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Abstract

The novel quantum statistical properties of the two-photon entangled states

generated by spontaneous parametric downconversion have been utilized in a vari-

ety of fourth-order interferometric configurations. The extent to which the intense

light produced by an unseeded parametric amplifier (optical parametric generator)

retains these desirable properties is explored in a series of calculations.

Common fourth-order interferometric configurations using two-photon entan-

gled states are summarized, with an emphasis on the Hong-Ou-Mandel and Mach-

Zehnder interferometers. This summary is followed by a review of recent proposals

for the exploitation of entangled states for sub-Rayleigh-limit imaging.

The limitations of using parametric downconversion at two-photon levels are

discussed and the replacement of two-photon interferometric sources with the

multiphoton output of a high-gain optical parametric generator is considered. The

output of the Hong-Ou-Mandel interferometer, Mach-Zehnder interferometer, and

quantum lithography configurations as a function of single-pass gain is determined,

and the interpretation of these results in the context of multiple photon pair

contributions to interferometric patterns is presented.
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The analysis of the high-gain optical parametric generator as a fourth-order

interferometric source is then extended to the case of multiple signal and idler

output modes. The impact of the system transfer characteristics on the desired

interferometric properties is discussed.

The initiation of beam filamentation by vacuum fluctuations is considered,

and this four-wave mixing process is compared to parametric downconversion as

a source for fourth-order interferometric applications.

We conclude by contrasting the states produced by high-gain optical para-

metric generation with coherent states and the states produced by seeded optical

parametric amplification as sources for fourth-order interferometric configurations.



x

Table of Contents

1 Introduction 1

1.1 Parametric downconversion . . . . . . . . . . . . . . . . . . . . . 4

1.2 Two-photon entangled states . . . . . . . . . . . . . . . . . . . . . 6

1.3 Overview of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Fourth-Order Interferometry with Single-Pair Entangled States 12

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Fourth-order interference . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Hong-Ou-Mandel interferometer . . . . . . . . . . . . . . . . . . . 16

2.4 Mach-Zehnder interferometer . . . . . . . . . . . . . . . . . . . . 21

2.5 Quantum lithography . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3 High-Gain Contributions to Fourth-Order Interferometric Out-

put 31

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



CONTENTS xi

3.2 PDC as a multiphoton source . . . . . . . . . . . . . . . . . . . . 33

3.3 Effect of increased gain on the Hong-Ou-Mandel interferometer . . 36

3.4 Multi-pair fourth-order interferometry . . . . . . . . . . . . . . . . 39

3.5 Multi-pair Mach-Zehnder interferometry . . . . . . . . . . . . . . 49

3.6 Quantum lithography with multiphoton... . . . . . . . . . . . . . 52

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Multimode Properties of Multi-Pair Fourth-Order Interferome-

try 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Multimode source states . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.1 Multimode parametric amplifier model . . . . . . . . . . . 61

4.2.2 Two-photon entangled state . . . . . . . . . . . . . . . . . 64

4.3 Generalized multimode fourth-order interferometer . . . . . . . . 66

4.3.1 Expectation values at the source output . . . . . . . . . . 68

4.3.2 Coincidence count rates . . . . . . . . . . . . . . . . . . . 72

4.4 Hong-Ou-Mandel interferometer results . . . . . . . . . . . . . . . 78

4.4.1 Two-photon entangled state . . . . . . . . . . . . . . . . . 80

4.4.2 Parametric amplifier . . . . . . . . . . . . . . . . . . . . . 81

4.5 Quantum lithography results . . . . . . . . . . . . . . . . . . . . . 84

4.5.1 Two-photon entangled state . . . . . . . . . . . . . . . . . 84

4.5.2 Parametric amplifier . . . . . . . . . . . . . . . . . . . . . 85



CONTENTS xii

4.6 Effect of mode selection on visibility . . . . . . . . . . . . . . . . 91

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 Vacuum-Initiated Filamentation as a Source of Entangled States 97

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Filamentation as four-wave mixing... . . . . . . . . . . . . . . . . 98

5.3 Filamentation initiation by quantum fluctuations . . . . . . . . . 101

5.4 Filamentation as an interferometric... . . . . . . . . . . . . . . . . 107

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Comparison to Other Multiphoton Sources 111

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Joint detection probability . . . . . . . . . . . . . . . . . . . . . . 114

6.3 Seeded parametric processes . . . . . . . . . . . . . . . . . . . . . 116

6.4 Coherent state sources . . . . . . . . . . . . . . . . . . . . . . . . 119

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusions 131

Bibliography 136



xiii

List of Tables

Table Title Page

3.1 Coincidence count rate contributions for various input states . . . 45

3.2 Coincidence count rate coefficients for various interferometers . . . 46

6.1 Coincidence count rate contributions for states produced by spon-

taneous and seeded parametric processes . . . . . . . . . . . . . . 117

6.2 Coincidence count rate contributions for various coherent state inputs120

6.3 Coincidence count rate coefficients for various interferometers . . . 123

6.4 Comparison of joint detection probabilities versus expected coinci-

dence levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



xiv

List of Figures

Figure Title Page

1.1 Parametric downconversion layout . . . . . . . . . . . . . . . . . . 4

1.2 Parametric downconversion energy level diagram . . . . . . . . . . 5

1.3 Parametric downconversion phase-matching diagram . . . . . . . 6

1.4 Factors affecting the degree of entanglement . . . . . . . . . . . . 7

2.1 Hong-Ou-Mandel interferometer layout . . . . . . . . . . . . . . . 17

2.2 Hong-Ou-Mandel interferometer coincidence count rate . . . . . . 20

2.3 Mach-Zehnder interferometer layout . . . . . . . . . . . . . . . . . 22

2.4 Mach-Zehnder interferometer single detector and joint detection

probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Quantum lithography configuration . . . . . . . . . . . . . . . . . 25

2.6 Quantum lithography output patterns . . . . . . . . . . . . . . . 27

2.7 Quantum lithography in-principle realization . . . . . . . . . . . . 28

3.1 Parametric downconversion . . . . . . . . . . . . . . . . . . . . . 34



LIST OF FIGURES xv

3.2 Layout of a Hong-Ou-Mandel interferometer . . . . . . . . . . . . 36

3.3 Hong-Ou-Mandel interferometer coincidence count rate as a func-

tion of gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Possible contributions to the Hong-Ou-Mandel interferometer co-

incidence count rate . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5 Single- and dual-input contributions to the Hong-Ou-Mandel inter-

ferometer coincidence count rate . . . . . . . . . . . . . . . . . . . 48

3.6 Mach-Zehnder fourth-order interference visibility for the paramet-

ric amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.7 Quantum lithography visibility as a function of mean photon number 55

4.1 Hong-Ou-Mandel interferometer joint detection probability as a

function of gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 Ratio between single-input and dual-input contributions to the co-

incidence count rate . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Quantum lithography coincidence count rate as a function of phase

difference at various values of the gain parameter G . . . . . . . . 89

4.4 Quantum lithography pattern visibility as a function of the gain

parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Quantum lithography output patterns as a function of the phase

difference with and without the inclusion of accidental coincidences 92

5.1 Four-wave mixing amplifies weak waves . . . . . . . . . . . . . . . 99



LIST OF FIGURES xvi

5.2 Self-focusing as a form of forward four-wave mixing . . . . . . . . 100

5.3 Filamentation phase-matching diagram . . . . . . . . . . . . . . . 104

5.4 Normalized laser intensity at filamentation threshold . . . . . . . 106



1

Chapter 1

Introduction

States of light produced by parametric downconversion have been utilized in a vari-

ety of experimental settings. The two-photon entangled states produced by spon-

taneous parametric downconversion have excited interest due to their potential

for use in fields such as Einstein-Podolsky-Rosen experiments [1–3], Heisenberg-

limited phase measurements [4,5], sub-Rayleigh limit lithography [6–8], and quan-

tum cryptography [9,10].

Parametric downconversion [11–14] is the nonlinear process by which a pump

field at frequency ω0 is used to produce two output fields–conventionally called

the signal and idler–at frequencies ωs and ωi = ω0 − ωs. This process may be

initiated spontaneously, with only a pump beam as an input, or seeded by the

provision of an additional beam at the desired wavelength. In the latter case, this

externally provided signal beam will be amplified, accompanied by the production

of an idler beam at an appropriate wavelength.

A variety of devices have been developed to exploit these effects. An op-
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tical parametric generator (OPG) uses spontaneous parametric downconversion

(SPDC) to produce a seed beam for later amplification stages. Optical para-

metric oscillators (OPOs) enclose the downconversion crystal in a cavity; optical

parametric amplifiers (OPAs) are high-gain devices used for signal field amplifi-

cation.

The fields produced by parametric downconversion and parametric amplifica-

tion possess interesting quantum features [15–19]. In the high-gain limit, where

multiple photons are produced, the OPO and OPA have been analyzed as sources

of strongly correlated beams [20–25]. The relationship between the signal and

idler beams has been exploited in the OPA configuration to produce two ampli-

fied copies of an image-bearing beam that are spatially entangled [20]. In addition,

the spatial patterns arising from quantum noise have been investigated in the con-

text of the OPO [21,26,24,27]. When operated as a phase-sensitive amplifier, the

OPA has been used for noiseless image amplification [22].

At the low-gain limit, in which single photon pairs are produced, spontaneous

parametric downconversion has been extensively studied as a source of two-photon

entangled states [28–30]. These states may be entangled with respect to a variety

of different physical attributes such as time of arrival [31] and state of polariza-

tion [32] and have been analyzed in a variety of experimental situations [33–36].

Photon pairs are especially useful in the context of fourth-order interferometric
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studies [37–39,15,16,40–43], where they can be used to demonstrate a variety of

nonclassical features.

While strong quantum correlations are present in both the low- and high-gain

limits of the parametric amplification process, the nature of these correlations may

be quite different, and the extent to which the features characteristic of two-photon

entangled state sources persist as the gain of the generating process is increased is

unclear. In this thesis, we explore the transition between the two-photon entangled

states produced at the low-gain limit and the correlated states produced at the

high-gain limit of the parametric amplification process. In particular, the effect of

increased source gain on the output of fourth-order interferometric configurations

is analyzed.

The analyses that form the core of this thesis use the properties of two-photon

entangled state sources in interferometric systems as their starting point. We

thus begin by using the remainder of this chapter to present a brief overview of

the parametric downconversion process and introduce the two-photon entangled

states produced at the low-gain limit of this process.
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Figure 1.1: Parametric downconversion layout. The generated signal (ωs)
and idler (ωi) beams are strongly correlated.

1.1 Parametric downconversion

Parametric amplification is a nonlinear optical process that couples three optical

fields via a material polarization of the form

PNL(ω0 − ωs) ∝ χ(2)(ω0 − ωs, ω0, ωs)E(ω0)E(∗)(ωs) (1.1)

where P (ω) and E(ω) represent the components of the polarization and the ap-

plied field at frequency ω. (Figure 1.1) This process is also known as difference-

frequency generation, as applied fields at ωs and ω0 lead to the creation of a third

field at ωi = ω0 − ωs. This interaction can be understood in terms of the absorp-

tion of photons at ω0 accompanied by the generation of photon pairs at ωs and

ωi (Figure 1.2). In addition to the generation of a field at frequency ωi this inter-

action also leads to the amplification of the field applied at ωs and the depletion

of the field at ω0. The generated beams are conventionally called the signal (ωs)

and idler (ωi) beams, with the beam at ω0 designated as the pump beam. While
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Figure 1.2: Parametric downconversion energy level diagram. Parametric
downconversion creates photons at frequencies ωs and ωi while annihilating
pump photons at frequency ω0.

the above discussion presupposed the application of both a pump and signal field,

the production of signal and idler photons may also occur spontaneously, with

only a pump field incident on the material. This process of spontaneous paramet-

ric downconversion is a frequently analyzed source of strongly correlated photon

pairs.

In understanding the correlations present in the output of the seeded and

unseeded parametric amplifier, it is useful to note that in addition to the energy

conservation relationship ωs+ωi = ω0, the interacting fields are also constrained by

the value of the wavevector mismatch ∆k = k0−ks−ki (Figure 1.3). The efficiency

of the downconversion process is strongly dependent on ∆k, with fields satisfying

∆k = 0 (perfect phase matching) generated the most efficiently. The properties

of the signal and idler photons are not independent, but are thus associated by

relationships of this type.
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Figure 1.3: Parametric downconversion phase-matching diagram. Photons
participating in the downconversion process must satisfy phase-matching re-
lations.

1.2 Two-photon entangled states

An unseeded parametric amplifier produces an output of the form

∑
m ρ(m)|m〉s|m〉i in which the same number of photons is contained in the signal

and idler modes. The distribution over m is affected by the source gain. As the

gain is reduced, the contribution of the higher photon number terms is reduced;

when the gain is very low, the output can be approximated by a state of the

form |1〉s|1〉i, which consists of a single photon pair. As discussed in the previ-

ous section, the nature of the downconversion process leads to strong relationships

between the characteristics of the photons in this pair. This property of the down-

conversion process has been exploited to generate two-photon entangled states for

use in various experimental applications [44,45,2,46,47,30,48].

The degree of correlation between the signal and idler photons can be affected

by both the material and pump field properties (Figure 1.4). In the limit of

an infinite interaction region, perfect phase matching is required, providing a

tight constraint on the signal-idler relationship. As this assumption is relaxed
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Figure 1.4: Factors affecting the degree of entanglement.

(e.g. finite nonlinear crystal length), some degree of mismatch can be tolerated,

allowing a range of ∆kz values.

Similarly, in the limit of a monochromatic plane wave pump, there are single

values assumed by ω0 and k0 in the energy conservation and phase matching

relationships; if these assumptions are violated, the relationship between various

signal and idler parameters will not be as well specified. For instance, if the pump

field has finite width, the additional transverse wavevector components present

(k0⊥) allow the transverse component of the signal-idler wavevector sum ks⊥ +ki⊥

to take on a range of values. Likewise, if a broadband pump is used, the range of

frequencies present implies that the sum ωs + ωi does not have a fixed value.

If only a single signal mode and a single idler mode are being considered, the

two-photon state produced by a spontaneous parametric downconversion event

(e.g. in an unseeded low-gain parametric amplifier) may be written in the form
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|1〉s|1〉i. If more than one signal and idler mode are being analyzed, a more detailed

notation is necessary.

In general, a multimode two-photon state may be written

|ψ〉 =
∫ ∫

dωsdωiψ(ωs, ωi)|ωs〉s|ωi〉i (1.2)

where |ωs〉s designates a single photon Fock state in the signal mode with frequency

ωs and |ωi〉i a single photon Fock state in the ωi idler mode. The probability

amplitude distribution in the case of perfect entanglement is given by ψ(ωs, ωi) =

ψ(ωs)δ(ωi − f(ωs)) and the output state can thus be written

|ψ〉 =
∫

dωsψs(ωs)|ωs〉s|f(ωi)〉i. (1.3)

An example of this type of state is given by the output of a Type-I downconverter

driven by a cw plane-wave pump

|ψ〉 =
∫

dωsψs(ωs)|ωs〉s|ωp − ωs〉i, (1.4)

where the distribution ψs(ωs) incorporates the interaction strength, mode spacing,

and the phase matching function [49].

As discussed at the beginning of this section, under some conditions there may

no longer be a one-to-one relationship between the signal and idler parameters.
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A given signal mode may be associated with a range of idler modes; the signal

and idler are now partially, rather than fully, entangled. This may be described

in general by allowing the probability distribution ψ(ωs, ωi) to be dependent on

both the signal and idler parameters separately. In the limit of no entanglement,

the distribution factors into the product of signal and idler distributions ψs(ωs)×

ψi(ωi).

1.3 Overview of thesis

The two-photon entangled states introduced in this chapter have been extensively

analyzed as sources for fourth-order interferometric systems. Three of these sys-

tems will be used in this thesis to explore the changes that occur in the output of

an unseeded parametric amplifier as the mean number of photons in the output

is increased from the regime in which single pairs of photons are produced to the

regime where the mean photon number is high. The two-photon results that pro-

vide the starting point for this work are reviewed in Chapter 2. In this chapter,

major findings in which two-photon entangled states are used in fourth-order inter-

ferometric setups are discussed. In particular, the interferometric configurations

that will be the focus of later chapters are presented. The three interferometric

arrangements of interest–the Hong-Ou-Mandel interferometer, the Mach-Zehnder

interferometer, and quantum lithography–are discussed, with an emphasis on the

results produced when entangled photon pairs are used as inputs.
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The analyses of the effects of increased gain on these interferometric results

begin in Chapter 3 with a single mode treatment. A model for the output of a

parametric amplifier that allows the gain to be varied from the low levels used to

produce entangled photon pairs to the higher levels at which multiple pairs are

generated is used to determine the output of the Hong-Ou-Mandel interferometer,

Mach-Zehnder interferometer, and quantum lithography arrangements. A gener-

alized expression applicable to any four-port fourth-order interferometer is used to

clarify the separate roles that source statistics and interferometer configurations

play in determining the output when multiple-photon-pair sources are used.

The focus of Chapter 4 is the extension of the analysis of Chapter 3 to the

case where the interferometer inputs consist of multiple modes. Multimode de-

scriptions of the two-photon entangled state and the associated results for the

Hong-Ou-Mandel interferometer are reviewed. These models are then used to

analyze the effect of source asymmetry on the quantum lithography configura-

tion. A multimode treatment of the state produced by the parametric amplifier

is then presented, and the result applied to the Hong-Ou-Mandel interferometer

and quantum lithography. The low- and high-gain parametric amplifier results are

then compared to the two-photon entangled state results to investigate the effect

of multiple photon pairs on fourth-order interferometric devices. The impact of

the transfer characteristics of an interferometer using these sources on the output

pattern is also explored using these models.
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Chapter 5 focuses on vacuum-induced beam filamentation, which is another

unseeded nonlinear interaction producing photon pairs. We begin by discussing

the initiation of this process by vacuum fluctuations. This process is then com-

pared to spontaneous parametric downconversion in the context of fourth-order

interferometric systems.

Analyses of the high-gain limit of a parametric amplification source invite the

question of whether the outputs produced by a high-gain parametric downconver-

sion source can be duplicated by a coherent state source. Although two-photon

entangled state sources have been shown to be superior to coherent state sources

for the generation of many of these properties of interest, the extent to which the

results produced by high-gain parametric downconversion retain this superiority

is less clear. A related question is the extent to which the presence of a seed affects

the character of the pattern produced by parametric downconversion at low and

high gain levels. Chapter 6 returns to the single mode model of Chapter 3 to

investigate coherent and seeded parametric amplifier source states as multiphoton

pair fourth-order interferometric sources. Systems considered in this chapter are

the Hong-Ou-Mandel interferometer and quantum lithography configurations.



12

Chapter 2

Fourth-Order Interferometry
with Single-Pair Entangled States

2.1 Introduction

Many of the experiments in which two-photon entangled states have been utilized

involve fourth-order interference [37–39,15,16,40,50,34,41,42]. As with conven-

tional (second-order) interferometry, the recombination of field amplitudes creates

an output pattern that is dependent on the path differences between interferom-

eter arms, but in fourth-order interferometry pairs of photons, rather than single

photons, are detected. This measurement may be accomplished via the registra-

tion of coincident photon detections or with the use of a two-photon absorbing

substrate.

The Hong-Ou-Mandel interferometer is an extensively analyzed fourth-order

interferometric configuration [51,38]. Consisting of a coincidence count detector

placed at the two outputs of a beamsplitter, it has been used to investigate the
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correlation time between the signal and idler photons issuing from a simultane-

ous downconversion event [51] as well as the role of spectral distinguishability in

fourth-order interference [52–54].

The Mach-Zehnder interferometer is another fourth-order interferometric con-

figuration. It is an arrangement that is well-known from second-order interfer-

ometry applications. It has also been utilized in fourth-order applications for the

investigation of the nonclassical properties of two-photon entangled states. For

fourth-order interferometry a coincidence count detector is placed across the in-

terferometer output ports. Using this configuration, two-photon entangled states

were shown to have an output that exhibits a dependence on the path difference

between the two arms of the interferometer under conditions where this depen-

dence is not present for coherent state input. [55]

The difference in interferometer output between two-photon entangled state

and coherent state sources has also been investigated in the area of sub-Rayleigh-

limit pattern formation. Entangled states of the form |m〉|m〉 have been proposed

as sources for the generation of lithographic patterns with features smaller by a

factor of 2m than that conventionally expected from the wavelength utilized. [6]

In this configuration (for m = 1), a two-photon absorbing substrate rather than

coincidence count detection is used to observe the interferometric effect.

We begin with a brief introduction to fourth-order interferometric quantities

and the models used in the analysis of the Hong-Ou-Mandel interferometer, Mach-
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Zehnder interferometer, and quantum lithography configurations. The results

obtained with these models in the case of two-photon entangled state input are

then reviewed.

2.2 Fourth-order interference

Fourth-order interferometry is a technique commonly used in tandem with two-

photon entangled state sources [39,28]. Among the fourth-order interferometers

used in this context are the Hong-Ou-Mandel interferometer [6] and the Mach-

Zehnder interferometer [55]. In this section we review the quantities used in the

analysis of these configurations, beginning with more familiar second-order inter-

ferometric expressions and connecting the fourth-order cross-correlation function

to the coincidence count rates used to measure the output of these fourth-order

interferometers.

The second-order cross-correlation function for a fluctuating complex analytic

field operator E is given by

Γ(1,1)(r1, r2; t1, t2) = 〈E∗(r1, t1)E(r2, t2)〉 (2.1)

The second-order cross-correlation function is intimately related to the character-

istics of the interference pattern created by two pinholes placed in a stationary,

ergodic, quasimonochromatic field, as can be seen in the expression for the inten-
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sity at a point r in the viewing plane

〈I(r, t)〉 = |C1|2〈I(r1, t)〉 + |C2|2〈I(r2, t)〉 + 2Re[C∗
1C2Γ(1,1)(r1, r2; t1, t2)] (2.2)

where r1 and r2 are the pinhole locations, t1 and t2 are the travel times for light to

reach r from pinholes 1 and 2, and C1 and C2 are constants related to the pinhole

properties. The fringe visibility is equal to the magnitude of the normalized cross-

correlation function and the phase of the normalized cross-correlation function

determines the offset of the fringes in the observation plane [56].

The second-order cross-correlation function can be generalized in quantum

mechanical calculations to

Γ(1,1)(r1, r2; t1, t2) = 〈Ê(−)(r1, t1)Ê(+)(r2, t2)〉 (2.3)

where Ê(+) corresponds to the field annihilation operator and Ê(−) corresponds to

the field creation operator. The cross-correlation function can be generalized to

different orders in Ê(−) and Ê(+). In particular, the fourth-order cross correlation

function is defined as

Γ(2,2)(r1, r2, r3, r4; t1, t2, t3, t4) = 〈Ê(−)(r1, t1)Ê(−)(r2, t2)Ê(+)(r3, t3)Ê(+)(r4, t4)〉.

(2.4)

These correlation functions can be shown to be related to the probability of
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photodetection with the field Ê, with a photodetection probability involving N

detectors proportional to the correlation function of 2Nth order [56]. Thus the

instantaneous photodetection probability with a single photodetector is given by

P (r, t) ∝ Γ(1,1)(r, r; t, t) (2.5)

and the instantaneous photodetection probability for 2 detectors is given by

P (r1, t1; r2, t2) ∝ Γ(2,2)(r1, r2, r2, r1; t1, t2, t2, t1). (2.6)

When interference is present, combining field variables at different displacements

and times, the arguments in the correlation functions need not be symmetric.

2.3 Hong-Ou-Mandel interferometer

One well-analyzed example of a fourth-order interferometer is the Hong-Ou-

Mandel interferometer [51,37,57]. This device consists of a 50/50 beamsplitter

with a variable delay between the two input arms (Figure 2.1). Given an input

consisting of a single photon in each arm, there are two paths that can lead to

a coincidence count-both photons can be reflected or both transmitted. The de-

structive interference between these two possibilities leads to a decrease in the

coincidence count rate from that naively expected. This decrease has been used
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Figure 2.1: Hong-Ou-Mandel interferometer layout. This interferometer is
used for fourth-order measurements.

to measure the temporal separation of two photons created by the same para-

metric downconversion event [51]. In order to consider the impact of a path

difference between the two arms of the interferometer, it is necessary to utilize

a multimode treatment of the input and output arms. However, the most strik-

ing feature-coincidence count cancellation-can be seen in a simple single mode

treatment with no path difference between the two arms of the interferometer.

A beamsplitter can be described by equations with the general form

âo1 = exp(iφ2)
[
âs

√
R exp(iα) + âi

√
T

]
(2.7)

âo2 = exp(iφ3)
[
âs

√
T + âi

√
R exp(i(π − α))

]
, (2.8)

where R and T are the reflectivity and transmissivity, respectively. For specificity,

we will set the beamsplitter phase values to be φ2 = φ3 = −π
2 and α = π

2 , giving
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the relationships [58]

âo1 =
√

Râs − i
√

T âi (2.9)

âo2 = −i
√

T âs +
√

Râi. (2.10)

The count rate in one of the output arms is given by

〈â†
o1

âo1〉 = R〈â†
sâs〉 + T 〈â†

i âi〉 + i
√

RT [〈â†
i âs〉 − 〈â†

sâi〉] (2.11)

and the coincidence count rate between the two detectors is given by

〈â†
o1

â†
o2

âo2 âo1〉 = RT 〈â†
sâ

†
sâsâs〉 + R2〈â†

sâ
†
i âiâs〉

+T 2〈â†
i â

†
sâsâi〉 + RT 〈â†

i â
†
i âiâi〉

+2 RT 〈â†
sâ

†
sâiâi〉 − 2 RT 〈â†

sâ
†
i âsâi〉 (2.12)

The single detector count rate can thus be found to be

〈â†
o1

âo1〉 =





1 for |11〉

|α0|2 for |α0α0〉
(2.13)

where the relationship R + T = 1 has been used. We can see that in both cases

the result is nonzero and is independent of the specific values of the reflectivity

and transmissivity.



2.3. HONG-OU-MANDEL INTERFEROMETER 19

The coincidence count rate between the two detectors has the value for these

states of

〈â†
o1

â†
o2

âo2âo1〉 =





(R − T )2 for |11〉

|α0|4 for |α0α0〉
(2.14)

We can see that in this case the specific value of the coincidence count rate can

depend on the value of the reflectivity and transmissivity. Furthermore, for the

50/50 beamsplitter of the HOMI, the coincidence count rate vanishes for two-

photon entangled state input. This absence of coincidence counts when the single

detector rates are nonzero is the signature of quantum interference in the HOMI.

This stands in contrast to the results for coherent state input, for which the

coincidence count rate simply equals the product of the single detector rates.

When the spectral distribution that is present in the interferometer source is

to be considered, a multimode analysis using a field description such as that in

Equation 1.2 is necessary. Using such a model, and assuming a Gaussian spectral

distribution, the coincidence count rate is found to have the form [51]

Rate ∝ R2 + T 2 − 2RTe−( τ
τc )

2

(2.15)

where τ is the time delay between the two arms and τc is the coherence time

between the downconverted photons. This coherence time is determined by the

width of the spectral distribution present in these two arms. The coincidence

count rate plotted as a function of time delay thus has a minimum when the arms
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Figure 2.2: Hong-Ou-Mandel interferometer coincidence count rate. The
count rate is plotted as a function of time delay between the two interfer-
ometer arms. As the time delay increases, the interference-created reduction
in coincidence rate disappears. The time delay is normalized to the photon
coherence time, which is the inverse of the spectral width.

are perfectly matched. For a 50/50 beamsplitter, the coincidence count rate at

this minimum vanishes. As the time delay increases the coincidence count rate

increases to its asymptotic value (Figure 2.2). The range of time over which this

feature occurs provides a measure of the coherence time between the input arms

of the interferometer. For a parametric downconversion source, this coherence

time is a measure of the temporal separation between the photons from a single

downconversion event. [51]

For type-I downconversion, the output spectral distribution is symmetric with

respect to the signal and idler frequencies. The signal and idler photons are thus
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indistinguishable. This condition produces the interference effect with the great-

est visibility. For type-II downconversion with a broadband pump, however, the

output spectra of the signal and idler photons can differ. This difference increases

the distinguishability of the photons, and this spectral distinguishability leads to

a loss of contrast in the interference pattern produced [52–54]. Visibility can be

restored through the use of spectral filtering [59,53] or source symmetrization [49].

2.4 Mach-Zehnder interferometer

The Mach-Zehnder interferometer is another fourth-order configuration that has

been explored using two-photon entangled state input [55,39,5,4,60,61]. As with

the second-order Mach-Zehnder, the input beams are combined with a beamsplit-

ter, directed along two arms that may differ in pathlength, and recombined using

a second beamsplitter. In the fourth-order interferometer, the output is detected

with a coincidence count detector placed across the two output ports of the second

beamsplitter (Figure 2.3).

The input and output modes of the Mach-Zehnder are related by

âo1 =
1
2
(1 − eiχ) âs +

−i

2
(1 + eiχ) âi (2.16)

âo2 =
−i

2
(1 + eiχ) âs +

1
2
(−1 + eiχ) âi (2.17)

where χ is the phase difference arising from the difference in pathlength between
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Figure 2.3: Mach-Zehnder interferometer layout. The coincidence counter
displayed would be used for fourth-order interferometric measurements. For
second-order measurements, the output of a single photodetector would be
used.

the two arms. Using these relationships, the probability of a photodetection at

one of the output ports is proportional to Γ(1,1)(r, r; t, t) ∝ 〈â†
o1

âo1〉 which has the

value

〈â†
o1

âo1〉 =
1
2
(1 − cosχ)〈â†

sâs〉 +
1
2
(1 + cosχ)〈â†

i âi〉 (2.18)

+
1
2
sinχ[〈â†

sâi〉 + 〈â†
i âs〉]. (2.19)

When a coherent state is sent into one input port with the other left empty

(|α00〉), the single detector count rate is proportional to

〈â†
o1

âo1〉 =
1
2
|α0|2(1 − cosχ). (2.20)

This pattern has a visibility of one. For a two-photon entangled state, the single

detector count rate has the value

〈â†
o1

âo1〉 = 1 (2.21)
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which is invariant under changes in χ. The single detector rate for the second

detector has the form 〈â†
o2

âo2〉 = 1
2 |α0|2(1 + cosχ) for coherent state input, and

〈â†
o2

âo2〉 = 1 for a two-photon entangled state. Using these values, we can see that

the accidental coincidence count rate for these states is

〈â†
o1

âo1〉〈â†
o2

âo2〉 =





1 for |11〉

1
4 |α0|4 sin2 χ for|α00〉

(2.22)

We can thus see that the coincidence rate naively expected from the second-order

results is χ-dependent in the case of coherent state input and χ-independent in

the case of two-photon entangled state input.

This result can be contrasted with the results for the fourth-order Mach-

Zehnder interferometer [39], where the coincidence counts between the two output

ports are detected. In this case the relevant quantity is the fourth-order cross-

correlation function Γ(2,2)(r1, r2, r2, r1; t1, t2, t2, t1) ∝ 〈â†
o1

â†
o2

âo2âo1〉 which has the

value

〈â†
o1

â†
o2

âo2âo1〉 = 1
4(1 − cos2χ)[〈â†

sâ
†
sâsâs〉 + 〈â†

i â
†
i âiâi〉]

+ 1
4(1 − cosχ)2〈â†

sâ
†
i âiâs〉

+ 1
4(1 + cosχ)2〈â†

i â
†
sâsâi〉

+ 1
2sinχ(1 + cosχ)[〈â†

sâ
†
sâsâi〉 − 〈â†

i â
†
sâiâi〉]

−1
2sin

2χ[〈â†
sâ

†
sâiâi〉 + 〈â†

sâ
†
i âsâi〉]

+ 1
2sinχ(1 − cosχ)[〈â†

sâ
†
i âiâi〉 + 〈â†

sâ
†
sâiâs〉]

(2.23)
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Figure 2.4: Mach-Zehnder interferometer single detector and joint detection
probabilities. The probabilities are displayed as functions of the phase differ-
ence between the two interferometer arms. The joint detection probability
(solid line) is dependent on the phase difference even though the single de-
tector probability (dashed line) is constant.

For the states considered above, the coincidence count rate (Figure 2.4) is then

found to be proportional to

〈â†
o1

â†
o2

âo2 âo1〉 =





1
4 |α0|4sin2χ for |α0 0〉

cos2χ for |11〉
(2.24)

Both inputs produce a phase-dependent coincidence count rate. However, com-

parison to the accidental coincidence count rate 〈â†
o1

âo1〉〈â†
o2

âo2〉 shows that the

result with coherent state input is simply equal to the accidental rate, whereas the

two-photon entangled state result significantly differs from the naively expected

rate for that state.



2.5. QUANTUM LITHOGRAPHY 25

Figure 2.5: Quantum lithography configuration. The interferometric pattern
is detected via two-photon absorption rather than coincidence count detec-
tion.

2.5 Quantum lithography

Two-photon states have been predicted to produce sub-Rayleigh-limit features in

configurations like that shown in Figure 2.5 [6]. In this arrangement, source

beams are sent into the input ports of a 50/50 beamsplitter, and the resulting

beams are then recombined at an angle 2θ onto a two-photon absorber. The

angular separation introduces an effective phase shift of 2kx sin θ between the two

outputs from the beamsplitter, where x is the transverse coordinate along the

observation plane. With conventional classical interferometric lithography, the

resulting pattern has a minimum fringe spacing of λ/2 which occurs at grazing

incidence (θ = π/2).

With an input of the form |1〉|1〉, the resulting pattern has a minimum fringe

spacing that is decreased below this classical limit by a factor of 2 [6]. Spontaneous

parametric downconversion has been proposed for use in this arrangement as a

source of two-photon entangled states. The resulting reduction in fringe spacing

can be seen in the following single-mode analysis.
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The relationship between the source beams and the beams directed onto the

two-photon absorber is given by

â1 =
1√
2

[âs − iâi] (2.25)

â2 =
1√
2

[−iâs + âi] . (2.26)

The phase shift between these two beams as they recombine at a location with

transverse coordinate x can be written χ = 2kx sin θ, where θ is the angle between

the two beams. The field detected at this location can be represented with the

annihilation operator â3 where

â3 = â1 + eiχâ2. (2.27)

In terms of the input modes to the beamsplitter this expression can be written

â3 =
1√
2

[
(1 − ieiχ)âs + (−i + eiχ)âi

]
. (2.28)

To see the output generated by a two-photon entangled state input into the

beamsplitter, we can evaluate 〈â†
3â

†
3â3â3〉 using a state of the form |1〉s|1〉i. This

gives the result

〈â†
3â

†
3â3â3〉 = 2(1 + cos 2χ). (2.29)
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Figure 2.6: Quantum lithography output patterns produced by two-photon
entangled state (solid line) and coherent state (dashed line) input fields. The
patterns are shown as a function of χ = 2kx where x is the transverse coor-
dinate in the observation plane and k is the wavevector of the writing beams.
The pattern created with a two-photon entangled state input varies more
rapidly with transverse position than the pattern created with the coherent
state input.

We can see that the total coincidence count rate will vary as 2χ = 4kx sin θ,

which is twice as rapid a dependence on χ as with standard classical techniques [6]

(Figure 2.6). This rapid dependence has been interpreted in the context of the

de Broglie wavelength of the photon pair, which is half the wavelength of the

individual photons [62,16,63].

This reduction in fringe spacing beyond the Rayleigh limit has been demon-

strated in principle in an experiment utilizing a beamsplitter and coincidence

count detector in place of the two-photon absorbing substrate [8]. The |2〉|0〉 +

|0〉|2〉 state that can be generated by a |1〉|1〉 state followed by a beamsplitter
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Figure 2.7: Quantum lithography in-principle realization. In-principle ob-
servation of reduced fringe width using two-photon entangled states. The
entangled states are generated with a double slit placed after the paramet-
ric downconverter used to generate the observed photons. The experimental
setup uses a beamsplitter and coincidence count detector in place of a two-
photon absorbing substrate.

was instead generated with a double-slit mask placed after a parametric down-

converter in such a manner that both of the downconverted photons exit through

the same slit. The predicted change in spacing was observed when the slits were

illuminated by the downconverter but not when the slits were illuminated by a

coherent state input (Figure 2.7).

Reductions in effective wavelength with a fourth-order interferometric exper-

iment have also been observed within the framework of de Broglie wavelength

measurement [62]. A wavepacket of m photons can be considered to have a de

Broglie wavelength of λ/m, where λ is the wavelength of the individual photons.

The entangled states considered above thus have a de Broglie wavelength half

that of the photons they contain. When used in a fourth-order interferometric

arrangement such as a beamsplitter and coincidence count detector placed af-

ter a double slit, the resulting pattern has a spacing consistent with the λ/2 de
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Broglie wavelength as long as the spatial profile of the beam is of the appropriate

shape [62].

It should be noted that classical methods have also been proposed to achieve

a reduction in fringe spacing of this size [64]. However, the possible extension of

this method to 2m-photon entangled states, with the concomitant improvement

by a factor of 2m, makes quantum lithography an area of special interest.

2.6 Conclusion

In this chapter, we have reviewed results obtained with two-photon entangled

states in the Hong-Ou-Mandel interferometer, Mach-Zehnder interferometer, and

quantum lithography configurations. Two-photon entangled states used as inputs

to the Hong-Ou-Mandel interferometer exhibit a reduction in coincidence counts

below the level expected based on the single detector rates. In the Mach-Zehnder

interferometer, the coincidence count rate obtained with two-photon entangled

state input exhibits a variation with phase difference between the two arms of the

interferometer that is not present in the single-detector rates; this behavior can

be contrasted to that obtained with coherent state input, where the coincidence

rate simply equals the product of the single detector rates. Two-photon entangled

states in the quantum lithography configuration produce a pattern which varies

as λ/4 rather than the λ/2 variation produced by conventional classical interfer-

ometric lithography. In each case, two-photon entangled states produce results
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that significantly differ from those produced with coherent state input. In the

next chapter, we will consider whether the interesting effects associated with two-

photon entangled states persist when the gain of the parametric downconversion

source used to produce these two-photon states is increased.
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Chapter 3

High-Gain Contributions to
Fourth-Order Interferometric

Output

3.1 Introduction

The output of a vacuum-initiated parametric downconverter consists of a super-

position of states containing multiple photon pairs, with one member of each pair

emitted into the signal mode and the other into the idler mode. These states can

be written in the form |m〉s|m〉i. The two-photon entangled state experiments

described in the previous chapter are conducted at gain levels low enough that

the output can be considered to consist only of the vacuum and states containing

a single photon pair (i.e. |1〉s|1〉i). These experiments are typically conducted

under conditions with low count rates, with the rarity of photon creation events

ensuring that multiple pair states can be neglected.

In applications such as quantum lithography, these low count rates, combined
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with the low cross-section for two-photon absorption, are of practical concern.

While the correlation between the photons in an entangled pair may lead to

two-photon absorption rates that are linear in intensity [65,66], it is nevertheless

unclear whether low detection rates will be problematic in a practical context.

Raising gain levels, with the attendant production of additional photon pairs, is

a seemingly straightforward way of circumventing this problem, however it is also

to be expected that these additional photon pairs will alter the character of the

fourth-order interferometric effects.

In this chapter, the effect of these additional photon pairs on the patterns

produced by selected fourth-order interferometric arrangements is analyzed. We

begin by discussing the limitations presented by low-gain sources in certain exper-

imental configurations. The model used for describing the output of spontaneous

parametric downconversion in the high-gain limit is then outlined. The effect of

increased single-pass gain on the output of a Hong-Ou-Mandel interferometer is

presented, and the result generalized to any fourth-order four-port interferome-

ter. This model is then applied to the Mach-Zehnder and quantum lithography

configurations. The effect of increased gain in these situations is presented.

We find that in the Hong-Ou-Mandel and Mach-Zehnder arrangements the

presence of multiple photon pairs causes the disappearance of effects such as co-

incidence count cancellation, but that in the quantum lithography configuration

desirable effects are preserved even in the high-gain limit. These results are in-
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terpreted in the context of multiple photon pair contributions to interferometric

output.

3.2 Parametric downconversion as a multipho-

ton source

At low gain levels, spontaneous parametric downconversion is a source of individ-

ual pairs of entangled photons. In the simplest case, when only a single signal

and idler mode are being considered, this output can be written |1 >s |1 >i.

When gain is increased, multiple pairs may be generated, leading to an output

that is a superposition of states of the form |m >s |m >i. As the single pass gain

parameter is increased from low values where the mean photon number is much

less than one to the regime where there is a significant probability of states with

photon numbers much greater than one, the interferometric output is modified in

a continuous fashion from a biphoton-like result to one applicable when multiple

photons are present. The impact of this transition on important properties such

as interference visibility can then be determined.

A simple model for parametric downconversion can be used to investigate the

transition from single photon pairs to photon numbers >> 1 (Figure 3.1). The

interaction between the signal mode âs and idler mode âi can be described by the
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Figure 3.1: Parametric downconversion. (a) The downconversion process
couples a single signal mode to a single idler mode. (b) The coefficients U
and V describe the interaction. The input may be initiated by seeding or by
vacuum state input.
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interaction Hamiltonian

Ĥ = ~g[â†
sâ

†
iv0 + h.c.] (3.1)

The corresponding equations of motion are

dâs

dt
= −igv0â

†
i (3.2)

dâi

dt
= −igv0â

†
s (3.3)

and have the solutions

âs = Uâs0 + V â†
i0 (3.4)

âi = Uâi0 + V â†
s0 (3.5)

where

U = cosh G (3.6)

V = −i exp(iθ) sinhG, (3.7)

G represents the gain of the process and is dependent on the pump amplitude and

the size of the material nonlinearity. This gain factor may be written as G = g|v0|t

where t is the interaction time, |v0| is the pump amplitude, and g is proportional

to χ(2) (Figure 3.1).
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Figure 3.2: Layout of a Hong-Ou-Mandel interferometer.

3.3 Effect of increased gain on the Hong-Ou-

Mandel interferometer

Before considering the effect of increasing gain on the output of a generalized

fourth-order interferometer, we can consider the effect of increased gain on a well-

analyzed fourth-order phenomenon-the reduction of coincidence count levels in a

Hong-Ou-Mandel interferometer.

In the Hong-Ou-Mandel interferometer [51], source beams are directed into

the input ports of a 50/50 beamsplitter and a photon counting detector is placed

at each output (Fig. 3.2). When the low-gain output generated by spontaneous

parametric downconversion is used as an input, the rate of coincidence counts

drops to zero for equal pathlengths. If a pathlength difference between the two

input arms is introduced, the coincidence count rate becomes nonzero; as the

difference increases, the rate increases to its asymptotic value. We can look at

the absence or presence of coincidence counts in the equal path configuration as
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gain is increased to monitor the impact of multiphoton states on fourth-order

interferometric effects.

The two beams from the parametric amplifier are directed into the two input

ports of the 50:50 beamsplitter shown in Figure 3.2, where they are combined.

Using the beamsplitter relationships

âo1 =
1√
2

[−âs + iâi] (3.8)

âo2 =
1√
2

[iâs − âi] , (3.9)

the output fields are expressed as

âo1 =
1√
2

[
(Uâs0 + V â†

i0) − i(Uâi0 + V â†
s0)

]
(3.10)

and

âo2 =
1√
2

[
−i(Uâs0 + V â†

i0) + (Uâi0 + V â†
s0)

]
. (3.11)

The coincidence count rate is given by 〈â†
o1

â†
o2

âo2âo1〉 and for a vacuum state input

to the material, becomes

〈0, 0|â†
o1

â†
o2

âo2âo1 |0, 0〉 = |V |4 (3.12)
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Figure 3.3: Hong-Ou-Mandel interferometer coincidence count rate as a func-
tion of gain. Joint detection probability (solid) at the beamsplitter output
ports normalized to the single detector probability (dashed line) as a func-
tion of source nonlinear interaction strength. The horizontal line indicates
the joint detection probability normalized to the product of single detection
probabilities.

This implies that the disappearance of the coincidence count rate is dependent on

the specific values of U and V and is not in general zero.

The coefficients U and V are given by Eqns. 4.3 and 4.4. From these quan-

tities, the coincidence count rate can be plotted as a function of the interaction

strength G as shown in Figure 3.3. We can see that the coincidence rate deviates

significantly from zero even at values of G where the mean output photon number

is approximately one.

Given a vacuum input, the output state arising from a parametric downcon-

verter can be written as the sum of states of the form |n, n〉 [18]. As the gain is

increased, the relative contribution of states with greater n also increases. The



3.4. MULTI-PAIR FOURTH-ORDER INTERFEROMETRY 39

presence of these states leads to a deviation of the coincidence count rate from its

value of 0 for |1, 1〉, as seen in Eq. 3.12. It is straightforward to show that a state

|ψ〉1 = |n, n〉 injected into two ports of a beamsplitter described by Eqns. 3.8 and

3.9 has a coincidence count rate at the output 〈â†
o1

â†
o2

âo2âo1〉 = 1
2n(n − 1). For

a |1, 1〉 input this quantity vanishes; if a |2,2〉 state is input into a beamsplitter,

the joint detection probability is no longer 0. This is also true for any n > 1. As

the nonlinear interaction strength is increased and more photons are produced,

components such as these will make nonnegligible contributions to the output

from the nonlinear material. Even at values of the single-pass gain where the

mean photon number is smaller than one, states such as |2, 2〉 are present; thus

the coincidence count rate only truly vanishes when the single-pass gain goes to

zero.

3.4 Multi-pair fourth-order interferometry

From the results in the previous section, we can see that the presence of additional

photon pairs in the input to a particular fourth-order interferometric configura-

tion led to the disappearance of a biphoton-related phenomenon. In this section,

a generalized four-port fourth-order interferometer with multiphoton input is con-

sidered, allowing a unified treatment of the HOMI, Mach-Zehnder, and quantum

lithography configurations. The following calculation separates interferometer-
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dependent coefficients from input-state-dependent expectation values, showing

explicitly the origin of additional contributions arising from multiple pair states.

We begin by using the HOMI to identify the specific contributions introduced

by the presence of multiple pairs, examining in this case the output from a beam-

splitter with variable reflection and transmission properties. For a beamsplitter

describable by

âo1 =
√

Râs − i
√

T âi (3.13)

âo2 = −i
√

T âs +
√

Râi, (3.14)

the coincidence count rate is given by

〈â†
o1

â†
o2

âo2âo1〉 = RT 〈â†
sâ

†
sâsâs〉 + R2〈â†

sâ
†
i âiâs〉

+T 2〈â†
i â

†
sâsâi〉 + RT 〈â†

i â
†
i âiâi〉

+2 RT 〈â†
sâ

†
sâiâi〉 − 2 RT 〈â†

sâ
†
i âsâi〉.

(3.15)

From the first four terms in this expression we can identify the four paths by which

coincidence counts can be generated. These paths are shown in Figure 3.4. Paths

(b) and (c) are the only paths that are present when the input is a biphoton. Path

(b) corresponds to both input photons being reflected; path (c) corresponds to

both input photons being transmitted. Paths (a) and (d) are present if more than

one pair is present at the interferometer input. Path (a) arises when two photons

from the signal arm are detected at the output, while path (d) arises when two



3.4. MULTI-PAIR FOURTH-ORDER INTERFEROMETRY 41

Figure 3.4: Possible contributions to the Hong-Ou-Mandel interferometer
coincidence count rate. Processes (b) and (c) are present at both low and
high gain levels. Processes (a) and (d) are not present when there is only one
photon per mode.
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photons from the idler arm are detected. In both cases one photon is reflected

while the other is transmitted. The remaining two terms in Equation 3.15 reflect

interference between different paths. For a |1, 1 > state, the first, fourth, and fifth

terms are zero, which is consistent with the identification of paths (a) and (d)

with terms present only if multiple pairs are at the input.

We can now analyze a generalized four-port interferometer. Such an interfer-

ometer can be described with the relationships




âo1

âo2


 =




A B

C D







âs

âi


 (3.16)

where âs and âi are the input signal and idler modes and âo1 and âo2 are output
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modes. The joint detection probability is then given by

〈â†
o1

â†
o2

âo2 âo1〉 = |C|2|A|2〈â†
sâ

†
sâsâs〉

+|D|2|A|2〈â†
sâ

†
i âiâs〉

+|C|2|B|2〈â†
i â

†
sâsâi〉

+|D|2|B|2〈â†
i â

†
i âiâi〉

+2 ReC∗A∗DA〈â†
sâ

†
sâiâs〉

+2 ReC∗A∗CB〈â†
sâ

†
sâsâi〉

+2 ReC∗A∗DB〈â†
sâ

†
sâiâi〉

+2 ReD∗A∗CB〈â†
sâ

†
i âsâi〉

+2 ReD∗A∗DB〈â†
sâ

†
i âiâi〉

+2 ReC∗B∗DB〈â†
i â

†
sâiâi〉

(3.17)

By analogy with the HOMI calculation, we can identify the expectation values

present in the first four terms with the individual contributions of the four paths

shown in Figure 3.4. The four paths can be grouped into two types: single-input

paths, in which the detected photons arise from only one input arm, and dual-

input paths, in which both input arms contribute one photon. Paths (b) and (c)

are dual-input paths and differ only in the specific mapping of each input arm

onto the output arms. These paths are the only paths present when the input

is a biphoton. The single-input paths (a) and (d) are present when multiple-

photon inputs are used. These paths are not present with a biphoton input and,



3.4. MULTI-PAIR FOURTH-ORDER INTERFEROMETRY 44

when introduced by increasing gain, contribute to a degradation of visibility in the

Hong-Ou-Mandel configuration. The remaining six terms arise from interference

between each of these paths; for many input states most of these terms vanish.

This situation is summarized in Table 3.1, which shows the value of each of

the terms in Equation 3.17 for different input states. For states generated by

spontaneous parametric downconversion, all of the interference terms are zero

except for the term generated by the interference of the two paths in which one

signal and one idler photon are detected. Furthermore, for a biphoton input, the

first and fourth terms, corresponding to the single-input paths, are also zero as

they require at least two photons in the involved input arm. We can also note

that all of the terms are present if coherent state inputs are used. In the quantum

lithography configuration, we will see that the presence of these additional terms

with coherent state input leads to components with undesired wider fringe spacing.

In addition to the expectation values shown in Table 3.1, the value of the joint

detection probability is determined by the interferometer-dependent coefficients

that multiply each expectation value (e.g. |C|2|A|2 for 〈â†
sâ

†
sâsâs〉). The values

of these coefficients for various interferometers are shown in Table 3.2. In the

case of an OPA, the “interferometer” is simply the direct mapping of the signal

to output 1 and the idler to output 2, that is, A = D = 1, B = C = 0, while for
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Table 3.1: Coincidence count rate contributions (Eq. 3.17) for
various input states. The diagrammatic representation for each
expectation value is shown on the left. Here “|mm〉” designates
the situation in which exactly m photons fall onto each input port,
“|α0α0〉” the situation in which the same coherent state falls onto
each input port, and “OPA” the situation in which the signal
and idler beams from an optical parametric amplifier are used as
inputs.
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Table 3.2: Coincidence count rate coefficients for various inter-
ferometers. For four different situations (listed at the top) the
coefficient of the quantum expectation value of each contribution
(listed on the left along with its diagrammatic representation) to
Eq. 3.17 is given. OPA refers to the joint detection probability at
the output of an optical parametric amplifier, HOMI refers to the
joint detection probability at the output of a 50/50 beamsplitter,
and QL refers to the two-photon absorption rate at the recording
plane in a quantum lithography configuration.
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the HOMI, the transfer matrix elements are given by

A = D =
1√
2

(3.18)

B = C =
−i√

2
. (3.19)

In the case of a measurement made directly at the outputs of an optical para-

metric amplifier, Equation 3.17 reduces to 〈â†
sâ

†
i âiâs〉, which is simply the joint

detection probability for the signal and idler modes. From Table 3.1, we can

see that, as expected, the joint detection rate from the parametric amplifier is

increased over the level produced by coherent state input. The second column in

Table 3.2 shows the Hong-Ou-Mandel interferometer coefficients. The negative

sign on the dual-input interference term reflects the phase relationship that allows

quantum interference to reduce the observed coincidence count rate. The single-

input interference term 〈â†
sâ

†
sâiâi〉 is also nonzero; however this term is zero for

parametric amplifier outputs at both biphoton and high-gain levels. For coherent

state input this term is present and leads to a net coincidence rate that shows no

interference properties.

Using this framework to calculate the Hong-Ou-Mandel interferometer joint

detection probability gives

〈â†
o1

â†
o2

âo2 âo1〉 = 1
4 [〈â

†
sâ

†
sâsâs〉 + 〈â†

sâ
†
i âiâs〉 + 〈â†

i â
†
sâsâi〉 + 〈â†

i â
†
i âiâi〉]

+ 1
2 [〈â

†
sâ

†
sâiâi〉 − 〈â†

sâ
†
i âsâi〉]

(3.20)
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Figure 3.5: Single-input (solid line) and dual-input (dashed line) contribu-
tions to the Hong-Ou-Mandel interferometer coincidence count rate. The
dual-input contribution vanishes at all values of the mean photon number.

with the following results for each of the states considered. For a biphoton input,

〈â†
o1

â†
o2

âo2âo1〉 = 0. For a Fock states in both signal and idler arms, the joint

detection probability is 1
2m(m − 1) and for a parametric amplifier the probability

is m2. Rewriting this last result using m = |V |2 returns the previously obtained

result of |V |4 (Eq. 3.12).

Figure 3.5 shows this result with the contributions of the single- and dual-input

terms displayed separately. The dual-input terms combine to give a net probabil-

ity of zero; these are the only terms present for a biphoton input, leading to the

coincidence count cancellation that is the hallmark of the Hong-Ou-Mandel inter-

ferometer. The single-input terms that become dominant as the photon number

increases lead to a joint detection probability of m2 for the parametric amplifier.

We can note that this has the same form as the probability for a coherent state
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input 〈â†
o1

â†
o2

âo2 âo1〉 = |α0|4 = m2, with both being equal to the product of the

single detector probabilities. Inspection of Tables 3.1 and 3.2 shows that this

apparent similarity arises through the contribution of different terms in each case.

3.5 Multi-pair Mach-Zehnder interferometry

The analysis of the Hong-Ou-Mandel interferometer in the earlier sections was

restricted to the case where the signal and idler beams are each emitted into a

single mode. Because variations in the frequency of the signal and idler photons are

not considered, the effect of a phase difference between the two paths in a HOMI

cannot be analyzed with this simple model and thus the effect of increased gain

on the interference pattern as a whole cannot be analyzed. In the Mach-Zehnder

configuration (Figure 2.3), however, the presence of an additional recombination

of the beams at the second beamsplitter allows us to analyze the visibility within

the constraints of this model.

In this section the generalized formalism of the previous section is applied to

the fourth-order Mach-Zehnder interferometer, which is described by the matrix

elements

A = −D =
1
2
(1 − eiχ) (3.21)

B = C =
−i

2
(1 + eiχ) (3.22)
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where χ is the phase shift between the two arms of the interferometer. Table 3.2

shows the relevant coefficients for joint detection probability given these matrix

elements. The dual-input terms and the single-input terms have different depen-

dences on χ, implying that the relative contributions of these terms can affect the

visibility of the fourth-order interference pattern. This can be seen by writing out

the expression for the joint detection probability

〈â†
o1

â†
o2

âo2 âo1〉 = 1
4(1 − cos2χ)[〈â†

sâ
†
sâsâs〉 + 〈â†

i â
†
i âiâi〉]

+1
4(1 − cosχ)2〈â†

sâ
†
i âiâs〉

+1
4(1 + cosχ)2〈â†

i â
†
sâsâi〉

+1
2sinχ(1 + cosχ)[〈â†

sâ
†
sâsâi〉 − 〈â†

i â
†
sâiâi〉]

−1
2sin

2χ[〈â†
sâ

†
sâiâi〉 + 〈â†

sâ
†
i âsâi〉]

+1
2sinχ(1 − cosχ)[〈â†

sâ
†
i âiâi〉 − 〈â†

sâ
†
sâiâs〉]

(3.23)

Using the expectation values displayed in Table 3.2, this expression reduces to

〈â†
o1

â†
o2

âo2 âo1〉 = cos2χ (3.24)

for a biphoton input,

〈â†
o1

â†
o2

âo2 âo1〉 =
1
2
m(m − 1) +

1
2
m(m + 1)cos2χ (3.25)
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Figure 3.6: Mach-Zehnder fourth-order interference visibility for the para-
metric amplifier as a function of source nonlinear interaction strength.

for a |mm〉 input, and

〈â†
o1

â†
o2

âo2 âo1〉 = m2 + m(m + 1)cos2χ (3.26)

for a parametric amplifier input. The corresponding visibilities are 1 for a bipho-

ton, (m + 1)/(3m − 1) for a |mm〉 state, and (m + 1)/(3m + 1) for a parametric

amplifier. As expected, the largest visibility occurs with a biphoton input. A

multiple pair input state has a visibility that decreases with increasing photon

number in each input mode. As expected, the parametric amplifier source has

visibility that is dependent on the mean photon number m, approaching unity for

low m and tending to 1/3 as m increases (Fig. 3.6).

A coherent state input leads to contributions from all terms, giving a joint de-
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tection probability of 〈â†
o1

â†
o2

âo2âo1〉 = |α0|4cos2χ. This has the same dependence

on χ as that for a biphoton input and a visibility of 1. While the introduction of

single-input terms led to a decrease in visibility for high-gain parametric amplifier

input, the presence of additional terms in the coherent state case does not lead to

low visibility, but rather to a visibility of 1 even with large mean photon number.

3.6 Quantum lithography with multiple photon

pairs

In the HOMI configuration we have seen that the introduction of multiple pair

states as parametric amplifier gain is increased leads to fourth-order interfero-

metric output that resembles that produced by coherent state input. With the

fourth-order Mach-Zehnder interferometer, the introduction of multiple pair states

lead to a result with a visibility that not only is lower than that obtained with

biphoton input, but also lower than that obtained with coherent state input. In

the context of quantum lithography (Fig. 2.5), we will see that although increased

gain leads to a degradation in visibility relative to that obtained with biphoton

input, the desirable sub-Rayleigh pattern characteristics are preserved with multi-

ple pair states and are not preserved with coherent state input [67]. In particular,

while the interplay of the interferometer coefficients and the states’ expectation

values lead to similar results with coherent and parametric amplifier inputs for
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the HOMI, the different weightings for each state present in the quantum lithog-

raphy case lead to qualitatively different results for the parametric amplifier and

coherent output states, even at high gain.

The matrix elements for quantum lithography are given by

A = C =
1√
2

−
i√
2
eiχ (3.27)

B = D =
−i√

2
+

1√
2
eiχ (3.28)

where χ is proportional to the transverse coordinate across the substrate. It

should be noted that in the quantum lithography configuration, the joint detection

probability is related to the dose rate at a two-photon absorbing substrate rather

than to a traditional coincidence count detection system. Note also that since

the two outputs of the beamsplitter are combined on the lithographic plate, the

relevant field modes âo1 and âo2 of the general theory are identical in this case,

i.e. âo1 = âo2 . The quantum lithography coefficients, shown in the last column of

Table 3.2, are all non-zero and phase dependent. Thus states with different dual-

and single-input contributions can have net dose patterns that vary in spatial

frequency as well as overall magnitude.

The joint detection probability for the quantum lithography configuration is
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given by

〈â†
o1

â†
o2

âo2âo1〉 = (1 + sin2χ)[〈â†
sâ

†
sâsâs〉 + 〈â†

i â
†
i âiâi〉]

+(1 − sin2χ)[〈â†
sâ

†
i âiâs〉 + 〈â†

i â
†
sâsâi〉 + 2〈â†

sâ
†
sâiâi〉 + 2〈â†

sâ
†
i âsâi〉]

+2 sinχ[〈â†
sâ

†
sâsâs〉 − 〈â†

i â
†
i âiâi〉]

+2 cosχ[〈â†
sâ

†
sâiâs〉 + 〈â†

sâ
†
sâsâi〉 + 〈â†

sâ
†
i âiâi〉 + 〈â†

i â
†
sâiâi〉]

+2 sinχ cosχ[〈â†
sâ

†
sâiâs〉 + 〈â†

sâ
†
sâsâi〉 − 〈â†

sâ
†
i âiâi〉 − 〈â†

i â
†
sâiâi〉]

(3.29)

and reduces to 〈â†
o1

â†
o2

âo2âo1〉 = 4(1 − sin2χ) for a biphoton input, (1 +

sin2χ)[2m(m−1)]+(1− sin2χ)[4m2] for a |mm〉 input, and (1+sin2χ)[4m2]+(1−

sin2χ)[8m2 + 4m] for a parametric amplifier input, where the terms proportional

to 1 + sin2χ arise from the single-input paths and the 1 − sin2χ terms arise from

the dual-input paths. Figure 3.7 shows the parametric amplifier joint detection

probability, with the relative size of the single-input versus the dual-input contri-

bution plotted as a function of mean photon number. Recalling that the optimum

visibility of unity is achieved with a biphoton input which has no single-input con-

tribution, it can be seen that as the single-input contribution increases relative to

the dual-input contribution the visibility decreases to its limiting value of 1/5.

For each of the states generated by parametric downconversion, only terms

that oscillate at twice the phase difference are present. The absence of terms

oscillating as χ indicate that the patterns produced will have periods smaller than

the Rayleigh limit without undesired slower terms. This stands in contrast to the
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Figure 3.7: Quantum lithography visibility as a function of mean photon
number. The visibility decreases as the relative contribution of the single-
input terms increases.

probability produced by coherent state inputs〈â†
o1

â†
o2

âo2 âo1〉 = {2(1 + sin2χ) +

6(1 − sin2χ) + 8cosχ}|α0|4. While the ”fast” sin2χ terms are present, the cosχ

term indicates the presence of undesired slower frequencies.

3.7 Conclusion

In this chapter, the results of calculations determining the effect of increased

source gain on the output of three fourth-order interferometric configurations are

presented. In these calculations, we have used a model of spontaneous parametric

downconversion in which a single signal mode and a single idler mode are coupled.

This model allows the gain to be varied in a continuous manner between the low-

and high-gain limits. Although the low-gain limit of this model approximates
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a |11〉 state input, the presence of states such as |22〉 can cause the results to

deviate from the biphoton results even at low mean photon numbers. Because

of this, interferometer output patterns at high-gain are contrasted with both the

low-gain results and the results obtained with a pure |11〉 state.

A two-photon entangled state used as a source for a Hong-Ou-Mandel interfer-

ometer produces no coincidence counts when the arms are matched in pathlength,

even though the single detector rates are nonvanishing. The output obtained with

a spontaneous parametric downconverter deviated from this result at both low-

and high-gain levels. In general, the coincidence rate for the downconverter out-

put is equal to the product of the single detector rates, showing no coincidence

count cancellation even with equal arm pathlengths.

In a Mach-Zehnder interferometer, a two-photon entangled state source pro-

duces a fourth-order output proportional to cos2 χ, where χ is the phase difference

between the two arms; this pattern has a visibility of one. When an unseeded para-

metric amplifier is used, the pattern has the cos2 χ dependence of the entangled

state accompanied by an additional background term. The size of the background

relative to the phase-dependent component varies with gain level. As the gain is

lowered to zero, the visibility approaches one; in the high-gain limit, the visibility

decreases to the asymptotic value of 1/3.

In the third configuration, that of quantum lithography, a two-photon en-

tangled state produces a pattern that varies as cos2 χ where χ is the position-



3.7. CONCLUSION 57

dependent phase difference between the illuminating beams. This pattern has

the desired rapid dependence on χ as well as a visibility of one. An unseeded

parametric amplifier produces a pattern that also varies as cos2 χ but, as in the

Mach-Zehnder case, that is accompanied by a gain-dependent background term.

In the low-gain limit, the visibility approaches the two-photon entangled state

value of 1. As the gain is increased, the visibility is reduced to a value of 1/5.

The differences among the various results can be understood by decomposing

the expression for the joint detection probability of a generalized four-port fourth-

order interferometer into state-dependent and interferometer-dependent factors.

From this analysis, it can be seen that the loss of visibility arises from the presence

of coincidence counts due to photons from a single input arm. These single-input-

arm terms are not present in the two-photon entangled state case, where all coin-

cidences are attributable to pathways involving both input arms. Understanding

how to alter the relative amounts of each type of contribution by considering a

multimode analysis of these fourth-order interferometric systems is thus of inter-

est.
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Chapter 4

Multimode Properties of
Multi-Pair Fourth-Order

Interferometry

4.1 Introduction

In the previous chapter, the transition from two-photon entangled states to in-

put states with multiple pairs was analyzed to see the effect of increased source

gain on the output of various fourth-order interferometric systems. In all of the

cases analyzed, the introduction of multiple photon pairs via increased gain led to

decreases in properties characteristic of the two-photon entangled state. In some

cases, desired properties such as coincidence count cancellation vanished entirely;

in others, the properties such as sub-Rayleigh spatial features were retained, but

with diminished visibility.

These analyses explored the origin of these differences by separating the effect

of the different interferometric configurations from the properties of the various
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input states considered. This framework allowed the identification of coincidence

rate contributions that occur only when multiple photon pairs are present and a

comparison of the role of these terms in different systems.

While these analyses outlined important features of the low-gain to high-gain

transition, they were restricted to the case where the signal and idler output

beams can be approximated as each consisting of a single mode. The analyses

thus could not encompass aspects of the photon source such as the distribution of

the output across different modes. In practice, these features of the light source

are also important determinants of the quantum properties visible in a particular

set-up.

In this chapter, we use a multimode treatment to compare the output of

fourth-order interferometric systems produced by two-photon and four-photon

input states. We again distinguish terms present only with multiple photon pairs

from terms present with two-photon states, analyzing the effect that the source

mode distribution has on the contribution of each of these terms.

We again find that the presence of these multiple photon pair terms in the high-

gain limit leads to significant differences in output from the two-photon case. We

find, however, that the mode selection properties of the interferometric system

can be used to influence the character of the output produced in the low- and

high-gain limits. In some cases, the effect of mode selection can be used to reduce

the effect of the multiple photon pair terms, suggesting that for certain systems
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the degradative effect of increased gain can be mitigated by the appropriate ma-

nipulation of system properties.

We begin by presenting the model we will use to describe the unseeded para-

metric amplifier. We then use this model to calculate the output produced by

these states in a generalized four-port fourth-order interferometric system. The

differing effect of mode selection on the various terms contributing to two-photon

detection is described. These results are then applied to the Hong-Ou-Mandel

interferometer and quantum lithography configurations. The effects of a nonde-

generate mode distribution across the signal and idler on the multiple pair and

single pair output patterns as well as the interaction of mode selection with the

mode distribution on these output are presented.

4.2 Multimode source states

The output of a parametric downconverter consists of a superposition of states of

the form |m〉s|m〉i, where s and i designate the signal and idler modes. This can

be written |ψ〉 =
∑

m ρ(m)|m〉s|m〉i, where the distribution ρ among these states is

dependent on the source gain. At low gain levels, this series is truncated after the

m = 0 and m = 1 terms; the parametric downconverter can thus be treated as a

two-photon source. As the gain increases, states consisting of multiple pairs such

as |2〉s|2〉i (four-photon) and |3〉s|3〉i (six-photon) become increasingly important,

requiring a model that includes these higher-order components.
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In this section, we will begin by describing the multimode parametric amplifier

model used to analyze the effects of increased gain on the fourth-order interfero-

metric patterns generated by this type of source. It should be noted that the state

produced by a low-gain parametric amplifier is not formally equal to a biphoton

state due to the inclusion of higher-order terms. Thus, for reasons of comparison,

a multimode treatment of a biphoton state is also included.

4.2.1 Multimode parametric amplifier model

In Chapter 3, the signal and idler outputs of a parametric downconverter were

described using the single mode operators âs and âi, related to the downconverter

input modes âs0 and âi0 by relationships of the form

âs = Uâs0 + V â†
i0 (4.1)

âi = Uâi0 + V â†
s0 (4.2)

where

U = cosh G (4.3)

V = −i exp(iθ) sinhG. (4.4)

The effect of increased gain was observed by increasing either the gain parameter

G or the mean single-arm photon number m = |V |2.
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We now generalize this theory by allowing a distribution of signal and idler

modes to be present. We retain the assumption that a given idler mode is coupled

to one and only one signal mode, with the frequencies of these modes related by

ωs + ωi = ω0 where ωs, ωi, and ω0 are the frequencies of the signal, idler, and

pump beam respectively.

The relationship between a signal mode at ω and an idler mode at ω0 − ω is

now dictated by the frequency-dependent coefficients

U(ω) = cosh G(ω) (4.5)

V (ω) = −i exp(iθ) sinh G(ω) (4.6)

where

âs(ω) = U(ω)âs0(ω) + V (ω)â†
i0(ω0 − ω) (4.7)

âi(ω0 − ω) = U(ω)âi0(ω0 − ω) + V (ω)â†
s0(ω). (4.8)

Note that the gain parameter G is now frequency-dependent, incorporating a

factor that is dependent on the specific distribution of gain across frequencies as

well as a factor that is dependent on the overall gain level as governed by quantities

such as the pump strength. The form of the distribution of frequencies that see

gain is dependent on the material and pump parameters.
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For field operators of the general form

Ê(+)(r, t) =
∫

dωN(ω)â(ω)ei(k(ω)·r−ωt), (4.9)

the single photon detection probability in the signal arm for an unseeded para-

metric amplifier can be shown to be given by

〈Ê(−)
s (r, t)Ê(+)

s (r, t)〉 =
∫

dω|N(ω)|2|V (ω)|2. (4.10)

The idler single detector probability for the unseeded case is similarly given by

〈Ê(−)
i (r, t)Ê(+)

i (r, t)〉 =
∫

dω|N(ω)|2|V (ω0 − ω)|2. (4.11)

As in the single-mode model used in Chapter 3, the quantity |V |2 is an indicator

of the number of photons created in each arm. In the unseeded case, this number

grows from zero.

We can see that if |V (ω)|2 is centered around a frequency ω0
s , the signal beam

will have a distribution of frequencies centered around ω0
s ; V (ω) can thus be re-

garded as a signal frequency distribution function. Furthermore, the correspond-

ing idler beam has a distribution of frequencies governed by |V (ω0 − ω)|2. This

distribution will be centered on ω0 − ω0
s . The signal and idler distributions will

be degenerate if ω0
s = ω0/2 and nondegenerate otherwise. If the distributions
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are nondegenerate, the signal and idler distributions are centered around differ-

ent frequencies and thus may be distinguished to some degree by their spectral

content.

4.2.2 Two-photon entangled state

In general, the output state containing a single photon pair can be described

by [39]

|ψ1〉 =
∫ ∫

dωsdωiφ(ωs, ωi)|ωs〉s|ωi〉i (4.12)

where, in the limit of perfect entanglement,

φ(ωs, ωi) = φ′(ωs)δ(ω0 − ωs − ωi) (4.13)

and, in the limit of no entanglement,

φ(ωs, ωi) = φ′(ωs)φ′′(ωi). (4.14)

For states generated by parametric downconversion, the degree of entangle-

ment is dependent on experimental parameters such as the length of the interac-

tion region (determined by the nonlinear crystal length), the beam width at the

crystal, and the spectral width of the input beam [28,68,29]. It is possible to have

ωs + ωi take on a range of values, depending on the value of the relevant physical
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parameters. In this analysis, as in Section 4.2.1, the relationship ωs + ωi = ω0 is

assumed.

For a state of the form given in Equation 4.12, the normalization condition

〈ψ1|ψ1〉 = 1, requires that

∫ ∫
dωsdωi|φ(ωs, ωi)|2 = 1 (4.15)

Note that the total output state is given by

|ψ〉 = ρ(0)|vac〉s|vac〉i + ρ(1)|ψ1〉. (4.16)

If

|ρ(0)|2 + |ρ(1)|2 = 1 (4.17)

and

〈ψ1|ψ1〉 = 1 (4.18)

the output state will be properly normalized.

We can now use these multimode models with a generalized fourth-order inter-

ferometer to compare the output produced by an unseeded parametric amplifier

operated at both low- and high-gain with the output produced by a two-photon
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entangled state. The multimode nature of these models allows us to examine the

effect of the interferometer characteristics on the output patterns generated. This

generalized description will then be interpreted in the context of the Hong-Ou-

Mandel interferometer and quantum lithography configurations.

4.3 Generalized multimode fourth-order inter-

ferometer

We assume field operators of the form given in Equation 4.9 and interferometer

input-output relationships of the form




âo1(ω)

âo2(ω)


 =




A(ω) B(ω)

C(ω) D(ω)







âs(ω)

âi(ω)


 (4.19)

where âs and âi are the input signal and idler modes and âo1 and âo2 are the

output modes. We can note that these are the same input-output relationships

used in Chapter 3, with the additional specification of the frequency dependence

associated with each operator.

If in addition we assume spectral filters in each arm f1(ω) and f2(ω), the

interferometer output field operators can be written

Ê
(+)
1 (r, t) =

∫
dωN(ω)f1(ω)âo1(ω)ei(k(ω)·r−ωt) (4.20)
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where âo1(ω) = A(ω)âs(ω) + B(ω)âi(ω) and

Ê
(+)
2 (r, t) =

∫
d3kN(ω)f2(ω)âo2(ω)ei(k(ω)·r−ωt) (4.21)

where âo2(ω) = C(ω)âs(ω) + D(ω)âi(ω).

As discussed in Section 2.2 the instantaneous two-photon detection probability

density is given by the fourth-order correlation function

P (r1, t1; r2, t2) = Γ(2,2)(r1, r2, r2, r1; t1, t2, t2, t1) (4.22)

= 〈Ê(−)(r1, t1)Ê(−)(r2, t2)Ê(+)(r2, t2)Ê(+)(r1, t1)〉 (4.23)

where t1 and t2 are the times at which the output photons are detected. The

instantaneous probability can be integrated over the coincidence count resolution

time Tcr to give the coincidence count rate

R(r1, r2; t1) =
∫ Tcr/2

−Tcr/2
dτP (r1, t1; r2, t1 + τ ) (4.24)

This can in turn be integrated over the detector resolution time Td to give the

coincidence count probability for a given set of temporal parameters

P12(r1, r2) =
∫ Td

−Td/2
dtR(r1, r2; t) (4.25)

=
∫ Td/2

−Td/2
dt1

∫ Tcr/2

−Tcr/2
dτP (r1, t1; r2, t1 + τ ) (4.26)
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=
∫ Td/2

−Td/2
dt1

∫ Tcr/2

−Tcr/2
dτ

× 〈Ê(−)(r1, t1)Ê(−)(r2, t1 + τ)Ê(+)(r2, t1 + τ )Ê(+)(r1, t1)〉.(4.27)

From Equations 4.20, 4.21 and 4.24 we can see that, as in Chapter 3, the

coincidence count rate will be dependent on both the interferometer coefficients A,

B, C, and D and state-dependent expectation values of the form 〈â†â†ââ〉. Because

these expectation values are assessed in terms of operators at the interferometer

input, they can be calculated for the interferometer source independent of the

specifics of the interferometer used.

4.3.1 Expectation values at the source output

We can now used the states defined in Section 4.2 to calculate the expectation

values at the interferometer input. These values are dependent only on the source

characteristics.

Parametric amplifier

The expectation values describing the output of an unseeded parametric amplifier

can be calculated using Equations 4.7 and 4.8 together with a source input state

of the form |vac〉s|vac〉i where |vac〉 now represents a multimode vacuum state. As

in the single-mode case presented in Chapter 3 terms such as 〈â†
sâ

†
i âsâs〉 vanish.
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The nonzero terms are:

〈â†
s(ω

′′′)â†
s(ω

′′)âs(ω′)âs(ω)〉 =

V ∗(ω′′′)V ∗(ω′′)V (ω′)V (ω)[δ(ω0 − ω′′)δ(ω0 − ω′′′)

+δ(ω0 − ω′′′)δ(ω0 − ω′′)], (4.28)

〈â†
s(ω

′′′)â†
i(ω

′′)âi(ω′)âs(ω)〉 =

V ∗(ω′′′)U ∗(ω0 − ω′′)U(ω0 − ω′)V (ω)δ(ω0 − ω′′′ − ω′′)δ(ω0 − ω′ − ω)

+V ∗(ω′′′)V ∗(ω0 − ω′′)V (ω0 − ω′)V (ω)δ(ω0 − ω′′′)δ(ω0 − ω′′), (4.29)

〈â†
i(ω

′′′)â†
s(ω

′′)âs(ω′)âi(ω)〉 =

V ∗(ω0 − ω′′′)U∗(ω′′)U(ω′)V (ω0 − ω)δ(ω0 − ω′′′ − ω′′)δ(ω0 − ω′ − ω)

+V ∗(ω0 − ω′′′)V ∗(ω′′)V (ω′)V (ω0 − ω)δ(ω0 − ω′′′)δ(ω0 − ω′′), (4.30)

〈â†
i(ω

′′′)â†
i(ω

′′)âi(ω′)âi(ω)〉 =

V ∗(ω0 − ω′′′)V ∗(ω0 − ω′′)V (ω0 − ω′)V (ω0 − ω)[δ(ω0 − ω′′)δ(ω0 − ω′′′)

+δ(ω0 − ω′′′)δ(ω0 − ω′′)], (4.31)

〈â†
s(ω

′′′)â†
i(ω

′′)âs(ω′)âi(ω)〉 =

V ∗(ω′′′)U ∗(ω0 − ω′′)U(ω′)V (ω0 − ω)δ(ω0 − ω′′′ − ω′′)δ(ω0 − ω′ − ω)



4.3. GENERALIZED MULTIMODE FOURTH-ORDER
INTERFEROMETER 70

+V ∗(ω′′′)V ∗(ω0 − ω′′)V (ω′)V (ω0 − ω)δ(ω0 − ω′′)δ(ω0 − ω′′′), (4.32)

and

〈â†
i(ω

′′′)â†
s(ω

′′)âi(ω′)âs(ω)〉 =

V ∗(ω0 − ω′′′)U∗(ω′′)U(ω0 − ω′)V (ω)δ(ω0 − ω′′′ − ω′′)δ(ω0 − ω′ − ω)

+V ∗(ω0 − ω′′′)V ∗(ω′′)V (ω0 − ω′)V (ω)δ(ω0 − ω′′′)δ(ω0 − ω′′). (4.33)

Comparison to Table 3.1 shows that these quantities reduce to the previously cal-

culated expectation values in the limit that only one signal and one idler mode,

each with frequency ω0/2, are occupied. It can be noted that in the multimode

case, the different terms have different dependences on the various frequencies ω-

ω′′′. In particular, the arguments of the U and V terms differ in the 〈â†
sâ

†
i âiâs〉 and

〈â†
i â

†
sâsâi〉 expressions as compared to the 〈â†

sâ
†
i âsâi〉 and 〈â†

i â
†
sâiâs〉 expressions.

Recalling that for the Hong-Ou-Mandel interferometer the former pair of expec-

tation values correspond to the paths wherein one signal and one idler photon are

either both reflected or both transmitted, and that the latter pair of expectation

values correspond to the interference between these paths, we can see that the

shape of the gain distribution (i.e. the dependence of U and V on ω) will de-

termine the degree to which path interference leads to a reduction in coincidence

counts. This is consistent with the results relating distinguishability and quantum

interference [36,52,59] in the two-photon entangled state case.
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Two-photon entangled state

Using the general form of the two-photon quantum state (Eq. 4.12), the various

two-photon expectation values at the output of the source material can be calcu-

lated. Since âsâs|ψ1〉 and âiâi|ψ1〉 can be shown to vanish, as would be expected

for a state with only one photon in the signal and idler modes, all expectation

values containing two annihilation operators acting on the same mode will also

vanish (e.g. 〈â†
sâ

†
sâsâs〉 = 0). The remaining two-photon expectation values are

given by

〈â†
s(ω

′′′)â†
i(ω

′′)âi(ω′)âs(ω)〉 =

φ∗(ω′′′)φ(ω)δ(ω0 − ω′′′ − ω′′)δ(ω0 − ω − ω′),

〈â†
i(ω

′′′)â†
s(ω

′′)âs(ω′)âi(ω)〉 =

φ∗(ω0 − ω′′′)φ(ω0 − ω)δ(ω0 − ω′′′ − ω′′)δ(ω0 − ω − ω′),

〈â†
s(ω

′′′)â†
i(ω

′′)âs(ω′)âi(ω)〉 =

φ∗(ω′′′)φ(ω0 − ω)δ(ω0 − ω′′′ − ω′′)δ(ω0 − ω − ω′), (4.34)

and

〈â†
i(ω

′′′)â†
s(ω

′′)âi(ω′)âs(ω)〉 =
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φ∗(ω0 − ω′′′)φ(ω)δ(ω0 − ω′′′ − ω′′)δ(ω0 − ω − ω′). (4.35)

As with the parametric amplifier values, in the single-mode limit these values re-

duce the previously calculated quantities shown in Table 3.1. As was discussed in

the parametric amplifier case, the different frequency dependencies of the path in-

terference terms 〈â†
sâ

†
i âsâi〉 and 〈â†

i â
†
sâiâs〉 as compared to the other terms suggest

that the degeneracy of the gain parameter as expressed in the U and V coefficients

will influence the interferometer output.

4.3.2 Coincidence count rates

The coincidence count rates for the generalized fourth-order interferometer can

then be calculated using Equation 4.24, which relates the coincidence count rate

and the instantaneous joint detection probability, and Equations 4.20- 4.23, which

relate the instantaneous joint detection probability to the interferometer-specific

coefficients A, B, C, and D and to the source-determined expectation values

calculated in Section 4.3.1.

With these expectation values, the joint detection probability density

〈Ê(−)
1 (r1, t1)Ê

(−)
2 (r2, t2)Ê

(+)
2 (r2, t2)Ê

(+)
1 (r1, t1)〉 can be calculated for the paramet-

ric amplifier and two-photon input states. If the interferometer coefficients are

independent of frequency, this quantity can be written as the sum of several terms

〈Ê(−)
1 (r1, t1)Ê

(−)
2 (r2, t2)Ê

(+)
2 (r2, t2)Ê

(+)
1 (r1, t1)〉 =
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|C|2|A|2〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉ssss

+ |D|2|A|2〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉siis

+ |C|2|B|2〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉issi

+ |D|2|B|2〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉iiii

+ 2ReC∗A∗DA〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉ssis

+ 2ReC∗A∗CB〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉sssi

+ 2ReC∗A∗DB〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉ssii

+ 2ReD∗A∗CB〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉sisi

+ 2ReD∗A∗DB〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉siii

+ 2ReC∗B∗DB〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉isii (4.36)

where each term 〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉jklm is given by

〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉jklm =

∫ ∫ ∫ ∫
dω′′′dω′′dω′dω N∗(ω′′′)N∗(ω′′)N(ω′)N(ω)

×f∗
1 (ω′′′)f∗

2 (ω′′)f2(ω′)f1(ω)e−i(k′′′·r1−ω′′′t1)e−i(k′′·r2−ω′′t2)

×ei(k′·r2−ω′t2)ei(k·r1−ωt1)〈â†
j(ω′′′)â†

k(ω
′′)âl(ω′)âm(ω)〉. (4.37)

We can note that Equation 4.36 is analogous to Equation 3.17, which relates the

joint detection probability to the interferometer-dependent coefficients and the

source-dependent expectation values in the single-mode case. When the interfer-
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ometer coefficients are independent of frequency, the effect of the choice of source

and of the specific interferometer configuration can be separated term by term into

different factors. Since we are interested in understanding the effect of changing

source parameters on the interferometer output, this assumption is useful and will

be retained.

Parametric amplifier

Insertion of the parametric amplifier expectation values from Section 4.3.1 gives

instantaneous joint detection probabilities of the form

〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉ssss =

∫ ∫
dωdω′ |N(ω)|2|N(ω′)|2f ∗

1 (ω′)f∗
2 (ω)f2(ω′)f1(ω)e−i(k′·r1−ω′t1)

×e−i(k·r2−ωt2)ei(k′·r2−ω′t2)ei(k·r1−ωt1)|V (ω)|2|V (ω′)|2

+
∫ ∫

dωdω′|N(ω)|2|N(ω′)|2|f1(ω)|2|f2(ω′)|2|V (ω)|2. (4.38)

We can note that in the single-mode limit, the joint detection probability

〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉ssss is proportional to |V |4 evaluated at the mode frequency.

This is the same dependence on V that was obtained in Chapter 3 for 〈â†
sâ

†
sâsâs〉.

We can also note that the two terms differ in their time dependence. The second

term in Equation 4.38 is independent of the specific values of t1 and t2, suggesting

that it reflects accidental coincidences unrelated to specific photon pair correla-
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tions. The first term in Equation 4.38 contains time-dependent exponentials. This

term thus may be expected to relate to coincidences arising from the nature of

the parametric amplification process.

Carrying out the time integration in Equation 4.24 gives the total coincidence

count rate in terms of the interferometer coefficients and the coincidence rates

arising from the integration of the individual joint detection probability terms. In

similar fashion to Equation 4.36, this relationship can be expressed as

R12 = |C|2|A|2Rssss + |D|2|A|2Rsiis + |C|2|B|2Rissi + |D|2|B|2Riiii

+ 2Re [C∗A∗DARssis + C∗A∗CBRsssi + C∗A∗DBRssii

+ D∗A∗CBRsisi + D∗A∗DBRsiii + C∗B∗DBRisii] (4.39)

where

Rjklm =
∫ Tcr/2

−Tcr/2
dτ〈Ê(−)

1 Ê
(−)
2 Ê

(+)
2 Ê

(+)
1 〉jklm (4.40)

and τ = t2 − t1. Integration over the exponential time-dependent factors gives

terms such as Tcrsinc( (ω−ω′)Tcr

2π ). Since the coincidence count resolution time Tcr

is typically much longer than the inverse of the width of the spectral distribution,

the sinc function will vary much more rapidly than the remaining factors within

the frequency integrals, allowing us to treat it as a delta function in ω.

The nonzero coincidence count rate contributions for the parametric amplifier
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are given by

Rssss = Tcr

[∫
dω|N(ω)|2|f1(ω)|2|V (ω)|2

] [∫
dω|N(ω)|2|f2(ω)|2|V (ω)|2

]

+
∫

dω|N(ω)|4|f1(ω)|2|f2(ω)|2|V (ω)|4, (4.41)

Rsiis = Tcr

[∫
dω|N(ω)|2|f1(ω)|2|V (ω)|2

] [∫
dω|N(ω)|2|f2(ω)|2|V (ω0 − ω)|2

]

+
∫

dω|N(ω)|2|N(ω0 − ω)|2|f1(ω)|2|f2(ω0 − ω)|2|U(ω)|2|V (ω)|2 (4.42)

Rissi = Tcr

[∫
dω|N(ω)|2|f1(ω)|2|V (ω0 − ω)|2

] [∫
dω|N(ω)|2|f2(ω)|2|V (ω)|2

]

+
∫

dω|N(ω)|4|f1(ω)|2|f2(ω0 − ω)|2|U(ω0 − ω)|2|V (ω0 − ω)|2 (4.43)

Riiii = Tcr

[∫
dω|N(ω)|2|f1(ω)|2|V (ω0 − ω)|2

] [∫
dω|N(ω)|2|f2(ω)|2|V (ω0 − ω)|2

]

+
∫

dω|N(ω)|4|f1(ω)|2|f2(ω)|2|V (ω0 − ω)|4 (4.44)

and

Rsisi =
∫

dω|N(ω)|2|N(ω0 − ω)|2|f1(ω)|2|f2(ω0 − ω)|2V ∗(ω)U ∗(ω)U(ω0 − ω)V (ω0 − ω)

+
∫

dω|N(ω)|4|f1(ω)|2|f2(ω)|2|V (ω)|2|V (ω0 − ω)|2. (4.45)
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Terms proportional to Tcr arise from the time-independent part of the instanta-

neous joint detection probability (e.g. Equation 4.38 for the ssss contribution)

and reflect accidental coincidence counts. As such, this contribution to the rate is

dependent on the coincidence count resolution time. As this time increases, the

rate of accidentals increases. Terms in which Tcr is absent reflect contributions

to the coincidence count rate that are intrinsic to the parametric amplification

process. Because we have assumed that the coincidence count resolution time is

much longer than the coherence time of the process, the count rate in this case is

independent of the specific value of the resolution time, depending solely on the

distribution functions describing the amplification process.

Two-photon entangled state

Insertion of the expectation values from Section 4.3.1 gives instantaneous joint

detection probabilities of the form

〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉siis =

∫ ∫
dωdω′′ N∗(ω0 − ω′′)N∗(ω′′)N(ω0 − ω)N(ω)f∗

1 (ω0 − ω′′)f∗
2 (ω′′)f2(ω0 − ω)f1(ω)

×e−i(k(ω0−ω′′)·r1−(ω0−ω′′)t1)e−i(k′′·r2−ω′′t2)ei(k(ω0−ω)·r2−(ω0−ω)t2)ei(k·r1−ωt1)

×φ∗(ω0 − ω′′)φ(ω) (4.46)
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The integration over the resolution time can be carried out as in Section 4.3.2 to

give the coincidence count rates

Rsiis =
∫

dω|N(ω)|2|N (ω0 − ω)|2|f1(ω)|2|f2(ω0 − ω)|2|φ(ω)|2 (4.47)

Rissi =
∫

dω|N(ω)|2|N (ω0 − ω)|2|f1(ω)|2|f2(ω0 − ω)|2|φ(ω0 − ω)|2 (4.48)

and

Rsisi =
∫

dω|N(ω)|2|N(ω0 − ω)|2|f1(ω)|2|f2(ω0 − ω)|2

×φ∗(ω)φ(ω0 − ω). (4.49)

4.4 Hong-Ou-Mandel interferometer results

We will first apply these results to the Hong-Ou-Mandel interferometer. In Chap-

ter 3 we treated the case where there is no pathlength difference across the arms

of the interferometer. However, we can recall from the two-photon entangled

state results reviewed in Chapter 2 that when the multimode nature of the signal

and idler parametric downconverter outputs are taken into account, the result-

ing coincidence count rate is dependent on the pathlength difference between

arms [51]. When the arms are matched in length, the coincidence count rate falls

to its minimum. When the pathlength difference increases, the rate increases to
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an asymptotic level, with the rapidity of the increase determined by the size of

pathlength-induced time delay relative to the inverse of the output distribution

bandwidth. We will retrieve this result from the expressions derived in Section 4.3

for the two-photon entangled state case, then extend this analysis to a parametric

amplifier source.

The relationship between the input and output modes of a Hong-Ou-Mandel

interferometer can be described by the coefficients

A(ω) = D∗(ω) =
1√
2
e

iωτ
2 (4.50)

B(ω) = −C∗(ω) =
−i√

2
e

−iωτ
2 . (4.51)

where τ is the time delay caused by the pathlength difference between the inter-

ferometer arms [39]. Because these coefficients are now dependent on the mode

frequency ω, the individual 〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉jklm terms in the expression for the

joint detection probability density (Equation 4.36) may now contain the interfer-

ometer coefficients within the frequency integrals; individual expectation values

that were previously dependent solely on the source characteristics can now be

dependent on the interferometer parameters as well. Because, for the states un-

der consideration, most of the terms affected by this change vanish, the only term

actually affected by this change is the 〈Ê(−)
1 Ê

(−)
2 Ê

(+)
2 Ê

(+)
1 〉sisi term.
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4.4.1 Two-photon entangled state

The coincidence count rate R12 for the two-photon entangled state can be ob-

tained by evaluating Equations 4.47-4.49 for a specific spectral distribution. Equa-

tion 4.49, which is the term associated with interference between path amplitudes,

is now modified by pathlength-associated exponential factors to the expression

Rsisi =
∫

dω|N(ω)|2|N(ω0 − ω)|2|f1(ω)|2|f2(ω0 − ω)|2e
i(ω0−2ω)τ

2

×φ∗(ω)φ(ω0 − ω). (4.52)

Using a Gaussian signal distribution for φ(ω) [28], the coincidence count rate

is found to be

R12 =
1
4

{
1 − e

− ω0
s−ω0

i
2∆ω

2

e−(∆ωτ
2 )2

}
(4.53)

where ω0
s is the center of the signal distribution, ω0

i = ω0 − ω0
s is the center of the

idler distribution, and 2∆ω is the width of the distributions. Note that we have not

included the effect of filters f1 and f2, and we have assumed that the normalization

varies slowly with ω, removing it from the integrals. We can see that, as expected,

the coincidence count rate for the Hong-Ou-Mandel interferometer is dependent

on the pathlength difference between arms, decreasing with increasing pathlength,

and on the degree of asymmetry between the signal and idler spectral distributions.

If the distributions are degenerate (ω0
s = ω0

i = ω0/2), then the count rate reaches



4.4. HONG-OU-MANDEL INTERFEROMETER RESULTS 81

a minimum of zero. If the distributions are nondegenerate, then the count rate

minimum becomes shallower, with the count rate at some nonzero value even for

equal pathlengths. This lack of complete coincidence count cancellation can be

attributed to the loss of indistinguishability between the signal and idler outputs

of the downconversion [52,59,53].

4.4.2 Parametric amplifier

We can now extend these results to the case where the input to the interferometer

is an unseeded parametric amplifier described by Equations 4.7 and 4.8. As in

Section 4.4.1, we will ignore the filter functions and normalization constants, fo-

cusing on the role of the distribution functions V (ω) and U(ω). It is convenient to

rewrite the equations for the various contributions to the coincidence rate (Equa-

tions 4.41- 4.45) in terms of the single detector joint detection probability densities

Js = 〈Ê(−)
s (r, t)Ê(+)

s (r, t)〉 =
∫

dω|V (ω)|2 (4.54)

and

Ji = 〈Ê(−)
s (r, t)Ê(+)

s (r, t)〉 =
∫

dω|V (ω0 − ω)|2 (4.55)
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giving

R12 =
1
4

{∫
dω|V (ω)|4 + TcrJ

2
s

+
∫

dω|U(ω)|2|V (ω)|2 + TcrJsJi

+
∫

dω|U(ω0 − ω)|2|V (ω0 − ω)|2 + TcrJiJs

+
∫

dω|V (ω0 − ω)|4 + TcrJ
2
i

−2Re
[∫

dωV ∗(ω)U ∗(ω)U(ω0 − ω)V (ω0 − ω)ei(ω0−2ω)τ

+
∫

dω|V (ω)|2|V (ω0 − ω)|2
]}

(4.56)

We can note that the last term, which is attributable to the interference between

possible paths, is the only term dependent on the pathlength difference between

arms. This parallels the two-photon entangled state results in this configuration.

We can also note the presence of terms proportional to the product of single

detector joint detection probability densities. These can be viewed as the rate

contribution arising from accidental coincidences. As such, these contributions

will increase as the window allowed for coincidences increases.

Relating these results back to the results of Chapter 3, we can consider the

case of degenerate signal and idler distributions with zero pathlength difference

between arms. In this case, the functions |U(ω)| and |V (ω)| will be invariant under

a change of arguments from ω to ω0 − ω, and the coincidence count rate further

reduces to R12 = TcrJ
2
s . (Figure 4.1) Noting that Js is proportional to the number
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Figure 4.1: Hong-Ou-Mandel interferometer joint detection probability as a
function of the source gain parameter G. The displayed values have been
normalized to the joint detection probability at G = 1. The joint detection
probability is equal to the square of the single detector probability Js.

of single detector counts in the signal (or idler) arm, we can see that this expression

parallels that obtained in the single-mode case (Equation 3.12), where the joint

detection probability was found to be equal to the mean number of photons in

one of the amplifier output arms. Comparison to the two-photon entangled state

results shows that in this interferometer, the presence of additional photon pairs

arising from increased parametric amplifier gain leads to qualitatively different

results in the two cases.
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4.5 Quantum lithography results

We can next apply this model to quantum lithography, extending the results of

Section 3.6 to the multimode case. The relationship between the input and output

modes in the quantum lithography configuration is describable by the coefficients

A = C =
1√
2
(1 − ieiχ) (4.57)

B = D =
1√
2
(−i + eiχ) (4.58)

where χ is proportional to the transverse coordinate across the observation plane.

We can recall that terms in the output pattern that vary as χ have a minimum

spacing of λ/2, while terms that vary as 2χ (e.g. cos2 χ) will have a minimum

spacing of λ/4. We will assume that no spectral filters are used, thus all filter

functions are replaced by 1 as in the previous sections. Note that we are treating

the phase difference as frequency independent. The features of primary interest

are the presence of components rapidly varying with χ (i.e. varying as 2χ), the

absence of components slowly varying with χ (i.e. varying as χ), and the overall

pattern visibility.

4.5.1 Two-photon entangled state

When the quantum lithography coefficients are used in conjunction with the ex-

pressions for the individual two-photon entangled state coincidence rate contribu-
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tions (Equations 4.47-4.49), we obtain

R12 = [cos2 χ]
∫

dω
{
|ψ(ω)|2 + |ψ(ω0 − ω)|2 + 2Reψ∗(ω)ψ(ω0 − ω)

}
. (4.59)

For degenerate parametric downconversion ψ(ω) = ψ(ω0 −ω) and the coincidence

count rate reduces to 4 cos2 χ. A comparison of the two-photon quantum lithog-

raphy probability with the two-photon Hong-Ou-Mandel probability (Eq. 4.53)

shows that there is a different relationship between coincidence count terms in

the two cases. In the Hong-Ou-Mandel case, if the signal and idler are indistin-

guishable, the negative sign in the expression for the coincidence count proba-

bility causes the net probability to go to zero; as the spectral distinguishability

increases, the interference pattern becomes shallower, ultimately vanishing. In the

quantum lithography arrangement, this phase relationship among components is

not present. There is a cos2 χ dependence regardless of spectral distinguishability.

We can see that the use of a two-photon entangled state source produces a pattern

with the three desired characteristics of rapid dependence on χ, absence of a cos χ

component, and unit visibility.

4.5.2 Parametric amplifier

With a parametric amplifier input, the output pattern produced in the quantum

lithography configuration is less robust to changes in source parameters. In spe-

cific, we will see that the presence of single-input terms such as Rssss that are not
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present in the two-photon case leads to a reduction in visibility. Because these

terms are increasingly present as gain is increased, the output pattern visibility

is sensitive to the gain level. In addition, the presence of accidental coincidences,

which are also absent in the two-photon case, leads to degradation of the visibility.

Comparison of the general expressions for the terms contributing to the coin-

cidence count rate in the parametric amplifier (Eqs. 4.41- 4.45) and two-photon

entangled state cases (Eqs. 4.47- 4.49) shows that the Rssss and Riiii terms that

vanish in the latter case are significant when a parametric amplifier is used as

a source. As discussed in Section 3.4, these terms can be attributed to the case

where two photons from a single input arm are detected together. The Rssss

can be identified with the contribution originating entirely from the signal arm

and Riiii with the contribution originating entirely from the idler arm. These

single-input terms can be seen to have different functional dependences on the

amplifier coefficients U and V than the dual-input Rsiis, Rissi, and Rsisi terms.

The single-input terms are entirely dependent on V (ω) while the dual-input terms

are dependent on integrands that vary with both |V |4 and |U |2|V |2. Noting that

|V | is smaller than |U | at low values of the gain parameter G, we might expect

that the dual-input terms will be dominant at the low-gain limit; this can be seen

to be true in Figure 4.2, plotted for the degenerate case. As the gain increases,

the |U |2|V |2 and |V |4 terms are seen to approach each other in size, implying that

the dual- and single-input terms make similar contributions at the high-gain limit.
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Figure 4.2: Ratio between single-input (Rssss) and dual input (Rsiis) con-
tributions to the coincidence count rate. This ratio does not include terms
arising from accidental coincidences. The Rssss term is attributable to counts
where both photons arise from the signal arm. It is not significant at very
low gain levels. The integrand of this term is proportional to |V (ω)|4. The
Rsiis term is attributable to counts where one photon is contributed by each
input arm. The integrand of this term is proportional to |U (ω)|2|V (ω)|2.
|V (ω)|4.
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We can see the influence of each of these terms in the expression for the

quantum lithography coincidence count rate

R12 = (1 + sinχ)2
{∫

dω|V (ω)|4 + TcrJ
2
s

}

+(1 − sin2 χ)
{∫

dω|U(ω)|2|V (ω)|2 + TcrJsJi

}

+(1 − sin2 χ)
{∫

dω|U(ω0 − ω)|2|V (ω0 − ω)|2 + TcrJiJs

}

+(1 − sinχ)2
{∫

dω|V (ω0 − ω)|4 + TcrJ
2
i

}

+2(1 − sin2 χ)Re
[∫

dωV ∗(ω)U ∗(ω)U(ω0 − ω)V (ω0 − ω)

+
∫

dω|V (ω)|2|V (ω0 − ω)|2
]

. (4.60)

The single-input contributions, which lead to the (1+sin χ)2 and (1−sin χ)2 terms

in this expression, are dependent solely on |V | and will contribute to a pattern

that goes as 1+sin2 χ. The dual-input terms vary as 1− sin2 χ and are dependent

on both |U | and |V |. Because the dual- and single-input terms each contain a

sin2 χ component, the desired rapid dependence on χ will be present. However,

because these two contributions are out of phase with one another, as the gain

increases the balance between these two components will shift, leading to changes

in the output pattern (Figure 4.3).

For the degenerate case shown in this figure, the equalities

JV 4 =
∫

dω|V (ω)|4 (4.61)
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Figure 4.3: Quantum lithography coincidence count rate as a function of
phase difference at various values of the gain parameter G. The count rates
have been normalized to peak values of 1 to allow for comparison between the
various curves. The contribution from accidental coincidences has been sub-
tracted from these curves. A significant decrease in visibility with increasing
gain can be noted.

=
∫

dω|V (ω0 − ω)|4 (4.62)

=
∫

dω|V (ω)|2|V (ω0 − ω)|2, (4.63)

JU2V 2 =
∫

dω|U(ω)|2|V (ω)|2 (4.64)

=
∫

dω|U(ω0 − ω)|2|V (ω0 − ω)|2 (4.65)

=
∫

dωV ∗(ω)U ∗(ω)U(ω0 − ω)V (ω0 − ω), (4.66)

and

Js =
∫

dω|V (ω)|2 (4.67)

=
∫

dω|V (ω0 − ω)|2 (4.68)
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= Ji (4.69)

can be used to simplify the expressions for the output pattern

R12 = 4{JV 4 + TcrJ
2
s + JU2V 2 cos2 χ} (4.70)

and the visibility

Vis =
JU2V 2

2JV 4 + JU2V 2 + 2TcrJ 2
s

. (4.71)

The variation of this visibility with the gain parameter G is displayed in Figure 4.4

for the case where the accidental counts from the terms proportional to Tcr have

been removed. We can see that even in the case where the accidental counts

are assumed to be removable, the visibility decreases with increasing gain. In the

asymptotic limit, the visibility reaches 1/3. This value is higher than the 1/5 value

obtained in the single-mode case because the accidental counts that are present

with both models have been removed.

In the case where a coincidence counter is used to measure this fourth-order

pattern, the estimation and removal of the counts proportional to the coincidence

window is feasible. However, in the case where the joint detection is performed

by a two-photon absorbing substrate, the ability to compensate for the acciden-

tal coincidence rate cannot be assumed. Inspection of the visibility expression
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Figure 4.4: Quantum lithography pattern visibility as a function of the gain
parameter G. The contribution from accidental coincidences is not included.
The asymptotic value of the visibility is 1/3.

(Eq. 4.71) shows that as the coincidence count window is increased the visibility

will be lowered. This can be seen in Figure 4.5, which displays the patterns ob-

tained when the accidental coincidences are removed (equivalent to setting Tcr to

zero) and when the accidental rate is assumed nonzero.

4.6 Effect of mode selection on visibility

One issue yet to be addressed in this chapter is the effect of filtering on the

output patterns generated by these interferometric arrangements. We can re-

turn to the general expressions for the various coincidence count contributions for

the parametric amplifier (Eqns. 4.41- 4.45), this time focusing on the functional
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Figure 4.5: Quantum lithography output patterns as a function of the phase
difference with and without the inclusion of accidental coincidences. The
contribution of these coincidences was included by using a value for the co-
incidence count resolution time that produced an accidental rate equal to
the dual-input rate. As might be expected, accidental coincidences degrade
visibility.

dependence of these terms on the filter functions f1 and f2. We will term the

situation where the filters in each arm have the same central frequency the sym-

metric filter case and situations where the filters have different central values as

the asymmetric case.

Given a degenerate spectral distribution and symmetric filters, the filters sim-

ply act in conjunction with the distribution to determine the observed distribution

width. However, asymmetries in the spectral distribution and filter settings can

affect the various contributions differently, shifting the balance between the com-

ponents of the coincidence count rate and affecting the observed interferometer

output.

The influence of spectral asymmetry has been well analyzed in the case of two-

photon entangled states [36,52,59,54]. If the signal and idler distributions (in our
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notation, represented by φ(ω) and φ(ω0 − ω) respectively), are centered around

different frequencies, the contribution of the term attributable to interference

between paths (Rsisi) decreases, thus reducing the amount of coincidence count

cancellation observed.

This result would seem to suggest that spectral asymmetry could lead to dele-

terious effects in the quantum lithography configuration as well. However, inspec-

tion of the dependence of the various terms in the coincidence count rate on the

phase difference χ

R12 = (1 + sinχ)2Rssss + (1 − sin2 χ) {Rsiis + Rissi} + (1 − sin χ)2Riiii

+2(1 − sin2 χ)ReRsisi (4.72)

shows that if terms contributing to the (1 − sin2 χ) variation are strongly favored

at the expense of terms contributing to a (1 + sin2 χ) variation, or vice versa, the

visibility will improve. On the other hand, if the two types of terms are made

more equal, they will cancel each other out, leading to little variation with χ.

Comparison of the single detector rates when filters are included shows that

there are four types of integrals present, that vary in filter and distribution. These

can be written as

J1s =
∫

dω|f1(ω)|2|V (ω)|2 (4.73)
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J1i =
∫

dω|f1(ω)|2|V (ω0 − ω)|2 (4.74)

J2s =
∫

dω|f2(ω)|2|V (ω)|2 (4.75)

J2i =
∫

dω|f2(ω)|2|V (ω0 − ω)|2 (4.76)

and correspond to the joint detection probability densities obtained when the sig-

nal or idler beams are directed into detectors 1 or 2. If the distribution V (ω)

is centered around a frequency ω0
s that is not equal to ω0/2, the idler distri-

bution V (ω0 − ω) will be centered around a frequency ω0
i that is not equal

to ω0
s . If f1 is centered around ω0

s and f2 is centered around ω0
i , J1s and

J2i will be favored. Terms such as
∫

dω|f1(ω)|2|f2(ω)|2|V (ω)|4 in Rssss and

∫
dω|f1(ω)|2|f2(ω0 − ω)|2|U(ω)|2|V (ω)|2 in Rsiis (Eqns. 4.41- 4.45) will also be

affected, with the Rssss integral diminished while Rsiis is favored. As discussed

above, this type of differential effect will lead to a diminishment of the desired

effect in the Hong-Ou-Mandel interferometer configuration, but could lead to in-

creased visibility in the quantum lithography configuration. These results suggest

that filter selection in conjunction with an nondegenerate spectrum can shift the

balance among various coincidence count rate contributions, altering the output

pattern either favorably or unfavorably.
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4.7 Conclusion

In this chapter we generalized the parametric amplifier model used in Chapter 3 to

the case where multiple signal and idler modes may be occupied. This multimode

model was then used to reanalyze the Hong-Ou-Mandel interferometer and quan-

tum lithography configurations. Throughout this chapter, the output produced

with two-photon entangled state input was used as a basis for comparison.

The feature of interest in the Hong-Ou-Mandel interferometer configuration

was the coincidence count reduction that occurs when the time delay between

the two interferometer arms is less than the inverse of the spectral distribution

bandwidth. We found that the expression for the coincidence count rate produced

by an unseeded parametric amplifier contained terms that could contribute to

coincidence count reduction as well as background terms that are not present

in the two-photon case. The background terms are proportional to products of

single detector probabilities, suggesting that they can be attributed to accidental

coincidences. These terms lead to a loss of contrast in the generated pattern, as

the minimum coincidence rate increases with increasing gain. In the degenerate

case, with equal pathlengths, the parametric amplifier result echoes the single-

mode result presented in Chapter 3; the coincidence rate is proportional to the

product of the single detector probabilities.

In the quantum lithography configuration, two-photon entangled state input

produces a pattern with a minimum spacing of λ/4 and a visibility of one. Multi-
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mode parametric amplifier input was found to retain the desirable λ/4 variation.

However, the visibility was strongly influenced by the presence of both background

terms and terms arising from the coincident detection of two photons from the

same input arm. Both of these types of contributions are absent in the two-

photon case. The visibility was strongly dependent on gain level, vanishing in the

high-gain limit.

Although the results in both cases indicate a diminishment or disappearance

of the desired output pattern property in the high-gain limit, the multimode treat-

ment also makes explicit the possibility of adjusting the balance between various

terms to alter the total interferometer output. In the Hong-Ou-Mandel interfer-

ometer case, spectral asymmetry leads to a decrease in pattern visibility. In the

quantum lithography case, however, the differing relationships among coincidence

rate components suggests the possibility of altering the relative sizes of terms in

a way that leads to increased rather than decreased pattern visibility.
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Chapter 5

Vacuum-Initiated Filamentation
as a Source of Entangled States

5.1 Introduction

It has often been observed that as a laser beam is passed through a nonlinear

medium it breaks up into a large number of filaments. This filamentation process

is initiated by the presence of weak perturbations on the laser wavefront, [69,70]

which can grow by means of four-wave mixing processes [71] and become large

enough to disturb the overall propagation of the beam. The questions addressed in

this chapter are whether vacuum fluctuations, which are intrinsic to the beam, can

act as perturbations to initiate filamentation and whether the generated beams

can serve as sources of single- and multiple-pair entangled states.

We begin with a discussion of filamentation as a four-wave mixing process. The

initiation of this process by vacuum fluctuations is then discussed [72]. We show

that vacuum fluctuations of the electromagnetic field constitute a fundamental
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perturbation to the incident laser field, and that filamentation initiated by these

quantum fluctuations places a realistic upper limit on the laser intensity that can

be transmitted through a given nonlinear optical material without the occurrence

of beam breakup.

The quantum properties of the states produced by filamentation are then an-

alyzed and the suitability of filamentation as a source for fourth-order interferom-

etry is discussed.

5.2 Filamentation as a four-wave mixing process

Self-focusing can be considered from the perspective of the nonlinear index of

refraction. Viewing the nonlinearity as a change in the refractive index leads nat-

urally to a treatment of self-focusing as a lens-like effect and is entirely appropriate

for discussions of whole-beam self-focusing. However, another segment of research

in this area concerns multimode effects, where the input beam is observed to break

up into multiple beams. In this case, an analysis of self-focusing in terms of the

growth of perturbations on the input beam has more utility and leads to a view

of filamentation as a four-wave mixing process.

Early experiments in self-focusing found that beams could evolve into both

single and multiple filaments [73]. For example, in 1966 Townes and co-workers

published experimental observations of a Q-switched beam collapsing into a sin-

gle filament with a diameter as small as 50 microns [74] and also demonstrated
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Figure 5.1: Four-wave mixing amplifies weak waves (ωs,ωi) at the expense of
the pump wave (ω0).

the collapse of a single beam into many small (few micron) filaments. [75] Chiao,

Kelley and Garmire [71] gave a physical explanation of the growth of the off-axis

modes in terms of stimulated light scattering. They showed that the nonlinear

index of refraction allows the coupling of a strong incident wave with weak waves

having different transverse wavevectors. The four-photon interaction of a photon

with wavevector k1 = k0 + q, a photon at k2 = k0 − q and two pump photons

with k = k0 can allow the two weak waves to see gain (Figure 5.1). This gain is

dependent on the fulfillment of a phase-matching relation involving the partici-

pating waves. (Fig. 5.2) Because of this condition, certain transverse wavevectors

will see more gain than others and will come to dominate the spatial evolution of

the total field.

The magnitude of the wavevector that will see the maximum gain was calcu-

lated using phase matching considerations. From Figure 5.2 we can see that the

z-component of k1 should equal k0 for optimum phase matching. This gives the

relationship
√

k2
1 − q2 = k0 . We can then substitute in k1 and k0 taking into ac-
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Figure 5.2: Self-focusing as a form of forward four-wave mixing.

count the weak-wave retardation of k1. This gives the magnitude of the dominant

transverse wavevector to be

q =
√

k2
1 − k2

0 (5.1)

=
ω

c

√
(n0 + 2n2I)2 − (n0 + n2I)2 (5.2)

=
ω

c

√
2n0n2I + 3n2

2I
2 (5.3)

This can be approximated to first order in n2 to be q = k0
√

2n2I/n0 . This picture

is consistent with the model of Bespalov and Talanov [76], which predicted the

existence of a dominant instability size Λ = (π/k)
√

n0/2n2I. It emphasizes the

ability of the self-focusing process to allow small perturbations to have a large

effect on the overall beam evolution.

Experimental confirmation of this effect, by Carman, et al. [77] and others [69]

followed. Among the characteristic signatures of this process are the growth of

perturbations at a rate dependent on the spatial frequency of the perturbations

and conical emission in the far-field.
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5.3 Filamentation initiation by quantum fluctu-

ations

Our theoretical formalism follows closely that of Bespalov and Talanov, [76] which

treats the filamentation process classically by considering the gain seen by a wave-

front perturbation on a strong, monochromatic pump beam propagating through

a Kerr material. Our treatment differs from theirs in that we consider the op-

tical field to be a quantum mechanical quantity. The quantum fluctuations of

such a field (i.e., vacuum fluctuations) are necessarily spectrally broad band. Our

model thus predicts that quantum-initiated filamentation differs from its classical

counterpart in that it is accompanied by a spectral broadening of the transmitted

laser field. Our model also differs from its classical counterpart in that it leads

to explicit predictions regarding the strength of the fluctuations that initiate the

filamentation process.

Consider the propagation of a laser beam through a Kerr material. We can

express the positive frequency part of the total field as

Ê(+)(r, t) =
[
ε0 + ε̂1(r, t)

]
eiγ0zei(k0z−ωt). (5.4)

Here ε0 denotes the amplitude of the strong pump field, which we have treated

classically, and which we assume to have frequency ω0 and wavevector k0 + γ0,

where k0 = n0ω0/c is its linear contribution and γ0 = n2I0ω0/c is its nonlinear
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contribution, with n2 = (12π2/n2
0c)χ

(3) and I0 = (n0c/2π)|ε0|2. The perturbation,

which we are treating as a quantum mechanical operator, is denoted ε̂1 and is

conveniently decomposed in terms of its frequency components ω and transverse

wavevector components q as

ε̂1(r, t) =
∫

d2q

∫ ∞

0
dωN(ω)â(q, ω; z)ei(q·r)ei(kz(ω)−k0)z−i(ω−ω0)t. (5.5)

The mode amplitudes are denoted by â(q, ω; z) and satisfy the usual commutation

relation
[
â(q, ω; z), â†(q′, ω′; z)

]
= δ2(q − q′)δ(ω − ω′). We have also introduced

the mode normalization factor N(ω) =
√

~ω2n2(ω)/4π2kz(ω)c2. Note that we are

assuming that the nonlinear response can be modeled adequately by a disper-

sionless third-order susceptibility. We are thus ignoring effects such as those of

population trapping, which under certain conditions can prevent the occurrence

of self focusing. [78] We assume that n0 is frequency independent; the validity of

this assumption is discussed below. We further assume that n2I0 ¿ n0. Note

that we have taken the input pump beam to be a perfect plane wave. We have

done so to make clear that the onset of filamentation stems from the presence of

vacuum fluctuations and not from other perturbations to the input profile. While

the introduction of a finite beam width would bring new transverse components

into play, the evolution of these components leads simply to diffraction and to

whole beam self-focusing and does not alter these conclusions in any significant

way.
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We insert the field Ê(+)(r, t) into the wave equation

∇2Ê(+) − 1
c2

∂2

∂t2
Ê(+) =

4π
c2

∂2

∂t2
P̂ (+) (5.6)

where P̂ (+) is the sum of the linear and nonlinear (i.e., 3χ(3)Ê(−)Ê(+)Ê(+)) con-

tributions of the material polarization. We linearize this equation in the pertur-

bation, and we make the paraxial and slowly varying amplitude approximations.

The paraxial approximation can break down under conditions of catastrophic self

focusing, but the present calculation deals only with the initiation of the fila-

mentation process which can be treated adequately within the framework of the

paraxial approximation. [79,80] We thereby obtain the coupled equations which

describe the spatial evolution of the mode amplitudes

d

dz
â(q, ω; z) = C(q, ω)â(q, ω; z) + D(q, ω)

[
e−i∆kzâ†(−q, 2ω0 − ω; z)

]
(5.7)

d

dz

[
e−i∆kzâ†(−q, 2ω0 − ω; z)

]
= F (q, ω)â(q, ω; z) + E(q, ω)

[
e−i∆kzâ†(−q,2ω0 − ω; z)

]
(5.8)

The coefficients that appear in these equations are given by

C(q, ω) = − i

2(kz(ω) + γ0)

(
q2 + (kz(ω) + γ0)2 − k2(ω) − 4k0γ0

(
ω

ω0

)2
)

(5.9)

D(q, ω) =
iγ0k0

kz(ω) + γ0)

(
ω

ω0

)2

(5.10)
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Figure 5.3: Filamentation phase-matching diagram. Wavevector matching
diagram describing the four-wave mixing process that leads to filamentation.

E(q, ω) = −i∆k(ω) − C(q, 2ω0 − ω) (5.11)

F (q, ω) = −D(q, 2ω0 − ω) (5.12)

where

∆k(ω) = kz(ω) + kz(2ω0 − ω) − 2k0. (5.13)

We solve Eqs. 5.7 and 5.8 to obtain

â(q, ω; z) = â(q, ω; 0)eg0z

{
cosh g1z +

C − E

2g1
sinh g1z

}

+ e−i∆kzâ†(−q, 2ω0 − ω; 0)eg0z

{
D

sinh g1z

g1

}
(5.14)

where g0 = (C + E)/2 and g1 =
√

(C − E)2 + 4DF/2. Note that we have not

assumed that the angle between the wavevectors of the pump and the perturbation

is necessarily small. We can thus treat interactions, such as that illustrated in Fig.

5.3, which for |k2| ¿ |k1| can be nearly phase matched even for large angles θ2. We
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are required to include interactions of this sort because the quantum fluctuations

that initiate the four-wave mixing process are spectrally broad band. Inspection

of the form of the coefficients C(q, ω) and E(q, ω) shows that the gain eigenvalue

g0(q, ω) is always imaginary, but that the other eigenvalue g1(q, ω) can be either

real or imaginary depending on the values of q and ω. When g1(q, ω) is real, the

mode amplitude undergoes nearly exponential growth.

We next consider the effects of the growth of the mode amplitudes on the

overall propagation of the optical beam. We calculate the total intensity of the

perturbation as

Ifilament =
nc

2π
〈ε̂†

1(r, t)ε̂1(r, t)〉 (5.15)

=
nc

2π

∫ 2ω

0
dω

∫

R

dq2πq|N|2|D|2 sinh2 g1z

g2
1

(5.16)

where we have assumed that at the input to the nonlinear medium the pertur-

bation is in the vacuum state and where R denotes integration only over those

transverse wavevectors for which g1(q, ω) is real. We have evaluated this integral

and find that for z ¿ γ−1
0 the result can be approximated by

Ifilament(z) = 0.051
n0c

2π

[
~ω0k

2
0

4π
γ0

]
e2γ0z (5.17)
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Figure 5.4: Normalized laser intensity at filamentation threshold (i.e. the
nonlinear phase shift Bth) versus the nonlinearity parameter for various laser
wavelengths.

which indicates that vacuum fluctuations supply an effective input intensity of

Ivac
0 = 0.051

n0c

2π
~ω0k

2
0

4π
γ0 (5.18)

Using Equation 5.17, we readily determine the filamentation threshold distance

zf , which we arbitrarily take to be the distance at which the filament intensity

reaches one-tenth of the input pump intensity I0, and which is given by

zf =
1

2γ0
ln

8π2

0.51~ω0k
3
0n2c

(5.19)

This result is illustrated in Fig. 5.4, which shows how the dimensionless parameter
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Bth = γ0zf = n2I0zfω0/c, which can be interpreted as the nonlinear phase shift

experienced by the pump wave at the threshold for filamentation, depends on the

nonlinearity parameter n2/n0 for a variety of laser wavelengths. Note that typical

threshold phase shifts are in the range 5 to 15, comparable to those of stimulated

scattering processes.

As a specific example of the application of these results, let us consider the case

of a laser beam propagating through air, for which n2 = 5×10−19cm2/W. [81] For

the case of an input beam at a wavelength of 775 nm with intensity 1011W/cm2,

we find that the effective vacuum input intensity is 0.128 mW/cm2 and that the

filament intensity reaches one-tenth of the input intensity at a distance of 40 m.

This distance is comparable to those that have been used in high-intensity laser-

beam propagation experiments. [82] We note, for comparison, that a beam with a

diameter of 3 cm has a whole beam self-focusing [83,84] distance of about 67 m and

a Rayleigh range of about 2 km. Filamentation induced by vacuum fluctuations

is thus seen to impose a realistic limitation on the intensities and distances over

which a high-power beam can propagate.

5.4 Filamentation as an interferometric source

Of interest in the context of multiphoton entangled state sources is whether the

vacuum-initiated filamentation process can serve as a source of correlated pho-

ton pairs in the same manner as spontaneous parametric downconversion. For
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this reason, we will close this chapter with a brief assessment of the similarities

and differences between the two processes. For simplicity we will consider the

frequency-degenerate case in the remainder of this chapter.

In the degenerate case, where all fields are at ω0, the relationship between

modes (for those that see gain) is given by

â(q, z) = U(q, z)â0(q) + V (q, z)â†
0(−q) (5.20)

where

U(q, z) = cosh Λz −
ξ

Λ
sinhΛz (5.21)

V (q, z) =
iγ

Λ
sinh Λz. (5.22)

γ is the nonlinear wavevector component, and ξ and Λ are transverse-wavevector-

dependent quantities. By inspection, it can be seen that Λ serves as the gain

parameter.

This type of mode relationship is clearly reminiscent of the parametric down-

converter mode relationship given in Equations 4.7 and 4.8. Instead of coupling

pairs of modes with the frequency relationship ωs +ωi = ω0, filamentation couples

pairs of modes with the wavevector relationship q1 + q2 = 0. As in the case of

parametric downconversion with a broadband pump, for which ω0 can take on a

range of values, the transverse wavevector relationship is relaxed if the pump field
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has a range of q components (e.g. a focused beam). The coupling of annihilation

operators to creation operators in both cases reflects the possibility of spontaneous

initiation of the process via vacuum fluctuations.

The processes differ in the specifics of the energy conservation relationships

obeyed. Because filamentation is a four-wave mixing process, all four photons

can be degenerate in frequency. This relationship is unlike the parametric down-

conversion case, in which, if spectral indistinguishability is to be maintained, the

signal and idler have approximately twice the wavelength of the pump. In quan-

tum lithographic applications, where maintaining a short wavelength is desirable

from the perspective of spatial resolution, a process in which the created photons

are degenerate with the pump is desirable.

While the wavelength degeneracy of filamentation can be seen as advantageous

in the context of resolution limits, it raises another concern–how to distinguish

the seeded process from the spontaneous process. As will be discussed in Chap-

ter 6, seeding with a coherent state alters the nature of the process and, in the

context of quantum lithography, can lead to the presence of an undesirable spatial

frequency component. It is thus desirable to be able to distinguish the seeded and

spontaneous processes. In parametric downconversion, because of the wavelength

difference between the pump and the signal, accidental seeding of the process

by the pump is not a concern. In beam filamentation, spatial components intro-

duced by wavefront irregularities often serve to seed the four-wave mixing process.
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Addressing this issue is necessary for beam filamentation to have utility in this

context. If the goals are reversed, however, so that the observation of vacuum-

induced filamentation is the aim rather than the generation of a sub-Rayleigh

pattern, one might imagine that the presence or absence of the additional spatial

frequencies added by coherent-state input might be of use as an indicator of the

presence of seeding in the process.

5.5 Conclusion

In this chapter we have considered an alternative spontaneous wave-mixing process

as a generator of correlated photon pairs. We showed that vacuum-induced beam

filamentation places a limit on the light intensity that can be propagated through

a nonlinear material and compared this process to parametric downconversion in

the context of fourth-order interferometric configurations.
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Chapter 6

Comparison to Other
Multiphoton Sources

6.1 Introduction

The states produced by parametric downconversion have interesting and useful

quantum properties at both the low and high gain levels. We have presented

calculations showing that certain fourth-order interferometric properties identified

with two-photon state inputs are retained even when the source gain is increased.

In some cases, the desired property is reduced to an asymptotic level; in other

cases, the desired property is retained, but only under a restrictive set of source

and interferometer conditions.

For example, in the case of quantum lithography, a two-photon entangled state

input produces a pattern with a spatial period of λ/4, no components at λ/2,

and a visibility of 1. When the parametric downconverter interaction strength is

increased, the periodicity of the pattern is retained, but the visibility drops to 1/5.
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The rate of visibility loss can be slowed dramatically in some cases through the use

of filtering, as the filtering process favors one type of coincidence count pathway

over the other pathways. Although the selection of a particular pathway produces

beneficial results in the quantum lithography configuration, it also reduces or

eliminates the terms arising from interference between pathways. Since this path

interference is a hallmark of other interferometers such as the Hong-Ou-Mandel

interferometer, it is clear that this filtering process cannot be generalized to other

fourth-order configurations. Furthermore, visibility enhancement in the absence

of pathway interference suggests that states with the unique characteristics of the

those produced by downconversion may not be required to achieve the results of

quantum lithography.

A question that follows naturally from results of this type is whether the

outputs produced by a high-gain parametric downconversion source can be dupli-

cated by a coherent state source. Although two-photon entangled state sources

have been shown to be superior to coherent state sources for the generation of

many of these properties of interest, it is less clear that the results produced by

high-gain parametric downconversion retain this superiority.

A related question is the extent to which the presence of a seed affects the

character of the pattern produced by parametric downconversion at low and

high gain levels. We have considered so far only processes initiated by vacuum

fluctuations–spontaneous parametric downconversion and vacuum-initiated fila-
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mentation. However, in a particular experimental setting, a seeded configuration

may be easier to implement. It is thus of interest to consider whether the presence

of a seed degrades the interferometric properties of interest.

In this chapter, we return to the single mode model of Chapter 3 to investi-

gate coherent and seeded parametric amplifier source states as multiphoton pair

fourth-order interferometric sources. The systems considered are the Hong-Ou-

Mandel interferometer and quantum lithography configurations. In each system,

the output property of interest differs. The property characteristic of a two-photon

entangled state source in the Hong-Ou-Mandel setup is coincidence count cancel-

lation. We thus use the coincidence count rate relative to the product of the

individual detector count rates as the basis for comparison of high-gain optical

parametric generator performance to that obtained by the use of coherent state

inputs. In the quantum lithography configuration, the variation of the output

pattern on wavelength and the size of this variation relative to its background

are the properties of interest. We thus use the presence of a λ/4 spatial compo-

nent, the absence of a λ/2 component, and the pattern visibility as the bases for

comparison.

We first consider the impact of seeding in this model and examine the implica-

tion of these results for the use of filamentation as a fourth-order interferometric

source. We then consider coherent state inputs, both phase coherent and phase in-
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coherent, and compare the results for these two interferometers to those obtained

for spontaneous parametric downconversion in Chapter 3.

6.2 Joint detection probability

We begin by recalling from Section 3.4 that a generalized four-port fourth-order

interferometer can be described by




âo1

âo2


 =




A B

C D







âs

âi


 (6.1)

where âs and âi are the input signal and idler modes, âo1 and âo2 are output modes,

and A, B, C, and D are coefficients specific to the particular interferometer used.
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The joint detection probability for this system is given by

〈â†
o1

â†
o2

âo2 âo1〉 = |C|2|A|2〈â†
sâ

†
sâsâs〉

+|D|2|A|2〈â†
sâ

†
i âiâs〉

+|C|2|B|2〈â†
i â

†
sâsâi〉

+|D|2|B|2〈â†
i â

†
i âiâi〉

+2 ReC∗A∗DA〈â†
sâ

†
sâiâs〉

+2 ReC∗A∗CB〈â†
sâ

†
sâsâi〉

+2 ReC∗A∗DB〈â†
sâ

†
sâiâi〉

+2 ReD∗A∗CB〈â†
sâ

†
i âsâi〉

+2 ReD∗A∗DB〈â†
sâ

†
i âiâi〉

+2 ReC∗B∗DB〈â†
i â

†
sâiâi〉.

(6.2)

We can again note that, proceeding term by term, the effect of the interferom-

eter and the effect of the choice of input state are separately described by co-

efficient products such as |C|2|A|2 and by fourth-order expectation values such

as 〈â†
sâ

†
i âiâs〉. The overall impact of changing input states can thus be analyzed

through the comparison of the various signal and idler fourth-order expectation

values that appear in this equation. In Chapter 3 this comparison was conducted

for low- and high-gain output of an optical parametric generator; here we are con-

trasting the high-gain OPG output with a seeded parametric amplification process

and with various coherent state inputs.
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6.3 Seeded parametric processes

In this section, we will calculate the output produced by a seeded parametric

process using the same model used in Section 3.4. The interaction between the

signal mode âs and idler mode âi is described by

âs = Uâs0 + V â†
i0 (6.3)

âi = Uâi0 + V â†
s0 (6.4)

where

U = cosh G (6.5)

V = −i exp(iθ) sinhG, (6.6)

G represents the gain of the process and is dependent on the pump amplitude and

the size of the material nonlinearity. For parametric downconversion, this gain

factor may be written as G = g|v0|t where t is the interaction time, |v0| is the

pump amplitude, and g is proportional to χ(2).

The spontaneous process and the seeded process are compared by using in-

put states at the entrance to the source material of |vac〉s|vac〉i and |α0〉s|vac〉i,

respectively. The various fourth-order signal and idler expectation values of Equa-
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Table 6.1: Coincidence count rate contributions (Eq. 6.2) for
states produced by spontaneous and seeded parametric downcon-
version. The diagrammatic representation for each expectation
value is shown at left. Here |α0vac〉 designates an input state
seeded by a coherent state input. This state is compared to that
produced by spontaneous parametric downconversion, designated
by |vac vac〉.

tion 6.2 can then be calculated for each choice of source seed state. The results

are shown in Table 6.1.

From Table 6.1, it can be seen that the fourth-order expectation values pro-

duced by the spontaneous and seeded processes are qualitatively quite different.

Several terms which vanish in the spontaneous case, such as 〈â†
sâ

†
sâiâs〉 are nonzero

in the seeded case. Furthermore, terms such as 〈â†
sâ

†
sâsâs〉 and 〈â†

i â
†
i âiâi〉 that were
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equal in the spontaneous case have different values in the seeded case. These dif-

ferences may be expected to contribute to differences in interferometer output.

Applying these expectation values to the Hong-Ou-Mandel interferometer, it

can be shown that the joint detection probability is given by

〈â†
o1

â†
o2

âo2 âo1〉 =
1
4

[
(|U |4 + |V |4)|α0|4 + 4|V |2(|U |2 + |V |2)|α0|2 + 4|V |2

]

−1
2
|U |2|V |2|α0|4 cos 4φ0, (6.7)

where a value of zero for the pump phase θ has been assumed. In the limit that

|α0| = 0, we regain the spontaneous result of |V |4 (Eq. 3.12).

The joint detection probability for the seeded process in the quantum lithog-

raphy configuration is given by

〈â†
o1

â†
o2

âo2 âo1〉 = (1 + sin2χ)[〈â†
sâ

†
sâsâs〉 + 〈â†

i â
†
i âiâi〉]

+(1 − sin2χ)2[〈â†
sâ

†
i âiâs〉 + Re〈â†

sâ
†
sâiâi〉 + Re〈â†

sâ
†
i âsâi〉]

+2 sinχ[〈â†
sâ

†
sâsâs〉 − 〈â†

i â
†
i âiâi〉]

+4 cosχRe[〈â†
sâ

†
sâiâs〉 + 〈â†

sâ
†
i âiâi〉]

+4 sinχ cosχRe[〈â†
sâ

†
sâiâs〉 − 〈â†

sâ
†
i âiâi〉]

(6.8)

where the relationships 〈â†
sâ

†
i âiâs〉 = 〈â†

i â
†
sâsâi〉 = 〈â†

sâ
†
i âiâs〉 = 〈â†

sâ
†
i âsâi〉,

〈â†
sâ

†
sâiâs〉 = 〈â†

sâ
†
sâsâi〉, and 〈â†

sâ
†
i âiâi〉 = 〈â†

i â
†
sâiâi〉 have been used. This ex-
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pression is very different from the expression for the spontaneous process

〈â†
o1

â†
o2

âo2âo1〉 = (1 + sin2χ)[4|V |4] + (1 − sin2χ)[8|V |4 + 4|V |2]. (6.9)

. We can note that terms that are absent in the spontaneous case, such as the

term proportional to sinχ, appear due to the imbalance between amplitudes such

as 〈â†
sâ

†
sâsâs〉 and 〈â†

i â
†
i âiâi〉. As these new terms are in general undesirable due

to their “slower” dependence on χ, the introduction of a seed can clearly have

detrimental effects. It is also important to note, however, that the size of these

effects is determined by the amplitude of the seed beam. Although the differences

between the two cases is qualitatively significant, if a weak seed beam is used, the

deviation from the spontaneous case may not be large and will clearly vanish as

the seed beam amplitude is decreased to zero.

6.4 Coherent state sources

We can next consider the patterns produced when coherent states are used as

inputs directly into the interferometer. Note that in this case, there are no signal

and idler beams in the conventional sense, rather “signal” and “idler” are simply

used to designate the two interferometer input modes as shown in Figure 3.4.

We will first consider two types of coherent state inputs–phase-coherent and

phase-incoherent–and will consider the effect of having matching (|α0〉s|α0〉i) or
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Table 6.2: Coincidence count rate contributions (Eq. 6.2) for var-
ious coherent state inputs. The diagrammatic representation for
each expectation value is shown at left. Here |α0α0 > and |α0α1 >
designate input states with matching and unmatched amplitudes.
The subscripts PCoh and PInc represent inputs that are phase co-
herent and phase incoherent, respectively.

unmatched (|α0〉s|α1〉i) input amplitudes. As in the previous section, the various

states are compared by examining their fourth-order expectation values at the

input to the interferometer. Extending Table 3.1 to coherent state sources gives

Table 6.2, which displays the expectation value contributions to the joint detection

probability (Eq. 6.2) for states of this type. Comparison to Table 3.1 shows

that phase-incoherent coherent state inputs have expectation value contributions
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similar to those determined for states of the form |mm〉 and
∑

m |mm〉. All of the

states displayed have absent interference terms (last six terms listed), with the

exception of the term 〈â†
sâ

†
i âsâi〉 and its complex conjugate. All of these states

also have 〈â†
sâ

†
sâsâs〉, 〈â†

sâ
†
i âiâs〉, 〈â†

i â
†
sâsâi〉, 〈â†

i â
†
i âiâi〉 terms that are present, and

of equal or nearly equal magnitude.

Comparison with the coefficient list in Table 3.2 shows that the terms that dis-

tinguish the phase-coherent and phase-incoherent states (path interference terms

such as 〈â†
sâ

†
sâiâs〉) appear to be multiplied by coefficients that vanish in the case

of the Hong-Ou-Mandel interferometer, leading one to suspect that these two

types of coherent state inputs would produce the same Hong-Ou-Mandel joint

detection probability. However, closer inspection of the expression for this proba-

bility (Eq. 6.2) shows that the HOMI coefficients shown in Chapter 3 vanish only

because the expectation values for the states considered in that chapter are real.

Now that the expectation values can be complex (for the case of phase-coherent

|α0〉s|α1〉i input), the product of the coefficient and expectation value for a given

term must be calculated before the real part of the term is taken. Thus purely

imaginary HOMI coefficients like that for 〈â†
sâ

†
sâiâs〉 will combine with complex

expectation values such as |α0|3|α1|eiφ to produce nonzero contributions for terms

not present with OPG states. These considerations do not affect interferometer

coefficients such as those for quantum lithography that are entirely real. The in-
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terferometer coefficients (Table 3.2) redone to show the full coefficient value are

shown in Table 6.3.

The interferometer-dependent coefficients combined with the state-dependent

expectation values can now be used with Equation 6.2 to calculate the joint detec-

tion probability for a particular configuration. Doing so for the Hong-Ou-Mandel

interferometer, with coefficients given by Eq. 3.18, gives

〈â†
o1

â†
o2

âo2âo1〉 =





1
4 [|α0|4 + |α1|4 + 2|α0|2|α1|2 cos 2φsi] for |α0α1〉PCoh

1
4 [|α0|4 + |α1|4] for |α0α1〉PInc

(6.10)

for inputs with different magnitudes. For inputs with that are matched in ampli-

tude, these expressions reduce to

〈â†
o1

â†
o2

âo2âo1〉 =





1
2 |α0|4[1 + cos 2φsi] for |α0α0〉PCoh

1
2 |α0|4 for |α0α0〉PInc

(6.11)

Note that the phase difference between the two input fields for the phase coherent

sources is designated φsi = φs − φi, and is applicable whether the inputs are of

equal or unequal magnitudes. (While we have used the notation |α0α0〉 for the

matched amplitude case, the calculations were conducted with an input state of

the form |α0〉s|α′
0〉i where α0 = |α0|e−iφs and α′

0 = |α0|e−iφi .)

For a |α0〉s|α0〉i phase coherent input where there is no phase difference be-

tween the two input fields (φsi = 0), the joint detection probability 〈â†
o1

â†
o2

âo2 âo1〉
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Table 6.3: Coincidence count rate coefficients for various inter-
ferometers. For three different situations (listed at the top) the
coefficient of the quantum expectation value of each contribution
(listed at the left along with its diagrammatic representation) to
Eq. 6.2 is given. OPA refers to the joint detection probability at
the output of an optical parametric amplifier, HOMI refers to the
joint detection probability at the output of a 50/50 beamsplitter,
and QL refers to the two-photon absorption rate at the recording
plane in a quantum lithography configuration.
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has the same value as the product of the two single detector probabilities 〈â†
o1

âo1〉

and 〈â†
o2

âo2〉. As was noted in Chapter 3, this is the same relationship that ex-

ists between the joint and single detection probabilities for the high-gain optical

parametric generator, for which 〈â†
o1

â†
o2

âo2 âo1〉 = 〈â†
o1

âo1〉〈â†
o2

âo2〉 = |V |4. Thus in

both cases there is no reduction in coincidence count rate below the level expected

from the single detector rates alone.

For |α0〉s|α0〉i phase coherent inputs that are π/2 out of phase (φsi = ±π/2),

the joint detection probability vanishes as it does for a two-photon entangled state.

However, examination of the single detector probabilities shows that this occurs

for the trivial reason that either 〈â†
o1

âo1〉 or 〈â†
o2

âo2〉 vanishes. This case is very

different from the |1〉s|1〉i state, for which the joint detection probability vanishes

although the single detector probabilities are nonzero.

The |α0〉s|α0〉i phase-incoherent result, which has the value 1
2 |α0|4 resembles

those obtained with |m〉s|m〉i states, which approach 1
2m

2 for large m. Compar-

ison between the phase-incoherent state expectation values in Table 6.2 and the

|m〉s|m〉i expectation values in Table 3.1 shows that the same terms are present

with both state types and that, in the limit of large m, all nonzero terms in both

cases have a value equal to the square of the single detector probability.

The results for quantum lithography follow a similar pattern, but have different

ramifications due to the different nature of the two interferometric arrangements.

With a low-gain parametric downconverter input (|1〉s|1〉i), the output pattern
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has the desirable quality of unit visibility in a pattern that varies as λ/4 with no

“slow” λ/2 component. As the gain is increased, the visibility decreases to 1/5,

but the dependence on λ remains the same. We can compare these results to

the patterns obtained with coherent state input. For |α0〉s|α1〉iPCoh, the quantum

lithography output pattern is given by

〈â†
o1

â†
o2

âo2 âo1〉

= (1 + sin2 χ)[|α0|4 + |α1|4] + (1 − sin2 χ)2|α0|2|α1|2[2 + cos 2φsi]

+ 2 sinχ(|α0|2 − |α1|2) + 4 cos χ cos φsi|α0||α1|[(|α0|2 + |α1|2)

+ 4 sinχ cosχ cosφsi|α0||α1|(|α0|2 − |α1|2) (6.12)

and for |α0〉s|α1〉iPInc by

〈â†
o1

â†
o2

âo2 âo1〉 = (1 + sin2 χ)[|α0|4 + |α1|4] + (1 − sin2 χ)4|α0|2|α1|2

+2 sin χ(|α0|2 − |α1|2) (6.13)

where χ = 2kx is the phase difference between the beams incident on the obser-

vation plane at a transverse displacement x. In the limit that |α0| = |α1|, these

expressions reduce to

〈â†
o1

â†
o2

âo2 âo1〉

= (1 + sin2 χ)2|α0|4 + (1 − sin2 χ)2|α0|4[2 + cos 2φsi]
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+ 8 cos χ cos φsi|α0|4 (6.14)

and

〈â†
o1

â†
o2

âo2âo1〉 = 2|α0|4(2 + cos2 χ) (6.15)

for |α0〉s|α0〉iPCoh and |α0〉s|α0〉iPInc, respectively.

From the case of phase-coherent |α0〉s|α0〉i input fields with no net phase

difference between them (φsi = 0), the joint detection probability reduces to

4|α0|4(2 − sin2 χ + 2 cos χ). We can note that this output pattern contain the

undesired cos χ component that varies as λ/2 and thus does not achieve a sub-

Rayleigh-limit pattern. If the cosχ term was simply ignored, the pattern resulting

from the remaining terms would have a visibility of 1/3. However, it is not possible

to adjust the phase difference between arms to eliminate the cosχ term without

also affecting the sin2 χ term, since the phase difference φsi is contained in both.

Choosing a value of φsi that eliminates the cos χ term, such as π/2, also leads the

sin2 χ term to vanish. We can note that this is unlike the output pattern produced

by the optical parametric generator at either low or high gain. The OPG pattern

contains no slowly varying cos χ or sinχ terms in either case.

The output pattern produced by phase-incoherent equal amplitude fields is

proportional to 3 − sin2 χ and thus does contain the desired 2χ variation without

a more slowly varying χ-dependent term. The remaining criterion for assessment
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of this source is visibility. It can easily be shown that the visibility for this state

is 1/5, which is the same as that for a high-gain optical parametric generator.

6.5 Conclusion

In this chapter, the output of a high-gain optical parametric generator was com-

pared to a seeded parametric amplifier and various coherent states as sources for

various fourth-order interferometric systems. Section 6.3 showed that the intro-

duction of a seed qualitatively altered the quantum lithography output pattern,

adding undesirable components. The degree of deviation from the vacuum-seeded

pattern was dependent on the seed amplitude; a weak seed might be acceptable

depending on the size of the deviation that can be tolerated.

This result has implications for the utility of vacuum-induced beam filamenta-

tion as a source for fourth-order interferometric applications. While beam filamen-

tation and parametric downconversion can be treated with the same mathemati-

cal model, one significant difference is the presence of seeding for filamentation in

the form of wavefront aberrations. In parametric downconversion, the difference

between the wavelengths of the pump and the output beams allows the sponta-

neous process to be easily distinguished from the seeded process. In the case of

filamentation, the degeneracy in wavelength between the pump and the created

beams, while an advantage for resolution doubling, also implies that fluctuations

present on the pump wavefront can serve as seeds to the interaction; that seeded
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process is not easily separated from the spontaneous process. The results of Sec-

tion 6.3 suggest that a small amount of seeding may still lead to acceptable results;

this, in turn, suggests that the issue of wavefront fluctuations need not prevent

vacuum-induced filamentation from being considered as a source for this type of

interferometric configuration.

Section 6.4 compared the fourth-order interferometric output of the high-gain

OPG to that produced by various coherent states. The results are summarized

in Table 6.4, which shows both the joint detection probability and the expected

coincidence probability defined as the product of the single detector probabilities.

This table also includes results calculated for the fourth-order Mach-Zehnder con-

figuration.

From this table we can see that, with an appropriate choice of phase relation-

ship between the two input beams, coherent state output can mimic the output

obtained with a two-photon entangled state at the level of the joint detection

probability alone. For instance, an output that varies with transverse coordinate

and wavelength (as contained in χ) in the same manner as that obtained with

a |11〉 can be achieved in the quantum lithography configuration with the use of

two randomly phased equal-amplitude coherent states. However, this apparent

similarity disappears when the values of the single detector rates are considered.

For both the Hong-Ou-Mandel and the Mach-Zehnder interferometers, the effect

of interest is difference between the calculated coincidence count rate and that
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Table 6.4: Comparison of joint detection probabilities versus
expected coincidence levels. The expected coincidence level is
here defined as the product of the individual detector proba-
bilities 〈â†

o1
âo1〉〈â†

o2
âo2〉 and is compared to the actual joint de-

tection probability 〈â†
o1

â†
o2

âo2âo1〉. The sources displayed are the
two-photon entangled state (|11〉), the paired coherent state in-
put (|α0α0〉), and the output of an optical parametric generator
(OPG). The phases of the coherent state inputs were chosen to
best illustrate similarities in joint detection probabilities and dif-
fer for each interferometer (φsi = π/2, HOMI; φsi = 0, Mach-
Zehnder; random phase, QL).
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expected based on the product of the single detector rates. In the case of coher-

ent state input, the calculated rate is simply the product of the single detector

rates, indicating no excess or reduction from the rate expected due to accidental

coincidences. In contrast, the two-photon entangled state produces a rate that

differs from the accidental rate, either in overall reduction as with the HOMI or

in dependence on phase difference between arms as in the Mach-Zehnder.

The high-gain optical parametric generator results vary by interferometer. In

the Hong-Ou-Mandel interferometer configuration, the calculated rate is the same

as the accidental rate. In the Mach-Zehnder, the calculated rate differs from the

accidental rate. Quantum lithography is unique among the three cases in that all

three sources show a deviation of the calculated coincidence rate from the acci-

dental coincidence rate. It is also unique in that the quantity of interest is truly

the joint detection rate alone, rather than the deviation of that rate from other

quantities. This implies that both high-gain OPG and coherent state sources

are of interest in this configuration. This conclusion is reinforced by the exis-

tence of classical proposals for the achievement of sub-Rayleigh-limit lithographic

sources [64]. In practice, details of substrate properties as well as the creation

of N-photon entangled sources will determine which configuration is of the most

experimental relevance.
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Chapter 7

Conclusions

In this thesis, our focus has been the assessment of the utility of high-gain

sources such as unseeded parametric amplifiers in configurations conventionally

associated with two-photon entangled state sources. We have done so by using

a single-mode analysis to compare the outputs of three fourth-order interferome-

ters obtained with parametric amplifier and two-photon entangled state sources.

These analyses were extended to the multimode case in order to examine the

effect of system transfer characteristics on the results. Vacuum-induced beam

filamentation was then considered as an alternative to spontaneous parametric

downconversion as a source for fourth-order interferometric configurations. The

high-gain unseeded parametric amplifier results were then compared with the re-

sults obtained using coherent state and seeded amplifier sources.

The first set of analyses involved a model of parametric downconversion in

which a single signal mode was coupled to a single idler mode. The output of this

source was then used as an input to three different fourth-order interferometric
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arrangements. The first interferometer considered was the Hong-Ou-Mandel in-

terferometer. We can recall that a two-photon entangled state used as a source for

this interferometer produces no coincidence counts when the arms are matched

in pathlength, even though the single detector rates are nonvanishing. We found

that the output obtained with a spontaneous parametric downconverter deviated

from this result at both low- and high-gain levels, and, in fact, that the coinci-

dence rate for the downconverter output was equal to the product of the single

detector rates. There was no coincidence count cancellation even with equal arm

pathlengths.

The second single-mode analysis considered the effect of different sources on

the output of a fourth-order Mach-Zehnder interferometer. With this interferom-

eter, a two-photon entangled state source produces a fourth-order output propor-

tional to cos2 χ, where χ is the phase difference between the two arms. This result

is notable given the independence of the single detector rates from χ. When an

unseeded parametric amplifier was used, the pattern was found to have the cos2 χ

dependence of the entangled state accompanied by an additional gain-dependent

background term. In the low-gain limit the visibility was found to increase to the

value of unity obtained with a two-photon entangled state source; in the high-gain

limit, the visibility was found to decrease to the asymptotic value of 1/3.

In the third configuration, that of quantum lithography, the most salient prop-

erties of the two-photon entangled state pattern are its visibility of one and its
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lack of a slowly varying cosine dependence on kx. We show that the unseeded

parametric amplifier produces a pattern that has the same desirable relationship

to kx, but is accompanied by a gain-dependent background term. As in the Mach-

Zehnder case, the visibility returns to the two-photon entangled state level in the

low-gain limit, and is reduced to a nonzero asymptotic level in the high-gain limit.

A generalized treatment of four-port fourth-order interferometers was also con-

sidered in order to explore the differences among the various results. The contri-

butions to the joint detection probability were decomposed into state-dependent

and interferometer-dependent factors. This analysis clarified the role of terms

arising from the presence of coincidence counts attributable to photons originat-

ing from the same input arm. These single-input-arm terms are not present in the

two-photon entangled state case, where all coincidences are attributable to path-

ways involving both input arms. The contribution of these terms was found to be

the origin of the gain-dependent loss of visibility found in the Mach-Zehnder and

quantum lithography cases and the loss of coincidence count cancellation in the

Hong-Ou-Mandel case. This finding suggests that understanding how to manipu-

late the balance between various types of contributions to the coincidence count

rate will be of importance if multiphoton sources are to be useful in two-photon

entangled state configurations.

The single-mode analyses were then extended to the case where multiple signal

and idler modes are coupled. A multimode treatment of the parametric ampli-
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fier was applied to the Hong-Ou-Mandel interferometer and quantum lithography

arrangements. As had been previously found for the two-photon case, the sym-

metry properties of the spectral distribution function was found to be a factor

influencing interferometer output. The impact of the transfer characteristics of

an interferometer using these sources on the output pattern was also explored.

In much of this work, the interferometric patterns created with high-gain para-

metric amplifiers were compared to the outputs generated by two-photon entan-

gled states. While this comparison is central to our goal of understanding which

entangled state properties are retained with multiphoton illumination, it neglects

another basis for comparison, namely the output produced by coherent state in-

put. We addressed this issue by returning to the single mode model of parametric

amplification to investigate coherent and seeded parametric amplifier states as

multiphoton pair fourth-order interferometric sources. We found that a coherent

state source can mimic the output obtained with a two-photon entangled state at

the level of the joint detection probability alone, but that this apparent similarity

disappears when the values of the single detector rates are considered. We also

showed that the introduction of a seed qualitatively altered the quantum lithogra-

phy output pattern, adding undesirable components, with the degree of deviation

from the vacuum-seeded pattern dependent on the seed amplitude.

One disadvantage of quantum lithography schemes using parametric down-

conversion is the lack of resolution doubling when the wavelength of the pump is
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considered. There is an increase in resolution by a factor of two from that ex-

pected using sources at the signal wavelength. However, this resolution increase

is offset by the wavelength doubling produced by a degenerate downconversion

process. Sources utilizing four-wave mixing, where the pump and generated fields

can be of the same wavelength are thus of interest. We discussed the suitability of

vacuum-induced filamentation as a fourth-order interferometric source, comparing

its features to those of parametric downconversion.

In these analyses, we have shown that multiphoton sources have promise in

contexts conventionally associated with two-photon entangled states. There are,

however, trade-offs between increased gain levels and desired output properties

such as pattern visibility. This balance is determined by the relative contribution

of terms involving both input arms versus terms attributable to a single input

arm. The specifics of the source spectrum and the interferometer transfer char-

acteristics affect this balance, making the manipulation of these parameters to

mitigate undesirable gain-associated changes a promising area for future study.
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