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Abstract 
We describe a mathematical model and two-tier computational algorithm for finding network structures that 

best satisfy energy supply/demand constraints in the system. The method uses a Markov matrix for routing 

flows in the algorithm’s ‘inner’ loop while elements of this matrix are periodically updated in an ‘outer’ loop 

using Monte Carlo sampling. We illustrate the efficacy of the method on two numerical examples. 
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1. Introduction 
 

The behavior of many complex systems can be modeled by processes resident on network 

(graph) structures where components (nodes) in the system are linked together in some 

fashion. Examples include computer networks [1], biological systems [2–8], power supply 

grids [9–17] and financial risk management networks [18, 19]. The behavior in these systems 

depends upon the pattern of interconnections between components in the network. In power 

supply applications, for example, the network architecture (i.e scale-free or homogeneous 

[20]) will have a significant effect on system reliability where intermittent equipment failure, 

demand overload, and flow congestion have to be dealt with to ensure proper system 

functioning [21], [20], [22]. Knowledge of the network structure is key to answering many 

practical questions e.g. how do we route energy flows to avoid flow overloads along network 

pathways? Where should additional energy storage capacity be incorporated into the network 

if energy demand is to be better satisfied at each point in the system? 

In this paper we describe a novel two-tier computational method for addressing 

questions of this sort. The network model describes a system where energy is supplied to the 

network from fixed external sources. Within the network energy flow can be directed 

between any node in the system. In addition, a local independent battery backup-storage 

capability is assigned at each node. This facilitates local energy storage when excess energy 

is available at a given node from which energy could subsequently be drawn to re-supply to 

the system if necessary. The overall objective of the optimization algorithm is to establish 

routing information that attempts to satisfy overall supply-demand requirements throughout 

the system. A specific objective of the work was to study the effect of network rewiring 

[17][23]. 

Algorithms for modeling flow in networked systems usually fall into three main 

classes: either Markov matrix-based [24], linear/mixed integer linear programming methods 
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[25][26] or solving conductance models, i.e. Kirchoff’s laws [27]. In the hybrid approach we 

describe here we meld concepts from various fields eventually arriving at a novel 

optimization method for networked processes. We represent the switching properties of the 

network by a Markov transition matrix whose elements provide the network routing 

information. The values of these elements are unknowns and the objective of the algorithm is 

to find the matrix values that best satisfy supply-demand equilibrium while maintaining 

flows along the network’s edges below a pre-set threshold value 
maxl . Towards this end we 

employ Monte-Carlo sampling, reminiscent of the simulated annealing algorithm originally 

discussed in the papers of Cerny [28] and Kirkwood et al. [29]. Simulated annealing is a 

powerful metaheuristic optimization computational method [30] which has found application 

in a wide variety of fields including transport networks [31], failure analysis in power grids 

[24] and vehicle routing problems [32]. As discussed elsewhere [33, 34] requirements for its 

use are: (1) a model for the system being studied with variables that can be manipulated to 

effect changes in the process simulation outcomes (i.e. decision variables) (2) a scalar ‘cost’ 

objective function that measures progress towards some process goal (3) an annealing 

parameter which can be adjusted (if necessary) to promote numerical convergence during the 

course of the calculations and (4) a criterion for termination of the computations. These so-

called metaheuristic algorithms make very few assumptions (e.g. linearity) about the 

particularities of the system being optimized [35] and, unlike many other optimization 

algorithms, they do not require ‘nice’ mathematical features (e.g. differentiability) that 

gradient based methods, for example, require [36]. 

The paper is organized as follows. In section 2 we describe the network model 

followed by a description of the Monte Carlo optimization algorithm mused for its solution in 

section 3. In section 4 we present computational results for two example problems followed 

by conclusions in section 5. 
 

2. The network flow model 
 

We consider an undirected graph ( ( ), ( ))G V G E G= with vertex set ( )V G and edge set ( )E G

.The edge set ( )E G of the network can be represented by an adjacency matrix A [37]which 

can be used to construct a network flow model with the following canonical form [38]: 

 

. .

.

.

TR ABS

TR

ABS

=  
 
 

P Q R

0 I

 (1) 

Here I  is a K -by- K  identity matrix, 0  is a K -by- N zero matrix, R is a nonzero N -by- K

absorbing state matrix, and Q  is the N -by- N  transition probability (Markov) matrix which 

directs flows along the network from node i  to node j  according to the probability 

associated with the element 
ijq . For an absorbing network where there is energy 

consumption at each node the sum of the matrix row elements 
ijq  are less than one along 

each row [38]. If the absorption probability at node i  is 
aiq  then 

1
1

N

ij aij
q q

=
− = . 

If the required total power availability at each point in the network is denoted by the 

row vector uand the external power/ backup availability at each node is denoted by the row 

vector s then (assuming no losses) we can write the following energy flow conservation 
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equation relating these quantities: 

 =u uQ + s  (2) 

It is observed that u  is a row vector that represents the available power at each node; some of this 

power is transmitted elsewhere in the network while part is consumed locally. The steady-state energy 

conservation law in the system is given by 
1 1

N N

ai i ii i
q u s

= =
=  . 

We define a matrix n nU  which has the elements of vector u  arranged along its main diagonal 

as follows, 

 

1

2

0

0

n n

n

u

u

u



 
 
 =
 
 
 

U  (3) 

and a matrix D  that represents the power flow between nodes. Each element ijd  of D  is 

defined as follows, 

 ij i ijd u q=   (4) 

where ijq  is the ij  element of Q . 

The matrix form of equation (4) is, 

 

1 11 12 1 1 11 1 12 1 1

2 21 21 2 2 21 2 21 2 2
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 (5) 

The actual consumption at each node ic  is calculated from the R  matrix and is given by the 

equation, 

 (1 )
N

i ij i ai ij
c q u q u= − =  (6) 

If we define the demand goal at each node as ia  then the ‘residual’ energy at each node is given by 

i i ic a = − which can be either positive or negative. 

 

2.1. The network roughness function 
 

We introduce the concept of the ‘network roughness’ function ( )N  inspired by the use of an 

analogous property in systems involving stochastic processes [39] where it is used to measure the 

overall uniformity of a thin-film surface being randomly deposited on a substrate. Here, by analogy, it 

is used as a measure of the overall departure of the network’s residual energy ‘surface’ from the 

equilibrium requirements as flow re-distribution occurs across the network. 

The network roughness function ( )k N at the kth iteration is defined as: 

 
2

1
( ) 1/

N

k ii
N N 

=
=   (7) 

The magnitude of ( )k N is used as the Monte Carlo sampling function to decide whether or not to 

accept each attempt at a flow redistribution step in a manner analogous to the Metropolis method 

ubiquitous in statistical mechanical simulations-where the energy between states is usually the 
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property sampled [40, 41]. 

These ideas can be couched as the following general nonlinear optimization problem; a more 

formal formulation of the network optimization problem can be expressed as: 

 Given s , a , initial 
0Q , N , find the Markov matrix Q  (8) 

 Minimizing 2

1
( ) 1/

N

k ii
N N 

=
=   (9) 

 subject to the constraints  

 maxiu l , i  (10) 

 0 , 1ij aiq q  , i  (11) 

 1ai ijj
q q+ = , i  (12) 

Note that i  depends upon the elements of Q , and the constraints (11) and (12) ensure that Q  is a 

valid Markov matrix. 
 

3. Optimization algorithm 
 

A given network structure gives rise to asymmetric adjacency matrix A ,a 0-1 matrix, where 0 

represents no edge between a pair of nodes and the value 1 denotes the existence of one. The 

initial transition matrix is defined as 
0Q  where 

0 10 20( , , , )i i i inoq q q q=  is its ith row. Although 

the network has an undirected structure, the sign of the magnitude of the power flow gives a net flow 

direction. In order to reflect this we define a new matrix ( )TF D D= − , which gives the algebraic 

sum of the flow along each edge. We set all the negative elements of F  to be 0.  In this way, all the 

information about the absolute flows is included in matrix F . We also define the maximum 

allowable power flow along any given edge which we call its limiting value maxl . Each row of 

matrix F shows the flow from node i  to the other nodes it is connected to. The purpose of Monte 

Carlo sampling is to iteratively re-distribute flows so that the maximum flow along any network 

edge is maintained below a maximum prescribed value while attempting to satisfy overall energy 

demand. The optimization algorithm proceeds as follows:  
 

3.1. Initialization  
 

Input 
0Q , maxl ,  , a , 0k =  

0 0 0 0u u Q s= +  

Calculate 0  

 

3.2. Order i  

 

Calculate residual supply-consumption vector   and order from the highest value max to 

the lowest value min  

 

3.3. Find potential redistribution paths from max  

 

a. Start with the maximum   indexed by x . 



Guangran Zhang and E. H. Chimowitz / International Journal of Engineering Sciences 2018 11(3) 82-94 

 

86 
 

b. Find all the nodes that are connected with node x  within the matrix Q . 

 

3.4. Redistribute flows 
 

1k k= +  

a. Redistribute the excess energy x  to its connected node with the lowest value of y which 

is a ‘greedy’ heuristic [42]. That is replace xyq  with /xy x xq u+ and decrease xaq  by this 

amount to maintain the Markov property of the system 

b. Calculate a uniform random number z  in the range [0,1]. 

c. If 1

1

exp( )k k

k

z
 




−

−

−
−  , reject the move and redistribute the excess from x  to a 

connected node with the next higher value of y . Re-calculate k . 

d. If for node x , all possible attempted re-distributions do not satisfy

1

1

exp( )k k

k

z
 




−

−

−
−  , replace node x  with the next largest   and repeat steps 3b and 4. 

e. If 1

1

exp( )k k

k

z
 




−

−

−
−  , accept the redistribution move. Calculate new 

kQ  and 

1[ ]k ku I Q s−= − . The matrix 
1[ ]kI Q −−  is positive definite therefore is guaranteed to have a 

non-singular inverse [43]. 

Calculate k  and check for stopping conditions: If 
1k k  −−   and foreach 

element of 1

max[ ]k ku I Q s l−= −  , end calculations. Otherwise go to2. and repeat the 

calculations. 

If all attempts at redistribution in steps 4a-4d fail or 
1k k  −−  and

1

max[ ]k ku I Q s l−= −  , from 4e, decrease  and/or maxl and repeat the calculations until 

problem constraints are satisfied. At some point the second it ions will be satisfied since 

smaller  allows for wider sampling of the fluctuations and increasing maxl obviously relaxes 

the maximum flow restriction which will be satisfied at some point. In step 1 the annealing 

factor   is analogous to the Boltzmann temperature term in statistical thermodynamic 

simulations. We also note that in step 3 the restriction of ow distribution between nodes 

connected in the original network can be relaxed-if the ‘hard-Ware’ allowing for additional 

edges is in place. We investigate this in the next section. 
 

4. Numerical results 
 

For our examples we used random graph initial structures [37] with values for the edge ow 

transition probabilities in the Q , R  matrices taken from a uniform distribution sampled over 

the range [0,1]. In the first problem we used a network with 15 nodes each with 

supply/demand values randomly allocated to the s and a vectors. These two vectors are not 

necessarily correlated. 
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A network capable of satisfying its energy needs requires
1 1

N N

i ij j
s a

= =
  .The initial 

values for 0c  and ia  are shown in table 1 and the value of the initial Q in table 2. The 

network structure of this system is shown in Figure1. From the entries in table 2 it is evident 

that the matrix has zero entries implying that this particular network is not a complete graph 

[37]. The other initialization parameters maxl were set at 2 times the initial maxd and annealing 

factor  =0.5. The algorithm was run with these inputs for the fixed network structure. The 

network roughness function is plotted in Figure 2and is insensitive to values of the annealing 

parameter  . This was found throughout calculations with this problem, and is not unusual 

with simulated annealing [33]. We note, however, that the denominator term in the 

exponential, 1k − , does change every time a new state is accepted lending a dynamic 

character to the annealing process. The initial and final histograms of the residual demand 

functions i i ic a = −  are shown in Figures 3 and 4, respectively. It is evident that the 

redistribution helps balance supply/demand throughout the network. However, nodes 7 and 9 

are well below the required consumption goals. These nodes are not coupled to the most over 

supplied node in the original network (node 1) and a logical design step is to reconfigure the 

network to couple these respective nodes. We allowed this coupling in the algorithm and 

doing so leads to results given in Figure 5 with the network roughness function for this case 

shown in Figure 6. We observe that the new network structure allows for a modest 

improvement in the supply/demand equilibrium compared to the prior fixed structure case. 

We then modified the algorithm so as to enable connection between the nodes with the 

highest and lowest values of i anywhere in the system. The re-wired network structure with 

additional connections (shown in red) is shown in Figure 7 with the histogram and roughness 

function shown in Figure 8 and 9. A very significant improvement in the supply/demand 

equilibrium in the system results. In fact, now all consumption goals are achieved and the 

excess available power could be sent to a local storage device. Furthermore, the algorithm 

provides the exact places in the network where new edge capacity should be added (or used if 

the link is already in place) to satisfy system demand. In all these cases we checked the 

numerical consistency of the calculations which should show that the overall supply equals 

the overall consumption in the system and found this to be always true. 

 

Figure 1: Initial Fixed Network Structure 
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Table 1: c0 and a vector 

c0 a 
44.20 10.00 

67.67 65.00 

33.55 30.00 

43.64 45.00 

13.46 18.00 

72.23 83.00 

2.34 20.00 

31.38 31.00 

1.51 10.50 

141.93 120.00 

49.17 49.00 

125.92 120.00 

42.51 42.00 

78.96 80.00 

49.49 49.00 

 

Table 2: Q0 matrix 

0.000 0.073 0.000 0.072 0.000 0.000 0.000 0.068 0.000 0.000 0.091 0.124 0.000 0.182 0.123 

0.000 0.000 0.000 0.000 0.000 0.033 0.000 0.125 0.000 0.056 0.000 0.116 0.000 0.000 0.125 

0.241 0.097 0.000 0.096 0.000 0.044 0.000 0.092 0.000 0.074 0.000 0.153 0.000 0.000 0.076 

0.000 0.069 0.000 0.000 0.000 0.000 0.000 0.181 0.000 0.225 0.000 0.117 0.000 0.000 0.054 

0.121 0.000 0.126 0.000 0.000 0.110 0.000 0.082 0.000 0.001 0.061 0.000 0.000 0.122 0.044 

0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.097 0.000 0.188 0.072 0.091 0.000 0.145 0.098 

0.000 0.056 0.026 0.000 0.059 0.095 0.000 0.053 0.000 0.125 0.000 0.000 0.000 0.000 0.000 

0.145 0.058 0.151 0.058 0.062 0.132 0.000 0.000 0.000 0.235 0.000 0.000 0.000 0.000 0.000 

0.000 0.062 0.000 0.061 0.065 0.105 0.000 0.058 0.000 0.138 0.000 0.097 0.000 0.000 0.105 

0.000 0.000 0.250 0.000 0.000 0.213 0.000 0.000 0.000 0.000 0.000 0.016 0.000 0.000 0.108 

0.000 0.000 0.085 0.000 0.042 0.091 0.000 0.068 0.000 0.162 0.000 0.069 0.000 0.101 0.032 

0.000 0.000 0.000 0.071 0.000 0.033 0.000 0.000 0.000 0.236 0.000 0.000 0.000 0.000 0.065 

0.104 0.000 0.109 0.000 0.000 0.148 0.000 0.000 0.000 0.000 0.053 0.006 0.000 0.106 0.038 

0.109 0.000 0.114 0.000 0.000 0.175 0.000 0.000 0.000 0.145 0.055 0.000 0.000 0.000 0.000 

0.000 0.106 0.225 0.000 0.000 0.191 0.000 0.100 0.000 0.000 0.000 0.181 0.000 0.000 0.000 

 

Figure 2: Roughness ωN vs. Steps for Fixed Network Structure 
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Figure 3: Initial Histogram for Fixed Network Problem, δi0 vs. Nodes 

 

Figure 4: Final Histogram for Fixed Network Structure, δi vs. Nodes

 

Figure 5: Histogram for Single Added Link Network, δi vs. Nodes 
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Figure 6: Roughness for Single Added Link Network, ωN vs. Steps

 

Figure 7: Re-Wired Network Structure with Additional Links Throughout 

 

Figure 8: Histogram for Network in Figure 7, δi vs. Nodes 
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Figure 9: Roughness for Network in Figure 7, ωN vs. Step 

When optimizing systems, it is instructive to have benchmark problem(s) against which 

any algorithm(s) can be tested. These are not always easy to come up with especially for 

NP-complete combinatorial problems [42] or those with a large solution space like the 

problem we address here. We, however, conceived of such a benchmark for our algorithm 

using a two-step computation process carried out along the following lines. Firstly, we 

used the network structure shown in Figure 1 and for a given initial Q matrix and specified 

supply and consumption (residual) vectors s , a we solved for   in the system. In the 

second part we attempted to solve the reverse problem by finding the Markov matrix Q  for 

the values of the consumption found in the first set of calculations. We know that interalia 

the optimal solution to this problem should lead to a now known (by construction) Markov 

matrix that satisfies supply-demand in the system. Our method indeed does this very 

closely with the results shown in Figures 10, 11 and 12 for the roughness functions before 

and after consumption histograms, respectively. 

 

Figure 10: Roughness for Benchmark Problem, ωN vs. Steps 
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Figure 11: Before Histogram for Benchmark Problem, δi0 vs. Nodes 

 

Figure 12: After Histogram for Benchmark Problem, δi vs. Nodes 

 

5. Conclusions 
 

We present novel results for a hybrid Markov Matrix-Monte Carlo annealing optimization 

algorithm whose objective is to find a set of Markov transition probabilities that route network 

flows to satisfy preset supply/demand goals. This, while keeping ow magnitudes along any path 

in the network below a prescribed maximum value. Computational results illustrate that the 

algorithm performs very well in achieving design objectives in two example problems 

involving network flow models. The first problem showed the efficacy of the algorithm in 

finding solutions that enhance the network’s supply-demand equilibrium by dynamically 

establishing new network connections that switch energy from areas of excess to areas of 

deficit in the system. In the second problem we established a benchmark problem and then 

tasked the algorithm with finding the optimal solution. The algorithm succeeded in doing this 

and thus represents a potentially powerful general way of addressing important routing 

problems in complex networks where the flow ‘entity’ can be expansively interpreted (i.e. 
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energy, information, etc.). The results provide a good foundation for future work incorporating 

edge flow costs and dynamic demand conditions into the problem formulation. 

 

References 

 
1. Balthrop J., Forrest S., Newman M. E. J., and Williamson M. M.. Technological networks 

and the spread of computer viruses, Science, 2004, 304(5670), 527–529. 

2. E. M. Boon and J. K. Barton. Charge transport indna. Current Opinion in Structural Biology, 

2002, 12(3), 320–329. 

3. Boon E. M., Salas J. E., and Barton J. K.. An electrical probe of protein-dna interactions on 

dna-modified surfaces. Nature Biotechnology, 2002, 20(3):282–286. 

4. Karrer B. and Newman M. E. J.. Message passing approach for general epidemic models. 

Physical Review E, 2010, 82(1). 

5. Meyers L. A., Newman M. E. J., Martin M., and Schrag S.. Applying network theory to 

epidemics: Control measures for mycoplasma pneumoniae outbreaks. Emerging Infectious 

Diseases, 2003, 9(2), 204–210. 

6. Newman M. E. J.. Spread of epidemic disease on networks. Physical Review E, 2002, 66(1). 

7. Newman M. E. J. and Sibani P.. Extinction, diversity and survivorship of taxa in the fossil 

record. Proceedings of the Royal Society of London Series B-Biological Sciences, 1999, 

266(1428), 1593–1599. 

8. Pastor-Satorras R. and Vespignani A.. Epidemic spreading in scale-free networks. Physical 

Review Letters, 2001, 86(14), 3200–3203,. 

9. Borges C. L. T.  and Falcao D. M.. Optimal distributed generation allocation for reliability, 

losses, and voltage improvement. International Journal of Electrical Power Energy Systems, 

2006, 28(6), 413–420. 

10. Carvalho R., Buzna L., Bono F., Gutierrez E., Just W., and Arrowsmith D.. Robustness of 

trans-european gas networks. Physical Review E, 2009,  80(1). 

11. Hemdan N.G.A. and Kurrat M.. Efficient integration of distributed generation for meeting 

the increased load demand. Electrical Power and Energy Systems, 2011, 33, 1572–1583. 

12. Iyer G. and Agrawal P.. Smart power grids, 42nd se symposium on system theory, tyler, 

texas. 2010. 

13. Muller-Steinhagen H.  and Trieb F.. Concentrating solar power: A review of the technology.  

Quarterly of the Royal Academy of Engineering Ingenia 2004, 18, 43–50. 

14. Roytelman I. and Palomo J.M.. Distributed energy resources integration in distribution.IEEE 

Smart Grid, 2015. 

15. Subburaj A. S.,. Pushpakaran B. N, and Bayne S. B.. Overview of grid connected renewable 

energy based battery projects in usa. Renewable Sustainable Energy Reviews, 2015, 45, 

219–234,. 

16. Vanek F.M. and Albright L.D.. Energy Systems Engineering. McGraw Hill, New York, 2008. 

17. Halu A., Scala A., Khiyami A., and Gonzalez M. C.. Data-driven modeling of solar- powered 

urban microgrids. Science Advances, 2016, 2(1). 

18. Edwin J. Elton and Gruber Martin Jay. Modern portfolio theory and investment analysis. 

Wiley, New York, 5th edition, 1995. 

19. Edwin J. Elton and Martin Jay Gruber. Finance as a dynamic process. Prentice-Hall 

foundations of finance series. Prentice-Hall, Englewood Cliffs, N.J.,, 1974. 

20. Adilson E Motter and Ying-Cheng Lai.  Cascade-based attacks on complex networks. 

Physical Review E, 2002, 66(6), 065102. 

21. Bashan Amir, Berezin Yehiel, Buldyrev Sergey V, and Havlin Shlomo. The extreme 

vulnerability of interdependent spatially embedded networks. Nature Physics, 2012. 

22. Antonio Scala, Sakshi Pahwa, and Caterina M Scoglio. Cascade failures and distributed 

generation in power grids. International Journal of Critical Infrastructures 7, 2015, 11(1), 

27– 35. 



Guangran Zhang and E. H. Chimowitz / International Journal of Engineering Sciences 2018 11(3) 82-94 

 

94 
 

23. Reuven Cohen and Shlomo Havlin. Complex networks: structure, robustness and function. 

Cambridge university press, 2010. 

24. Zhifang Wang, Anna Scaglione, and Robert J ThomasIn . A markov-transition model for 

cascading failures in power grids. System Science (HICSS), 45th Hawaii International 

Conference on, 2012, 2115–2124. IEEE. 

25. Monique van den Berg, Bart De Schutter, J Hellendoorn, and Andreas Hegyi. Influencing 

route choice in traffic networks: A model predictive control approach based on mixed-

integer linear programming. In Control Applications. CCA. IEEE International Conference 

on, 2008, 299–304. 

26. Michael T Gastner and Mark EJ Newman. The spatial structure of networks. The European 

Physical Journal B-Condensed Matter and Complex Systems, 2006, 49(2), 247–252. 

27. Yu-hua Xue, Jian Wang, Liang Li, Daren He, and Bambi Hu. Optimizing transport efficiency 

on scale-free networks through assortative or dissortative topology. Phys. Rev. E, 2010, 81, 

037101. 

28. V. Cerny. Thermodynamical approach to the traveling salesman problem - an efficient 

simulation algorithm. Journal of Optimization Theory and Applications, 1985, 45(1), 41–51. 

29. Kirkpatrick S., Gelatt C. D., and Vecchi M. P..  Optimization by simulated annealing. 

Science,1983, 220(4598), 671–680. 

30. M.N.S. Du, K ; Swamy. Search and Optimization by Metaheuristics. Springer, 2016.  

31. Mikhail Volkov, Javed Aslam, and Daniela Rus. Markov-based redistribution policy model 

for future urban mobility networks. In Intelligent Transportation Systems (ITSC), 15th 

International IEEE Conference on, 2012, 1906–1911. IEEE. 

32. A Van Breedam.  Improvement heuristics for the vehicle routing problem based upon 

simulated annealing. European Journal of Operations Research, 1995, 86, 480–490. 

33. Fred E Goldman and Larry W Mays. Water distribution system operation: Application of 

simulated annealing, 2005. 

34. Irene Samora, Ma´rio J Franca, Anton J Schleiss, and Helena M Ramos. Simulated annealing 

in optimization of energy production in a water supply network. Water resources 

management, 2016, 30(4), 1533–1547. 

35. D. Simon. Evolutionary Optimization Algorithms. Wiley, 2013. 

36. D.G. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-Wesley, 

1973. 

37. M.E. J. Newman. Networks: An Introduction. Oxford University Press, New York, 2010.  

38. Charles Miller Grinstead and James Laurie Snell. Introduction to probability. American 

Mathematical Soc., 2012. 

39. A. Barabasi and H. E. Stanley. Fractal Concepts in Surface Growth. Cambridge Univerity 

Press, 1995. 

40. Mark Tuckerman. Statistical mechanics: theory and molecular simulation. Oxford University 

Press, 2010. 

41. E.H. Chimowitz. Introduction to Critical Phenomena in Fluids. Oxford University Press, 

New York, 2005. 

42. Leiserson C.E. Rivest R.L. Cormen, T.H. An Introduction to Algorithms. McGraw-Hill andc 

MIT Press, 1990. 

43. Daniel J.W. Noble, B. Applied Linear Algebra. Prentice Hall, 1998. 


