa-

rate enhancements for which the combined action on resonance yields an overall

nonlinear response quadratically enhanced by the finesse. [65]

The dual effect can be understood intuitively noting that an increased inter-

action length arises from the light recirculation, and an increased field intensity

arises from the coherent build-up of the optical field. The increased interac-

tion length implies a reduction in bandwidth which will be examined in the next

section.
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4.4 Nonlinear Pulsed Excitation

In the previous sections, resonator enhancement of nonlinearity was derived in a

steady state basis. The steady state analysis presented earlier breaks down when

the bandwidth of the optical field incident on a ring resonator is of the order or

greater than the cavity bandwidth. In order to simulate the time dependent

nature of the resonator response, a recirculating sum of successively delayed and

interfered versions of the incident pulse must be performed numerically. The

circulating field after M passes is built up from successive and increasingly delayed

coupler splittings:

A3,M (t) = it
M∑

m=0

(ra)m eiφm(t)A1 (t − mTR) (4.11)

where the phase cannot be treated as a constant due to the time-dependence of

the nonlinear phase shift. The phase shift at each pass is computed as

φm=0 (t) = 0 (4.12)

φm (t) − φm−1 (t) = φ0 + γ

2πR∫

0

dz |A3,M (t)|2 e−αz = φ0 +

(
a2 − 1

ln a2

)
γ2πR |A3,M (t)|2 ,

(4.13)
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where γ is the self-phase modulation coefficient. Finally, the transmitted intensity

is computed as

A2,M (t) = rA1 (t) − t2a
M∑

m=1

(ra)m−1eiφm(t)A1 (t − mTR) . (4.14)

In order to preserve pulse fidelity and achieve finesse-squared enhancement, it is

necessary to operate the device with pulses of widths that are greater than or

equal to the cavity lifetime.

4.5 Nonlinear Saturation

Another implicit assumption in derivations thus far is the fact that the resonator

does not get power-detuned or pulled away from its initial detuning. One might

call this the non-pulling pump approximation (NPPA). The pulling away from

resonance decreases the nonlinear enhancement such that the process may be

described mathematically as a saturation of the effective nonlinearity. Figure 4.1

displays the results of a simulation involving the interaction of a resonant pulse

with a nonlinear resonator. The phase accumulation (c) across the pulse tracks

the pulse intensity but falls short of reaching π radians even though its peak

power corresponds to twice the value predicted by the NPPA. Figures 4.1b and

d illustrate why this is the case. As the incident intensity rises, the resonator is
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indeed pulled off resonance and the circulating intensity and effective phase shift

are pulled away from their respective NPPA predicted slopes (dashed lines).

A greater nonlinear phase shift may be extracted from the resonator by em-

ploying a small amount of initial detuning. In figure 4.3, an initially detuned

pulse pulls itself through resonance and in the process acquires a nonlinear phase

shift of π radians.

The value of the detuning chosen (φ0 = −π/F) corresponds to the point at

which a symmetric pull through resonance results in a π radian phase shift.

If the detuning is increased some more, the circulating intensity vs. incident

intensity relation exhibits a very sharp upward sloping curve. The curve can

in fact become steeper than that predicted by the NPPA. At a detuning of

(φ0 = −
√

3π/F), the curve becomes infinitely steep over a narrow range. This

corresponds to an operating point just below the threshold of optical bistability.

Operation in this regime will be examined more closely in a later section. For

certain applications, this might be more or less useful than the previous case.

Figure 4.4c demonstrates the phase accumulation across such a pulse. The phase

shift actually can exceed π radians but is confined to a narrower range near the

peak of the pulse.
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Figure 4.1: Simulations demonstrating the dynamic accumulation of nonlin-
ear phase shift across a resonant pulse interacting with a nonlinear resonator.
A 50 ps (10tcav), 16 W peak power pulse (corresponding to twice the reduced
threshold power) interacts with a 5 µm diameter nonlinear resonator with
r = .905 (build-up=20). a) incident & transmitted pulses, b) circulat-
ing power vs. incident power in steady state showing the nonlinear pulling
(dashed line corresponds to resonant slope), c) accumulated effective phase
shift, d) effective phase shift vs. incident power (dashed line corresponds to
resonant slope). Notice that the effective phase shift accumulation at the
center of the pulse falls short of reaching π radians.
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4.6 Optical Power Limitation

The previous subsection, described how injected light initially tuned near the res-

onance of an all-pass resonator can pull itself off resonance via nonlinear refractive

index changes. This was shown to lead to a saturation of the nonlinear phase

shift at high circulating powers. By incorporating a resonator inside a Mach-

Zehnder interferometer, the saturating nonlinear phase shift at high powers can

be converted into a clamping of transmission. A more carefully designed device

can provide a clamping of optical power. Figure 4.5 displays the results of a

REMZ-based power limiter which provides near unit transmission until it is low-

ered systematically such that the power is clamped at 1 watt. Here the normal

π radian power for an equivalent length of waveguide is 1 kW. The other port of
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Figure 4.3: Simulations demonstrating the dynamic accumulation of nonlin-
ear phase shift across an optimally detuned pulse interacting with a nonlinear
resonator. All parameters with the exception of the detuning (φ0 = −π/F)
are the same as in figure 4.1. Notice that the effective phase shift accumu-
lation at the center of the pulse reaches π radians.
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Figure 4.4: Simulations demonstrating the dynamic accumulation of non-
linear phase shift across a pulse detuned just below the limit of bistability
interacting with a nonlinear resonator. All parameters with the exception
of the detuning (φ0 = −

√
3π/F) are the same as in figure 4.1. Notice the

very sharp jump in phase.
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Figure 4.5: A resonator enhanced Mach-Zehnder (REMZ) interferometer can
be implemented as a power limiter. Here, the output power closely follows
the input power for power levels much less than 1 W. For higher input power
levels, the output power is clamped below 1 W while excess power is diverted
to the other output port. The threshold power to achieve a nonlinear phase
shift of π radians in a single pass through the resonator is 1 kW, the coupling
coefficient is r = .95, single pass transmission is 98%, resonator detuning is
φ0 = −0.0065π, and the Mach-Zehnder bias is φb = −0.854π.

the REMZ in fact mimics the properties of a saturable absorber where high power

levels are transmitted with low loss while low power levels are attenuated.

4.7 Multistability

The inclusion of nonlinearity changes the input-output relations in a qualitatively

different manner. Multistable branches in the input-output relationships of a

resonator become possible. [66] The circulating intensity is a function of detuning,
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which in turn is a function of the circulating intensity and so on ad infinitum.

Mathematically, the circulating intensity can be expressed either as an infinitely

nested expression or more compactly as an implicit relation between the incident

and circulating intensities.

I3 = I1
(1 − r2)

1 − 2r cos
(
φ0 + 2π(2πR)

λ n2I3

)
+ r2

(4.15)

This implicit relation is easily converted into a single-valued function if the circu-

lating intensity is considered the independent variable and the incident intensity

the dependent variable. Multistability is always present in such a lossless nonlin-

ear resonator above some threshold intensity. One way to reduce this threshold

intensity is to red-detune the resonator slightly so that the resonator is initially

off resonance but forms two stable circulating intensity levels for a low intensity.

The onset of multistability takes place at φ0 = −
√

3π/F . Optical bistability in

a resonator allows for the construction of all-optical flip-flops and other devices

exhibiting dynamic optical memory. [67]

4.8 Reduction of Nonlinear Enhancement via

Attenuation

As was showing in chapter 2, the presence of attenuation mechanisms in the

resonator lead to a reduction in peak build-up, a paradoxical increase in phase
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Figure 4.6: Demonstration of bistability in a 5 µm radius nonlinear resonator
with r = .818, φ0 = −3π/F , Pπ = 1644.6 W, and a 50 ps, 66 W peak power
pulse. a) input/output pulse, b) circulating pulse, c) accumulated phase,
d) incident vs. circulating bistable power relation. Notice the fast switch
between stable states, when the input pulse power reaches the hysteresis
“jump up” and “jump down” points at 53 and 30 Watts.
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sensitivity, and a reduction in transmission. The dependence of the nonlinear

enhancement on the round trip attenuation is thus non-trivial.

The peak build-up (and phase sensitivity) with no loss is termed B0 for sim-

plicity in the following comparisons all taken on resonance. The build-up varies

with the round-trip amplitude transmission, a as,

B(a) =
1 − r2

(1 − ra)2
−→
r=a

1
4B0, (4.16)

B(α2πR) ≈ B0 − 1
2B

2
0(α2πR) + 3

16B
3
0(α2πR)2 + O(3). (4.17)

where the second expression is Taylor expanded in loss about zero. The build-up

drops with decreasing a until reaching critical coupling (r = a) where it drops to

1/4 its lossless value. In contrast, the phase sensitivity increases from the lossless

value without bound at critical coupling,

S(a) =
a(1 − r2)

(a − r)(1 − ra)
−→
r=a

∞, (4.18)

S(α2πR) ≈ B0 + 1
16B

3
0(α2πR)2 + O(3). (4.19)

The nonlinear enhancement is equal to the product of the build-up and phase sen-

sitivity. Additionally, since the intensity drops continuously when traversing the

resonator, a correction factor is introduced, C(a) = 1−a2

ln a−2 , such that the effective

nonlinear phase shift induced by a much weaker single-pass nonlinear phase shift
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is

∆ΦNL(a) = B(a)S(a)C(a)∆φNL. (4.20)

Dividing this quantity by the the shift obtained for the lossless case results in a

normalized nonlinear enhancement,

N (a) =
∆ΦNL(a)

∆ΦNL(a = 1)
. (4.21)

N (α2πR) ≈ 1 − 1
2B0(α2πR) + 1

4B
2
0(α2πR)2 + O(3). (4.22)

The lowest order variation in phase sensitivity with loss is quadratic. Thus,

for small losses, the nonlinear enhancement is reduced primarily because of the

reduction in peak build-up. Near critical coupling, the phase sensitivity increase

without bound results in a growing enhancement as well, but at the expense of

rapidly decreasing attenuation to zero at critical coupling. For comparison, the

transmission varies as,

T (a) =
(a − r)2

(1 − ra)2
−→
r=a

0, (4.23)

T (α2πR) ≈ 1 − B0(α2πR) + 1
2B

2
0(α2πR)2 + O(3). (4.24)

Figure 4.7 shows the variation of normalized nonlinear enhancement and transmis-

sion vs. loss. Notice that while the transmission steadily drops with increasing

attenuation, the normalized enhancement is somewhat more stable and never dips
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Figure 4.7: Variation in net transmission and normalized enhancement vs.
loss for a resonator with r2 = 0.9. For zero loss, both are equal to unity.
The transmission steadily drops to zero at critical coupling (r = a), here at
10% loss. By contrast, the normalized enhancement is somewhat impervi-
ous to loss and never dips below a certain value due to an increasing phase
sensitivity. While the enhancement diverges at critical coupling, it is of little
use to operate there since the transmission drops to zero.

below a certain value.1 For a nonlinear device, both enhancement and transmis-

sion are generally important and how their importance is weighted will affect how

much loss can be tolerated.

1.592 in the high-finesse limit
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4.9 Figures of Merit

As will be examined in the next chapter, nonlinear photonic devices hold great

promise for the implementation of densely integrated all-optical signal processing.

Fundamental restrictions imposed by material properties have not allowed the

promise to be fulfilled. The majority of refractive optical processing device require

a π radian nonlinear phase shift for successful operation which may in turn demand

impractically high optical powers. In many material systems, strong nonlinear

refractive indices are often accompanied by strong linear and nonlinear absorption

which limit the achievable phase shift in many cases far below the target of π

radians. The limitations to the achievable nonlinear phase shift imposed by

linear and nonlinear absorption thus merit examination.

Linear absorption limits the interaction length to an effective length given by:

Lα =

(
1 − e−αL

)

α
(4.25)

Because the effective length is independent of intensity, in theory, any desired

nonlinear phase shift may still be obtained by making the intensity high enough.

In practice of course, this may not be practical because all materials possess some

threshold for optical damage. [64] There are several nonlinear figures of merit

which are useful for comparing the relative strength of a nonlinear coefficient to

absorption. A common definition is the nonlinear coefficient divided by the lin-
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ear attenuation (M1 = 4πn2/λα). In general, this parameter is material property

with some fixed value at a given wavelength. Most highly nonlinear materials are

inherently absorptive because they operate via enhancement near some atomic

or molecular resonance. For this reason, M1 is useful for comparing the non-

linearities of different material systems provided that interaction length is not a

limitation. Silica single-mode fiber, for example has a very high M1 despite a low

intrinsic nonlinearity because its attenuation is extremely low (5.3 · 10−8m2/W).

There exist clever arrangements in which M1 can be modified from its tradition-

ally fixed value granted by nature. The techniques of electromagnetically induced

transparency (EIT) for instance hold the promise of maintaining a strong nonlin-

earity and cancelling the linear absorption via quantum interference. In the case

of a nonlinear resonator, while the attenuation is increased in proportion to the

effective number of round trips or finesse, the third order nonlinearity is increased

in quadratic proportion.

Two-photon absorption imposes a more stricter limitation on the achievable

nonlinear phase shift. In the presence of linear and nonlinear absorption, the

reduced wave equation for nonlinear phase evolution (self-phase modulation) takes

the form:

∂

∂z
A = iγ

(
1 + iM−1

2

)
|A|2 A − 1

2
αA. (4.26)

Where a second FOM [68] is introduced proportional to the ratio of the nonlinear

refractive index to the two-photon absorption coefficient, M2 = 4πn2/λα2. Equa-
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tion 4.26 has exact solutions for the transmitted intensity and nonlinear phase

shift after propagating for a distance L. The fractional intensity remaining after

propagating is:

T =
e−αL

1 + α2ILα
. (4.27)

Because two-photon absorption increases in proportion to the nonlinear refractive

index, the achievable nonlinear phase shift saturates logarithmically with increas-

ing intensity:

φNL =
M2

2
ln (1 + 2γILα/M2) =

M2

2
ln

(
1 +

M1

M2

(
1 − e−2γL/M1

)
I

)
, (4.28)

−→
M2→∞

γILα =
M1

2

(
1 − e−2γL/M1

)
I, (4.29)

−→
M1→∞

γIL. (4.30)

Within a resonator, two-photon absorption2 is likewise enhanced in proportion to

the the nonlinear refractive index, i.e. quadratically with finesse. As a result, M2

would not be modified by the use of a resonator.

In general however, both linear and nonlinear absorptive processes are detri-

mental to switching devices based on the intensity-dependent refractive index.

When considering both linear and nonlinear absorption, constructing a device

that delivers a π radian nonlinear phase shift using a resonator can exceed in

2it is expected that higher photon number absorptive processes of order N would be enhanced
by a value of FN
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Figure 4.8: Comparison of the nonlinear device figure of merit (M3) for a
waveguide of length L, 10L, FL, with that of a resonator.

performance, an equivalent device formed from a simple waveguide. A third

FOM, proportional to the nonlinear phase shift multiplied by the transmission,

[69] M3 =
(
∆φNL

π

) (
e |E2|2

|E1|2

)
is deemed more useful in such a comparison. This

FOM is defined in such a way that a π phase change over a 1/e intensity falloff

results in M3 = 1. This FOM can be favorably modified by use of a resonator.

Figure 4.8 compares M3 for a waveguide of length L, 10L, FL, with that of a

resonator.

There are of course many other ways of characterizing the tradeoffs between

attenuation and nonlinearity. Perhaps the most useful definition is the interfero-
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metric contrast between a pulse that has acquired a given phase with some some

unavoidable attenuation and a reference copy of the same pulse.

4.10 Inverted Effective Nonlinearity

The majority of refractive nonlinear materials behave in such a way that increasing

intensity brings about a positive change in index. Negative nonlinear refractive

indices are rare but nevertheless can be found in thermal (effectively) nonlinear

phenomena and in semiconductors well above the half-gap. Neither case is use-

ful for high speed all-optical switching. There are many proposed applications

such as the nonlinear management, [70] which would greatly benefit from a neg-

ative nonlinear material. A negative effective nonlinearity may be achieved by

use of a nonlinear ring resonator. In the undercoupled regime, the sign of the

input-output phase relationship is inverted and thus allows for the possibility of

inverting the sign of the intrinsic nonlinearity of the resonator medium. Figure

4.9 demonstrates a pulse propagating through a single resonator and acquiring a

phase shift of negative π/2 radians.

4.11 Summary

This chapter examined the previous unstudied nonlinear optical phase transfer

characteristics of microresonators. Typically, the nonlinear properties of most
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Figure 4.9: A resonator can display negative effective nonlinearity even if
the intrinsic material nonlinearity is positive. This is possible only in the
undercoupled regime and thus requires a lossy resonator or imbalanced add-
drop filter. a) Transmission vs. incident power. b) Power vs. time.
c) Effective phase shift vs. incident power. d) Effective phase shift vs.
time. The parameters used in these simulations are r = 0.9, a = 0.875,
φ0 = −0.0115π, P = 20 W, Pπ = 3183 W, and TP = 20TC = 35 ps.
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materials are ultraweak and require high optical intensities and or lengths to be

observed. Through the use of microresonators, it is concluded that weak intrinsic

nonlinearities may be enhanced in quadratic proportion to their finesse.
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Chapter 5

Resonator Enhanced
Microphotonic Switching

5.1 Introduction

The current state of optical communication systems involves the multiplexing of

10 and 40 gigabit/s channels generated electronically and transmitted optically via

an optical fiber, each on different wavelengths. This clever scheme, termed wave-

length division multiplexing (WDM) [71] takes advantage of existing inexpensive

but bandwidth limited electronic infrastructure and the currently limitless band-

width offered by lightwave communications. Passive optical filters are used to

combine and split the channels, each of which consist of bit-encoded pulse trains

with bit slots that are spaced far enough apart such that electronic detectors can

discriminate among them. One problem is that as the number of channels grows

large, the complexity of the system, requiring thousands of lasers and detectors

tuned to slightly different wavelengths becomes difficult to manage. Another
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scheme for combining several channels on a single light-carrying fiber is optical

time division multiplexing (OTDM). In this optical analogue of electronic time-

division multiplexed systems currently in widespread use, information carrying

bits from different channels are interleaved in the time domain rather than in the

spectral domain. [72] The individual pulses representing the bits would have to be

ultra-short (10 picoseconds or less) to fill the fiber bandwidth. Conventional elec-

tronic switching device bandwidths are not expected to be able to meet the task of

multiplexing and demultiplexing the pulses. All-optical means of accomplishing

such tasks are thus necessary. All-optical switching devices offer great promise

for reducing the complexity of optical communication systems and meeting the

requirements of OTDM based networks. These networks may be built with such

devices so as to fully exploit the terahertz bandwidths offered by lightwave car-

rier signals and eliminate the need for costly and unnecessary electronic-optical

conversions.

5.2 Nonlinear Optical Switching

All-optical switching by definition refers to the manipulation of light by light. Be-

cause photons do not interact with themselves or other photons directly or even

in linear media, only certain materials displaying nonlinear optical effects can be

considered as candidates out of which an all-optical switch may be constructed .

Furthermore, most material candidates for nonlinear all-optical switching, possess



5.2. NONLINEAR OPTICAL SWITCHING 78

control pulses

multilplexed
signal pulses

Optical Time Division Multiplexing (OTDM)

demultilplexed
signal pulses

Figure 5.1: A scheme for optical time division multiplexing (OTDM) imple-
menting cross-phase modulation in a nonlinear Mach-Zehnder interferometer.

extremely weak nonlinearities and thus require long interaction lengths. The in-

dustrially well-established silica fiber has an extremely weak nonlinearity, but is

still useful as a nonlinear element because of its ability to confine light with low-loss

over a long interaction length. Of course, devices built from silica fiber are prac-

tically kilometers long and have undesirably long latency times. More compact

devices with shorter latency thus require stronger nonlinearities. Near resonance

features, alkali metal vapors such as sodium have a long history of displaying

strong nonlinear optical effects. The limited bandwidths and need for expensive

containment chambers preclude their practical use. Active semiconductor-based

devices relying on inter-band transitions offer strong nonlinearities in a compact

geometry. however, their bandwidths are typically limited by recombination times
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and require an undesirable active electrical source of power. Virtual transitions

in low band-gap semiconductors typically offer the best compromise. AlGaAs

below the half-gap has been known for some time to be a promising candidate

for all-optical switching applications and has even been termed the “silicon of

nonlinear optics.” [73] More recently, chalcogenide glasses have attracted much

attention because of the semiconductor-like optical properties and potential ease

of incorporation with existing glass fabrication technologies.

In a prototypical configuration for optical switching, an unbalanced nonlinear

Mach-Zehnder interferometer switches when the nonlinear phase shift difference

between the two paths equals π radians. Such a system possesses a threshold

switching power given by λAeff/2n2∆L. [74] Optical waveguides are ideal can-

didates for use as nonlinear switching devices because of their ability to confine

light to wavelength-sized dimensions over interaction lengths that greatly exceed

the Raleigh range governed by diffraction. [75,76] For typical single-mode silica

fiber parameters at 1.55 µm and a peak power of 1 Watt, a path length difference

∆L of 1 kilometer is required. Air-clad AlGaAs or chalcogenide glass [68,77,78]

waveguides, possessing 500 times greater nonlinearities and 500 times smaller ef-

fective area, offer the potential of lowering this length scale down to 4 mm. This

is still not enough for large scale integration of photonic switches. It will be shown

that the introduction of a ring resonator can greatly reduce the length scale fur-
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ther down to the level of microns offering the possibility for passive, integrated

photonic architectures based upon nonlinear all-optical switching devices.

5.3 Resonator Enhanced Nonlinear Optical

Switching

In the previous chapter, it was shown that microresonators can display enhanced

nonlinear phase shifts resulting from both an increase in effective path length and

build-up of intensity. The enhanced nonlinear phase shift can lead to important

consequences for microphotonic switching. For instance, by introducing the ring

resonator into one arm of a Mach-Zehnder interferometer, [79] as shown in figure

5.2, the phase switching characteristics are made manifest as power switching

characteristics allowing for the construction of an all-optical switching device with

a greatly reduced threshold power and/or size.

A comparison of the transmission vs. power characteristics for a standard

Mach-Zehnder interferometer and a resonator enhanced Mach-Zehnder interfer-

ometer (REMZ) for λ = 1.55 µm in single mode silica fiber plainly reveals the

advantage of using microresonators. The transmission for a standard nonlinear

Mach-Zehnder with unbalanced path lengths (∆L = 10m) is plotted versus inci-

dent power in figure 5.3. This standard geometry possesses a switching threshold

of 240 watts. Figure shows the transmission of a REMZ with a ring length of
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Figure 5.2: A resonator-enhanced Mach-Zehnder interferometer.

10 m and a reflectivity of (r = 0.99). The enhanced device exhibits a switching

threshold of approximately 12 milliwatts. Both devices possess the same physical

interaction length of 10 m, but the REMZ device possesses a switching threshold

that is greatly reduced by a factor of (2/π)2 F2 = 20, 000. [65]

5.4 Switching Energy Vs. Bandwidth

It has been shown that a microresonator may be used to enhance nonlinear phase

shifts thereby reducing the required power threshold for all-optical switching de-

vices. These wonders do not come for free however. The use of a geometrical

resonance, such as that of a Fabry-Perot cavity, to enhance some optical property
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Figure 5.3: Transmission characteristics of (a) a standard nonlinear Mach-
Zehnder interferometer and (b) a resonator enhanced Mach-Zehnder inter-
ferometer (REMZ). Note that the switching threshold of the REMZ device
is lowered by four orders of magnitude.

usually comes at a price. A traditional Fabry-Perot cavity for example enhances

the intensity circulating within it at the cost of imposing a limitation on the

bandwidth over which this enhancement takes place. The limiting bandwidth is

in direct proportion to the enhancement. While this conservation law holds for

the linear optical properties, it may be circumvented for some nonlinear optical

properties, for example self-phase modulation.

The bandwidth of a resonator is primarily governed by its size and finesse:

∆ν = c/ (nπDF). The finesse is directly related to the coupling strength (t2)

according to F = 2π/t2. For an all-pass resonator, this bandwidth corresponds

to the frequency interval over which the phase varies sensitively and in a nearly

linear manner over π radians. Outside this interval the sensitivity falls and the

phase significantly departs from linear behavior such that a pulse with a larger

bandwidth can become severely distorted.

To good approximation, the threshold power required to achieve a π nonlinear
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phase shift in a tightly confined waveguide mode is given by:

Pπ =
πλAeff

8F2n2D
. (5.1)

The threshold power multiplied by the cavity lifetime is a form of figure of merit

for the operating characteristics of a resonator enhanced nonlinear optical switch.

Of course this product is proportional to the lowest attainable switching energy

required for switching the resonator. The lowest attainable switching energy

is obtained when the pulse width is of the order of the inverse of the resonator

bandwidth. This is easily understood because a longer pulse with the same peak

power will carry more energy but not be any more effective at switching. A shorter

pulse will not allow the resonator sufficient time to build-up in intensity and

thus will experience a weakened nonlinear response in addition to being severely

distorted. For a high contrast dielectric waveguide, the effective area to which

the power is confined may be as small as λ2/8n2 where n is the refractive index of

the guiding layer. The threshold energy required to achieve a π nonlinear phase

shift is accordingly:

Uπ =
λ3

√
π3ln(2)

64Fnn2c
. (5.2)

In order to reduce the parameter space, some parameter choices are made

(n = 3, n2 = 1.5 · 10−17m2/W) corresponding to AlGaAs or chalcogenide glass

waveguides operating near 1.55 µm. Figure 5.4 plots a systems diagram display-
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Figure 5.4: Operating diagram displaying the inherent tradeoff between pulse
energy and bandwidth derived in eq. 5.2 for an AlGaAs or chalcogenide-based
microresonator near 1.55 µm.

ing the tradeoff between switching energy and bandwidth for resonators of varying

diameter. It is of technological interest to note that switching is possible with a

1 picosecond, 1 picojoule pulse.

Due to a physically large ring circumference and high finesse, our earlier, fiber-

based proposal would be limited to operate at around 100 kHz. All-optical switch-

ing devices are not expected to play a role at these low frequencies. Values of the

finesse larger than 106 have been observed in the resonance features associated

with the whispering gallery modes (WGMs) of microresonators. [52] Due to their
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small dimensions and high finesse, coupling these resonators to an interferome-

ter would be able to provide large nonlinear phase shift enhancements, while at

the same time maintain high-speed switching characteristics. Despite the attrac-

tive promise of WGM-based all-optical switching devices, the field is relatively

untapped.

5.5 REMZ Vs. Fabry-Perot Switching

The placement of a nonlinear all-pass resonator within one arm of an interferom-

eter, for example a Mach-Zehnder, allows for the conversion of phase modulation

into amplitude modulation which can serve as a basis for an all-optical nonlin-

ear switch. One might ask why one would want to use this indirect method of

implementing a microresonator as an amplitude switching device when a nonlin-

ear add-drop filter accomplishes the same task in a more direct manner. The

properties of an add-drop filter are analogous to that of a traditional Fabry-

Perot interferometer which offers light the choice of two output ports and can

display nonlinear amplitude switching between them. A careful examination of

a nonlinear add-drop filter as a switching device; however, reveals a fundamental

limitation. The switching curve cannot be made to perform a complete switch

within the phase sensitive region near resonance. This is because the center of

the phase sensitive region (at a resonance frequency) directly coincides with a

minimum or maximum of the transmission spectrum. Only half of the sensitive
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region is usable as a switch, the other half being wasted. It would be advanta-

geous to shift the peak in phase sensitivity away from the transmission minimum

such that it coincides with the linear portion of the transmission curve. However,

there is simply no way to accomplish this in an add-drop filter or Fabry-Perot.

The missing degree of freedom which can provide this capability can be found

in a device formed from a nonlinear all-pass resonator coupled to one arm of an

interferometer such as in a resonator-enhanced Mach-Zehnder (REMZ) interfer-

ometer. A REMZ can be used to independently set the peaks of nonlinear phase

sensitivity and transmission. Figure 5.6 displays the linear transmission charac-

teristics vs. detuning for a REMZ with offset bias phase between arms of φB = 0,

π/2, π, and 3π/2. Optimized switching characteristics are obtained when the

peak of the phase sensitivity coincides with the linear portion of the switching

curve φB = π/2,3π/2. The characteristic switching curve of a Mach-Zehnder is

cosine-squared. To build a effective switch it is important to switch in a region

of this curve where the maximum change in transmission is brought about by

the minimum change in accumulated phase. This is at the point of maximum

switching sensitivity, which is related to the phase sensitivity as:

dT
dφ

= −1
2sin(Φ− φB)

dΦ

dφ
(5.3)

Figure 5.7 compares the switching characteristics for an add-drop filter, an unbi-

ased REMZ and a properly-biased REMZ. For the add-drop filter, the build-up
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Figure 5.5: a) a singly-coupled microresonator, b) a doubly-coupled microres-
onator or Fabry-Perot, c) a Mach-Zehnder interferometer (MZI), d) a res-
onator enhanced Mach-Zehnder (REMZ) interferometer.

and finesse are each lower by a factor of four in comparison with an all-pass res-

onator with the same coupling strength. In a REMZ, however, only half of the

power enters the arm containing the resonator and its phase contributes in a man-

ner that another factor of two is lost. Still, this results in a net improvement in

switching threshold by a factor of four which can be seen by comparing the curves

in the figure. It might be argued that this is not a valid analysis since the finesse

is not maintained equal in the comparison. When the finesse is maintained equal,

the curves are in fact equivalent. More significant, however, is the improvement

in the shape of the switching curve when the REMZ is properly biased. Proper

biasing is achieved by tuning the peak of the nonlinear phase sensitivity to the

50% transmission operating point of the unloaded Mach-Zehnder.
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enhanced Mach-Zehnder (REMZ) interferometer with varying bias phase
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Figure 5.8: Pulse switching characteristics for a resonator-enhanced Mach-
Zehnder (REMZ) interferometer. Here, an 8 picosecond, 25 Watt (peak
power) optical pulse is switched out with high fidelity in a properly biased
REMZ. Plotted are the incident pulse, the pulse after traversing the res-
onator (scaled by 2X), the switched out pulse, and the residual pulse energy
in the originally transmitting arm. Here, the resonator bandwidth is only
two times wider than the pulse bandwidth (FWHM). The base switching
threshold is 3 kilowatts. The resonator consisted of a 5 micron diameter
disk with a finesse of 30 and n2 = 1.510−17m2/W.

5.6 Single Photon Switching

Microresonators have the potential for dramatically lowering thresholds required

for all-optical switching. The question naturally arises as to whether it is pos-

sible to devise a microresonator-based switch that only requires a single photon.

Expressing the energy threshold 5.2 in units of energy quanta, the photon number

threshold is given by

Nπ =
λ

hc
Uπ =

λ4
√
π3ln(2)

64Fnn2hc2
. (5.4)
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For AlGaAs or chacogenide-based parameters, the finesse required to build such

a sensitive device would be a (currently) prohibitively large value of greater than

108.

5.7 Summary

In electronics, a revolution took place when vacuum-tube-based nonlinear elec-

tronic devices were replaced with integrated electronic circuits based on the tran-

sistor. For a similar revolution to occur in photonics, the integration of nonlinear

optical components is required. This chapter examined the effectiveness of mi-

croresonators for use as all-optical switching components which are compact and

can be integrated to form photonic circuits which are capable of performing com-

plex tasks on a chip.



92

Chapter 6

SCISSORs

6.1 Introduction

In the previous chapters, the linear and nonlinear transfer characteristics of a

single microresonator coupled to an ordinary optical waveguide were examined in

detail. In this chapter, the linear and nonlinear propagation characteristics of a

sequence of all-pass structures are examined. Parallel, [80] or indirectly coupled

resonators are emphasized. These are rings coupled indirectly via a waveguide.

By contrast, a serial coupled arrangement involves rings coupled to rings directly.

The second case much like a coupled cavity and greatly restricts the operating

bandwidth. For a detailed investigation of the use of such a configuration in the

context of dispersion compensation see Madsen, et al. [28,46] and for filters see

Little, Hryniewicz, and Orta. [81–83]
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Figure 6.1: A structured, fully transmissive waveguide consisting of a side-
coupled integrated spaced sequence of resonators (SCISSOR). E1 is the
incident field, E4 is the field injected into the disk, E3 is the field after one
pass around the resonator, and E2 is the transmitted field.

6.2 Linear Propagation

A pulse propagating though a single all-pass resonator acquires a frequency-

dependent phase shift which serves to delay and/or distort the pulse shape. By

arranging a sequence of resonators coupled to an ordinary waveguide the effective

propagation constant of the guide can be modified. The modified effective prop-

agation constant can be defined as the accumulated phase per unit length and is

composed of the propagation constant of the waveguide itself plus a contribution

from the transmitted phase of the resonators. For a resonator spacing of L, the

effective propagation constant becomes

keff (ω) = n0ω/c + Φ(ω) /L. (6.1)

A plot of the dispersion relation (propagation constant vs. radian frequency) for

various values of the coupling parameter r is shown in figure 6.2. The deviation in

the curve from the light line of the ordinary waveguide takes the form of periodic
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Figure 6.2: The dispersion relation (propagation constant vs. frequency)
for light propagation in a SCISSOR with differing values of the self-coupling
coefficient r. For generality, the waveguide contribution of constant slope k0

has been subtracted from the effective propagation constant keff.

changes in the group velocity and group velocity dispersion with a periodicity of

c/n0R. Here, the material and waveguide dispersion are assumed to be negligible.

In fact, it will later be shown that the dispersive nature of the resonators in general

dominates the intrinsic dispersion by many orders of magnitude.1.

A pulsed waveform can be decomposed into the product of a slowly-

varying envelope A (t) and a carrier wave with frequency ω0 as E (t) ≡

1
2A (t) exp (−iω0t) +c.c.. The relationship of the carrier frequency to some reso-

nance frequency sets the central operating point on the dispersion relation curve

and thus prompts the definition of a normalized detuning φ0 = (ω0 − ωR) TR

where TR =FSR−1 is the resonator transit time and ωR is the closest resonance

1The group velocity dispersion for Al0.2Ga0.8As is of the order of 1 ps2/m. [84]
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frequency. The transfer function of a single resonator can be expanded in two

embedded Taylor’s series: one for the transmitted phase shift (expanded about

the normalized detuning φ0), and one for the exponential (expanded about the

transmitted phase shift of the carrier Φ0):

H (ω) = eiΦ = eiΦ0

{
1 +

∞∑

n=1

in

n!

[ ∞∑

m=1

1

m!

dmΦ

dφm
φ0

(φ− φ0)
m

]n}
. (6.2)

Using this formal expansion, the transmitted field is related to the incident field

with the assumption that the transmitted phase shift induced by each resonator

is distributed over the spacing L so that the effective propagation constant is

independent of propagation distance at the macroscopic scale. The field at some

point zj+1 separated an infinitesimally small distance δz from the field at another

zj is given by a similar equation which distributes the resonator contribution and

includes that of the waveguide:

Ej+1 (ω) = ei(nω0
c +

Φ0
L )δz×

{
1 +

∞∑

n=1

in

n!

[
n0

c
∆ωδz +

∞∑

m=1

1

m!

δz

L

dmΦ

dφm
φ0

(φ− φ0)
m

]n}
Ej (ω) . (6.3)

Taking the Fourier transform of this equation results in a difference equation

relating the pulse envelopes at the two points:

Aj+1 (t) = Aj (t) +
∞∑

n=1

in

n!

[
i
n0

c
δz
∂

∂t
+

∞∑

m=1

1

m!

δz

L

dmΦ

dωm φ0

(
i
∂

∂t

)m
]n

Aj (t) . (6.4)
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Finally, the differential approximation [Aj+1 (t) − Aj (t)] /δz → dA/dz is made δz

is allowed to go to zero.2 This procedure yields a linear propagation equation for

the pulse envelope:

dA

dz
=

[
−n0

c

∂

∂t
+ i

∞∑

m=1

1

m!

1

L

dmΦ

dωm φ0

(
i
∂

∂t

)m
]

A. (6.5)

The different terms in this equation are isolated and examined in what follows.

6.2.1 Group Velocity Reduction

The increased phase sensitivity on resonance is related to an increased group delay

per resonator. This extra delay distributed amongst the resonators is responsible

for a slower group velocity. The inverse of the group velocity is proportional to

the frequency derivative of the propagation constant,

k′
eff =

dkeff

dω
=

n0

c
+

1

L

dΦ

dω
=

n0

c

[
1 +

2πR

L

(
1 − r2

1 − 2r cosφ0 + r2

)]

−→
φ0=0,r≈1

n0

c

(
1 +

4R

L
F
)

. (6.6)

The group velocity 1/k′
eff is seen to be composed of contributions from propagation

in the waveguide and discrete delays introduced by the resonators. The compo-

nent of the group velocity reduction introduced by the resonators is proportional

2Implicit in this assumption is that each resonator is not strongly driven i.e. the transmitted
phase shift Φ per resonator is small with respect to unity.
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to the finesse and can dominate the waveguide component for moderate values of

the finesse.

6.2.2 Group Velocity Dispersion

While propagation in the waveguide itself is assumed to be dispersionless, strong

dispersive effects are induced by the resonator contribution. The group velocity

dispersion (GVD) is proportional to the second frequency derivative of the effective

propagation constant,

k′′
eff =

dk2
eff

dω2
=

1

L

d2Φ

dω2
=

T 2
R

L

[
−2r (1 − r2) sinφ0

(1 − 2r cosφ0 + r2)2

]
−→

φ0=±π/F
√

3,r≈1
∓3

√
3F2T 2

R

4π2L
.

(6.7)

While the GVD coefficient is zero on resonance, appreciably strong normal (posi-

tive) or anomalous (negative) values of the dispersion can be obtained on the red

(lower) or blue (higher) side of resonance respectively. The dispersion maxima

occur at detunings φ0 = ±π/F
√

3 where the magnitude of the group velocity

dispersion is proportional to the square of the finesse. This induced structural

dispersion can be many orders of magnitude greater than the material dispersion

of typical optical materials. [45] For example, a 10 picosecond optical pulse prop-

agating in a sequence of resonators with a finesse of 10π, free-spectral range of 10

terahertz (∼5 µm diameter), and a spacing of 10 µm experiences a group veloc-

ity dispersion coefficient k′′
eff of roughly 100 ps2 per millimeter. In general, this
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Figure 6.3: A weak pulse tuned to the dispersion maxima disperses while
propagating in a SCISSOR. A 10 picosecond FWHM hyperbolic secant pulse
tuned for maximum anomalous GVD (B = 0.13) enters the system consisting
of 100 resonators each with a 5 µm diameter and finesse of 10π, spaced by
10 µm. Note that the peak power is reduced by a factor of about 4 after
propagating only 1 mm as a consequence of the strong induced dispersion.

structural dispersion can be as much as 7 orders of magnitude greater than mate-

rial dispersion in conventional materials such as silica fiber (20 ps2 per kilometer).

Figure 6.3 shows the pulse evolution for a 10 picosecond pulse propagating through

100 resonators, each tuned to the anomalous dispersion maxima.

6.2.3 Higher Order Dispersion

Higher orders of dispersion may be derived from eqn. 6.5, each subsequently

possessing a maximum that is proportional to the cavity lifetime FTR to the nth
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power. Specifically, the third order dispersion coefficient is

k′′′
eff ≡ 1

L

d3Φ

dω3
=

T 3
R

L

[
−2r (1 − r2) [(1 + r2) cosφ0 − 3r + r cos 2φ0]

(1 − 2r cosφ0 + r2)3

]

−→
φ0=0,r≈1

− 4

π3

F3T 3
R

L
. (6.8)

It is important to note that all orders of dispersion become significant when the

pulse bandwidth is nearly as wide as the resonance bandwidth.

6.3 Nonlinear Propagation

In addition to inducing a strong group delay and dispersion, a resonator may en-

hance a weak nonlinearity. If the resonator possesses a nonlinear refractive index

i.e. Kerr nonlinearity, then the internal phase shift will be intensity dependent.

For simplicity the nonlinearity of the waveguide is neglected in what follows since

it is expected to be small. The intensity-dependent contribution of the resonators

to the internal phase shift is given by γ2πR|E3|2, where γ represents the strength

of the intrinsic nonlinear propagation constant. This parameter is of course tra-

ditionally fixed for a given material system. The more useful parameter γ/Aeff

can be as low as 0.002 m−1W−1 for standard single mode silica fiber or as high as

102 m−1W−1 in an air-clad GaAs or chalcogenide glass based waveguide.3 Near

3For the purpose of quoting the material nonlinearities, I have defaulted to the more useful
parameter γ whereby the nonlinear propagation constant is scaled by the effective mode area
such that γPL is the nonlinear phase shift acquired for a power level of P over a distance L.
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resonance, the transmitted phase shift is sensitively dependent upon the internal

phase shift, which is in turn dependent on an enhanced circulating intensity. The

combined action of these effects gives rise to a dually-enhanced effective nonlinear

propagation constant γeff, calculated from the derivative of the transmitted phase

shift with respect to the input intensity:

γeff ≡ 1

L

dΦ

d|E1|2
=

1

L

dΦ

dφ

dφ

d|E3|2
d|E3|2

d|E1|2
=
γ2πR

L

(
1 − r2

1 − 2r cosφ0 + r2

)2

−→
φ0=0,r≈1

γ
8R

πL
F2. (6.9)

As can be seen from this equation, the increased phase sensitivity (or group ve-

locity reduction) and the build-up of intensity contribute equally to quadratically

enhance the nonlinear propagation constant with respect to the finesse. [65] In

order to properly account for the all the third-order Kerr nonlinear contributions

of the spectral components of three fields, a double convolution of the three in-

teracting fields is performed in the spectral domain. In the time domain, the

double convolution operation is equivalent to multiplication. This allows for the

straightforward addition of a nonlinear contribution [85] to the internal phase shift

term in the linear propagation equation (eqn. 6.5):

dA

dz
=

{
−n0

c

∂

∂t
+ i

∞∑

m=1

1

m!

1

L

dmΦ

dφm
φ0

[
γ2πRB|A|2 + iTR

∂

∂t

]m
}

A. (6.10)
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For two nonlinearly interacting resonant pulses, the results here derived for the

self-phase modulation (SPM) effect similarly apply to the effect of cross-phase

modulation (XPM) though with an extra degeneracy factor of 2.

6.3.1 Solitons

Next, the nonlinear propagation equation that retains only the lowest order dis-

persive and nonlinear terms in eqn. 6.10 is examined. The time coordinate is

shifted to the reference frame of the pulse (t′ = t − k′
effz). It is found that, in this

limit, the pulse evolution is governed by a nonlinear Schrödinger equation (NLSE)

with effective GVD and SPM parameters:

∂

∂z
A = −i

1

2
k′′

eff

∂2

∂t′2
A + iγeff |A|2 A. (6.11)

Appendix F describes solutions to this equation. Soliton solutions exist provided

that the enhanced nonlinearity and induced dispersion are of opposite sign. [86–88]

While the sign of the enhanced nonlinearity is predetermined by the sign of the

intrinsic nonlinearity, the sign of the induced dispersion is as previously shown

in eqn. 6.7, determined by the sign of the normalized detuning from resonance.

Figure 6.4 shows the frequency dependence of the lowest-order GVD k′′
eff and

enhanced nonlinearity γeff and also indicates the optimum detuning for soliton

propagation.
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Figure 6.4: A SCISSOR soliton is created from a balance between resonator
enhanced nonlinearity and resonator induced anomalous dispersion.

The fundamental soliton solution for this equation is [89]

A (z, t′) = A0 sech (t′/TP) ei 1
2γeff|A0|2z, (6.12)

where the amplitude and pulsewidth are related according to |A0|2 =

|k′′
eff| / γeff T 2

P, below which the pulse is severely distorted by all orders of dis-

persion. The finite response time of the resonator places a lower bound on

the pulsewidth TP. A scaling factor B is defined to be the ratio of the pulse

bandwidth
(
2 arcsech

(
1/
√

2
)
/π2TP

)
to the resonator bandwidth (1/FTR), such

that B =
(
2 arcsech

(
1/
√

2
)
/π2

)
FTR/TP. A nonlinear strength parameter,

Γ = (4/π2)F2γ |A0|2 R is also defined. With these definitions, a simple relation
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holds between Γ and B for the fundamental soliton operating at the anomalous

dispersion peak:4

Γ =
π

2
√

3 arcsech2
(
1/
√

2
)B2 ≈ B2. (6.13)

Higher order dispersive and nonlinear terms become increasingly significant when

either B and/or Γ approach unity.

To test the validity of this approximation I have conducted rigorous time

domain simulations5 in an attempt to propagate solitons. Figure 6.3 shows the

pulse evolution of a low-power 10 picosecond FWHM hyperbolic secant pulse

tuned for maximum anomalous GVD (B = 0.13) in an AlGaAs or chalcogenide

glass-based system. The system consists of 100 resonators spaced by 10 µm each

with a 5 µm diameter and finesse of 10π. As can be seen, the temporal pulse

profile is greatly dispersed. Figure 6.5 shows the pulse evolution for the same

system, but with a peak power of 125 mW, corresponding to the fundamental

SCISSOR soliton (Γ = 0.0196). As can be seen, the pulse shape is well preserved

upon propagation. Many of the familiar characteristics of fundamental solitons

such as robustness, reshaping, pulse compression, and pulse expansion have been

4The values of k′
eff and γeff are respectively lowered by factors of 3/4 and 9/16 from their

given maximum values when operating at dispersion extremum points.
5The simulations used to study pulse evolution in a sequence of waveguide-coupled resonators

were carried out using an iterative method in which each iteration consisted of linear & nonlinear
phase accumulation during one round trip within the resonator followed by interference at the
coupler. Traditional beam or pulse propagation split-step Fourier methods are unnecessary as
both nonlinear phase accumulation and structural dispersion are more readily treated in the time
domain. See appendix E for more a more detailed description of this method of simulation.



6.3. NONLINEAR PROPAGATION 104

0

0.1

0.2

0.3

t (ps)
z (resonator #)

po
w

er
 (W

)

0 20 40 60 80 100

0
100

200

Figure 6.5: A pulse with amplitude corresponding to the fundamental soliton
propagates in a SCISSOR without dispersing. The same parameters were
used as in figure 4, but with a peak power of 125 mW (Γ = 0.0196) in a
chalcogenide glass based system.

observed in simulations to carry over from the continuous-medium case. Higher-

order solitons, satisfying Γ ≈ N2
SB2, where NS is an integer are readily observed in

simulations, but are unstable because of higher-order dispersive nonlinear effects

present in this system.6

Dark solitons which consist of an intensity dip in an otherwise uniform

continuous-wave field can also be supported if the enhanced nonlinearity and

induced dispersion are of the same sign (on the other side of resonance). The

fundamental dark soliton possesses a hyperbolic tangent field distribution, [85]

A (z, t′) = A0 tanh (t′/TP) eiγeff|A0|2z, (6.14)

6Additionally, higher-order dispersive and/or nonlinear effects render the scattering of soli-
tons to be inelastic. Under these conditions, the term solitary wave is more appropriate.
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Figure 6.6: A negative pulse in a uniform intensity background with parame-
ters corresponding to the fundamental dark soliton propagates in a SCISSOR
without dispersing. The incident field distribution was a hyperbolic tangent
with twice the pulse width of the bright soliton and a background power that
was one fourth that of its peak power in figure 6.5.

Figure 6.6 shows the propagation of the fundamental dark SCISSOR soliton tuned

to the normal dispersion peak.

6.3.2 Self-Steepening

In the previous section, frequency dependence of γeff was neglected. One of

the effects resulting from the frequency-dependent nature of γeff is an intensity-

dependent group velocity. This effect leads to the phenomenon of self-steepening

(SS) of a pulse where the peak of a pulse travels slower than (+SS) or faster than

(-SS) its wings. The self-steepening coefficient s may be derived7 from eqn. 6.10,

7So as to correctly expand eqn. 6.10, the B term must also be expanded which will generate
more time derivative terms within the square brackets. Thus, the self-steepening contribution
will not only consist of two m = 2 terms but also one m = 1 term. For terms such that m > 1,
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but it is more readily obtained from the frequency derivative of the nonlinear

coefficient:

s =
γ′eff
γeff

=
2

B
dB
dω

−→
φ0=±π/F

√
3,r≈1

∓
√

3FTR

π
. (6.15)

While it is difficult to isolate this effect from induced GVD in a sequence of

resonators to form a steepened pulse, it plays an important role in the breakup

of higher-order solitons. The known phenomenon of soliton decay [85] involves

the breakup of an NS order breathing soliton into NS fundamental solitons of

differing pulse amplitudes and widths. Figure 6.7 shows a situation in which a

second-order SCISSOR soliton with a launched peak power of 500 mW undergoes

decay and splits into two stable fundamental SCISSOR solitons. The solitons

are well isolated in time and uncorrupted by a background or pedestal. One

of them possesses a higher peak power and narrower width than the original

demonstrating the potential for pedestal-free optical pulse compression. The

effects of induced self-steepening in a sequence of resonators can take place for

picosecond and even nanosecond pulses because unlike in the case of intrinsic

self-steepening, the relative strength of SS to SPM is not governed by how close

the pulsewidth is to being a single optical cycle, 2π/ω0 but rather how close the

pulsewidth is to being a single cavity lifetime FTR. For the 10 picosecond pulse

propagating in a SCISSOR with the above parameters, the non-dimensional self-

the time derivatives implicitly appear to the far left of each term when the square brackets are
expanded.
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Figure 6.7: A higher-order breathing soliton is unstable under the influence
the resonator-induced intensity-dependent group velocity (self-steepening).
Here a second-order soliton splits into two stable fundamental solitons upon
propagation in a SCISSOR. The incident field distribution was the same as
in figure 6.5 but with four times the peak power.

steepening parameter (s/TP) is 0.173. In order to observe the same effect with

traditional intrinsic self-steepening, a six cycle or 30 femtosecond pulse would be

required.

6.3.3 Pulse Compression

More complicated interaction can exist between structural dispersion and en-

hanced self-phase modulation in a SCISSOR structure. The soliton order NS,

proportional to the injected amplitude, is a convenient measure of the relative

strengths of the two processes. If the relative strengths of the processes are

balanced (NS = 1), it was previously shown that soliton-like pulses may be prop-
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agated. If however, the nonlinearity dominates the dispersion (NS > 1), pulse

compression can result. Because the enhanced nonlinearity and induced dis-

persion are each proportional to the finesse squared, [90] the soliton order for a

SCISSOR can be set by simply choosing the ratio of the pulsewidth to the ring

transit time (TR),

NS =
8π

33/4

√
n2I0R

λ

TP

TR
(6.16)

Figure 6.8 demonstrates the result of a simulation in which a 5 ps Fourier

transform-limited pulse is injected into a 10 resonator SCISSOR tuned above

resonance at the peak of anomalous dispersion. The injected NS = 5 pulse frac-

tures into multiple solitons of differing amplitudes along with some dispersing

waves. The soliton with the largest amplitude emerges compressed by a factor

of approximately five. It is worth noting that while this method can be used to

compress a pulse on a very short distance scale, the amount of pulse compression

is ultimately limited by the bandwidth of SCISSOR.

The process of temporal imaging is closely related to pulse compression. With

temporal imaging, [91] intra-pulse structure can be preserved and magnified (or

demagnified). An imaging condition must be satisfied in a setup which consists

of an initial dispersive segment, an imposed quadratic phase and final dispersive

segment of opposite sign to that of the initial. Owing to the large dispersive and

nonlinear properties of microresonators, temporal imagers might be fabricated on

an integrated photonic chip. Each of the three sections might be composed of
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differently tuned SCISSOR elements. Sign selection of the dispersive segments

is easily accomplished in SCISSORs tuned below (normally dispersive) or above

(anomalously dispersive) resonances. The quadratic phase chirp providing the

temporal lensing may be accomplished by cross-phase modulation imposed chirp

enhanced in a resonant SCISSOR.

6.3.4 Saturation

Equation 6.9 was implicitly derived with the assumption of low intensity. Next,

the intensity dependence of γeff is examined. It is found that the circulating

intensity and γeff are in fact interdependent. The circulating intensity depends

on the build-up factor, which in turn depends on the circulating intensity from

the nonlinear detuning contribution. As a result nonlinear resonators can possess

memory and multistable branches in the input-output relationships within certain

operating regimes. [92,93] When operated near resonance, the onset of multista-

bility occurs when the circulating power is high enough to generate a single-pass

nonlinear phase shift of 2π radians. Saturation resulting from intensity-dependent

detuning pulling the resonator off resonance generally takes place well before this

effect. Working on the lower branch of the multistable relation for positive detun-

ings, the saturation of the effective nonlinear propagation constant is well fitted
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Figure 6.8: A highly compact microresonator-based 5X pulse compressor.
A 25 Watt transform-limited input pulse (NS = 5) of 5 ps width is com-
pressed to 1 ps. In the process, some energy is shed in the form of other
non-dispersing pulses which walk away from each other linearly in time ow-
ing to an intensity-dependent group velocity. These extra pulses might be
eliminated through use of a saturable absorbing material which may even
be microresonator-based. Here, 10 AlGaAs or chalcogenide-based microres-
onators of 10 µm diameter form a SCISSOR. The resonators possess a finesse
of 5π, coherent intensity build-up of 10, and nonlinear enhancement of 100.
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by a (1 + I/Is)
−1 type of saturation model which is given explicitly as

γeff −→
r≈1

γ 2πR
L B2

φ0

1 +
γ2πRB2

φ0
2π−Φ0

|A|2
(6.17)

where the saturating intensity near resonance is |AS|2 = π/γeffL. The saturating

intensity is lower for higher detunings from resonance. A generalized nonlinear

Schrödinger equation incorporating every effect discussed so far takes the following

form:

∂

∂z
A + k′

eff

∂

∂t
A = −i

1

2
k′′

eff

∂2

∂t2
A +

1

6
k′′′

eff

∂3

∂t3
A + i

(
1 + is

∂

∂t

)
γeff |A|2

1 + |A|2

|AS|2
A. (6.18)

6.3.5 Nonlinear Frequency Mixing

The characteristics of frequency mixing processes such as harmonic generation and

four-wave mixing can also be enhanced via waveguide-coupled resonators. As a

general rule, the scaling of the enhancement of these processes can be inferred by

including contributions from each intensity involved (lying within a resonance)

and the interaction length. Each contributes a factor proportional to the finesse.

Four-wave mixing is a third-order nonlinear process that annihilates two pho-

tons at one frequency and generates two photons at a higher and lower frequency.

Four-wave mixing can give rise to modulation instability whereby a low contrast

amplitude ripple grows via the amplification of sidebands at the expense of the
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central frequency. Appendix F describes this coupling in detail. In a disper-

sive medium, four-wave mixing is stifled due to phase mismatch. However, in

an anomalous dispersive medium positive self-phase modulation generates new

frequency components that compensate for the mismatch. [64] If the process

is allowed to continue, the modulation depth increases until a train of solitons

stabilizes. Figure 6.9 shows the increase in modulation depth for a seeded 1%

amplitude ripple of 100 GHz with propagation distance for a sequence of 60 res-

onators. [90] The peak of the effective instability gain, gm = 2γeff |A0|2 occurs at

some modulation frequency

Ωm = ±
√

2γeff |A0|2 / |k′′
eff| (6.19)

provided that this value does not exceed the resonance bandwidth. The gain is

enhanced by the square of the finesse.

Up until this point, attention has been restricted to pulses whose bandwidth

is of the order or less than that of a single resonance peak. By co-propagating

pulses with carrier frequencies lying within differing resonance peaks, four-wave

mixing processes can be enhanced with frequency separations of pump and signal

equal to an integer number of free-spectral ranges. Because the efficiency of idler

generation depends on the pump intensity, signal intensity, and grows quadrati-

cally with length, the efficiency scales as the fourth power of the finesse. [94] I

expect such effects to be important in systems that have low intrinsic dispersion
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Figure 6.9: Demonstration of modulation instability in a SCISSOR. The
input field consists of 800 mW of cw power with a 1% power ripple. The
SCISSOR parameters have been chosen such that the peak of the instability
gain is at the input modulation frequency of 100 GHz. Note that the mod-
ulation frequency given by eqn. 6.19 need not be a resonance frequency of
the structure.

such that the FSR is independent of frequency so that the three enhancement

linewidths coincide with signal, pump, and idler frequencies. Finally, the effi-

ciency of harmonic generation processes may be increased. [95] The efficiency of

second harmonic generation (SHG) for example would be enhanced cubically with

the finesse.

6.4 Depth of Phase

Within a free spectral range, a single resonator can impart only a maximum

phase depth of 2π radians. This limitation has important implications for the

maximum delay, chirp, and a nonlinear phase that can be imposed on a pulse per

resonator. As the imparted phase nears only π/2 radians, higher order effects



6.4. DEPTH OF PHASE 114

become increasingly significant such that the system can no longer be treated

perturbatively. The extent of group velocity reduction that can be achieved in

a SCISSOR is limited by how high the finesse can be made. A SCISSOR with

an ultra-high value of finesse can be used to slow a pulse appreciably but that

pulse must be long enough such that it is at least of the order of the finesse

times the transit time of a single resonator. Thus, the maximum delay per

resonator is fixed and equal to one pulse width at best. The same is true for

the induced group velocity dispersion. A high GVD coefficient (proportional to

F2) can be obtained by making the finesse very large. However, the increasing

finesse places an increasing restriction on the pulse bandwidth ∆ω (proportional

to 1/F). As a result, the imposed spectral chirp per resonator, 1/2 k′′
eff∆ω

2L

is independent of finesse and only dependent on the scaling factor B. If the

requirement is to broaden a pulse by N pulse widths then the minimum number of

resonators needed (occurring at B ∼ 1) is roughly N . This is an important point:

an ultra-high finesse is not required for designing dispersive devices based on

resonators. However, while reducing the resonator size and increasing the finesse

in inverse proportion maintains the same resonator bandwidth and thus the same

linear properties, the nonlinear properties are enhanced. This is of fundamental

importance since a low threshold power and small number of resonators is desirable

practically. As a result of saturation, it is very difficult to achieve an effective

nonlinear phase shift of π radians from a single resonator when operating on
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resonance. It is achieved only in the limit as the resonator’s internal phase shift

is power-detuned completely by π radians resulting in an external phase shift of π

radians as well. As a result of this saturation, one completely loses the advantage

of resonant enhancement. Achieving a phase shift of π/2 is however much easier

to attain before the saturation takes place and requires a power-detuning of only

φ = π/F . A nonlinear external phase shift of π may be readily obtained from a

single resonator taking advantage of enhancement by ensuring that the resonator

is initially red-detuned by π/F and allowing the resonator to be power-detuned

though resonance for a total value of π radians.

6.5 Attenuation

Attenuation in microresonators is in general detrimental. Internal attenuation

reduces the net transmission, build-up, and (in general) the nonlinear response.

It also broadens the resonance limiting the achievable finesse. Attenuation in

microresonators typically arises from three mechanisms: intrinsic absorption, ra-

diation loss, [96,97] and scattering. Intrinsic absorption can typically be ren-

dered insignificant over millimeter-sized propagation distances by choosing an

appropriate material system at a given wavelength. Additionally, since the cir-

culating intensity can greatly exceed the incident intensity, intensity-dependent

absorption processes such as two-photon absorption may be significant in res-

onators. Two-photon absorption may be minimized by proper selection of a
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material with a bandgap that is greater than twice the incident photon energy.

[68,77] Whispering-gallery modes of a disk and modes of a ring waveguide suffer

from bending or radiation loss which is increasingly important for small resonators

with low refractive index contrast. Scattering can take place in the bulk or on the

edges. Edge scattering is typically the dominant loss mechanism which results

from roughness on the microresonator edges which in practice cannot be made

perfectly smooth. [98] The surface perturbations phase-match the guided mode

to radiating modes outside the disk structure [99] or into the contra-directional

mode. [100] In the planar waveguide approximation, the attenuation constant

associated with scattering loss is derived as: [101]

αscatt = σ2
(
n2

1,eff − n2
2,eff

)
k2

0

kx

kz

(
E2

(x=−d/2) + E2
(x=+d/2)

)
(6.20)

Where σ is the RMS edge roughness. Applying this result to a disk or ring results

in the expression [102]

αscatt = σ2
(
n2

1,eff − n2
2,eff

)
k2

0

kx,eff

kz,eff

(
E2

(r=R1) + E2
(r=R2)

)
. (6.21)

Because the strength of the scattering loss coefficient increases with the square

of the refractive index difference it can be expected that high-contrast ring and

disk microresonators will possess high scattering losses. Figure 6.10(a) shows a

finite-difference time domain (FDTD) [103] simulation of a 5 resonator SCISSOR
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a)

b)

Figure 6.10: Finite-difference time-domain (FDTD) method of solving
Maxwell’s equations for a SCISSOR structure composed of 5 microresonators.
A TE field of wavelength 1.55 microns is launched into the 0.4 micron wide
waveguide evanescently side-coupled to a disk with diameter of 5.1 microns.
The refractive index of the air-clad disk and guide is 2. Exclusive coupling to
the m=16 azimuthal whispering gallery mode (WGM) is achieved by care-
ful selection of parameters. In (a), strong scattering losses result due to
roughness associated with a 50 nm grid. In (b), scattering losses are made
negligible by using a 30 nm grid. Consequently, a build-up factor of 16 and
finesse of 25 are achieved in this structure.

with 50 nm sidewall roughness displaying strong scattering losses and weak circu-

lating intensity. In figure 6.10(b), a lower sidewall roughness of 30 nm results in

negligible scattering loss and strong intensity build-up.

Resonators have the ability to modify and in some cases enhance certain figures

of merit (FOM). A common FOM is the ratio of the nonlinear coefficient to the

linear absorption. While the nonlinear coefficient is quadratically dependent on

the finesse, the linear absorption, much like the group velocity reduction exhibits

only a linear proportionality. As a result, the FOM is enhanced proportional to

the finesse. Gain may be implemented where possible to combat attenuation.
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More interestingly, a dispersion decreasing system may be used to propagate a

SCISSOR soliton in an attenuating structure. In this case, the pulsewidth is

kept constant as the amplitude decreases via an exponential decrease in disper-

sion down the length of the structure. In general however, low-loss propagation

through a SCISSOR constructed from N resonators can be ensured if the single

pass attenuation satisfies α2πR << 1/NF .

6.6 Slow and Fast Light

In recent years there has been a flurry of activity aimed at the development of

techniques that can lead to a significant modification of the group velocity of prop-

agation of a light pulse through a material medium. [104] Proposed applications

of these procedures include the development of optical delay lines [105] and the

“storage” of light pulses [106,107] with possible applications in optical commu-

nications and quantum information. Most of this research has made use of the

response of resonant media [108] and much of it has made use of the concept of

electromagnetically induced transparency. [106,109]

6.6.1 Slow Light

Many properties of the SCISSOR system are in fact analogous to those found

in atomic systems. In both cases, light is coupled into and out of discrete res-

onators without loss or dispersion, but with delay. It is known from studies of
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slow light propagation in atomic systems displaying electromagnetically induced

transparency (EIT) that the width of the induced transparency window in atomic

systems with N interacting atoms is reduced by a factor which scales as 1/
√

N .

[110] This fundamental limitation on bandwidth results from the fact that near

the frequency of maximum transmission, the transmission decreases quadratically

with detuning. Such a limitation is absent in a fully transmissive SCISSOR

geometry used to propagate solitons, but a fundamental limitation is ultimately

imposed by fourth-order dispersion. This point is next examined in detail.

The effective group index associated with a SCISSOR takes on its maximum

value when the optical wave is tuned to a cavity resonance (φ = 0), and can be

expressed in any of the forms

ng = n

(
1 +

2πR

L

1 + r

1 − r

)
= n

(
1 +

2πR

L
B0

)
= n

(
1 +

4R

L
F
)

(6.22)

While the steep slope of the dispersion-relation curve near resonance is respon-

sible for the reduced group velocity, the transition from the flat sections of the

dispersion curve to the steep section is necessarily curved and introduces group

velocity dispersion (GVD). On resonance, the lowest-order GVD parameter k′′
eff

(and all other even orders) was previously shown to be zero. However, the dis-

tance over which pulses can propagate is limited ultimately by broadening induced

by third-order dispersion. It is better to propagate off resonance and sacrifice

some enhancement in order to gain much in terms of the maximum possible prop-
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agation distance. Specifically, by tuning slightly above resonance (φ0 = π/F
√

3)

third-order dispersion can be eliminated. The lowest-order dispersion that is

introduced by operating off resonance can be compensated for by the enhanced

nonlinear response of the structure. The negative, lowest-order GVD occurring

at this operating point can be precisely balanced by the nonlinearity to form a

SCISSOR soliton. In the following paragraphs this conjecture will be proven.

An all-pass resonator is inherently a phase-only filter and possesses a field

amplitude transmission function that is a pure phasor, which can be expanded at

resonance about φ0 = 0:

eiΦ = e
i
[
Φ0+ dΦ

dφ φ+ 1
2

d2Φ
dφ2 φ

2+ 1
6

d3Φ
dφ3 φ

3+...
]

(6.23)

On resonance, the delay associated with the resonator is given by the value of

the first normalized frequency derivative term (TD = 2
πFTR). Because there is

no amplitude filtering function associated with the operation of this device, the

normalized bandwidth is determined by the phase error induced by higher-order

dispersive terms. On resonance, the even-order terms such as the group-delay

dispersion vanish and the next non-zero higher-order limiting term is third-order

dispersion. The dominant phase error on resonance is thus:

|Φerror| =

∣∣∣∣∣
1

6

d3Φ

dφ3
φ3 =

1

6

1

2

(
2

π
F
)3

φ3

∣∣∣∣∣ . (6.24)
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Assuming that phase error of 1 radian is the maximum tolerable error, the usable

bandwidth is restricted to ∆ν =
(

3
2

)1/3 1
FTR

≈ 1
FTR

. A SCISSOR, composed

of a sequence of N all-pass resonators possesses an effective phase shift equal to

the single device phase shift multiplied by N . It follows that the net accumu-

lated delay for such a system is simply equal to N times the single-device delay.

Fortunately, the net accumulated phase errors do not scale in the same fashion.

That is, the phase-error limitation on usable bandwidth (governed on resonance

by third-order dispersion) is not simply inversely proportional to N , but rather

as ∆ν/ 3
√

N . As discussed previously, soliton propagation at the maximally dis-

persive frequency allows for the cancellation of group velocity dispersion and the

elimination of third-order dispersion. This leaves fourth-order dispersion as the

limiting phase error. The dominant phase error in this regime is thus

|Φerror| =

∣∣∣∣∣
1

24

∣∣∣∣
d4Φ

dφ4

∣∣∣∣
φD

φ4 =
1

24

(
27
√

3

128

)(
2

π
F
)4

φ4

∣∣∣∣∣ (6.25)

with a similar bandwidth restriction of ∆ν =
(

24

35

)1/8 (
1

FTR

)
≈ 1

FTR
for a single

resonator. It is easily shown that a less restricting scaling law of ∆ν/ 4
√

N applies

to propagation in the SCISSOR soliton regime.

Next, the analysis derived in the previous paragraph is tested via rigorous

simulations. Figure 6.11 compares three approaches to attempting to propagate

slow light in a SCISSOR with a group velocity of approximately c/(100 n). In
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Fig. 6.11(a), a weak 100 ps pulse tuned to resonance is greatly delayed, but

broadens and acquires ripples associated with negative third-order dispersion. In

Fig. 6.11(b), the pulse frequency is tuned above resonance to the extremum of the

lowest-order GVD. At this frequency, the third-order GVD necessarily vanishes,

and pulse distortion of the sort shown in part (a) is noticeably decreased. How-

ever, the pulse broadens considerably as a result of non-vanishing second-order

(lowest-order) dispersion. In Fig. 6.11(c), the same pulse but with a peak power

corresponding to that of the fundamental SCISSOR soliton is seen to propagate

with a preserved pulse shape. The group velocity reduction in this case is 75X as

opposed to 100X in part (a), but the high fidelity of pulse propagation makes this

strategy appear to be superior.

A sequence of resonators might someday be useful in studying the properties of

slow light in the regime where acoustic and optical group velocities are of the same

order of magnitude. [111,112] However, in order to slow the group propagation

to this level in silica, a high finesse of about 105 is required.

6.6.2 Tunable Optical Delay Lines

Because the group delay can in practice be controlled by detuning resonators ther-

mally, [113] electro-optically, by carrier injection, [114] electroabsorption, [115] or

other means, tunable optical delay lines may be constructed from microresonators.

The net group delay, TD in a SCISSOR increases linearly with the number of res-
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Figure 6.11: Numerical results showing the advantage of using optical nonlin-
earity on the propagation of slow light through a SCISSOR structure. The
SCISSOR consists of 100 10mum diameter resonators spaced by 10πµm with
r = .98 corresponding to a group velocity reduction of 100X. a) A weak 100
ps resonant pulse propagates at a group velocity of (c/n)/100 through the
SCISSOR and is corrupted by resonator induced third-order dispersion. b)
The same pulse, but with carrier frequency tuned to the anomalous GVD
maximum propagates with a group velocity of (c/n)/75 but is greatly broad-
ened. c) A 6.4 mW peak power, 100 ps pulse tuned to the anomalous GVD
maximum propagates as the fundamental SCISSOR soliton with a group ve-
locity of (c/n)/75 and is well preserved. Here, parameters typical of a GaAs
or chalcogenide-glass based waveguiding structure, (γ/Aeff = 60m−1W−1)
were employed.
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onators,

TD = N
dΦ

dω
. (6.26)

The net group delay is inversely proportional to the average group velocity which

can be minimized by coupling the resonators in a manner that yields the max-

imum possible finesse. Under this condition, however, the bandwidth may be

severely restricted. For example, reducing the group velocity in a SCISSOR by

6 orders of magnitude results in a bandwidth of less than 10 MHz for 10 µm

diameter resonators. As a result, designing a SCISSOR for the minimum attain-

able group velocity (in practice limited by attenuation) is not desirable. The

fractional group delay, defined as the group delay normalized to one pulsewidth

TP is a convenient figure of merit characterizing a resonator-based delay line. A

fractional group delay near unity corresponds to a delay by one pulsewidth. This

is the greatest delay that can be achieved in a single resonator without the intro-

duction of higher-order dispersive effects. These higher-order dispersive effects

result from frequency content in the spectral wings experiencing a lower delay.

Fractional group delays greater than unity can be obtained by use of more res-

onators. However, dispersive effects accumulate and eventually severely distort

pulses. For a desired net fractional delay, these phase errors might be reduced

by relaxing the fractional delay per resonator and increasing the number of res-

onators. Alternatively, the phase errors might be corrected by some means of

dispersion compensation, thereby increasing the system complexity. In princi-



6.6. SLOW AND FAST LIGHT 125

ple, there is an advantage to using nonlinear soliton propagation in a SCISSOR.

Figure 6.12 displays the results of a simulation of a tunable delay line based on

a SCISSOR. Eight bits of a 160 Gb/s pulse train are delayed by 1 and 4 bit-

slots. For simplicity, the delay associated with propagation in the side-coupling

waveguide is removed. In (a) six resonators are sufficient to delay the pulse-train

by a single bit-slot while suffering minor third-order phase distortion. In (b) a

four bit-slot delay is achieved via the use of 26 resonators but the pulses emerge

greatly dispersed. By tuning the resonator and pulse energy to parameters near

the SCISSOR soliton for the structure, pulse fidelity can be improved as demon-

strated in (c). Note that a delay of 4 bit-slots corresponds to a fractional delay

of 12 for the duty cycle of 1/3 employed. For comparison, the same pulse train is

sent through the SCISSORs with the resonators tuned far away from resonance.

The delay accumulated either for weak or strong pulses in the off-resonance state

where pulses effectively bypass the resonators is negligible. This demonstrates

the possibility for tunable delay. Most importantly, this simulation demonstrates

that a unit fractional delay does not require an ultra-high finesse, but rather is

achieved when the pulse bandwidth is of the order of the resonator bandwidth.

In order that sequences of resonators forming the SCISSOR overlap in their delay

bandwidths, their effective optical circumferences must be made reproducibly to

within the wavelength divided by the finesse. If the reproducibility does not
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conform to this standard, a Doppler-like broadening of the Lorentzian resonance

linewidths will result in lowered group delay and broader bandwidth.

6.6.3 Fast Light

Lossy resonators forming a SCISSOR structure can be implemented to propagate

light superluminally. [116] If the coupling strength is chosen to be weaker than

the round trip loss, the resonator is said to be undercoupled. The dispersion

relation for the SCISSOR in this regime is qualitatively different from that found

in the overcoupled regime. Figure 6.13 (a) displays the transmission for a single

resonator in the three regimes. In addition, figure 6.13 (b) displays the resonator

contribution to the dispersion relation for all three regimes and displays the re-

versal of sign near resonance. This negative slope implies that a pulse exiting

from a resonator will emerge with its center advanced in time with respect to the

incident pulse. Causality is maintained because the discrete impulse response

of the resonator does not possess any advanced impulses. A pulse displays su-

perluminal propagation but quickly attenuates in a multi-resonator undercoupled

SCISSOR. Gain (assumed flat across the pulse bandwidth) may be incorporated

into the straight waveguide to offset the losses associated with the undercoupled

configuration. The group index near resonance in the undercoupled regime is

given by [117]

ng = n

(
1 − 2πR

L

a(1 − r2)

(r − a)(1 − ra)

)
(6.27)
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Figure 6.12: A microresonator-based tunable delay line. Shown are 8 bits
of a 160 Gb/s (duty cycle=1/3) pulse train. In (a) 6 resonators achieve a
delay of a single bit-slot with some minor distortion resulting from third-
order dispersion. In (b) 26 resonators achieve a delay of 4 bit-slots though
with increased distortion. In (c) propagation near parameters associated
with a SCISSOR soliton results in noticeably less distortion. Also shown in
(b) and (c) are the same pulse trains when the resonator is detuned. In all
cases, a finesse of 10π and 4 µm diameters are used. The bit sequence is
10100111.
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where a = e−απR. Figure 6.13 (c) demonstrates superluminal propagation of a lin-

ear, resonant pulse through undercoupled resonators situated near an amplifying

waveguide. The exiting pulse experiences a negative time delay or, equivalently,

a time advance. Moreover, the theory also predicts superluminal propagation for

a SCISSOR in which each resonator is constructed of an amplifying medium in

which the round trip gain is greater than the coupling strength8; however, our

numerical simulations suggest that propagation is highly unstable in this regime.

6.7 Generalized Periodic Resonator Systems

Attention is now turned to comparing and contrasting the geometry and propaga-

tion characteristics of periodic SCISSORs with that of other well-known systems

in optical physics which possess photonic band-gaps. In certain respects, the

SCISSOR soliton is analogous to gap, [118] Bragg, [119] and discrete solitons

[120] which result from nonlinear pulse propagation within or near the photonic

band-gap [121] of a distributed feedback structure. The SCISSOR structure it-

self bears some similarity to a coupled resonator optical waveguide (CROW) [122]

which consists of a multi-dimensional array of inter-coupled resonators and no

side-coupled waveguide. Many other photonic crystal systems possess similar

phase [123] and intensity enhancing properties [124–126] but in general possess

band-gaps. Because each constituent resonator of a SCISSOR is an all-pass filter,

8this occurs in the equivalent undercoupled regime accompanying gain
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regimes. b) The dispersion relation for the same three cases. Note the
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c) Numerical simulation demonstrating superluminal propagation of 36 ps
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resonators with 10mum diameter, spaced by 10π µm. Gain has been added
to the straight waveguide section to maintain pulse power.
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feedback is present within each resonator but not amongst resonators. Alterna-

tively, there is no intended mechanism for light to couple into the counterpropa-

gating modes of the microresonator or guide9. As a result, there is no frequency

at which light is restricted from propagating and thus the structure cannot pos-

sess a photonic band-gap (PBG). Nevertheless, the SCISSOR structure displays

enhanced nonlinear optical response for much the same reason that a PBG struc-

ture can produce enhanced nonlinearity. Because of this, it is not necessary for

the resonators to be periodically spaced: only the average density over a total

interaction length (or net number) of resonators is important. The addition of

a second guide on the other side of the resonator array; however, opens up the

possibility for inter-resonator feedback and the existence of a photonic band-gap.

This type of structure is interesting in its own right [128] and the propagation

characteristics of this structure will be examined later in this section.

Microresonators can be connected to form sequences in a variety of ways. [129]

The simplest way is simply to situated them close enough such that the evanescent

fields circulating within them couple resonator to resonator directly. This struc-

ture is a one-dimensional coupled-resonator optical waveguide (CROW). [122,130]

Another way to connect them is indirectly through a common waveguide as in a

single-channel SCISSOR. Variants of the SCISSOR structure may include two

9Counterpropagating waves in a ring resonator can be coupled either via surface roughness or
simply via a small perturbation such as a notch. When side coupled to a guide such a notched
resonator can approximate a general second-order Chebyschev reflection response. This is
because a single notched ring with one guide is equivalent to two coupled rings between two
guides [79,127]
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common coupling waveguides and/or more than one resonators connecting them.

This section will focus on these four archetypal geometries constructed from ring

or disk resonators. This set of four geometries may be considered to consist of

all the unique permutations by which a Fabry-Perot resonator may be connected

to form sequences of resonators. Figure 6.14 depicts these four configurations.

While in principle, actual Fabry-Perots could be combined to construct function-

ally equivalent devices, they can be quite clumsy to string together in sequences.

Ring or disk resonators have properties which are more naturally suited to some

sequencing geometries and are more readily integrated in practice.

Up to this point, the frequency analysis of sequenced all-pass resonators was

straightforward because of the serial non-feedback nature of the transmission.

That is, after the fields leave a resonator, they never return to it. Phase accu-

mulation is thus simply cumulative. In the case of a double-channel SCISSOR or

CROW which possess feedback amongst resonators, a different formalism must be

developed. The matrix formalism used to analyze photonic band-gap structures

based on Bloch’s theorem is adopted with the assumption that the resonator se-

quences are infinite and periodic. Appendix G describes in detail the method used

to derive the dispersion relations for arbitrary one dimensional periodic structures

which include resonators. Using this formalism, the dispersion relations for the

four archetypal sequenced-resonator geometries are readily derived. Each will be

analyzed in the following subsections.
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Figure 6.14: Illustrations of four archetypal ring resonator geometries and
their free-space analogues which can be used as building blocks to construct
sequences of resonators that serve as engineerable photonic media. The only
way to connect singly-coupled ring resonators or Gires-Tournois resonators
in series is depicted in (a). The three unique ways of connecting doubly-
coupled ring resonators or Fabry-Perot resonators in series are illustrated in
(b),(c) and (d).
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6.7.1 Single-Channel SCISSORs

The dispersion relation for a (periodic) single-channel SCISSOR is a special case

(r2 = 1) of the double-channel variety. Figure 6.15 displays the dispersion relation

and build-up as derived from the formalism in appendix G. Nothing fundamen-

tally new is introduced here. The dispersion relations are plotted in standard

form as frequency vs. the Bloch vector with build-up and GVD alongside. The

plots here are displayed for comparison with the other 3 structures. Notice that

no photonic band-gaps are present in the dispersion relation. Near a resonance

associated with the resonators, the build-up is strongly peaked and the group ve-

locity (slope of dispersion relation) is greatly reduced. Both effects contribute to

enhance nonlinear properties. In this structure, the maxima of each is coincident

and centered on the resonance. As will be shown in the following sections, this

is not always the case.

6.7.2 Double-Channel SCISSORs

A double-channel SCISSOR as depicted in figure 6.16 is composed of a sequence

of resonators coupled to waveguides on both sides. In the single-channel case

with all-pass resonators, feedback is solely intra-resonator; the double-channel

case introduces inter-resonator feedback much like a concatenation of Fabry-Perot

resonators or multi-layer stack. The mathematics here are nearly analogous to

that of a multi-layer stack with the notable distinction that the forward- and
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Figure 6.15: The build-up factor, dispersion relation, and group velocity
dispersion for a) a low-finesse, and b) a high-finesse single-guide SCISSOR.
Note that the dispersion relation for the single-guide SCISSOR does not
display photonic band-gaps. Nevertheless, at the resonator resonances
(λmR = n2πR/mR), both the intensity build-up in the resonators and the
group velocity reduction, (inversely proportional to the slope of the disper-
sion curve), are coincidentally maximized. As a result, optical nonlinearities
at the resonances are quadratically enhanced. Parameters include a refrac-
tive index of n = 3.1, and a radii of R = 2.5 µm. Resonances mR = 31 and
32 at 1.571 µm and 1.522 µm are shown. In a), a high coupling strength,
t2 = .75 results in a wide bandwidth and a low build-up, B0 = 3. In b),
a low coupling strength, t2 = .1814 results in a narrow bandwidth and a
high build-up, B0 = 20. To avoid redundancy, and because the forward and
backward travelling waves do not couple, only the dispersion relation for the
forward-travelling wave is shown.
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backward-going coupled waves physically occupy different optical channels. There

is a greater freedom of parameter choice in the realization of integrated double-

channel SCISSORs with respect to multi-layer stacks or Bragg gratings since the

effective reflectivities can be easily made stronger. While in the single-channel

case, the transfer characteristics of a single resonator can be multiplied serially to

obtain an overall transfer function, the same procedure fails for the double-channel

case. This is of course because in the single-channel case, once light leaves a par-

ticular resonator, it never returns back to it. The double-channel case however,

offers many routes for the light to recirculate back to earlier resonators previously

visited; resonances can develop not only within but also amongst the resonators.

As a result of this inter-resonator feedback, the periodicity of the resonator spacing

becomes important and the possibility of photonic band-gaps exists. A compar-

ison of the qualitative features of the band-gaps in figure 6.16 reveals that the

band-gaps are wider for strongly-coupled resonators. The interpretation is sim-

ple. In the high-finesse case, the band over which the individual resonators are

reflecting is narrow while in the low-finesse case it is wide. This directly carries

over to the widths of the band-gaps in the infinitely periodic structure. This is in

stark contrast to the situation of a multi-layer stack where high reflectivity results

in a wider band-gap. This difference is due to the fact the double-guide SCISSOR

is connected from individual resonators in a different manner than a multi-layer

stack is connected from a sequence of individual Fabry-Perot cavities. Figure
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6.17 qualitatively compares the transmission properties of unit structures and in-

finite periodic structures for a double-guide SCISSOR and a multi-layer stack.

While a multi-layer stack (or CROW as will be later shown) allows propagation

on resonance and taking advantage of maximum coherent build-up of intensity

within the resonators, propagation is not allowed at resonances of the double-

channel SCISSOR around which band-bands form. The fact that peak resonator

build-up coincides with the center of the band-bands implies that this structure

is potentially more useful for exciting gap solitons [118,131] and other nonlinear

effects within the band-gap.

The dispersion relation for the double-channel case demonstrates the existence

of two qualitatively different types of photonic band-gap. The first type of band-

gap is a gap typical of a multi-layer stack or Bragg grating which opens centered

at the Bragg wavelengths (λj = 2nL/j) associated with the periodicity of the

structure. Within some range of wavelengths centered about this Bragg wave-

length no real value of the propagation constant exists. This region is termed

a Bragg gap. The dispersion relation at the low frequency side of the gap pos-

sesses a positive slope corresponding to a positive group velocity. The sign of

the slope and group velocity changes sign just above the gap. Near the gap

edges, the group velocity can go to zero and consequently, such a device might be

useful as a delay line or optical buffer. A problem with this implementation is

the existence of strong group velocity dispersion near the edge which imposes an
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ultimate limit on the delay time. The second type of band-gap is a gap centered

at the resonant wavelength (λm = n2πR/m) associated with the circumference of

resonators. Just as in the first type, within some range of wavelengths centered

about this resonant wavelength, no real value of the propagation constant exists.

This region is termed a “resonator gap.” [131] The dispersion relation at the low

frequency side of the gap possesses a positive slope corresponding to a positive

group velocity. In contrast to the Bragg gap, the sign of the slope and group

velocity does not change across the gap. Near the gap edges, the group velocity

can also go to zero but the group velocity dispersion is strikingly smaller near the

edge. [132] Another, very striking difference between Bragg and resonator gaps is

the position of minimum separation between bands. In the case of a Bragg gap,

the gap is direct, while in the case of a resonator gap, the gap is indirect.

6.7.3 Inter-Coupled Resonators

A sequence of inter-coupled resonators with no waveguide as depicted in figure

6.18 may be considered to be a one dimensional version of a coupled resonator

optical waveguide (CROW). Another interpretation is in considering every other

resonator to be two waveguides which connect the resonators together in sequence.

The output port connections here are reversed compared to that of the double-

channel SCISSOR. As a result the optical properties are exactly analogous to a

multi-layer stack. Forward propagation can occur only near resonances. Light



6.7. GENERALIZED PERIODIC RESONATOR SYSTEMS 138

Bragg gap 64
res. gap 31

Bragg gap 66 + resonator gap 32

Bragg gap 65

Bragg gap 64

resonator gap 31

Bragg gap 66 + resonator gap 32

Bragg gap 65

20 10 0

1.498

1.522

1.546

1.571

1.597
π
L

π
L- π

2L- π
2L0

w
av

el
en

gt
h 

(µ
m

)

3 0

1.498

1.522

1.546

1.571

1.597
π
L

π
L- π

2L- π
2L0

w
av

el
en

gt
h 

(µ
m

)

12

double-channel SCISSOR

a)

b)

Bloch vector (keff)intensity build-up

Bloch vector (keff)intensity build-up

GVD (ps2/mm)
0-5 5 10-10

GVD (ps2/mm)
0 400-400

Figure 6.16: The build-up factor, dispersion relation, and group velocity dis-
persion for a) a low-finesse, and b) a high-finesse double-channel SCISSOR.
Note that unlike the dispersion relation for the single-guide SCISSOR, the
double-guide variety displays photonic band-gaps. Two qualitatively dif-
ferent band-gaps manifest themselves. At the structural Bragg resonances,
(λmB = nL/2mB) the band-gap is direct and results from distributed Bragg
reflection. At the resonator resonances, (λmR = n2πR/mR) the band-gap is
indirect and results from strong resonator-mediated back-coupling. Param-
eters were chosen such that one Bragg gap was coincident with one resonator
gap within the figure: refractive index n = 3.1, radii R = 2.5 µm, and spacing
L = 1.5πR. Resonator resonances mR = 31 and 32 and Bragg resonances
mB = 64, 65 and 66 are shown. The coincident resonator (mR = 32) and
Bragg (mB = 66) resonance results in a wide direct gap. In a), a high cou-
pling strength, t2 = .75 results in wide band-gaps and a low build-up. In b),
a low coupling strength, t2 = .1814 results in narrow band-gaps and a high
build-up. This structure is most suited to enhancement of nonlinearities
near or a gaps due to the centering of intensity build-up peaks at mid-gap.



6.7. GENERALIZED PERIODIC RESONATOR SYSTEMS 139

Double
Guide

SCISSOR

Double
Guide

Resonator

Multi-layer
Stack

Fabry-Perot

Figure 6.17: A comparison of the transmission properties of a) a double-
channel resonator, b) a double-channel SCISSOR, c) a multi-layer stack, and
d) a Fabry-Perot. Note that the qualitative features of the transmission
peaks and valleys are equivalent but reversed for that of a a double-channel
resonator and a Fabry-Perot. This results in very different band-gap widths
when the individual units are connected to form a double-channel SCISSOR
and a multi-layer stack.
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within the band-gaps does not efficiently excite the resonators. Thus, the struc-

ture is not an ideal geometry for the excitation of gap solitons and other nonlinear

effects within the band-gap. The structure is nevertheless useful for exciting the

more general class of Bragg solitons [119] and for linear bandgap engineered de-

vices.

6.7.4 Finite Stop-Gap Structures

Next, comparisons are drawn between the qualitative features of the transmission

for a finite double-channel SCISSOR and 1-D CROW with the corresponding in-

finite periodic structures. Figure 6.19 displays the transmission for low finesse

1 and 5 unit-celled structures. Figure 6.20 displays the transmission spectra for

equivalent high finesse structures. It is evident that both the double-channel

SCISSOR structure and the 1-D multi-layer stack display complementary band-

gaps in an infinite structure. However, for a finite double-channel SCISSOR, a

deep ripple-free stop-gap can be achieved by use of merely 5 unit cells under high

finesse operation. In contrast, the 1-D CROW (or multi-layer stack) requires

a large number of unit cells to achieve a deep stop-gap. Also, in the high fi-

nesse case, apodization is essential to remove the deep ripples in the transmission

spectrum of a CROW resulting from resonances developing from the abruptly

terminated ends of the structure. This is somewhat unnecessary in the finite

double-channel SCISSOR. However, strong intensity build-ups present in regions
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Figure 6.18: The build-up factor, dispersion relation, and group velocity
dispersion a) a low-finesse, and b) a high-finesse coupled resonator optical
waveguide. The dispersion relation is exactly analogous to that of a multi-
layer stack. Band-gaps are always of the direct type and result from dis-
tributed Bragg reflection. Parameters include a refractive index of n = 3.1,
alternating radii of R1 = 2.5 µm and R2 = 1.5R1. Resonances mR1 = 31
and 32 and mR2 = 64, 65 and 66 are shown. In a), a high coupling strength,
t2 = .75 results in narrow band-gaps and a low build-up. In b), a low cou-
pling strength, t2 = .1814 results in wide band-gaps and a high build-up,
B0 = 20. These qualitative features are directly opposite those found in
the double-guide SCISSOR. This structure is most suited to enhancement of
nonlinearities near the band-centers due to the centering of intensity build-up
peaks at mid-band.
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of high transmission for the CROW are shifted to regions of high reflection in a

double-channel SCISSOR. A limited depth of penetration due to strong back-

ward reflection will ultimately place restrictions on its use for nonlinear optical

interactions.

High finesse multi-layer and CROW structures are optimum structures for

simultaneously enhancing intensity build-up and phase sensitivity or group de-

lays near transmission resonances. Operation near stop-gaps is however only

optimized in the regime of lengthened distributed reflection resulting from low

contra-directional coupling per unit cell (low finesse) over many unit cells. Such

is often the case in Bragg gratings where the index contrast variations are very

low. In contrast, high finesse double-channel SCISSORs are optimum structures

for simultaneously enhancing intensity build-up and phase sensitivity or group

delays near the stop-gaps. Operation near stop-gaps is optimized in the regime

of strong contra-directional coupling per unit cell (high finesse) over a few unit

cells. Thus, the engineering of nonlinear optical bands is best accomplished with a

CROW while the engineering of nonlinear optical band-gaps is best accomplished

with a double-channel SCISSOR. Finally, the displayed plots show that the dis-

persion relation can provide a heuristic guide to the width of the transmission

dips in a finite structure.
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Figure 6.19: Transmission spectra for a low finesse (t2 = .75) finite double-
channel SCISSOR and finite 1D-CROW. Parameters are the same as in
figures 6.16 and 6.18. Here, 5 unit cells are used to approximate the struc-
tures. For comparison, the transmission for a single resonator structure is
shown in each case. Shaded regions correspond to 1D photonic bandgaps in
the corresponding infinite structure.



6.7. GENERALIZED PERIODIC RESONATOR SYSTEMS 144

wavelength, µm

tra
ns

m
is

si
on

0

0.2

0.4

0.6

0.8

1.0

wavelength, µm

1D CROW

Double-channel SCISSOR
tra

ns
m

is
si

on

0

0.2

0.4

0.6

0.8

1.0

1 unit cell
5 unit cells
bandgaps

1.4981.5221.5461.5711.597

1.4981.5221.5461.5711.597

Figure 6.20: Transmission spectra for a high finesse (t2 = .1814) finite double-
channel SCISSOR and finite 1D-CROW. Parameters are the same as in fig-
ures 6.16 and 6.18. Here, 5 unit cells are used to approximate the structures.
For comparison, the transmission for a single resonator structure is shown
in each case. Shaded regions correspond to 1D photonic bandgaps in the
corresponding infinite structure.
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6.7.5 Twisted Double Channel SCISSORs

Another variety of the double channel SCISSOR which possesses qualitatively

different optical properties is constructed using two inter-coupled resonators to

connect the two channels. For completeness, it is analyzed here. This “twisted”

double-channel SCISSOR is depicted in figure 6.21. Due to the extra resonator,

the coupling direction relationships across the resonator are reversed compared

with the ordinary double channel SCISSOR. As a result, in this configuration

there is no mechanism for contra-directional coupling, but co-directional coupling

across the channels is now mediated by the two resonators. Light injected into

one of the ports thus only couples to either of the channels in the forward-going

direction. This may be considered to be a resonator-enhanced directional coupler.

Note the absence of band-gaps and similarity of the dispersion relation with that

of the single-channel SCISSOR.

6.8 Summary

Passive, nonlinear resonators are still a relatively widely untapped area of research.

At present, many single microresonator systems with excellent optical properties

have been constructed. [133–136,38] In many of these cases, extending the fabri-

cation techniques to construct long sequences of such devices to yield large-scale

integration of photonic devices [137] is achievable. The aim of this chapter was to
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Figure 6.21: The build-up factor, dispersion relation, and group velocity
dispersion for a) a low-finesse, and b) a high-finesse twisted double-channel
SCISSOR. Band-gaps are absent in the dispersion relation which resem-
bles that of the single-channel SCISSOR though a second branch is present.
The two branches correspond to the two decoupled forward-travelling normal
modes. Near the resonator resonances, (λmR = n2πR/mR) the two branches
are strongly coupled as in the case of a directional coupler. Parameters used
are the same as in figure 6.16 except that there are two resonators each half
in size and 100% coupled. Resonances mR = 31 and 32 at 1.571 µm and
1.522 µm are shown. In a), a high coupling strength, t2 = .75 results in
wide-bandwidth channel-to-channel coupling and a low peak build-up. In
b), a low coupling strength, t2 = .1814 results in narrow-bandwidth channel-
to-channel coupling and a high build-up. To avoid redundancy, and because
the two forward and two backward travelling waves do not couple, only the
two forward-travelling dispersion relation branches are shown.
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describe some of the linear and nonlinear propagation characteristics of sequences

of microresonators. Figure 6.22 summarizes the detuning dependence of the linear

and nonlinear propagation parameters. The application of thermal or electrical

fields to the resonators makes it possible to control the detuning and/or coupling

coefficients. I envision that such structures could be used as artificial media

to study and apply NLSE pulse propagation effects on an integrated chip where

the propagation parameters may be chosen and/or modified in real-time. Other

applications might include a testbed for studies of slow-light phenomena, vari-

able optical delay lines, [105] clean pulse compression on a chip without pedestal

formation via the soliton decay mechanism, and soliton-based optical switching

and routing with low energy pulses. While all of these concepts have been im-

plemented in various geometries and material systems, the SCISSOR system has

the potential for providing a highly compact, integrated optical platform for such

phenomena. Furthermore, it has the potential of creating familiar phenomena in

regions of parameter space that typically do not manifest it such as the case of

self-steepening for pulses greater than picoseconds. It is expected as manufactur-

ing techniques continue to improve, microresonator-modified waveguides such as

the SCISSOR will become important photonic devices.
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Chapter 7

Microresonator Design

7.1 Introduction

There are several factors that must be taken into account when designing mi-

croresonator structures. The aim of this chapter is to describe the reasons for

choosing a particular set of parameter choices. Some parameters are dictated

by fundamental theoretical considerations; others are dictated by the practicality

and availability of fabrication materials and tools.

7.2 Materials

The selection of a material system for fabrication of nonlinear microresonators

must satisfy a number of requirements. First and foremost, it must be com-

patible with mature fabrication technology. Examples include optical fiber and

fabrication on Silicon and GaAs substrates. Secondly, it should possess a high

linear refractive index, a high nonlinear refractive index, low one-photon absorp-
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tion loss, and low two-photon absorption loss. A careful analysis dictates that a

semiconductor (or semiconductor-like) material with a band-gap slightly greater

than twice the exciting photon energy satisfies the low (one and two photon)

loss requirements and yet provides a reasonably high and ultrafast nonlinear Kerr

coefficient 7.1. This is a result of applying the Kramers-Kronig relations to two-

photon absorption and cross-phase modulation. Appendix C offers a closer look

at this method.

There were a few material systems for which fabrication of ring resonators

was feasible within the means of our research group: silica, AlGaAs, chalcogenide

glass, and polymer. The relative merits of each will be discussed in turn.

Silica

Despite a weak nonlinearity, ordinary silica drawn into fiber has the distinction

of possessing the highest nonlinearity to attenuation ratio of any material system.

It would be advantageous to design devices that make use of this property in an

effective manner. Silica fiber based switching devices were analyzed where the

introduction of a single-mode fiber ring resonator into one of the arms of a fiber

Mach-Zehnder interferometer would effectively enhance the accumulated nonlin-

ear phase shift and reduce the switching threshold-interaction length product by

four or more orders of magnitude. [65] This analysis was presented in chapter

5. However the most significant problem associated with constructing ring res-
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Figure 7.1: Plots of the two-photon absorption coefficient and nonlinear re-
fractive index of SiO2, GaAs, and Al0.2Ga0.8As versus wavelength. The
plot for two-photon absorption is derived from a two-band model. [138] The
Kramers-Kronig relation applied to the third order susceptibility is subse-
quently used to generate the plot for the nonlinear refractive index in each
case. The dip on the log plot of n2 corresponds to a reversal of sign for
the nonlinear refractive index and gray linestrokes correspond to negative
nonlinear refractive indices.
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onators from conventional optical fiber is low dielectric contrast. Conventional

single-mode fibers (such as Corning SMF-28) posses index differences of the order

of .0036 and as a result suffer large bending losses when made into rings of radii of

the order of centimeters. This restricts the operating bandwidth of such devices

to below 1 GHz. A 6 micron diameter air-clad silica microresonator could pos-

sess a 10 THz free-spectral range, but the weak nonlinearity requires such a high

finesse to obtain a π phase shift at reasonable powers, that the operating band-

width would again fall well below in the GHz range. Thus for many practical

reasons, all-optical switching devices with low latency1 based on microresonators

are not expected to be useful. Silica glass micro-spheres can be made with ultra-

high quality (Q) factors, [96,54,52] but are difficult to fabricate reproducibly and

not readily integrated. They have nevertheless found use as lasers [31] and have

the potential for ultrafine filter or ultraprecise clock applications. Integrated

microdisk or microring resonators can be fabricated more reproducibly although

current fabrication techniques cannot achieve high quality factors. Integrated

silica-based microresonators have and will continue find applications as disper-

sion compensators [46] and delay lines [105] with GHz bandwidths. Recently, a

structure which combines the best features of spheres and disks was constructed

1Non-resonator based nonlinear interferometers such as the nonlinear optical loop mirror or
nonlinear Mach Zehnder interferometer can compensate for low nonlinearity via long interaction
lengths. While the long interaction lengths do not affect the bandwidth as in the case of a
resonator, they introduce a long delay from input to output (latency). Furthermore, then
cannot be fabricated at the integrated chip-level.
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by a combination of microfabrication techniques and laser annealing to produce

microdisks with smoothed sidewalls reformed by surface tension. [139]

AlGaAs

Semiconductor nonlinearities result either from real (band-to-band) transitions

or virtual transitions of charge carriers. The nonlinearities resulting from real

transitions are typically strong, but their bandwidth is typically limited by the

lifetime of generated excited state carriers which is of the order of 10-100 ps. This

would dictate an operating bandwidth of 10-100 GHz for semiconductor-based all-

optical switching2 Furthermore, devices which rely on the saturation of gain to

change the refractive index are active and thus ultimately require an electrical

source of power to operate.

Nonlinearities resulting from virtual transitions are typically weak but never-

theless ultrafast. It was shown by Stegeman et al. that in a material possessing a

band structure, the nonlinear refractive index is inextricably linked to two-photon

absorption. [141] Sheik-Bahae et al. analyzed the theory of the dispersion of

the nonlinear coefficient and found that, while two-photon absorption is a limit-

ing factor, the nonlinear figure of merit (nonlinear refractive index to two-photon

2There exists a scheme that allows operation at terahertz bandwidths. Sokoloff, et al.
demonstrated such a device in 1993 and called it a terahertz optical asymmetric demultiplexer
(TOAD). [140] The device is essentially a nonlinear optical loop mirror (NOLM) with a semi-
conductor amplifier asymmetrically placed in the loop. The trick is that though the lifetimes
are slow, the rise-times can indeed be fast enough to achieve a π phase shift for picosecond
pulses provided the device is continually operated far from steady-state.
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absorption coefficient ratio) is maximized just below the half-gap of a material.

[142,138] Shortly thereafter, Slusher, et al. demonstrated that phase shifts in

excess of π were obtainable with less than 100 pJ of energy in low-loss AlGaAs

waveguides engineered to operate just below the half-gap. [143] The waveguide

length required to achieve a nonlinear switch with reasonable pulse energies was

still of the order of a few millimeters. Significant reduction of this length may be

accomplished via use of an AlGaAs microresonator. AlxGa1−xAs is a well-studied

material system with well-developed processing procedures that can be engineered

(via adjustment of composition, x) to satisfy the requirements dictated for non-

linear microresonators. Below the half-gap, AlGaAs has negligible two-photon

absorption but just above it can reach values of 500 dB/mm for only 1 kW of peak

pulse power. Figure 7.2 shows the half-gap wavelength dependence on the com-

position displaying compositions of x=20% for wavelengths in the near infrared

around 1.55 µm. Just below the half-gap, though over a broad bandwidth of a few

hundred nanometers, a nonlinearity which is about 100-1000 times greater than

silica n2 ≈ 10−17m2/W is typically found. The much larger nonlinear refractive

index present in the lower bandgap AlGaAs is in accordance with a well-known

scaling law (E−4
g ) for the third-order susceptibility. [144] This coupled with a

refractive index above 3.0, make it an attractive choice for constructing nonlin-

ear microresonator-based devices. Figure 7.3 displays the refractive index as a

function of composition.
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Figure 7.2: AlxGa1-xAs half-gap wavelength as a function of composition.
[145] The kink in the plot results from a crossover from direct (GaAs) to
indirect (AlAs) band-gap.
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Figure 7.4: A demonstration of transverse, one dimensional self-focusing in
an AlGaAs planar waveguide. Shown are the output intensity profiles for
increasing pulse energies.

Evidence of the strong nonlinearity in AlGaAs was demonstrated via Kerr-lens

self-focusing experiments. [146] Figure 7.4 shows output intensity profiles for light

injected into one end of a planar AlGaAs waveguide.

Chalcogenide

Certain classes of chalcogenide-based glasses (As2Se3) behave similarly to semi-

conductors with the benefit that they can be easily integrated with the better-

developed silica-on-silicon photonics infrastructure. Similarly, below the half-gap,
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chalcogenide systems display negligible two-photon absorption. An attractive

material for all-optical switching in the near infrared is arsenic selenide, As2Se3)

which possesses a nonlinearity based upon virtual transitions that was measured

to be 500 times greater than silica glass. [68,77] Arsenic selenide possesses a band-

gap energy of 1.77 eV which is greater than twice the band-gap energy of a near

infrared photon around 1.55 µm (0.8 eV) thus two-photon absorption processes

are generally negligible. A refractive index of 2.5 allows for strong confinement

and low whispering gallery losses. As a result of the high nonlinearity and strong

confinement, the threshold for switching in chalcogenide is 5 mm. By use of a

chalcogenide based ring resonator with a finesse of about 50, an overall enhance-

ment of about 1000 can be achieved, thus reducing the physical length to a disk

circumference of 5 µm, which could be accomplished in a 1 µm radius disk res-

onator. Chalcogenide glasses might be thought of as the glassy counterpart to

crystal AlGaAs for constructing useful Kerr-based switching devices in the region

of 1.55 microns. An effort was made in collaboration with Richart Slusher of

Lucent technologies to fabricate such devices. Unfortunately, due to extrinsic

factors, the project did not come to fruition.

Polymer

Polymer-based photonics has attracted attention recently because of its potential

for inexpensive mass production of integrated photonic systems. Processing poly-
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mer materials is typically simpler, though often results in lossier and more ther-

mally sensitive components than their glass or semiconductor based counterparts.

There are many nonlinear optical polymers with high nonlinearities which main-

tain a high-speed response. Typically they are of the guest-host variety in which

a workable polymer host is doped with a small concentration of dye molecules. A

collaboration was established with Professor L. J. Guo (University of Michigan)

to attempt to fabricate microresonators via an advanced nano-imprinting technol-

ogy they developed. Nano-imprinting implements a hard mold with predefined

nanoscale features to mechanically imprint into a polymer film cast on a substrate,

while the polymer is heated to above its glass transition temperature (Tg). The

pattern is subsequently fixed into the polymer during a cooling cycle. Resolutions

of 10 nm are achievable.

7.3 Geometry

7.3.1 Resonator Size

The size of a microresonator is the primary factor dictating its operating band-

width. The radius must be small enough to provide a large free-spectral range

(FSR) which must be made greater (by a factor of the finesse) than the desired

bandwidth. Another practical consideration is that a small resonator necessarily

possess a small interaction length over which coupling to a waveguide is strong.
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Careful attention must be made to ensure that ultra-small (<5µm) resonators

are optimized for strongest possible coupling per unit length. Ultimately, small

enough microresonators will possess a minimum coupling finesse.

7.3.2 Resonator Finesse or Q-factor

The other factor determining the operating bandwidth of a resonator is its finesse

(F) or quality-factor (Q). While they only differ by a factor corresponding to

the number of optical cycles in a round trip (Q = mF), for some applications,

the finesse is the important parameter, while for others it is the Q. The Q is a

normalized measure of the bandwidth of a resonator and corresponds to the num-

ber of optical cycles stored within the device at any given time near resonance.

The Q dictates how well one can resolve small changes in the propagation con-

stant. For sensing applications, analytes which induce refractive index changes

can be measured when the change is one part in Q. The finesse is a normalized

measure of how well the bandwidth can be resolved within the range between res-

onances and corresponds to the number of “round trips” stored within the device

at any given time near resonance. Provided that the actual resonance number

is unknown as it usually is in spectroscopic applications, this parameter char-

acterizes a Fabry-Perot spectrometer. The finesse also characterizes the group

index of SCISSOR-like structures and thus dictates the group velocity for slow

light applications. However, neither the finesse, nor the Q is important for sin-
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gle pulse synchronization (optical pulse delay lines) or dispersion compensation;

these processes are solely dependent upon the resonator-to-pulse bandwidth ratio.

Typically for nonlinear switches, a compromise between high bandwidth and high

nonlinearity is desirable. While the bandwidth is reduced by the Q, the nonlin-

earity is increased by the factor mF2 = QF . The later section on coupling will

explain how to engineer a given finesse or Q-factor.

7.3.3 Vertical and Lateral Confinement

Optical guidance in microresonators and guides used to couple them is accom-

plished via total internal reflection both vertically and laterally. Because the

requirements for confinement in each dimension can be very different, the factors

involved in choosing design parameters are treated separately. A common re-

quirement is that confinement in each dimension be single-moded so as to greatly

simplify many optical properties. A stringent requirement on the lateral index

contrast is that it be high enough to support low loss whispering gallery modes

at a desired radius. Such a requirement does not apply to the vertical confine-

ment however. As a result, the vertical confinement can be accomplished via

three layers (one core, two claddings) of slightly differing composition with a large

dimension and still be single-moded. Particular attention must be made in the

choice of refractive indices because it is well known that a symmetric planar guide
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has no cutoff, while an asymmetric planar guide has a cutoff3. The horizontal

guidance should, of course be single-moded if possible. However, a minimum

lateral resolution will be dictated by imperfect patterning processes which will in

turn govern minimum practical guide widths. These minimum practical guide

widths may be multiply-moded an possibly unavoidable. Such a restriction is

virtually absent in the vertical design because heights along this dimension can

be controlled to near atomic precision. In the later section on coupling, it will be

shown that the lateral guide width in the coupling region will also (along with that

gap width) determine the coupling strength. Practically, the guides should be

made as close to single-moded as possible though if they become too small, surface

perturbations associated with fabrication processes may become proportionately

large enough to cause extreme scattering losses. Finally, as an alternative to TIR

based guidance, photonic-crystal-based resonators where the presence of defects

in an otherwise periodic structure may be used to form equivalent resonators.

[147] Such resonators may be employed to confine light to circulate within small

distributed-feedback-guiding structures and would display qualitatively similar

phenomena.

3If air is used as the top cladding, there is a good chance that a mode is not supportable
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a) b)

Figure 7.5: a) Laterally coupled resontor. b) Vertically coupled resonator.

7.3.4 Coupling

There are two practical geometries for situating a resonator and waveguide such

that they can exchange optical power: lateral coupling or vertical coupling. Figure

7.5 depicts the two geometries. Vertical coupling has the advantages of easily met

tolerances on guide-to-resonator gaps but requires advanced fabrication techniques

(such as wafer bonding) to be realized. [148–150,30,151] Lateral coupling is the

only geometry that was achievable within the resources of our group. The coupling

strength should be optimized so as to be able to achieve the greatest possible

coupling coefficient and thus a low enough finesse that is not loss-limited. In

this respect, the chalcogenide system is better than the AlGaAs system because

of lower index (2.5 vs 2.9-3.4) which allows for wider guide dimensions. This

allows for better coupling, though increases the minimum resonator size dictated

by bending loss slightly. An FDTD simulation should be performed as a final

check, but there are fundamental limitations on the maximum achievable coupling

per unit length. At best a distributed coupling of no more than κ = 0.3k1 is

achievable. The required distributed coupling is obtained from the desired cross-
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coupling coefficient,t from t = sin(κzint) where zint is the effective interaction

length. An analytic expression for the TM distributed coupling in terms of

normalized waveguide parameters is given by:

κ = k0

√
n2

1 − n2
2

2b (1 − b) e−V
√

b s
d

(
2 + V

√
b
)√

1
n2−1 + b

−→
n→∞

k1
2
√

b (1 − b) e−V
√

b s
d

2 + V
√

b
. (7.1)

There are two crucial implications resulting from the high index contrast limit.

The first is that in the high contrast approximation, the coupling coefficient is

independent of index contrast though it implicitly appears in the normalized fre-

quency (V-parameter). The second is that for high contrast laterally coupled TM

modes, the normalized frequency and normalized gap width completely dictate the

coupling. Thus, practically, there are two parameters which are critical, though

which can be adjusted to determine the coupling. Provided that the material pa-

rameters and wavelength are fixed, both the gap width and the guide width must

be chosen appropriately. Even if the guides are touching, their coupling may still

be too weak because they may be too wide. The TE distributed coupling is more

complicated and cannot be written in such a compact form4. Moreover, the TE

mode has a strong longitudinal component which peaks at the disk edge exactly

where the index perturbations serve to severely scatter the mode energy. It also

4To avoid confusion, the convention for distinguishing between TE and TM modes is with
reference to the substrate. A mode with a dominant electric field perpendicular to the substrate
surface is denoted TM. Such a mode field is however, parallel with respect to the lateral interface
and thus the TE Fresnel reflection and planar waveguide laws apply
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extends farther outside the boundaries of the guide where it can easily couple

to the substrate. Thus the TE modes are more sensitive to surface roughness

induced scattering and substrate losses; a fact been confirmed by experiments.

[135] Figure 7.6 shows the variation of coupling strength versus the normalized

frequency and gap width in the high index contrast planar waveguide approxima-

tion for TM modes. Note that it predicts a maximum coupling strength between

V = 0 and V = π, that is, in the region of single-moded behavior. The intuition

for this peak is easily understood. For evanescent coupling, the evanescent tail of

a mode extending beyond one guide excites the material polarization in a second

guide which in turn reradiates into the second mode. For large enough guides, the

portion of confined optical power present in the evanescent tail is negligibly small

leading to low coupling. For small enough guides, the evanescent tail becomes the

dominant portion of the confined optical power and is spread widely throughout

space such that only a small fraction of it excites the other mode.

A racetrack geometry in which the coupling region is extended with a straight

waveguide section can be used to greatly increase the coupling, at a modest low-

ering of the FSR and introduction of some junction loss. [152] This may be the

only way to achieve a desired low finesse in small resonators where the effective

interaction length is limited. Figure 7.9 displays the required interaction length

to achieve a given finesse along with the necessary interaction length for a bal-
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Figure 7.7: The required interaction lengths for TE and TM coupling to
achieve a balanced coupler for a Mach Zehnder interferometer, a resonator
finesse of 50, finesse of 100, and finesse of 1000. Note that in many cases,
the required interaction length varies greatly with differing gap and guide
widths indicating a need for extremely fine tolerances on design geometry.

anced coupler. Other considerations for tweaking the coupling strength lie in the

choice of air-cladding, filled cladding, or rib waveguiding.

7.3.5 Phase Matching

Phase matching the waveguide mode to the mode of the ring or disk may be an

important consideration when requiring a high lumped coupling or (low finesse).

Specifically, ensuring that the modes are phase matched is important when the
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difference in propagation constants, ∆kz is greater than a critical value determined

by the coupling per unit length, κ and the desired lumped coupling coefficient t2

such that ∆kz < κ
√

(1 − t2)/t2. Fortunately, for small enough resonators, phase

matching is not a significant issue. The tolerance on maximum allowable beta-

mismatch increases with inverse proportion to the interaction length of guide and

resonator. The gap dimension and quality are, however critical.

7.3.6 Loss Minimization

A critically coupled resonator transmits nothing. Thus, it is important to stay well

into the over-coupled regime. Bending loss at a fixed index contrast increases with

decreasing resonator size. Scattering loss (at a fixed roughness of the resonator

walls) and absorption loss (set by the choice of materials) in contrast decrease

with decreasing resonator size. As a result there typically exists an optimum size

at which net losses are minimized. Figure 7.8 displays the optimum diameter

for a particular choice of parameters associated with AlGaAs microresonators.

Coincidentally, the optimum diameter is very close to the desirable diameters for

realizing many of the interesting devices proposed in this thesis.

7.3.7 Spheres vs. Cylinders, Rings Vs. Disks

The quality factors associated with silica microspheres have attracted much at-

tention for their ultra-high measured quality factors. Their current method of
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is dictated by coupling and a small resonator only has a limit interaction
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finesse (dashed line). The desirable overcoupled regime can only be obtained
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the curves the better the prospects for obtaining a low-loss resonator.
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production relies on melting silica (usually a fiber tip) and allowing surface ten-

sion forces to reshape the liquid glass into a sphere which is then allowed to cool.

Unfortunately, this method does not allow for the fabrication of spheres of repro-

ducible diameters, nor does it allow for spheres much smaller than 20 microns.

Microdisks and rings constructed using the techniques of nanofabrication however,

can be fabricated reproducibly to designed dimensions down to 1 micron. The

main drawback of planar fabricated microresonators is the surface roughness left

on the edges due to etching processes which result in resonators of much lower

quality factors. Fortunately, the ideas presented for photonic devices in this thesis

do not rely on the requirement of ultra-high Qs but rather modest values around

1000.

A ring has two bounding edges which can be used to properly design a single-

moded guide. A disk only has one bounding edge - the other boundary is an

effective one arising from an inner caustic. As a result, a disk possesses roughly

half the scattering losses than that of a corresponding ring geometry but is multi-

moded. If the FSR is high, and/or the side coupling guides preferentially couple

to one of the radial modes of the disk, then disks are preferable. If not, then a

ring geometry is better and the extra loss must be taken into account. [153]
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7.4 Actual Design

Figures 7.10 and 7.11 illustrate both the designs for the vertically grown MBE

structure and the lithographically patterned horizontal structure as designed for

experimentation.

In early designs, a relatively high index contrast was used to guide light ver-

tically. It was later realized that this is in fact unnecessary and only makes the

guided modes possess small effective heights and high numerical apertures ren-

dering coupling into them difficult. In order to confine light in a tightly bending

resonator, it is only necessary that the lateral index contrast be high. Further-

more, in order to make the guides single moded laterally and maintain high lateral

coupling by exposing a higher fraction of the evanescent tail of the modes, the

guides would have to be very thin laterally. This still makes it difficult to cou-

ple a significant fraction of light from free space or low N.A. single mode fiber.

However, while it is difficult to taper the guides out in the vertical dimension it

is straightforward in the lateral dimension. Thus, in summary, the difficulty of

input coupling was eased by making the guides possess a reasonably large yet

singly-moded low N.A. in the vertical dimension and a tapered, initially highly

multi-moded high N.A. in the lateral dimension.

Three methods were used to independently solve for the mode propagation con-

stants and the coupling coefficients. Because a full three-dimensional simulation

of the photonic structures is too numerically intensive to be practical, approximate
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methods were used to reduce the dimensionality of the problem. One method

employed consisted of using a finite-element solver (FEMLAB) to solve for the

2D modes and coupling coefficients associated with the cross-section of a pair of

waveguides. This was found to be most useful for determining the coupling co-

efficient (per unit length) of a Mach-Zehnder interferometer which could then be

integrated (along z) to find the requires coupling length for a desired coupling coef-

ficient. This method was not feasible for the problem of determining the coupling

associated with a waveguide and resonator because the coupling per unit length

varies longitudinally, peaking in the vicinity of the gap. The method employed

for determining the resonator coupling coefficients thus involved first reducing

the problem to two dimensions by employing the effective index method. This

method is implemented by first solving for the propagation constants of equiva-

lent planar waveguides of regions that possess similar vertical guidance. Once the

propagation constants for differing regions is known, an effective vertical refractive

index is assigned to them and the problem eliminates any further need to calculate

along the vertical dimension. These effective indices are then used to model the

photonic structure in two dimensions from a top view perspective using a finite

difference time domain (FDTD) solver. By measuring the power associated with

fields coupled into a ring or disk resonator after a single round-trip, the FDTD

method readily gives estimates of the coupling coefficient.
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Symmetric Normal Mode

Antisymmetric Normal Mode

Figure 7.9: FEMLAB finite element simulation of the normal modes of the
designed structure. The symmetric and antisymmetric modes propagate
with different propagation constants such that their spatial beat length is
directly related to the distributed coupling strength.
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Figure 7.11: Lateral design of resonator structures constructed via nanofab-
rication tools.
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7.5 Summary

This chapter examined the relevant material and structural parameters encoun-

tered when designing a high-bandwidth nonlinear microresonator-based photonic

device. Optimal design solutions exist in general but the number of considera-

tions is high enough such that generalizations are difficult to make. Reasons for

the choices made in the design of microresonator-based devices for this thesis were

examined and for some reduced parameter spaces, optimal solutions were found.

The next chapter is devoted to the attempted realization of the design strategies

set forth in this chapter.
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Chapter 8

Microresonator Fabrication

8.1 Introduction

A variety of microresonator-based devices were fabricated in AlGaAs. This chap-

ter summarizes the pitfalls and successes encountered while developing processes

used to construct these devices within the means of the nonlinear optics research

group. Strict requirements on the fabrication tolerances are imposed by the de-

sign parameters detailed in the last chapter. The most critical feature is the

guide to resonator gap width which controls the coupling and resonator finesse.

Because sub-100nm resolution is required for the laterally coupled devices I in-

tended to fabricate, electron beam lithography was required to define the patterns.

The fundamental requirements on subsequent etching methods for transferring the

pattern into the guiding structure are that they preserve the fidelity of the litho-

graphically patterned mask and result in smooth and steep sidewalls. Excessive

sidewall roughness leads to severe scattering losses which reduce the transmission
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and finesse to unusable levels. While deviation from verticality in sidewall angle

slightly distorts the mode profile, a more significant problem is the introduction

of polarization rotation. This results because the principal axes are no longer

parallel and orthogonal to the substrate. [154]

8.2 Process Development

The first stage of the process involved growing a vertically layered structure which

would support guided waves. Structures corresponding to the design presented in

the previous chapter were grown by Mike Koch and Professor Wicks via Molecular

Beam Epitaxy (MBE). The target compositions were grown with a precision of

1 percent and an accuracy of 2 percent as measured by x-ray diffraction.

Most of the subsequent transverse patterning was performed at Cornell

Nanofabrication Facility (CNF). In overview, the patterning procedure consisted

of using electron beam lithography to raster a pattern in resist, transferring the re-

sist pattern onto an underlying intermediate masking layer via reactive ion etching

(RIE) and finally transferring that intermediate pattern into the AlGaAs structure

via one of three highly anisotropic etching techniques. This two step transfer was

required since the resist itself was not sufficiently robust to serve as a high-quality

mask that could withstand either of the final chlorine-based etches of the AlGaAs

directly.

During the development of the process procedure and tooling parameters, rel-
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atively inexpensive GaAs wafers were used to simulate a vertically structured

AlGaAs-GaAs sample. The first step in transverse patterning consisted of de-

positing the intermediate etch mask layer of SiO2. Initially, a wafer was cleaned

with acetone and isopropyl alcohol. A layer of SiO2 was deposited via plasma

enhanced chemical vapor deposition (PECVD) for a thickness of 300-800 nm1.

Initially, part of the substrate was covered with a broken piece so that an esti-

mation of the deposited height could be made with a (Tencor) profilometer. In

general this did not result in accurate measurements since the deposited film ta-

pered slowly away from the masked edge. Better results were obtained using a

spectrophotometer (Leitz MVSP)2. The process parameters used for the PECVD

(IPE inc.) closely followed recipes developed at CNF. They consisted of a process

temperature of 240 degrees Celsius, pressure of 450 mTorr, N2O gas flow of 50

sccm, SiH4 gas flow of 20 sccm, and an RF power of 4.5%. The recipe quoted a

deposition rate of approximately 37 nm/min but was actually measured to be less.

For a deposition time of 17.5 minutes, a layer of 500 nm was measured indicating

an average deposition rate of only 20-29 nm/min.

Next, the desired patterns were transferred from computer based drawings to

a resist atop the sample using electron beam lithography. E-beam lithography

was chosen because its sub-100nm resolution (5 nm beam step) was required to

1Oxide layers of 300 nm were used for direct masking and layers of 800 nm were used as a
support for chrome masking

2The film thickness could be estimated by gauging its color noting that a quarter-wave oxide
layer gives peak reflectivity
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define the resonator-to-guide gap spacings. A variety of electron beam sensitive

resists were attempted (both positive and negative). Satisfactory results were

only obtained with PMMA (positive) resist; negative resists (NEB-31, UVN-30)

exhibited poor adhesion to the SiO2 layer. Because pattern transfer to the in-

termediate oxide layer would later be accomplished by one of two ways (inverting

and noninverting), the pattern was initially drawn either inverted (with trenches

defining the guides [135,155,82]) or noninverted (with the guides drawn directly).

Patterns were drawn in AutoCAD (DXF, version 12) and converted to machine

readable format via the ebeam pattern generator (CATS). The PMMA resist

was deposited in solution (4.0% in anisole solvent) via spin coating at 2200 RPM

to approximately 180 nm thick and baked for 15 mins at 170 degrees Celsius to

remove the solvent. A metal (non-diamond) scribe was then used to scratch a

small trench into the resist on an unusable part of the substrate. The (Tencor)

profilometer was used to estimate the resist height. The measurements typi-

cally matched very well with empirical spin-curve predictions. An electron beam

lithography tool (Leica VB6) was then used to expose the resist at a beam current

of 2-5 nA with a raster scan rate around 25 MHz (depending on the actual dose)

and a pixel step size of 5 nm (VRU=1). A dose matrix trial of varying expo-

sures on simple test patterns was run prior to each run to determine the optimum

electron beam dose needed to fully expose the resist. Underexposed patterns

exhibited narrower trenches - especially near the trench bottoms. Overexposed
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patterns shrunk the width and reduced the height of small nearby features such

as resonator to guide gaps. Additionally, proximity effects due to backscattering

of electrons off the substrate floor overexposed certain areas of resist in the neigh-

borhood of widely exposed areas. Subsequent CAD drawings were modified to

mitigate this effect by making trenches no wider than 1.25 microns and keeping

critical dimensions away from wide trenches. A beam dose of 600-700 µC/cm2

was typically found to be optimal though varied from run to run. Exposures

typically lasted 30 mins to expose roughly 100 devices coupled to 3 mm long bus

guides defined by 1.25 micron wide trenches on either side. Faster write times

were found when exposing patterns directly since the guides were much smaller

then the trenches. After exposure, the resist was developed in a 1:1 solution of

methyl isobutyl ketone (MIBK) in isopropanol for 1 minute to remove the exposed

areas defining the trenches.

After development, the wafer surface was cleaned with isopropanol and des-

cummed with an oxygen plasma (Branson barrel etcher) for one minute to remove

approximately 10 nm of resist and remaining residue in exposed regions. Patterns

were inspected under optical microscope at up to 250X to ensure that the overall

pattern had been exposed correctly. Scanning electron microscopy (SEM, Leo

982) and atomic force microscopy (AFM, Digital Instruments) were then used as

primary diagnostics for the measurement of etched guide widths, trench widths,

and most importantly, coupling gap widths.
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The process procedure branched at this point into two alternate methods com-

pleting the transverse patterning of AlGaAs. In the first method, a reactive ion

etch of the oxide using the resist as a masking layer resulted in a noninverting

pattern transfer. In the second method, chrome deposition, liftoff, and reactive

etching resulted in an inverting pattern transfer. The final etching of AlGaAs was

performed by collaborators. Figures 8.1 and 8.9 visually depict these procedures.

8.3 Noninverting Pattern Transfer

The PMMA resist containing patterned trenches bordering guiding regions pro-

vided a suitable etch mask by which to transfer the trenches into the underlying

oxide layer. A reactive ion etcher (Applied Materials) was used to etch the SiO2

using CHF3. The parameters used were 30 sccm gas flow, 30 mTorr pressure,

and 65% RF power. An etch selectivity of 2:1 was measured and was sufficient

to etch completely through oxide layers of about 300 nm. The etch rate was

approximately 30 nm/min. Samples were slightly over-etched to ensure that the

AlGaAs floor was in fact reached. Following the RIE etch, the resist was no longer

needed and was thus stripped completely with an oxygen plasma (Branson/IPC

P2000 barrel etcher) for 5-10 mins.

In order to properly nanofabricate any photonic device, it was imperative that

each step of the process procedure be characterized thoroughly before attempting

an actual process run on an MBE-grown sample which was in low supply and
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Figure 8.1: The first procedure developed to fabricate microresonators. Here,
the lithographically defined patterns form voids in a mask which become
trenches after etching.
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Figure 8.2: A micro-ring resonator pattern in PMMA resist.

costly. Characterization was largely accomplished on bare GaAs wafers and poor

quality AlGaAs MBE growths.

The exposed patterns in PMMA resist typically looked good under optical mi-

croscopy; see for example figures 8.2, 8.3, and 8.4. The sidewalls of the developed

resist, however possessed a slope of about 45 degrees. This limited the actual

resolution in an amount proportional to the resist height. However, because the

SiO2-to-PMMA etch selectivity was only 2:1, some thickness of resist was needed.

A resist height of 180 nm proved to be a good compromise. Because the CHF3

RIE etch provided a 2:1 etch selectivity, the sidewall slope was slightly magnified

(compare figures 8.5 and 8.6).

The resulting patterned oxide layer was then used as a mask to etch trenches

into the AlGaAs completely defining photonic devices. The final etch into the

AlGaAs was performed via one of two anisotropic dry etch methods primarily

involving chlorine plasma.
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Figure 8.3: A few patterned SCISSORs in PMMA resist.

Figure 8.4: A resonator enhanced Mach-Zehnder interferometer in PMMA
resist.
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Figure 8.5: Atomic force microscopy (AFM) image of a resonator gap after
electron beam exposure and development of PMMA resist.
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Figure 8.6: Atomic force microscopy (AFM) image of a resonator gap etched
into SiO2 via reactive ion etching using CHF3.
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Figure 8.7: A fabricated SCISSOR.

The first method tried held more promise due from reports in the literature

but ultimately failed for extrinsic reasons. BinOptics housed and operated a

CNF-owned Chemically Assisted Ion Beam Etching (CAIBE) machine on which

CNF users could have their samples etched by their technician. The parameters

used were developed by BinOptics and consisted of a sample temperature at 120

degrees Celsius, pressure of 54 µTorr, Cl flow of 20.74 sccm, Ar flow of 5.4 sccm,

beam current of 74 mA, beam voltage of 500 V, beam current density of 0.325

mA/cm2, for a total time of 7 minutes (2 microns). Only one out of five samples

turned out to be guiding. The inconsistency associated with results (and use

of) this particular tool ultimately forced its abandonment. Figure 8.7 shows an

image of a SCISSOR which looks good under optical microscopy but does not

show the roughened surfaces that resulted in high losses.

The second method tried was performed by Rebecca Welty at Lawrence Liv-

ermore National Laboratory. An electron-cyclotron resonance (ECR) etch was

performed with good results. Process parameters included a sample temperature
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of 25 degrees Celsius, chamber pressure of 1 mtorr, He backside pressure of 8 Torr,

Cl flow of 10 sccm, Ar flow of 40 sccm, microwave power at 850 W, RF power at

250 W, and an electromagnet current at 180 A for an etch rate of approximately

220 nm/min. The etch profile could be tweaked to achieve vertical smooth side-

walls by varying the chamber pressure. Figure 8.8 shows trenches etched around

a ring resonator in GaAs via the ECR etch. The 10 µm diameter ring (guide

width=500nm) with a 100 nm gap width is etched here to 2 µm depth. For

unknown reasons, however the same high quality etch could not be achieved on

guiding AlGaAs samples after multiple attempts.

8.4 Inverting Pattern Transfer

Patterns directly exposed and developed in the PMMA resist served as regions

onto which a chrome mask could be deposited. The chrome was deposited on top

of the oxide layer which was accessible in the developed regions of resist (which

would later become the guiding regions). Chrome was deposited via electron

gun evaporation (CVC SC4500) to about 40 nm. When the PMMA resist was

lifted-off via acetone, the chrome was removed everywhere except for the desired

patterned regions. Single layers of PMMA did not serve as good liftoff layers due

to a tendency of the chrome atop the resist to form a semi-continuous film with

the chrome sitting at the bottoms of developed regions. A bilayer resist method

was used in which the lower resist layer developed isotropically faster leaving an
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Figure 8.8: A 5 micron diameter all-pass ring resonator etched into GaAs
with 500 nm wide guides and 100 nm coupling gap.



8.4. INVERTING PATTERN TRANSFER 190

PMMA

Oxide (SiO2)

Oxide (SiO2)

PMMA

PMMA

Oxide (SiO2)

(2) Deposit oxide

AlGaAs
structure

AlGaAs
structure

AlGaAs
structure

AlGaAs
structure

AlGaAs
structure

(1) MBE growth

Photonic Microresonator Fabrication Procedure #2

(3) Spin-coat e-beam resist

(4) Pattern directly with
      e-beam & develop

(6) Liftoff PMMA

(7) RIE etch oxide

(8) ICP etch AlGaAs

(9) Strip oxide & chrome

Oxide (SiO2)

AlGaAs
structure

AlGaAs
structure

AlGaAs
structure

Oxide (SiO2)

(5) Deposit chrome

Oxide (SiO2)

Chrome

Chrome

AlGaAs
structure

Oxide (SiO2)

Figure 8.9: The second procedure developed to fabricate microresonators.
Here, the lithographically defined patterns form masking regions which be-
come guiding structures after etching.
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undercut which stifled this effect. The first (bottom) layer (100k MW 5%) was

spin coated at 3000 RPM for a thickness of approximately 125 nm and baked. The

second (top) high resolution layer (495k MW 4%) was then spin coated at 2600

RPM for a thickness of approximately 165 nm and baked. This bilayer method

gave better liftoff results. Liftoff was subsequently improved via substituting a

60 degrees Celsius bath of 1-methyl-2-pyrrolidinone for the acetone. Care was

taken to fully wash away all the chrome residue after liftoff. The patterned

chrome served as a mask for reactive ion etching of the underlying 800 nm oxide

layer. Finally, Cl based Inductively Coupled Plasma (ICP) etching was used to

transfer the pattern into the AlGaAs. The etch was performed by Rohit Grover

at Laboratory for Physical Sciences at the University of Maryland. Figures 8.10,

8.11, and 8.12 display SEM images of fabricated resonator based devices etched

via ICP etching. Because these devices proved to be the best obtained, they were

characterized optically. These experiments are described in the following chapter.

8.5 Summary

In this chapter, the process developed to nanofabricate microdisk and micror-

ing resonator based devices was described. Unfortunately, during the course of

two years of nanofabrication, certain parameters drifted due to unknown causes.

Specifically, the required electron beam dose and RIE selectivity drifted over time

making it difficult to reliably fabricate devices with the extremely tight tolerances
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Figure 8.10: A 10 µm diameter all-pass racetrack ring resonator etched into
guiding AlGaAs with 500 nm wide guides and a 100 nm coupling gap. The
roughened top surface is from the leftover chrome mask.
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Figure 8.11: A balanced REMZ and an imbalanced REMZ etched into AL-
GaAs. The resonators are 10 µm diameter all-pass racetracks.

required to ensure the correct resonator coupling strengths. Most importantly,

the critical final etch into the AlGaAs structure resulted in poor sidewalls after

most of the runs due to poor quality control. Our turning to skilled technicians

for this final etch resulted in some decent etches and illuminated the difficulty

of fabricating these nanostructures. Nevertheless, some devices were fabricated

close to design specifications.
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Figure 8.12: A double channel SCISSOR with 5X 5 µm diameter all-pass
racetrack ring resonators etched into AlGaAs.
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Chapter 9

Experiments

9.1 Introduction

This chapter describes the experimental effort to characterize the optical proper-

ties of fiber-ring-based and microresonator-based photonic devices.

9.2 Fiber Ring Resonator Experiments

A number of fiber ring resonators were constructed to demonstrate some of the

ideas presented in this thesis.

9.2.1 Fiber Ring Characterization with Tunable Coupler

An external cavity diode laser tunable from 1535-1575 nm was used to observe

spectral properties associated with resonances of a fiber ring resonator. The

resonator was formed by fusion splicing one output of a tunable optical coupler

to one input port for a circumference of 31 cm. The fused glass directional



9.2. FIBER RING RESONATOR EXPERIMENTS 196

coupler could be tuned by applying bending stress with a micrometer stub. A

polarization controller was implemented prior to the resonator so as to excite with

either in-plane or out-of-plane polarization but not both. The transmission of the

resonator was measured versus wavelength for a variety of coupler settings. The

laser wavelength was swept at 0.5 nm/s and the ring output was measured on an

InGaAs detector and captured on a digital oscilloscope. Due to a finite single-pass

loss in the ring resulting from losses in the coupler and fusion splice, the coupler

could be tuned for under, critical, or overcoupled operation. Figure 9.1 displays

the measured transmission spectra for a variety of coupler settings. Based on

a measured finesse of 30 at critical coupling, it was estimated that the coupling

and single-pass transmission parameters were r ≈ a ≈ 0.95. The single-pass loss

resulting from the insertion loss of the coupler and splice loss was thus estimated to

be −10log10(.952) = 0.45 dB. A loss-limited finesse of 60 is predicted. In the first

five traces, the finesse is low and primarily governed by strong coupling into the

ring. In this overcoupled regime the resonator behaves qualitatively similar to a

phase-only response. In the sixth trace, the coupler was set for critically-coupled

transmission where the transmission is nearly extinguished at the resonances.

In the remaining two traces, narrow dips appear at each resonance. In this

undercoupled regime the finesse is primarily governed by the internal attenuation.

Next, the phase response of the ring resonator was measured by converting it

into a measurable amplitude response. This was accomplished by inserting the
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Figure 9.1: Measured spectral transmission for a 31 cm fiber ring resonator
near 1.55µm for a variety of coupler settings. An FSR of 5.35 pm is in
excellent agreement with the ring circumference measurement.
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resonator into one arm of a nearly balanced Mach-Zehnder interferometer. The

transmission of the resulting REMZ was then measured near 1.55 µm in a simi-

lar manner as described before. Figure 9.2 displays the measured transmission

spectra for a variety of coupler settings. Due to a slight imbalance between the

arm lengths of the Mach-Zehnder, the offset phase bias varies across the traces

at a slower rate, φB ≈ φ0/7.5 than the detuning. Thus, in a single trace, differ-

ent portions of the usual cosine-squared transmission response display increased

phase sensitivity at the resonances. The ring resonances occur 7.5 times within

the background Mach-Zehnder transmission periodicity. See figure 5.6 for com-

parison. Near over-coupled resonances (lower finesse values), the phase varies

rapidly in a forward direction, advancing the phase by π radians which has the

effect of locally squeezing the cosine-squared curve. On the other hand, near

under-coupled resonances (finesse values 40 and 51), the phase undergoes a wig-

gle which does not produce a net advance in phase. Figure 9.3 displays the phase

responses that fit the data in figure 9.2.

Finally, the impulse response of the ring resonator for a variety of coupler

settings was measured. A constructed figure-8 fiber laser H was used since the

1 ps pulses it generated were three orders of magnitude smaller than the ring

transit time and thus approximated delta impulses. An InGaAs detector with a

20 ps rise time was used but the ultimate limitation on bandwidth was imposed

by the 300MHz digital oscilloscope. The 1 ns resolution of the scope thus had
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Figure 9.2: Measured spectral transmission for a 31 cm fiber ring resonator
inserted into one arm of a nearly balanced Mach-Zehnder interferometer.
Data was taken near 1.55µm for the same coupler settings as in figure 9.1.
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the effect of blurring the data. Figure 9.4 displays the results of the experiment

for various coupler settings. The ring circumference of 31 cm corresponds to a

frequency FSR of 670 MHz or ring transit time of 1.5 ns and clearly corresponds

to the distance between successive pulses emerging from the ring. For high finesse

operation, most of the output power emerges in the first bypassed pulse. For very

low finesse operation, most of the output power is instead contained in the second

pulse which is delayed by a single round trip. It is only when the successively

delayed emerging pulses are allowed to overlap in time and interfere constructively

near resonance that coherent build-up and non-distorting delay can occur.

9.2.2 Fiber Ring for Optical True Time Delay

A second ring resonator (larger by a factor of 10) was constructed for the purpose

of demonstrating tunable optical true-time delays. A dye laser tuned near 589

nm was coupled into one port of a 4 port directional coupler (single mode in

the visible spectral region). One output port of the coupler was directly fusion

spliced to the other input port forming a 3 m all-pass ring resonator. The coupling

coefficient was 2/3 resulting in an ultra-low finesse resonator. A low finesse was

employed so that it was easy to detect the resonances hiding within the thermal

drift. Moreover, the fractional delay which was to be measured is independent

of finesse. The optical power emerging from the output port was directed onto

a silicon PIN detector and collected on a digital oscilloscope. Thermal drifts
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in the ambient temperature caused the resonances to shift on a slow time scale

(ms). These drifts were partially stabilized by immersing the fiber ring in a water

bath at room temperature. The dye laser was then swept across a free-spectral

range (70 MHz). An acousto-optic modulator was used to amplitude modulate

the sweeping dye laser and generate 50 ns pulses. A beam-splitter picked off

a fraction of the modulated beam for use as a trigger reference. As the laser

frequency was swept through a resonance, the detected pulses emerging from the

ring underwent a variable delay with respect to the reference pulses. Figure 9.5

compares the timing of an off-resonance pulse to that of an on-resonance pulse.

In the experiment, a 51 ns pulse was delayed by 27 ns for a fractional delay of

approximately 1/2.

9.3 Microresonator Experiments

A large number of microresonators fabricated as described in the previous chapter

were characterized optically. Only a small number of them produced desirable

results.

9.3.1 Sample Mounting and Optical Setup

In order to deliver light to the resonator-based devices, tapered bus waveguides

were fabricated on the same substrate. The final preparation step needed before

attempting to couple light into the guides was the cleaving of these guide end-
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Figure 9.5: Demonstration of tunable optical delay in an all-pass fiber ring
resonator. Here a 51 ns pulse is delayed by 27 ns for a fractional delay of
1/2.
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facets. First, the guides were mounted in wax face down on a glass plate. The

plate was then placed faced down onto an alumina-water slurry and ground until

the substrate thickness was reduced from 500 to approximately 100 µm. This

technique ensured that subsequent cleaves would result in high optical quality

endfacets. The substrate was then scribed with a diamond tip and cleaved.

In order to successfully couple light into the chip-based fabricated devices,

high N.A. microscope objectives and a rigid 3-axis translation stage, with sub-

micron positioning accuracy were required. A coupling bench incorporating these

components was constructed atop a 12”x12” breadboard for portability to many

different laser systems available in different laboratories.

Light was accepted onto the stage as input from an (FC) connectorized fiber

which was promptly collimated with a fiber to free-space coupling stage by a 10X

(0.25 N.A.) microscope objective. The collimated light was guided by two mirrors

into the input coupling objective (60X, 0.65 N.A.) which focused light down to a

spot size diameter of approximately 1.5 microns. The 600 micron long samples

were mounted on the edge of a glass slide or metal ribbon with wax (Crystalbond).

Care was taken to prevent wax from accumulating on the endfacets. Due to the

small size of the samples, sometimes this was not preventable. While the wax

was easily dissolved in acetone, dipping the samples would often release them.

Instead, an airbrush was loaded with acetone and used to thoroughly clean the

endfacets without affecting the bonding. The mounted sample was then rigidly
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Figure 9.6: Optical setup built to couple light from either a fiber or free-
space beam into the high-contrast waveguides leading to the microresonators.
Different devices of roughly 100 per sample were accessed by translating the
sample. Light exiting the guides was imaged onto a camera or collected and
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mounted to a 3 axis translation stage operated by differential micrometers, each

of which was scanned to find then tweaked to optimize the end-fire coupling of

light into the individual bus waveguides. A milliwatt level cw diode laser was

used for the purpose of finding the guides. Light was collected on the output

side of the waveguides via another objective (60X, 0.65 N.A.) which imaged the

cleaved sample endfacet onto an infrared camera (lead-sulfide vidicon). This

would indicate whether light was actually propagating in a desired waveguide

with optimal coupling.

Attempting to find the guides was initially analogous to looking for a needle

in a haystack. In order to ease the process, certain degrees of freedom were

consecutively eliminated in turn. First, the collecting (imaging) objective was

focused on the output facet by imaging the edge surface under strong white light

illumination. Next, the sample was translated laterally to a portion that did not

contain any laterally patterned trenches and thus mimicked a planar waveguide

(if present). The sample was then scanned vertically until light was seen to be

spilling both above and into the sample substrate. The injection (illumination)

objective was then translated longitudinally (with small vertical movements) until

the splitting fraction of light was observed to be sensitively dependent upon the

vertical translation. Typically near these conditions, an observable amount of

light could be found to emerge from the vertically guiding structure or a patterned

guide. Careful tweaking of the horizontal and vertical angles of entry could
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then be employed to optimize the transmitted power. Finally, provided that

the sample was mounted orthogonal to the stage axes, the sample was translated

laterally until desired channel waveguide was found. Once a particular guide (of

approximately 100 per sample) was found, the others could be excited by laterally

translating the sample and subsequent re-tweaking.

Because it was not clear which waveguide was excited by simply looking at

the position of the microscope objective and the 100+ array of waveguides with

the naked eye1, a top-down aimed inspection microscope was used to choose a

particular guide for excitation. The fiber source was disconnected and replaced

with another fiber source into which visible light from a red laser diode was cou-

pled. While this light (within the band-gap) did not propagate in the guide, light

scattered off of the input face was clearly discernible on the microscope and thus

effectively marked the excitation guide.

9.3.2 Microresonator Characterization

Due to a strong dependence of all coupling coefficients with respect to incident

polarization, a polarization controller was inserted before the coupling bench to

select either TE or TM excitation. It was found that TM polarization had the

best results due to lower losses as predicted. The transmission characteristics for

a variety of devices were measured.

1To the naked eye, the array spaced at around 25 µm resembled a diffraction grating, to say
nothing of the resonators which were for the most part indistinguishable from dust.
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Spectral characterization of the microresonators was performed with the tun-

able diode laser near 1.55 µm. Minimum losses of the order of 10-20 dB through-

put from facet to facet were measured. Losses due to Fresnel reflection at the

interfaces were theoretically computed to be 3 dB. Losses due to imperfect mode-

matching were determined to be of the order of another 3 dB. Looking from above

with an infrared viewer, a large amount of unquantifiable scattered light was ob-

served emerging near the input face. Perhaps higher losses were present due to

imperfections on the cleaved facet. Losses due to propagation in the waveguides

resulting from scattering off edge roughness made up the remainder. Despite

the difficulty of fabricating low loss high index contrast guiding structures, spec-

tral transmission traces of the devices displayed good agreement with theoretical

fits. Figure 9.7 displays the spectral transmission data for the through port of

an add-drop filter. Here, a racetrack resonator of 12.5 µm radius coupled to two

waveguides on either side possesses a measured free-spectral range of 8.5 nm. A

finesse of 10 is estimated from the data. The finesse turned out to be lower than

designed due to excess scattering losses resulting from roughness imperfections in

the mask and a slightly narrower fabricated coupling gap width than designed.

Figure 9.8 displays the spectral transmission data for an output port of a

REMZ. Here, a racetrack resonator of 5 µm radius is coupled to one arm of a

nearly balanced Mach-Zehnder interferometer. A free-spectral range of 18.3 nm

and a finesse of 10 is estimated from the data. Just as in the case of the larger
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Figure 9.7: Transmission spectrum of a fabricated racetrack resonator with
12.5 µm bend radius coupled to two waveguides An FSR of 8.5 nm and
finesse of 10 results in an operating bandwidth of 110 GHz near 1.55 µm for
this device.
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Figure 9.8: Transmission spectrum of a fabricated racetrack resonator with
5 µm bend radius coupled to one arm of a nearly balanced Mach-Zehnder
interferometer. An FSR of 18.3 nm and finesse of 10 results in an operating
bandwidth of 230 GHz near 1.55 µm for this device.

add-drop resonator, the finesse turned out to be lower than desired due to excess

scattering losses resulting from roughness imperfections in the mask and a slightly

narrower fabricated coupling gap width than designed. Figure 9.9 displays the

phase responses that fit the data in figure 9.8.

A coherent pulsed light source was then employed in an attempt to obtain all-

optical self-switching. A mode-locked third harmonic of a ND:YAG laser pumped
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an optical parametric generator (OPG). Output from this (Eksma/Ekspla) OPG

was first coupled into an optical fiber and subsequently coupled into the guides for

experimentation. Sending the OPG output directly into the input fiber ensured

auto-alignment with the guides. The spatially filtered OPG light delivered 1 µJ

energy, 30 ps pulses at 10 Hz tunable across the visible and infrared spectrum.

The low repetition rate, short pulses were of such low average optical power that

the attenuated output from the guide was difficult to image. The threshold for

detection on the IR camera governed by the average power exiting the guides was

of the order of nanoWatts ( 1 nJ x 10 Hz). It was found that this threshold

for detection was of the same order as the threshold for nonlinearity and optical

damage. Consequently, many devices were damaged in the process of attempting

to characterize their nonlinear behavior. A laser source with higher repetition

rate could have solved this problem but was unavailable within the means of the

research group. Nevertheless, switching was clearly observed in some samples.

Figure 9.10 displays the output traces of a REMZ with dimensions similar to that

of figure 9.8. Three traces are shown each with increasing pulse energies. The

actual pulse energies injected into the waveguides was unknown but estimated

to be near 1 nanojoule. The relative distribution of output power is clearly

seen to shift from one output guide to the other as the pulse energy is increased.

Unfortunately, due to the extreme difficulty of the measurement and induced

optical damage, more data samples could not be obtained.
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Figure 9.10: Transverse intensity profile trace across the two outputs of a
REMZ. Traces a,b and c correspond to increasing pulse energy for pulse
energies close to 1 nJ. A shift in transmission from one port to the other is
clearly observed with increasing pulse energy.
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9.4 Summary

In this chapter, the experiments conducted to verify some of the predictions of this

thesis were described. Linear results obtained for fiber-based and microresonator-

based devices were in excellent agreement with theoretical predictions. All-optical

switching was difficult to measure due to lack of an ideal mode-locked source.

Nevertheless, all-optical switching was clearly observed.
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Chapter 10

Conclusions

In this thesis, I have presented a study of the nonlinear transfer properties

of whispering gallery ring and disk resonators. Starting from a simplified linear

harmonic analysis, the key expressions for coherent build-up of intensity and en-

hancement of phase sensitivity were presented. Tradeoffs between sensitivity and

bandwidth were analyzed, resulting in predictions for the resonator size required

to achieve bandwidths of the order of gigahertz to terahertz. The predictions

indicated that very small resonators of the order of 5 microns would be required.

In order to properly confine light to circulation around such tight bends, very high

index contrasts are required. As a result, the majority of resonators considered

in the thesis are of the whispering gallery variety - meaning that optical guidance

is primarily governed by a single curved interface. Traditionally, the analysis of

the quality factors associated with bending losses has been based upon approxi-

mate and perturbative methods. Such methods are generally unreliable for low
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azimuthal numbers encountered when pushing the bandwidth envelope. A novel

method for obtaining the quality factor based on direct solution of the complex

dispersion relation via 2D optimization was developed. From this computation,

quality factors crucial to defining limitations on resonator size and bandwidth,

were reliably estimated.

An early prediction and primary motivator in this work was to recognize that

nonlinear effects might be dually enhanced by a combination of the coherent build-

up of intensity and enhancement of phase sensitivity. It was predicted that the

intensity-dependent nonlinear phase shift for a resonator would be enhanced in

quadratic proportion to its finesse. A natural application of this effect is in ultra-

compact all-optical switching. An examination of the scaling laws and tradeoffs

between switching energy and bandwidth revealed that the exact tradeoffs for

linear phenomena might be circumvented for nonlinear phenomena.

A problem with the accumulation of nonlinear phase in a resonator or in

most geometries is that for pulses, the phase accumulates in direct proportion to

its intensity and thus varies with time across the pulse. It is well-known that

solitons can accumulate nonlinear phase in a uniform manner across a pulse via a

careful balance between this self-phase modulation and group velocity dispersion.

It is also known that resonators exhibit strong dispersive effects near resonance.

While the search for a magic pulse or resonator parameters that would accomplish
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the same thing in a single resonator proved to be somewhat fruitless, it inspired

the concept of distributed resonator systems as artificial materials.

Shortly thereafter, the existence of solitons based on a balance between res-

onator enhanced nonlinearities and resonator induced group-velocity dispersion

was numerically verified. Further investigation of the phenomena, termed SCIS-

SOR solitons, revealed the presence of more exotic nonlinear effects. While

attempting to launch higher-order breathing solitons, it was discovered that self-

steepening phenomena induced by the resonator would not allow the higher order

solitons propagate. It was also discovered that the propagation of slow light

had advantages if accomplished with SCISSOR solitons. Finally, the qualitative

differences between various multi-resonator systems such as multi-layer stacks,

CROWs, and single and double guide SCISSOR systems were analyzed in depth.

Some systems exhibit photonic band-gap phenomena while others do not. The

ones that do not, such as the ordinary SCISSOR, nevertheless retain high disper-

sive and nonlinear affects normally associated with propagation near the edge of

a photonic band-gap.

Following the theoretical analysis of microresonators in this thesis, I describe

the factors involved in the design of high contrast microresonators. The spe-

cific reasons for, and choices of parameters for an AlGaAs-based microresonator

were presented. An attempt was made to nanofabricate several microresonator-

based devices. The processes developed over the course of time spent learning
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nanofabrication are presented in full such that the project may continue. Finally,

the experimental apparatus and setup used to attempt to characterize fabricated

microresonator-based structures is presented.

Experiments were conducted both on large scale fiber ring resonators and fab-

ricated microresonators. The linear properties of each were measured to be in

agreement with theoretical predictions. Many difficulties were encountered in at-

tempting to observe nonlinear optical effects. All-optical switching was observed

in a nearly balanced Mach-Zehnder interferometer with a nonlinear microresonator

coupled to one arm.

In conclusion, I believe that microresonators have great untapped potential

for the construction of ultra-compact photonic devices. To date, the primary

applications of these devices has been for add-drop filters, dispersion compen-

sators, and laser cavities. Potential applications which have not matured yet

include biosensors, optical delay lines, all-optical switches and logic gates, pulse

compressors, and pulse imagers. Artificial media composed of sequences of mi-

croresonators are an unrealized though promising candidate for the construction of

engineerable photonic waveguides with designer photonic properties. Fabrication

technology has advanced such that high bandwidth microresonators are readily

constructed from high dielectric contrast micro-rings, disks or spheres. I expect

microresonator-based structures to become essential components for integrated

linear and nonlinear photonic applications.
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Appendix A

Lorentz Approximation for
Resonator Build-Up

While the resonator build-up is a periodic function of frequency with peri-

odicity equal to the free-spectral range, near resonance, the frequency depen-

dence of the build-up is to good approximation a Lorentzian function. The

Lorentzian expression can be derived by first making the small angle approxima-

tion: cosφ ≈ 1 − 1
2φ

2.

B =
I3

I1
≈

(1−r2)a2

(1−ra)2

1 + ra
(1−ra)2

φ2
(A.1)

In order to further simplify this equation into a form that offers insight the con-

stant numerator is redefined as Ba ≡ (1−r2)a2

(1−ra)2
and the finesse is approximated as:

√
ra

1−ra ≈ F/π. This results in a simple expression for the build-up as a function of
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frequency near resonance.

B ≈ Ba

1 +
(
F φ

π

)2 =
Ba

1 +
(
2Qω−ωR

ωR

)2 (A.2)

As a final check it should be noted that the full width of this Lorentzian is 2π/F

which preserves the correct bandwidth of the original periodic function. This

approximation is valid for pulsed waveforms with a bandwidth less than a free-

spectral range. Accordingly because the Fourier transform of a Lorentzian is an

exponential function, it follows that the transient “charging” and “discharging”

of the resonator will follow an exponential rise and fall. Figure 2.8a demonstrates

the exponential charging and discharging at the leading and trailing edges of the

rect response curve for the build-up. Finally, it is worth comparing this Lorentz

approximation to two other well known Lorentz models in physics. Notice the

similarity with the susceptibility of the Lorentz atom model:

|χ| ≈
Q

ω2
p

ω2
R√

1 +
[
2Qω−ωR

ωR

]2
(A.3)

and the impedance of an RLC circuit:

|Z| ≈ R√
1 +

[
2Qω−ωR

ωR

]2
(A.4)
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Appendix B

Transforms and All-Pass Filters

B.1 Hilbert Transform For a Causal Function

If the response of system is causal (i.e. causes preceed effects), then the impulse

response function is zero for all time values prior to zero. This allows one to

separate any function into even and odd components which, are exact though of

opposite sign for all t < 0 and are identical for t > 0. Thus, for all t < 0 they

add destructively to yield zero, and for all t > 0 they add constructively in equal

proportions to form the impulse response function.

h(t) = heven(t) + hodd(t) (B.1)

The even and odd components are simply related in the time domain by the
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signum function

heven(t) = sgn(t)hodd(t) (B.2)

hodd(t) = sgn(t)heven(t) (B.3)

If, furthermore, the system is linear, and time-translation invariant, then a

frequency dependent transfer function can be assigned to spectral components

traversing the system. The Fourier transform of the impulse response equations

may be employed to generate the Hilbert transform relations:

Hreal(ω) = +
2

ω
/ Himag(ω) = +2

+∞∫

−∞

dω′Himag(ω′)

ω − ω′ (B.4)

Himag(ω) = − 2

ω
/ Hreal(ω) = −2

+∞∫

−∞

dω′Hreal(ω′)

ω − ω′ (B.5)

These relations apply to the real and imaginary parts of the transfer functions

of any causal signal. These are also known as one form of the Kramers-Kronig

relations. [40,41]
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B.2 Z-Transform for a Weighted Sum of Delta

Impulses

The impulse response function of a ring resonator with no internal dispersion (ie

delta pulses propagate within the ring without dispersing) is a weighted sum of

equally spaced delta functions.

h(t) = rδ(t) −
(
1 − r2

)
e+iφ0

∞∑

m=1

(
re+iφ0

)m−1
δ(t − mTR) (B.6)

An impulse response function consisting of a weighted sum of delta impulses

spaced by the transit time, TR = n2πR/c in the time domain can be interpreted

as the Fourier series for some periodic function in the frequency domain. The

periodic function is of course the transfer function whose fundamental period or

free-spectral range (FSR) is equal to the inverse of the transit time. The functions

form a Z-transform pair which is simply a time domain version of a Fourier series

equation pair for discrete time signals.

The transfer function is given by the following expression which may be sim-

plified by taking the limiting value of the infinite series (provided it is convergent,

that is r < 1)

H(ω) = r −
(
1 − r2

)
e+iωTR

∞∑

m=1

(
re+iωTR

)m−1
=

r − e+iωTR

1 − re+iωTR
(B.7)
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Because the system is linear, time-translation invariant, and causal, the real and

imaginary parts form a Hilbert transform pair

Hreal(ω) =
− cosωTR + 2r − r2 cosωTR

1 − 2r cosωTR + r2
(B.8)

Himag(ω) =
− (1 − r2) sinωTR

1 − 2r cosωTR + r2
(B.9)

B.3 Kramers-Kronig Relations for All-Pass Res-

onators

In certain systems, if the natural logarithm of the transfer function is analytic in

the upper half complex frequency plane, the amplitude and phase of a transfer

function form a Hilbert transform pair as well.

|H(ω)| = 1 (B.10)

arg [H(ω)] = π + ωTR + 2 arctan

(
r sinωTR

1 − r cosωTR

)
(B.11)

The amplitude and phase can be mapped onto the real and imaginary axis by

taking the natural logarithm of the transfer function. For all values of gain and

some values of attenuation, with the exception of the under-coupled regime, the

transfer function possesses zeros in the upper half complex frequency plane. At

each of these zeros, the natural logarithm is undefined and thus, the amplitude
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and phase do not satisfy the Kramers-Kronig relations. [44] In the under-coupled

regime, Kramers-Kronig relations for amplitude and phase do in fact exist.
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Figure B.1: a) Plots of the real and imaginary components of the field trans-
missivity for an all-pass resonator with r = 0.9. b) Plots of the amplitude
square modulus (transmission) and phase.
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Appendix C

Kramers-Kronig Relations for the
Third-Order Susceptibility

The Kramers-Kronig relation connects the refractive and absorptive spectra of a

linear optical material with a causal response,

n (ω) − 1 =
c

π

∫ ∞

0

dω′ α (ω′)

ω′2 − ω2
. (C.1)

Changes to each of these quantities due to an external perturbation are causal and

similarly related. However, in a strict mathematical sense, the Kramers-Kronig

relations are invalid for degenerate third-order processes such as self-induced

changes in refractive index because of the existence of a pole in the upper half

complex frequency plane. [64] Nevertheless, it has been demonstrated that appli-

cation of the Kramers-Kronig relation to the two-photon absorption spectrum of

a material correctly predicts the magnitude and dispersion of the Kerr effect in

solids. [142,138] The spectra of nonlinear refraction and two-photon absorption
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are thus related as,

n2 (ω) =
c

π

∫ ∞

0

dω′ α2 (ω′)

ω′2 − ω2
. (C.2)

A two-band model is generally sufficient for accurately predicting the third-order

nonlinear absorptive and refractive properties of semiconductors. Under this

model, the two-photon absorption coefficient is given as:

α2 (ω) =
29πe4

5
√

m0c2

√
2|pvc|2

m0

n2
0E

3
g

(
2!ω

Eg
− 1

)3/2

(
2!ω

Eg

)5 (C.3)

For most direct gap semiconductors, many of the parameters are constant such

that to good approximation, the two-photon absorption spectrum can be simpli-

fied to be only dependent on the band-gap energy and the linear refractive index

as

α2 (ω) ≈ 1.42 · 10−7

n2
0E

3
g

(
2!ω

Eg
− 1

)3/2

(
2!ω

Eg

)5 m/W (C.4)

where Eg is assumed to be given in electron volts. Equations C.2 and C.4 can

then be used to calculate the nonlinear refractive index spectrum. This procedure

will result in the bandgap scaling law of E−
g 4 for the magnitude of n2. This scal-

ing explains why chalcogenide and AlGaAs materials possessing bandgaps much

smaller than silica, possess much higher nonlinear refractive indices.
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Appendix D

Dispersion Relation for
Whispering Gallery Modes

The dispersion relation for whispering gallery modes is similar to the relation

for fiber modes with the exception that the axial propagation constant, kz is much

smaller. The dominant propagation constant is of course directed in the azimuthal

direction. For an infinite cylinder and a longitudinal propagation constant of zero,

the dispersion relation has eigensolutions with imaginary propagation constants.

This implies that either the refractive index and/or the frequency must be com-

plex. This is due to the radiation losses present in the system. Should the

disk possess a negative imaginary component of the refractive index (representing

gain) solutions exist that maintain a constant field energy in the resonator while

power is steadily radiated. In the case of a lossless/gainless dielectric resonator

however, solutions of the equation necessarily involve a complex frequency, imply-

ing a decay rate of energy confined within the resonator. Obtaining solutions to
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the WGM dispersion relation is not trivial because they exist as complex roots of

a complex equation. There are many approximations which have been employed

to simplify this equation, for example conformal transformation, [156,157] WKB,

[158] and volume current methods. [159,99] Because the validity of these meth-

ods are in doubt when the resonator circumference approaches a small number

of optical cycles, I chose to solve the equation numerically. In order to solve for

roots of this equation, I applied a global optimization scheme to minimize the the

absolute value of equation over two variables - the real and imaginary parts of the

propagation constant. Equation 3.10 can be rewritten in terms of the normalized

radius (X = n12πR/λ) and the radiation-limited finesse.

n
J ′

m

[
X

(
1 − i 1

2mF

)]

Jm

[
X

(
1 − i 1

2mF

)] =
H ′(1)

m

[
X/n

(
1 − i 1

2mF

)]

H(1)
m

[
X/n

(
1 − i 1

2mF

)] (D.1)

Using this method, I was able to generate universal plots of limiting finesse vs.

size parameter for the fundamental whispering gallery mode of a system of low

azimuthal numbers.
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Appendix E

Numerical Simulation Methods

E.1 Finite Difference Time Domain (FDTD)

Method

The Finite Difference Time Domain (FDTD) Method solves Maxwell’s equa-

tions directly, by numerically approximating the first order derivatives of the elec-

tric and magnetic fields with difference equations on a grid. The real and imag-

inary parts of permittivity and permeability may vary across the grid to define

different material regions. The difference equations are then used to march in

time and update the electric and magnetic field components on the grid. Grid

resolution must be a small fraction of the material wavelength of the radiation

modelled to obtain accuracy. Grid resolution is typically limited by computation

time and/or memory. A microresonator with a given Q-factor must be simulated

with no greater uncertainty in its dimensions than 1/Q. This translates into the

simple requirement that a grid resolution of lambda/F is necessary to preserve
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the quality of the resonator. A resolution of λ/20− λ/100 is reasonable for most

applications. Computation time scales with the cubic power of the grid resolu-

tion in a 2D FDTD since the time step is forced to scale with the grid to keep

the equations stable. Because of the demanding computational effort required by

the FDTD method, it should be reserved for the modelling of devices with scale

sizes close to a small number of wavelengths or for cases where devices cannot be

modelled with other faster methods such as the Beam Propagation Method. Res-

onances of a microresonator may be easily obtained by injecting a wide bandwidth

impulse, letting the resonator “ring,” collecting the output and Fourier analyzing

the spectrum. [103]

E.2 Splitstep Beam Propagation Method

(BPM)

The Splitstep Beam Propagation Method (BPM) solves the reduced wave equa-

tion for slowly varying envelopes by numerically stepping in one direction. At

each step, the field is perturbed first in the time (or space) domain, then fourier

transformed numerically using an fast fourier transform (fft) routine, where it is

perturbed in the spectral (or spatial spectral) domain, and finally inverse trans-

formed. [85] At first glance, this method appears to be very complicated and time

consuming. In fact the method is very fast because it avoids the need for field con-
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volutions and relies on FFT algorithms whose computation time generally scales

as N log2(N). The method is useful for solving the paraxial diffraction equation

with waveguiding terms, the nonlinear Schrödinger equation, and other variants

of these. However, it has the limitation of being inherently unidirectional and

thus cannot handle abrupt changes in refractive index, reflections, and feedback

such as is encountered in a ring resonator geometry.

E.3 Finite Element Method (FEM)

The Finite Element Method (FEM) is a method of variational calculus that

solves for solutions of the Helmholtz equation1 by globally finding field config-

urations satisfying the principle of least action. Instead of directly solving the

Helmholtz equation, FEMs solve the equivalent variational expression by discretiz-

ing the simulation area with faceted elements (usually triangles in 2D) and min-

imizing an integral expression (in matrix form) which is a function of the values

of the field at the element vertices and the value of the derivative of the field at

the element edges. This method can very fast and unlike the finite difference

method, is not restricted to implementation on a uniform grid. It is very useful

for finding eigenvalues (propagation constants) and eigenvectors (field profiles) of

a 2D arbitrarily shaped waveguide cross-section. Additionally, it was discovered

that the FEM can be implemented to determine the coupling coefficient between

1as well as the Heat equation, Poisson equation, and others
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two 2D waveguides. This is possible because solution of the composite system

yields symmetric and antisymmetric normal modes whose propagation constants

differ by twice the constant of coupling. A commercial FEM package (Femlab)

was used to refine the determination of the mode profiles, propagation constants,

and coupling constants of the waveguides designed in this thesis.

E.4 DISCRETE

The Delayed Impulse Simulation of Cavity Resonances for Exact Time Evo-

lution or DISCRETE method may be applied to model nonlinear propagation of

arbitrary shaped pulses though multiple ring cavities or layered media. It re-

quires that the impulse response of the system be composed of a discrete, finite

number (truncated if necessary) of spaced delta functions. Such is the impulse re-

sponse of a cavity or other feedback structure as demonstrated by Kastler in 1974

[160] for the Fabry-Perot interferometer. The response associated with material

dispersion is continuous however, and thus cannot be accurately modelled with

this method. Fortunately, material dispersion is in general insignificant when

compared with the dispersion arising from structural resonances. For equally

spaced delta functions of varying amplitudes in the time domain, as in the case

of the reverberating impulses associated with a cavity, the amplitudes correspond

to Fourier coefficients of a periodic dispersion relation in the frequency domain.
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For a ring resonator, the impulse response is given by

h (t) = rδ (t) − t2e+iφ
∞∑

m=1

(
re+iφ

)m−1
δ (t − mTR) . (E.1)

If the resonator is linear, then the accumulated phase per round trip, φ is simply a

constant and the impulse response can be Fourier transformed to obtain the linear

transfer function which contains complete information regarding the amplitude

and phase of transmission at all frequencies. The linear transmission is thus

trivially obtained by multiplying the incident spectrum by the transfer function

and Fourier transforming to the temporal domain. In the case of a nonlinear

resonator however, this linear systems technique fails because the phase parameter

φ contained in the impulse response is dependent upon the internal field strength

which is in turn time dependent. The exiting field in the time domain must

be constructed by summing all the contributions from multiple passes as in the

case of the impulse response but with a phase term that is continuously updated

by the current field circulating in the resonator. The DISCRETE method of

simulation accomplishes this and is iterated in the following manner. First, the

input field is specified for the entire time axis. At first iteration, the field is split

at the coupler. The component of the field exiting (bypassing) the resonator

is set aside. The component of the field entering the resonator is then simply

delayed, attenuated (if loss is included) and linear and nonlinear phase shifts are

applied. The delayed circulating field is fed back into the coupler where it is
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split and interfered with the original field. The process then continues to the

next iteration. The output fields collected at each iteration are then summed to

obtain the output field. Typically the number of iterations required to obtain

sufficient numerical accuracy is of the order of a 3-4 times the resonator finesse.

Figure E.1 compares the results of a DISCRETE and BPM simulations of second

order soliton splitting. The DISCRETE method has the advantage of being

correct to all orders while the BPM used here only includes dispersion through

third order, self-phase modulation, self-steepening, and saturation for modelling

the nonlinearity. Nevertheless, the results are qualitatively very similar. Because

the nature of the dispersion is structural, it is treated more naturally in the time

domain as opposed to material dispersion which is more naturally treated in the

frequency domain. Because the impulses need not actually be propagated in the

guiding segments, DISCRETE simulations are much faster than the BPM method.
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Figure E.1: a) DISCRETE and b) BPM simulations of soliton splitting in a
SCISSOR structure.
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Appendix F

Nonlinear Schrödinger Equation

The nonlinear Schrödinger equation (NLSE) is the governing equation for soliton

propagation and modulation instability in nonlinear optics, [64,85]

∂

∂z
A = −i

1

2
k′′ ∂

2

∂t2
A + iγ |A|2 A. (F.1)

Here, the time t is the temporal coordinate in the frame of the pulse moving with

group velocity vg = 1/k′. The collection of parameters, γ |A|2 is equivalent to the

nonlinear propagation constant, kNL = 2π
λ n2I.

F.1 Solitons

Solitons are analytic solutions to the NLSE whereby the dispersive and nonlinear

terms balance each other to form pulses that are stationary with propagation
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variable z. The fundamental soliton solution is,

A (z, t − k′z) = A0 sech

(
t − k′z

TP

)
ei 1

2γ|A0|2z. (F.2)

Higher order solutions exist which “breath” with a periodicity of π
2T 2

P/k′′. Each

of these is characterized by the soliton integer,

N =

√
γA2

0T
2
P

k′′ . (F.3)

F.2 Modulation Instability

Modulation instability in the context of optical nonlinearities refers to the gen-

eration of sidebands in the vicinity of a strong cw pump. Closely related to

four-wave mixing, it arises in a dispersive system when the self-phase modulation

associated with perturbations is strong enough to phase match four ordinarily mis-

matched wavevectors. A constant (cw) background solution (A0) to the NLSE is

accompanied by a weak perturbation (a),

A = (A0 + a) eiγ|A0|2z. (F.4)
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Inserting this assumed solution into the NLSE yields an evolution equation for

the perturbing field in terms of itself and the (non-depleting) cw pump:

∂

∂z
a = −i

1

2
k′′ ∂

2

∂t2
a + iγ

(
A2

0a
∗ + |A0|2 a + A0 |a|2 + A0 |a|2 + a2A∗

0 + |a|2 a
)
.

(F.5)

Without loss of generality, the cw pump is assumed to be real. Retaining only

those terms linear in a (or a∗) results in two equations for the perturbing field:

∂

∂z
a = −i

1

2
k′′ ∂

2

∂t2
a + iγ |A0|2 (a + a∗) , (F.6)

∂

∂z
a∗ = i

1

2
k′′ ∂

2

∂t2
a∗ − iγ |A0|2 (a + a∗) . (F.7)

The Fourier transform of these equations (in both z and t) relates the perturbing

propagation constant, K to the perturbing frequency, Ω:

[
K − 1

2
k′′Ω2 − γ |A0|2

]
a = γ |A0|2 a∗, (F.8)

[
K +

1

2
k′′Ω2 + γ |A0|2

]
a∗ = −γ |A0|2 a. (F.9)

Multiplying the equations results in two solutions for the dispersion relation:

[
K −

(
1

2
k′′Ω2 + γ |A0|2

)][
K +

(
1

2
k′′Ω2 + γ |A0|2

)]
= −

(
γ |A0|2

)2
, (F.10)

K = ±Ωk′′

2

√√√√Ω2 + sgn (k′′)

(
4γ |A0|2

|k′′|

)
. (F.11)
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If the sign of k′′ is negative, the propagation constant can be imaginary, leading

to exponential growth or decay for the perturbing field. The modulation gain is

g (Ω) = ±Ωk′′

√√√√
(

4γ |A0|2

|k′′|

)
− Ω2. (F.12)

Where the gain occurs up to a cutoff modulation frequency,

Ωc =

√
4γ |A0|2

|k′′| , (F.13)

peaking at

Ωm = ±Ωc/
√

2 = ±

√
2γ |A0|2

|k′′| , (F.14)

where the peak gain is given by

g(Ωm ) = 2γ |A0|2 . (F.15)
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Appendix G

Dispersion Relations for Periodic
Photonic Structures

G.1 Finite Periodic Structures

In the case of finite periodic structure consisting of N unit cells, the transfer matrix

is constructed from individual 2×2 transfer matrices by simple multiplication:




Ea,N

Eb,N



 =




M11 M12

M21 M22





N 


Ea,0

Eb,0



 =




T11 T12

T21 T22








Ea,0

Eb,0



 (G.1)

If excitation is restricted to the lower left channel only (a, j), with outputs (a,N)

and (b, 0), the condition dictates that Eb,N = 0. The transfer matrix coefficients

can then be used to uniquely obtain the fields at Ea,N and Eb,0. The complex

transmission and reflection coefficients are extracted from the elements of the
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transfer matrix as follows:

Ea,N

Ea,0
=

1

T22
(G.2)

Eb,0

Ea,0
= −T21

T22
(G.3)

However, if excitation is restricted to the lower left channel only (a, j), with out-

puts (a,N) and (b,N), the condition dictates that Eb,0 = 0. The transfer matrix

coefficients can then be used to uniquely obtain the fields at Ea,N and Eb,N . The

complex transmission and reflection coefficients are extracted from the elements

of the transfer matrix as follows:

Ea,N

Ea,0
= T11 (G.4)

Eb,N

Ea,0
= T21 (G.5)

G.2 Infinite Periodic Structures (Bloch’s Theo-

rem)

For an infinite periodic coupled structure with four ports, Bloch’s theorem states:

Ea,j+1 = eikeffLEa,j (G.6)

Eb,j+1 = eikeffLEb,j (G.7)
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Applying this to a structure composed of unit cells described by the unitary M

matrix results in an equation which can be used to derive the dispersion relation,

det




eikeffL − M11 −M12

−M21 eikeffL − M22



 = 0 (G.8)

The quadratic formula is then used to explicitly generate the dispersion relation:

ei2keffL − (M11 + M22) eikeffL + (M11M2 − M12M21) = 0 (G.9)

keff =
1

L
arg



(M11 + M22)

2
±

(
(M11 − M22)

2

4
+ M12M21

)1/2


 (G.10)

The eigenvector relations are

Eb,j =
eikeffL − M11

M12
Ea,j (G.11)

Eb,j =
M21

eikeffL − M22
Ea,j (G.12)

which, when combined with the eigensolutions gives two unique relations based

only on the coupling coefficients:

Eb,j = −
(M11−M22)

2 ∓
(

(M11−M22)2

4 + M12M21

)1/2

M12
Ea,j (G.13)

Eb,j = +
M21

(M11−M22)
2 ±

(
(M11−M22)2

4 + M12M21

)1/2
Ea,j (G.14)
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t t
Ea,j

Eb,j Ea,j+1

Eb,j+1

Figure G.1: Fields in a Coupled Resonator Optical Waveguide.

This procedure will be applied to derive dispersion relations for a variety of

resonator-based, 4-port infinite periodic structures.

G.3 CROW

A coupled-resonator optical waveguide (CROW) is mathematically equivalent to

a multi-layer stack. The direction of circulation of optical power flow however

alternates from resonator to resonator. So long as the convention of alternating

the designation of a and b fields is applied, the mathematical derivation for a multi-

layer stack directly carries over to that of a CROW. The path length between

couplers becomes πR and the periodicity of the structure, L = 2R.

Relating the fields at the coupling interfaces results in two equations:

Ea,j+1 = itei nπR
c ωEa,j + rei2nπR

c ωEb,j+1 (G.15)

Eb,j = rEa,j + itEb,j+1e
i nπR

c ω (G.16)
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The fields at j + 1 are related to the fields at j, according to:

Ea,j+1 = − 1

it
ei nπR

c ωEa,j +
r

it
ei nπR

c ωEb,j (G.17)

Eb,j+1 = − r

it
e−i nπR

c ωEa,j +
1

it
e−i nπR

c ωEb,j (G.18)

Equations G.17 and G.18 are combined in a matrix formulation:




Ea,j+1

Eb,j+1



 =




M11 M12

M21 M22








Ea,j

Eb,j



 (G.19)

Where the matrix coefficients are explicitly given by:

M11 = − 1

it
ei nπR

c ω (G.20)

M12 =
r

it
ei nπR

c ω (G.21)

M21 = − r

it
e−i nπR

c ω (G.22)

M22 =
1

it
e−i nπR

c ω (G.23)

For an infinite CROW, applying the procedure based on Bloch’s theorem, the

dispersion relation is thus:

keff =
1

2R
arg



i

(
ei nπR

c ω − e−i nπR
c ω

)

2t
± i





(
ei nπR

c ω + e−i nπR
c ω

)2

4t2
− r2

t2





1/2




(G.24)
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Ec,j t1

t2

Eb,j Eb,j+1

Ea,j Ea,j+1

Ed,j

Figure G.2: Fields in a double-channel SCISSOR.

The two solutions represent the forward- and backward-going waves in the multi-

layer structure. The matrix for an alternating CROW structure in which subse-

quent resonators possess different circumferences is easily derived by simple matrix

multiplication.

G.4 SCISSOR

A side-coupled, integrated spaced sequence of resonators can be constructed with

a few variations. The dispersion relation for a double-channel SCISSOR is first

derived and later a limiting case will provide the dispersion relation for a single-

channel SCISSOR.
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G.4.1 Double-Channel SCISSOR

The lower coupler provides two relations for the fields:

Ea,j+1 = r1e
i nL

c ωEa,j + it1e
i 1
2

nL
c ωEc,j (G.25)

Ed,j = it1e
i 1
2

n2πR
c ωei 1

2
nL
c ωEa,j + r1e

i 1
2

n2πR
c ωEc,j (G.26)

The upper coupler provides two more relations for the fields:

Eb,j = r2e
i nL

c ωEb,j+1 + it2e
i 1
2

nL
c ωEd,j (G.27)

Ec,j = it2e
i 1
2

n2πR
c ωei 1

2
nL
c ωEb,j+1 + r2e

i 1
2

n2πR
c ωEd,j (G.28)

The circulating field equations G.26 and G.28, are manipulated algebraically such

that the circulating fields, Ed,j and Ec,j are only dependent on the two input fields,

Ea,j and Eb,j+1:

Ed,j =
it1ei 1

2
n2πR

c ωei 1
2

nL
c ω

1 − r1r2ei n2πR
c ω

Ea,j +
it2r1ei n2πR

c ωei 1
2

nL
c ω

1 − r1r2ei n2πR
c ω

Eb,j+1 (G.29)

Ec,j =
it2ei 1

2
n2πR

c ωei 1
2

nL
c ω

1 − r1r2ei n2πR
c ω

Eb,j+1 +
it1r2ei n2πR

c ωei 1
2

nL
c ω

1 − r1r2ei n2πR
c ω

Ea,j (G.30)

These expressions are then used in conjunction with equations G.25 and G.27, to

describe the output fields, Ea,j+1 and Eb,j solely dependent on the input fields,
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Ea,j and Eb,j+1:

Ea,j+1e
−i nL

c ω =
r1 − r2ei n2πR

c ω

1 − r1r2ei n2πR
c ω

Ea,j −
t1t2ei 1

2
n2πR

c ω

1 − r1r2ei n2πR
c ω

Eb,j+1 (G.31)

Eb,je
−i nL

c ω = − t1t2ei 1
2

n2πR
c ω

1 − r1r2ei n2πR
c ω

Ea,j +
r2 − r1ei n2πR

c ω

1 − r1r2ei n2πR
c ω

Eb,j+1 (G.32)

The fields at j + 1 are related to the fields at j, according to:

Ea,j+1 =
1 − r1r2e−i n2πR

c ω

r1 − r2e−i n2πR
c ω

ei nL
c ωEa,j −

t1t2ei 1
2

n2πR
c ω

r2 − r1ei n2πR
c ω

Eb,j (G.33)

Eb,j+1 = − t1t2e−i 1
2

n2πR
c ω

r1 − r2e−i n2πR
c ω

Ea,j +
1 − r1r2ei n2πR

c ω

r2 − r1ei n2πR
c ω

e−i nL
c ωEb,j (G.34)

Equations G.33 and G.34 are combined in a matrix formulation:




Ea,j+1

Eb,j+1



 =




M11 M12

M21 M22








Ea,j

Eb,j



 (G.35)

Where the matrix coefficients are explicitly given by:

M11 =
1 − r1r2e−i n2πR

c ω

r1 − r2e−i n2πR
c ω

ei nL
c ω (G.36)

M12 = − t1t2ei 1
2

n2πR
c ω

r2 − r1ei n2πR
c ω

(G.37)

M21 = − t1t2e−i 1
2

n2πR
c ω

r1 − r2e−i n2πR
c ω

(G.38)

M22 =
1 − r1r2ei n2πR

c ω

r2 − r1ei n2πR
c ω

e−i nL
c ω (G.39)
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For an infinite SCISSOR, applying the procedure based on Bloch’s theorem, the

dispersion relation is thus:

keff =
1

L
arg





(
1−r1r2e−i n2πR

c ω

r1−r2e−i n2πR
c ω

ei nL
c ω + 1−r1r2ei n2πR

c ω

r2−r1ei n2πR
c ω

e−i nL
c ω

)

2

±





(
1−r1r2e−i n2πR

c ω

r1−r2e−i n2πR
c ω

ei nL
c ω − 1−r1r2ei n2πR

c ω

r2−r1ei n2πR
c ω

e−i nL
c ω

)2

4
+

(1 − r2
1) (1 − r2

2)(
r2 − r1ei n2πR

c ω
)(

r1 − r2e−i n2πR
c ω

)





1/2




(G.40)

The two solutions represent the forward- and backward-going waves in the pho-

tonic structure. The coherent build-up of intensity in the resonators with respect

to the guides can be derived from equations G.29, G.30, the eigenvector relations

G.11 and G.12, and the Bloch relation:

∣∣∣∣
Ed,j

Ea,j

∣∣∣∣
2

=

∣∣∣∣∣
it1

1 − r1r2ei n2πR
c ω

+
it2r1ei 1

2
n2πR

c ωeikeffL

1 − r1r2ei n2πR
c ω

(
eikeffL − M11

M12

)∣∣∣∣∣

2

(G.41)

∣∣∣∣
Ec,j

Ea,j

∣∣∣∣
2

=

∣∣∣∣∣
it2eikeffL

1 − r1r2ei n2πR
c ω

(
eikeffL − M11

M12

)
+

it1r2ei 1
2

n2πR
c ω

1 − r1r2ei n2πR
c ω

∣∣∣∣∣

2

(G.42)
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G.4.2 Single-Channel SCISSOR

Testing the particular case (r2 = 1) should return the dispersion relation for an

infinite periodic single-channel SCISSOR:

keff =
1

L
arg

[(
1

2

r1 − ei n2πR
c ω

1 − r1ei n2πR
c ω

ei nL
c ω +

1

2
e−i nL

c ω

)
±

(
1

2

r1 − ei n2πR
c ω

1 − r1ei n2πR
c ω

ei nL
c ω − 1

2
e−i nL

c ω

)]

(G.43)

= −n

c
ω ,

n

c
ω +

1

L
arg

[
r1 − ei n2πR

c ω

1 − r1ei n2πR
c ω

]
= −n

c
ω ,

n

c
ω +

Φ(ω)

L
(G.44)

The first solution simply describes light propagating backwards in the upper (iso-

lated) waveguide. The second solution is that of the single-channel SCISSOR.

G.4.3 Twisted Double-Channel SCISSOR

This configuration may be considered to be a double-channel SCISSOR with the

top ports of each unit cell reversed. This would have the effect of twisting the

resonator into a figure-8. Alternatively, the structure may be considered to be

composed of two channels coupled via two resonators which are 100% coupled to

each other.

Equations G.31 and G.32 derived for the ordinary double-channel SCISSOR

are used as a starting point in the derivation of the dispersion relation for the

twisted variety. The distinction is made if the fields, Eb,j and Eb,j+1 are reversed.

Furthermore, the total path length around the resonator remains 2πR for direct
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Ea,j Ea,j+1

Ed,j

Figure G.3: Fields in a twisted double-channel SCISSOR.

comparisons. The fields at j + 1 are thus related to the fields at j, according to:

Ea,j+1e
−i nL

c ω = +
r1 − r2ei n2πR

c ω

1 − r1r2ei n2πR
c ω

Ea,j −
t1t2ei 1

2
n2πR

c ω

1 − r1r2ei n2πR
c ω

Eb,j (G.45)

Eb,j+1e
−i nL

c ω = − t1t2ei 1
2

n2πR
c ω

1 − r1r2ei n2πR
c ω

Ea,j +
r2 − r1ei n2πR

c ω

1 − r1r2ei n2πR
c ω

Eb,j (G.46)

Equations G.45 and G.46 are combined in a matrix formulation:




Ea,j+1

Eb,j+1



 =




M11 M12

M21 M22








Ea,j

Eb,j



 (G.47)
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Where the matrix coefficients are explicitly given by:

M11 =
r1 − r2ei n2πR

c ω

1 − r1r2ei n2πR
c ω

ei nL
c ω (G.48)

M12 = − t1t2ei 1
2

n2πR
c ω

1 − r1r2ei n2πR
c ω

ei nL
c ω (G.49)

M21 = − t1t2ei 1
2

n2πR
c ω

1 − r1r2ei n2πR
c ω

ei nL
c ω (G.50)

M22 =
r2 − r1ei n2πR

c ω

1 − r1r2ei n2πR
c ω

ei nL
c ω (G.51)

For an infinite SCISSOR, applying the procedure based on Bloch’s theorem, the

dispersion relation is thus:

keff =
1

L
arg



ei nL
c ω +

(
r1−r2ei n2πR

c ω

1−r1r2ei n2πR
c ω

+ r2−r1ei n2πR
c ω

1−r1r2ei n2πR
c ω

)

2

±





[(
r1 − r2ei n2πR

c ω
)
−

(
r2 − r1ei n2πR

c ω
)]2

+ 4 (1 − r2
1) (1 − r2

2) ei n2πR
c ω

4
(
1 − r1r2ei n2πR

c ω
)2





1/2




(G.52)

The solutions represent the two coupled forward-going waves in the photonic struc-

ture. The coherent build-up of intensity in the resonators with respect to the

guides can be derived from equations G.29, G.30, and the eigenvector relations

G.11 and G.12.

Testing the particular case (r2 = 1) should return the dispersion relation for
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an infinite periodic single-channel SCISSOR:

keff =
n

c
ω +

1

L
arg




r1−ei n2πR

c ω

1−r1ei n2πR
c ω

+ 1

2
±

r1−ei n2πR
c ω

1−r1ei n2πR
c ω

− 1

2



 (G.53)

=
n

c
ω ,

n

c
ω +

1

L
arg

[
r1 − ei n2πR

c ω

1 − r1ei n2πR
c ω

]
=

n

c
ω ,

n

c
ω +

Φ(ω)

L
(G.54)

The first solution simply describes light propagating fowards in the upper (iso-

lated) waveguide. The second solution is that of the single-channel SCISSOR.
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Appendix H

Figure-8 Laser

In order to test the fabricated samples containing microresonator-based de-

vices, a pulsed laser source capable of providing picosecond, high peak power

pulses was required. A passively mode-locked fiber figure-eight laser (F8L) [161]

was constructed for this purpose. The laser consists of two loops of fiber con-

nected by a central 50/50 directional coupler, see figure H.1. One loop functions

as a nonlinear amplifying loop mirror (NALM) [162,163] while the other serves

to complete the ring cavity. A nonlinear amplifying loop mirror behaves much

like a fiber Sagnac interferometer but with the inclusion of an amplifying element

(here, a pumped erbium-doped fiber) and a fiber with nonzero intensity-dependent

refractive index. An ordinary Sagnac interferometer consists of a loop of fiber

connecting two outputs of a 50/50 directional coupler. Light entering one of

the input ports of the coupler is split into counter-propagating fields within the

loop which constrains them to recombine after one round trip. There are four

possible paths that the light can take in reemerging from the coupler input ports,
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two for each. Because both fields pass through the same optical channel, albeit

in opposite directions, they will acquire exactly the same phase shift due to the

optical reciprocity of the fiber. The resulting interference of the two paths at

each port is thus completely dictated by the phase shifts acquired in self- and

cross-couplings within the directional coupler. It is easy to show that the inter-

ference is such that the two paths interfere in a completely constructive manner

at the original input port and in a completely destructive manner at the other

port - hence the term ”loop mirror.” This is, of course provided that the fiber

loop behaves symmetrically for counterpropagating fields. The symmetry is bro-

ken if the fiber loop is rotating about its axis whereby counterpropagating fields

are doppler shifted in opposite directions and acquire a differential phase shift

(fiber gyroscope principle). The symmetry may also be broken if an amplify-

ing element is asymmetrically positioned within the loop. In this configuration,

one of the counterpropagating fields is amplified earlier in its round trip journey

around the loop and thus acquires a larger nonlinear phase shift relative to the

other. Both pulses are, however, equally amplified. If the differential nonlin-

ear phase shift is equal to π radians, then light can be ”switched” out of the

loop and the device becomes transmissive rather than reflective. Now, if the

two coupler inputs are connected with another fiber loop which includes an inline

Faraday isolator, a laser oscillator with a ”passive” mode-locking mechanism may

be obtained. The complete configuration suppresses continuous-wave laser oscil-
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lation and favors high intensity pulsed operation because the isolator only allows

a continuous cycling of light when the NALM is transmitting. The NALM and

isolator combination effectively operate as a saturable absorber and gain medium

(or simply an intensity-induced gain medium) - a configuration commonly used

to produce mode-locked laser output. An output coupler (10%) is included in

the second loop to extract a fraction of the pulse cycling within the cavity. An

angle-tuned 2.5 nm bandpass Fabry-Perot filter was placed in the cavity narrowed

the free-running bandwidth (of about 10 nm) and provided wavelength tunabil-

ity. It was initially found that the laser would not mode-lock after placement of

the filter inside the cavity. It was postulated that the reason was that rejected

wavelengths outside the pass-band set up spurious oscillations which robbed the

desired transmitted pass-band of gain. To test this theory, an additional isolator

was added such that the filter was situated between two isolators. Following this

adjustment, it was found that indeed the laser would again mode-lock.

The constructed figure-eight laser provided 100 µW of average power at 1530

nm. An erbium doped fiber amplifier (EDFA) was assembled to boost this by

20dB. The repetition rate of the laser, dictated by the longitudinal mode spacing,

was measured to be 1.5 MHZ. The pulse-width, inferred from the 2.5 nm FWHM

spectrum H.2 was approximately 1 ps. From these measurements, it was esti-

mated that the amplified pulses possessed 10 kW of peak power or approximately

10 nJ energies.
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Figure H.1: A mode-locked fiber figure-eight laser.

Figure H.2: Spectrum of the mode-locked fiber figure-eight laser.


